Reducing Web Test Cases Aging by means of
Robust XPath Locators

Maurizio Leotta!, Andrea Stocco', Filippo Riccal, Paolo Tonella?
! Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy
maurizio.leotta@unige.it, andrea.stocco@dibris.unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—In the context of web regression testing, the main
aging factor for a test suite is related to the continuous evolution
of the underlying web application that makes the test cases
broken. This rapid decay forces the quality experts to evolve
the testware. One of the major costs of test case evolution is
due to the manual effort necessary to repair broken web page
element locators. Locators are lines of source code identifying
the web elements the test cases interact with. Web test cases rely
heavily on locators, for instance to identify and fill the input
portions of a web page (e.g., the form fields), to execute some
computations (e.g., by locating and clicking on buttons) and to
verify the correctness of the output (by locating the web page
elements showing the results).

In this paper we present ROBULA (ROBUst Locator Algo-
rithm), a novel algorithm able to partially prevent and thus
reduce the aging of web test cases by automatically generating
robust XPath-based locators that are likely to work also when
new releases of the web application are created. Preliminary
results show that XPath locators produced by ROBULA are
substantially more robust than absolute and relative locators,
generated by state of the practice tools such as FirePath. Fragility
of the test suites is reduced on average by 56% for absolute
locators and 41% for relative locators.

Keywords-Web Testing; Test Cases Aging; Robust Locators.

I. INTRODUCTION

Web applications are subject to a tremendous pressure
for change. New releases are continuously produced, to
accommodate bugs, security fixes and new functionalities, but
often just to update the presentation style and align it with
the most recent trends. In fact, the visual appearance of a web
application is a major success factor. Within such ultra-rapid
development cycles, web testing is an option [13] only if it is
strongly supported by automated tools, which reduce the effort
required from developers for test suite creation and execution.
Moreover, testwares exhibit a significant aging' factor, due to
the fast evolution of the web applications under test. For this
reason, the test suites that accompany a web application must
be often evolved, so as to keep test cases and application under
test aligned.

Currently, the most widely used tools for web application
testing are DOM-based testing tools [2], e.g., Selenium
WebDriver [1]. They offer developers a rich programmable
API that can be used to define DOM-based test cases. Using
this API, developers can for instance locate an input text field,

'In this work, with software aging we mean the obsolescence of a software
source code and not the performance degradation of a system as it executes.

insert some text into it, locate a button, click on it, locate the
text that shows the result of the computation and check whether
it matches the expected behaviour of the web application. All
these steps are programmed using a high level language (e.g.,
Java) in a similar way as done with JUnit.

Web element locators play a key role in web testing. Among
them, XPath locators are remarkably powerful and flexible.
They represent the most general choice, since the majority
of locators can be specified using properly defined XPath
expressions. In practice, manually defining a robust XPath
locator turns out to be a difficult task, which requires substantial
skills and experience. For this reason, tools and plugins (e.g.,
FirePath, XPath Checker, XPath Helper) exist which compute
a candidate XPath locator for the developer. Such locators
are either absolute or relative XPath expressions, which take
advantage of heuristically selected tags and attributes (e.g., id or
name) to try to increase their resilience to changes. By robust
XPath locator we mean an XPath expression that continues
to select the target web element, even if the web page has
changed because of a new release of the web application.
Existing tools often create simple and brittle XPath locators [7]
and even minor modifications of the DOM structure may cause
their failure, so that developers have to correct them when the
application evolves.

