
Copyright:

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Web Testware Evolution

Filippo Ricca, Maurizio Leotta, Andrea Stocco, Diego Clerissi, Paolo Tonella

Abstract:

Web applications evolve at a very fast rate, to accommodate new functionalities, presentation

styles and interaction modes. The test artefacts developed during web testing must be evolved

accordingly. Among the other causes, one critical reason why test cases need maintenance

during web evolution is that the locators used to uniquely identify the page elements under

test may fail or may behave incorrectly. The robustness of web page locators used in test

cases is thus critical to reduce the test maintenance effort. We present an algorithm that

generates robust web page locators for the elements under test and we describe the design of

an empirical study that we plan to execute to validate such robust locators.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/WSE.2013.6642415

Web Testware Evolution

Filippo Ricca1, Maurizio Leotta1, Andrea Stocco1, Diego Clerissi1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Software Engineering (SE) Research Unit, Fondazione Bruno Kessler, Trento, Italy

filippo.ricca@unige.it, maurizio.leotta@unige.it, andrea.stocco@edu.unige.it, diego.clerissi@gmail.com, tonella@fbk.eu

Abstract—Web applications evolve at a very fast rate, to
accommodate new functionalities, presentation styles and inter-
action modes. The test artefacts developed during web testing
must be evolved accordingly. Among the other causes, one critical
reason why test cases need maintenance during web evolution is
that the locators used to uniquely identify the page elements
under test may fail or may behave incorrectly. The robustness of
web page locators used in test cases is thus critical to reduce the
test maintenance effort. We present an algorithm that generates
robust web page locators for the elements under test and we
describe the design of an empirical study that we plan to execute
to validate such robust locators.

Keywords—Web Testing, Test Case Evolution, Test Case Repair,
Robust XPath.

I. INTRODUCTION

While test case generation has been investigated exten-
sively in recent years, the problem of the evolution of web
testware1 has been somewhat neglected, despite its enormous
industrial relevance. Web tests are broken quite frequently
when a web application evolves and the effort involved in
repairing them can be substantial. The analysis of the web
testware evolution problem is in its early phases and no
automated support exists to help developers dealing with it.

In order to save the input generation effort when a web
application evolves to a new version, techniques have been
studied to port the old input data to the new version of
the code. Specifically, changes in the structure of the web
application are mapped to repair actions that are applied to user
session data [7]. This work has been among the first to give
recognition to the importance of the web testware evolution
problem. While it addresses the evolution of test data, it does
not consider the problem of web page locators, that are heavily
used in web testware and pose major challenges to testware
evolution. After presenting the web testware evolution problem
in more detail, this paper focuses on the robustness of web
page locators used in testware specifically.

The paper is organized as follows: Section II provides
background knowledge and describes existing works in web
testing. Section III introduces testware evolution, by analysing
how different kinds of changes executed on the web applica-
tion under test impact on the testware maintenance activity.
Section IV introduces the problem of finding robust web
page locators with the goal of reducing the overall testware
maintenance effort and presents our algorithm to address it.
Section V sketches the design of an experimental study we plan

1Testware is an umbrella term to identify all the artefacts produced during
the test process such as: documentation, scripts, inputs, expected results, files,
databases and environment.

to execute in order to evaluate the robustness of the locators
created using our novel algorithm. We then present conclusions
and future work in Section VI.

II. BACKGROUND

Around the year 2000, several researchers investigated the
specific nature of testing when applied to web technologies
and proposed methodologies, techniques, processes and tools
to deal with the specific testing problems of web based sys-
tems [5], [15], [16]. These early works defined the foundations
of web testing. Then, the area of web testing has expanded
tremendously. Over the last 10 years, researchers have pro-
posed several novel advanced approaches and tools, that build
on top of the foundational works. The widespread diffusion of
rich client languages and frameworks (e.g., ActionScript and
Ajax) has posed additional challenges to Web testing.

The input data submitted through forms during the auto-
mated exploration of a web application affect to a major extent
the subset of web pages that is visited (i.e., tested). The input
generation problem has been dealt with by means of several,
different approaches by various researchers [4], [5], [6], [7],
[15], [17], [18]. In early works, most of the burden was on the
testers’ side and researchers expected the testers to provide
input data manually or with the support of decision tables,
still to be filled in manually [5], [15]. A very fruitful research
direction was then followed, aimed at leveraging user-session
data, so as to reuse them as test input data [6], [18].

Test adequacy criteria (e.g., coverage criteria) for web
applications have been defined with reference to a test model.
The straightforward test model for a web application is its
navigation model [15], [19]. The problem with the construction
of a navigation model is how to decide if a given page is
already represented in the model or requires the addition of
a new model element. In fact, slight variations in the content
or structure of a page may be associated conceptually with
the same entity in the model. This problem has been tackled
by resorting to page similarity metrics [15] and to abstraction
functions [19], that map a concrete web page to an abstract
one.

Detailed modelling of the dynamic aspects (e.g., database
access, client side scripts) can be achieved by resorting to code
instrumentation [2]. Although the http protocol is stateless,
web application are in reality stateful and employ various
mechanisms to keep track of the current state. A finite state test
model for web applications has been proposed [1], to ensure
that all relevant states and state transitions involved in a web
application are adequately tested.

In rich client (so-called, web 2.0) web applications, a sub-
stantial portion of the computation and interaction is moved to

<form name="loginform" action="homepage.asp" method="post">

 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login

</form>

Username:
Password:
 Login

Fig. 1. login.asp – Page and Source

the client, so as to improve the user experience, making it more
similar to that of fully-fledged desktop applications. Techni-
cally, this is achieved by implementing the rich client as a
single-page application, whose graphical elements are updated
dynamically, in response to callbacks activated asynchronously
by user interactions or by server messages. These features
introduce new classes of faults, as compared to traditional web
applications [11].

Recent works on testing of rich client web applica-
tions [12], [13] are based on a test model which is focused
on the client side states. In fact, the behaviour of these
applications is determined by the DOM (Document Object
Model) state and by the asynchronous events processed in
each DOM state. Events trigger the execution of client side
code (e.g., Javascript), which in turn can affect the client state
by directly manipulating the DOM elements. DOM states are
modelled as abstract states in the test model. State abstraction
can be based on user defined abstraction functions [12] or
on the edit distance between concrete states [13]. Ajax states
are then tested by checking whether they violate any invariant
(generic DOM invariants, state machine invariants and appli-
cation specific invariants) [13].

III. TESTWARE EVOLUTION

When a Web application evolves to accommodate require-
ment changes, bug fixes, or functionality extensions, existing
automated test cases may become broken (e.g., they may be
unable to locate some links, input fields or submission buttons),
and software testers have to repair them. This is a tedious
and expensive task, which is usually performed manually by
software testers (automatic evolution of test suites is far from
being consolidated [14]). The strategy used by a software tester
to repair a test case depends mainly on two factors: (1) the
kind of change (logical or structural) and (2) the approach
adopted by the tool used to build the test cases (capture-replay
or programmable).

A. Kind of Changes

Test case repair activities can be categorized, depending on
the kind of maintenance task that has been performed, in two
types: logical and structural.

The first kind (logical) refers to major functional changes
which involve the modification of the web application logic.
This kind of change requires to modify correspondingly the
logic of one or more test cases (e.g., modifying a series of

commands in a test case because the path to reach a certain
Web page has changed). An example of a change request that
necessitates of a logical repair activity is enforcing security in
a Web application by means of stronger authentication.

The second kind (structural) refers to a change at level of
page layout/structure only. For example, in a login web page
the id of the password textbox may be changed from PW (see
Fig. 1) to PWD. Usually, the impact of a structural change is
smaller than a logical change. Often, it is sufficient to modify
one or more localization lines, i.e., lines containing locators
(a locator is a mechanism for uniquely identifying an element
on the web page, i.e. in the Document Object Model (DOM),
for instance based on an XPath query).

B. Approaches to Web Testing

Among the recently proposed approaches to web testing,
we can recognize two major trends, associated with a pro-
foundly different way of facing the problem. On the one hand,
capture-replay (C&R) web testing is based on the assumption
that the testing activity conducted on a web application can
be better automated by recording the actions performed by
the tester on the web application GUI and by generating a
script that provides such actions for automated, unattended
re-execution. On the other hand, programmable web testing
aims at unifying web testing with traditional testing, where test
cases are themselves software artefacts that developers write by
resorting to specific testing frameworks. For web applications,
this means that the framework has to support an automated,
unattended interaction with a web page and its elements, so
that test cases can, for instance, automatically fill-in and submit
forms or click on hyperlinks.