In this paper, we propose a novel algorithm, called ROBULA
(ROBUst Locator Algorithm), able to partially prevent and
thus reduce the aging of web test cases by automatically
generating robust web element locators. The algorithm starts
with a generic XPath locator that returns all nodes (“//*”). It then
iteratively refines the locator until only the element of interest
is selected. In such iterative refinement, ROBULA applies four
refinement transformations, according to a set of heuristic XPath
specialisation steps. For all the six web applications considered
in our experiment, ROBULA has generated consistently locators
that are much more robust than those produced by existing
tools, both in the absolute XPath category (with a fragility
reduction equal to 56%) and in the relative category (with a 41%
fragility reduction). To the best of our knowledge, ROBULA
is the first publicly available solution to the problem of web
testware aging. To further increase the adoption of ROBULA
by practitioners, we are implementing it as a Firefox plugin,
in addition to the standalone version.

The paper is organised as follows: Section II introduces the
problems associated with web testware evolution and discusses

the way locators are produced and evolved. Section III describes
our novel contribution: ROBULA. Preliminary empirical results
about the robustness of the locators produced by ROBULA are
reported in Section IV, followed by related work (Section V)
and conclusions (Section VI).

II. EVOLUTION OF WEB TEST CASES

When a web application evolves to accommodate requirement
changes — bug fixes or functionality extensions — test cases
may become broken. For instance, test cases may be unable
to locate some links, input fields and submit buttons, and
software testers have to repair them. This is a tedious and
time-consuming task, which has to be performed manually
by software testers. Indeed, automatic evolution of test suites
is far from being consolidated [9] even if some preliminary
approaches have been proposed (e.g., [3]).

In this paper, we focus on reducing the web test suite
maintenance effort due to structural changes (i.e., changes
impacting the page layout/structure) since these are heavily
affected by the robustness of the locators. On the other hand,
logical changes (i.e., changes modifying the logic of the web
application) require manual interventions on the test suite that
go beyond the creation of robust locators. Structural changes are
indeed quite important, since web site re-styling, a frequently
occurring activity, tends to affect the DOM structure, leaving
the application logic unaffected. We address the problem of
structural changes by automatically generating robust XPath
locators that retrieve the web elements required by the test
cases.

A. DOM-based Locators

To locate web page elements such as links, buttons, and
input fields, different kinds of locators can be employed. In
particular, in the context of web application testing, three
different categories of locators are used (more details on
them can be found in [8]): (1) Coordinate-based locators,
nowadays considered obsolete, (2) DOM-based locators, using
the information contained in the Document Object Model
(DOM) and (3) Visual locators, using image recognition
techniques. In this paper, we focus on DOM-based localisation,
since this is the most adopted technology in practice [2] and
among the various kinds of DOM-based locators, we focus on
XPath locators.

B. Why focusing on XPath Locators?

There are three main reasons to focus on XPath locators:

1) XPath locators are highly expressive. Actually, most of
the other localisation methods provided by DOM-based tools
can be simulated using XPath expressions. For example, the
Selenium WebDriver method: driver.findElements(By.name('xy’))
is equivalent to driver.findElements(By.xpath(//*[@name="xy’)).
2) XPath locators are sometimes the only option. Some
localisation methods are applicable only to specific cases (e.g.,
By.id is not applicable when the identifier is not present). With
XPath expressions is always possible to locate every web page
element. In our previous work [7], we considered six Selenium

WebDriver test suites built for six different web applications.
These test suites use specific localisation methods (e.g., By.id,
By.name) whenever possible, but they still resort to XPath
locators in 177 cases over a total of 487 (36%). On the other
hand, all 310 locators that do not make use of XPaths can be
easily rewritten as XPath locators with no substantial impact
on their understandability.

3) XPath locators are generally considered fragile, but this
strongly depends on how they are created. This common
belief largely depends on how XPath locators are generated
by tools. In our previous work [7], we used FirePath? to
automatically generate XPath locators for the web elements. We
found that for the considered test suites: 67% of the 177 XPath
locators were broken from a release to the next one, while
for the other types of locators the breakage percentages were
extremely lower (less than 1% for the ID locators; about 20%
for the Name, LinkText and CSS locators). By inspecting the
XPath locators, we realised that their quality was largely sub-
optimal and better XPath locators could be defined manually.
However, careful manual definition of robust XPath locators
requires a lot of experience and a big effort.