C&R test cases are very easy to obtain and actually do
not require any advanced testing skill. Testers just exercise the
web application under test and record their actions. However,
during software evolution the test suites developed using a
C&R approach tend to be quite fragile [10]. A minor change
in the web application GUI might break a previously recorded
test case, whose script needs to be repaired manually, unless
it is re-recorded from scratch, on the new version of the web
application.

Programmable test cases require non trivial programming
skills; the involved effort is comparable to that required for
normal code development. However, all benefits of modular
programming can be brought also to the test cases, such
as parametric and conditional execution, reuse of common

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver = driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.id("PW")).sendKeys(PW);
 driver.findElement(By.id("login")).click();
 return new HomePage(driver);
 }
}

public class HomePage {
 private final WebDriver driver;
 public HomePage(WebDriver driver) {this.driver = driver;}
 public String getUsername() {
 return driver.findElement(By.id("uname")).getText;
 }
}

Fig. 2. LoginPage and HomePage page objects

functionalities across test cases (e.g., the page object pattern2

used to model the web pages involved in the test process as
reusable objects), robust mechanisms to reference the elements
in a web page.

Different testing tools are associated with different test-
ware. For instance a representative of the C&R category is
Selenium IDE3. It uses capture-replay to store and reproduce
the user interactions in a test case, defined in the Selenese
scripting language. Instead, Selenium WebDriver4 is a repre-
sentative of the Programmable category. It is based on the
page object pattern and on programmable test cases, which
can be parameterized by testers and which can reuse/share
functionalities, as done for the unit testing of traditional OO
software.

C. Programmable Approach & the Page Object Pattern

Let us consider the following running example, consisting
of the portion of a web application that authenticates users. In
a simplified case, we have a login page (e.g., called login.asp)
that requires the user to enter her credentials, i.e., username
and password (see Fig. 1).

The first step for testing our simple Web application is
creating two page objects LoginPage and HomePage cor-
responding to the web pages login.asp and homepage.asp
respectively (see Fig. 2). The page object LoginPage offers a
method to log into the application. That method takes in input
a username and a password, inserts them in the corresponding
input fields, clicks on the Login button and returns a page object
of kind HomePage (because the application moves to page
homepage.asp). HomePage contains a method that returns the
username authenticated in the application or Guest when no
user is authenticated. In these page objects, we have used the
values of the id attributes to locate the HTML tags.

Let us consider a simple test case, testing a successful
authentication. It logs in using valid credential and it verifies
that in the resulting home page the user has been actually
authenticated. Fig. 3 shows the WebDriver implementation of
the successful authentication test case. First, a WebDriver of

2http://code.google.com/p/selenium/wiki/PageObjects
3http://docs.seleniumhq.org/projects/ide/
4http://docs.seleniumhq.org/projects/webdriver/

public void testLoginOK() {

 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("John.Doe","123456");
 // we are in the 'homepage.asp' page
 assertEquals("John.Doe", HP.getUsername());
 driver.close();
}

Fig. 3. TestLoginOK test case

type FirefoxDriver is created allowing to control the Firefox
browser as a real user does (Selenium allows to instantiate
also several other browsers); second, the WebDriver opens
the specified URL and creates a page object that instantiates
LoginPage, based on the information retrieved from page
login.asp; third, using the method login(...) offered by the
page object, a new page object (HP) representing the page
homepage.asp is created; finally, the test case assertion is
checked, by resorting to method getUsername().

D. Testware Evolution Patterns

Let us consider the various testware evolution patterns,
associated with different kinds of changes and testing tools:

• C&R + structural change. The tester modifies, directly
in the Selenium IDE, the first broken action command
(i.e., the Selenese command that is highlighted in red
after test case execution), which can be a localization
command or an assertion. Then, the tester re-executes
the test case, possibly finding the next broken action
command (if any).

• C&R + logical change. The tester keeps the portion
of script up to the command that precedes the broken
action command, deletes the rest and captures the new
execution scenario by re-executing the C&R tool from
the last working command.

• Programmable + structural change. The tester modi-
fies one or more page objects that the broken test case
links to.

• Programmable + logical change. Depending on the
magnitude of the executed maintenance task, the tester
has to modify the broken test cases and/or the cor-
responding page objects. In some cases, new page
objects have to be created.

IV. ROBUST WEB PAGE LOCATORS

To execute a functional test case in the context of auto-
mated testing a test script has to interact with several web
page elements such as links, buttons, and input fields, and to
locate them different methods can be employed.

The first proposed C&R tools (1st generation tools) simply
recorded the coordinates of the web page elements directly
on the screen and then used this information to find the
elements during replay activities. Unfortunately, the produced
test cases are extremely fragile; they might break even with
small changes in the layout of the Web pages.

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver = driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.xpath("/html/body/form/input[2]")).sendKeys(PW);
 driver.findElement(By.linkText("Login")).click();
 return new HomePage(driver);
 }
}

Fig. 4. LoginPage page object (using ID, XPath and LinkText locators)

A better mechanism producing more robust test cases con-
sists of locating the web page elements using the information
contained in the Document Object Model (DOM). Selenium
IDE and WebDriver (examples of 2nd generation tools) employ
this approach and offer several different ways to locate the
elements composing a web page. The most efficient one,
according to Selenium developers5, is localization by ID value
(e.g., the password input field is located by searching for the
value PW among the id values, see Fig. 1). In case the id
attributes are not present, a CSS or XPath locator can be
alternatively used (e.g., the password input field is located by
the following XPath expression: /html/body/form/input[2]; see
Fig. 1). Finally, the LinkText locator allows for the selection of
a hyperlink in a web page by making use of its displayed text.
Fig. 4 presents an equivalent version of the LoginPage page
object, where XPath and LinkText locators are used. Moreover,
Selenium WebDriver offers also other locators not considered
here.

Recently, a new kind of tools (3rd generation tools)
emerged using image recognition techniques to identify and
control GUI components. Even if these tools can be used to
interact with anything visible on the screen, specific versions
focused on web application testing have been released (e.g.,
SikuliFirefoxDriver6).

While coordinates based approaches are now considered
obsolete, the recent image recognition approaches are only
useful in specific contexts, such as testing of complex vi-
sual applications like Google Maps, where the DOM is not
available. In all the other cases, 2nd generation tools are
preferred (and used in the industry) because image processing
requires high computational resources and their technology is
not mature enough. For this reason, we focused our attention
mainly on 2nd generation tools, such as Selenium IDE and
WebDriver.

In a previous work [10], we discovered that structural
changes have a strong impact on test suites’ maintenance. We
found that in 196 test cases developed for six different open-
source and heterogeneous applications, the maintenance effort
due to structural changes was very high and overcame the ef-
fort due to logical changes. In the considered applications, we
performed 108 modifications associated with logical changes
and 727 with structural changes (727 locators out of 2735
required a fix). In a companion work [9], where an industrial
Web application has been tested with Selenium WebDriver,
we found that only structural changes occurred during the

5http://docs.seleniumhq.org/docs/03 webdriver.jsp
6http://code.google.com/p/sikuli-api/wiki/SikuliWebDriver

evolution of the application to another release. Thus, the main
lesson we learnt from these works is that having a robust
method to locate web page elements is essential to limit the
maintenance effort.

With 2nd generation tools, different locators can be used
to locate the same web page element. A key question is
how to identify the most robust locator. On a real industrial
case [8], we compared the maintenance costs of two equivalent
Selenium WebDriver test suites, differing only in the used
locators (similarly to the two versions of the page object
LoginPage discussed above). We compared IDs vs. absolute
XPaths and IDs turned out to be the most robust, even when
they are auto-generated. Hence, absolute XPaths should be
replaced by more robust XPath expressions when IDs cannot
be used. In another previous study [10], we observed that for
six test suites, less than 2% of the 459 ID locators were broken,
while 60% of the 791 XPath locators required to be fixed,
which again shows the need for robust XPath expressions.

In the literature on web data extraction, there are several
proposals to build robust XPath expressions, for wrapping
and retrieving information. However, the problem has never
been investigated in the context of Web testing, where quite
specific locators are needed for the web page elements under

specialize(”// ∗ ”, e, newFifoQueue());
proc specialize(w : XPath, e : Element, q : Queue) ≡

do
if (uniquelyLocate(w, e)) then return w; fi
xpath1 := transf1(w);
if (xpath1 6= null) then add(q, xpath1); fi
xpath2 := transf2(w);
if (xpath2 6= null) then add(q, xpath2); fi
xpath3 := transf3(w);
if (xpath3 6= null) then add(q, xpath3); fi
xpath4 := transf4(w);
if (xpath4 6= null) then add(q, xpath4); fi
xpath := null;
while (¬empty(q) ∧ xpath = null)

do
w := getF irst(q);
xpath := specialize(w, e, q);

od
return xpath;

od.

Fig. 5. Pseudocode to generate robust locators

test. Starting from the approach of Dalvi et al. [3], we intend
to apply their wrapper generation algorithm to the specific
problem of page element localization in a web test case. The
algorithm (see Fig. 5) generates expressions in top-down style,
starting from the most general XPath expression matching all
the nodes (“//*”) and specializing it by applying a minimum
number of transformations, until it matches only the target
node. The result is a general XPath locator that identifies the
target node uniquely. We expect it to be a robust locator.

More specifically, transformations work as follows:

– transf1 converts a * to a tag name
(e.g., //table/ ∗ /td/→ //table/tr/td/)

– transf2 adds a predicate to some nodes in w
(e.g., //table/∗/td/→ //table[@bgcolor =‘red’]/∗/td/)

– transf3 adds child position information to some node in
w (e.g., //table/ ∗ /td/→ //table/ ∗ /td[2]/)

– transf4 adds a //∗ at the top of w
(e.g., //table/ ∗ /td/→ // ∗ //table/ ∗ /td/)

V. EMPIRICAL STUDY DESIGN

Goal of the study is evaluating the robustness of the
XPaths created by means of the above presented algorithm.
We are interested in understanding if automatically generated
XPaths are able to limit the fragility problem. The results of
this study will be interpreted according to two perspectives:
(1) developers and project managers, interested in reducing the
costs of maintaining web test suites; (2) researchers, interested
in empirical data about the impact of using different locators
in the context of Web testing. The context of the study is
defined as follows: the human subjects of the study will be
developers facing web testing, while the software objects will
be heterogeneous open source web applications under test.

We plan to compare the following kinds of XPath locators
(treatments):

• Absolute XPath: the element under test is identified by
the complete path (from the root) in the DOM;

• FirePath XPath: the element under test is identified by
the (possibly relative) XPath automatically generated
by FirePath. FirePath is a Firebug extension that adds
a development tool to edit, inspect and generate XPath
expressions7;

• Auto-XPath: the element under test is located by the
XPath expression produced by the algorithm in Fig. 5.

We will apply the three treatments described above to
publicly available web applications. We will consider two
versions of each web applications and we will manually define
the correct correspondence between elements under test before
and after web evolution, so as to have a ground truth to be used
to assess the effectiveness of the various approaches.

7https://code.google.com/p/firepath/

The study aims at answering the following research ques-
tions:

• RQ1: What kind of XPath locator is more robust when
the web application under test evolves?

• RQ2: What kind of XPath locator has the minimum
distance (in terms of number of transformation steps)
between the broken locators and the correct ones?

The empirical results of the study will be collected by
measuring the following metrics:

• TP (true positives): elements under test that are
correctly reported by locators after web evolution;

• FP (false positives): elements under test that are
reported by locators after web evolution but do not
correspond to the elements to be located;

• FN (false negatives): elements under test that should
be reported by locators, but are actually no longer
reported after web evolution.

We will also compute derived metrics that facilitate the
comparison between different locators, such as:

• precision (TP/(TP+FP))

• recall (TP/(TP+FN))

• F-measure (2 * precision * recall / (precision + recall))

These metrics address directly RQ1, while for RQ2 we
need an additional metrics:

• RP: minimum number of repair transformations, sim-
ilar to the four used by the algorithm in Fig. 5, to
be applied to a broken locator to fix it when the web
application evolves.

With TP, FP, FN and RP we expect to be able to collect
enough empirical evidence to answer research questions RQ1
and RQ2.

VI. CONCLUSIONS AND FUTURE WORK

We have discussed the importance of page element locators
during web testware evolution and we have proposed an
algorithm to generate robust locators. We intend to evaluate the
proposed algorithm empirically, by following the experimental
design described in this paper. We also plan to improve and
extend the proposed algorithm based on the results of the
empirical study, once available.

Other research directions that we will investigate in the
near future include an empirical evaluation of the web testware
maintenance costs incurred by developers when different web
testing approaches and tools (e.g., Selenium IDE, Selenium
WebDriver, SikuliFirefoxDriver) are adopted.

REFERENCES

[1] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing web applications
by modeling with fsms. Software and System Modeling, 4(3):326–345,
2005.

[2] G. Antoniol, M. D. Penta, and M. Zazzara. Understanding web
applications through dynamic analysis. In Proceedings of the 12th
International Workshop on Program Comprehension, IWPC 2004, pages
120–131, 2004.

[3] N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction: an approach
based on a probabilistic tree-edit model. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2009, pages 335–348, New York, NY, USA, 2009. ACM.

[4] Y. Deng, P. G. Frankl, and J. Wang. Testing web database applications.
ACM SIGSOFT Software Engineering Notes, 29(5):1–10, 2004.

[5] G. A. Di Lucca, A. R. Fasolino, F. Faralli, and U. de Carlini. Testing
web applications. In Proceedings of the 18th International Conference
on Software Maintenance, ICSM 2002, pages 310–319, 2002.

[6] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging user-
session data to support web application testing. IEEE Transactions on
Software Engineering (TSE), 31(3):187–202, 2005.

[7] M. Harman and N. Alshahwan. Automated session data repair for web
application regression testing. In Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, ICST
2008, pages 298–307, 2008.

[8] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Comparing the
maintainability of selenium webdriver test suites employing different
locators: A case study. In Proceedings of the 1st International Workshop
on Joining AcadeMiA and Industry Contributions to testing Automation,
JAMAICA 2013, pages 53–58. ACM, 2013.

[9] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites
maintainability with the page object pattern: an industrial case study. In
Proceedings of the 6th International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2013, pages 108–113.
IEEE, 2013.

[10] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Submitted to the 19th Working Conference on Reverse
Engineering, WCRE 2013, 2013.

[11] A. Marchetto, F. Ricca, and P. Tonella. A case study-based comparison
of web testing techniques applied to ajax web applications. Interna-
tional Journal of Software Tools for Technology Transfer, 10(6):477–
492, Oct. 2008.

[12] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web
applications. In Proceedings of the 1st International Conference on
Software Testing, Verification, and Validation, ICST 2008, pages 121–
130, 2008.

[13] A. Mesbah and A. van Deursen. Invariant-based automatic testing of
ajax user interfaces. In Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pages 210–220, 2009.

[14] M. Mirzaaghaei. Automatic test suite evolution. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European conference on
Foundations of Software Engineering, ESEC/FSE 2011, pages 396–399.
ACM, 2011.

[15] F. Ricca and P. Tonella. Analysis and testing of web applications.
In Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, pages 25–34, 2001.

[16] F. Ricca and P. Tonella. Testing processes of web applications. Ann.
Softw. Eng., 14(1-4):93–114, 2002.

[17] F. Ricca and P. Tonella. Detecting anomaly and failure in web
applications. IEEE MultiMedia, 13(2):44–51, 2006.

[18] S. Sampath, S. Sprenkle, E. Gibson, L. L. Pollock, and A. S. Greenwald.
Applying concept analysis to user-session-based testing of web applica-
tions. IEEE Transactions on Software Engineering (TSE), 33(10):643–
658, 2007.

[19] W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn, and J. Lawrence. A
combinatorial approach to building navigation graphs for dynamic web
applications. In Proceedings of the 25th IEEE International Conference
on Software Maintenance, ICSM 2009, pages 211–220, 2009.