C. Generating XPath Locators in Practice

A developer can use various tools to build XPath locators.
In web testing, a straightforward solution is having a browser-
integrated plugin for XPath expression generation. FirePath
and XPath Checker’ are among the most popular XPath
expression generators* for Mozilla Firefox. FirePath is the most
downloaded and provides a development tool to edit, inspect
and generate absolute and id-based relative XPath expressions.
XPath Checker provides expressions similar to the FirePath
ones. For what concerns Google Chrome plugins, among the
most used ones are the built-in XPath generator plugin and
XPath Helper®. The expressiveness of Chrome’s built-in plugin
is similar to that of the Mozilla add-ons. XPath Helper is
more limited, since it is only able to generate absolute XPath
expressions, enriched with an attribute (if available), for every
tag.

D. XPath Locators and Software Evolution: an Example

Let us consider Ver. 1 of a simplified web application
composed of two web pages — insertInfo.php and showInfo.php
— that allow users to insert and visualise some personal
information previously stored in a database. A test case for
this functionality may open the insertInfo.php page, fill a form,
submit the information and verify that the inserted data are
correctly displayed in the resulting showlnfo.php page, shown
in Fig. 1 (top). In this way it is possible to test the correct
saving of the information in the database.

To implement this test case, it is necessary to locate some web
page elements as, for instance, the field of the table showing

2 https://addons.mozilla.org/firefox/addon/firepath/

3 https://addons.mozilla.org/firefox/addon/xpath-checker/

4http://docs.seleniumhq.org/docs/OQﬁseIeniumfide.jsp#locating—elements

3https://chrome.google.com/webstore/detail/xpath-
helper/hgimnogjliphhhkhimebbmigjoejdpjl

Name: John
Surname: Doe

Target Element

Mobile: |: 123456789 |<—

<html>

<body>
<table id="userInfo">
<tr><td>Name: </td><td title ="name"> John</td></tr>
<tr><td>Surname:</td><td title ="surnanme"> Doe</td></tr>

<tr><td>Mobile: </td><td title ="mobile"> 123456789</td></tr>
</table>
</body>
</html>
Tool Kind Generated XPath Locators for the Target Element
FirePath abs /html/body/table/tr{3]/td[2]
FirePath rel /I*[@id="userInfo"]/tr[3]/td[2]
Chrome rel II*[@id="userInfo")/tr[3]/td[2]

XPath Helper abs
XPath Checker rel

ROBULA rel

/html/body/table[@id="userInfo")/tr[3)/td[@title="mobile"]
id('userinfo’)/tr[3]/td[2]

Itd[@title="mobile"]

Fig. 1. showlInfo.php — Ver. 1 — Page, Source, Locators

the mobile phone number (see the underlined td in Fig. 1
(center)). With Selenium WebDriver, the following methods:
By.id, By.name, By.className are not applicable, since the target
element has no id, name and className attributes. By.tagName
is applicable, but does not allow to create a locator since
multiple td elements are present in the page. By.linkText and
By.partialLinkText are not applicable since the target element
is not a link. Thus, we have to employ an XPath locator
and the straight solution is using one of the XPath generator
tools mentioned in Section II-C. Fig. 1 (bottom) lists the XPath
locators provided by these tools and by ROBULA (the algorithm
we propose in the following). The various tools create either
relative (rel) or absolute (abs) XPath locators and, to this end,
different generation strategies are adopted resulting in different
expressions.

We now consider a new version of the web application (Ver.
2) after a maintenance intervention has been executed, in which
the user is allowed to insert gender information (see Fig. 2
(top)). Depending on the robustness of the XPath locator used

be broken (and will have to be repaired) or will work without
problems. Looking at Fig. 2 (bottom), we can see that only
the locator generated by ROBULA works, while all the other
locators are broken. Indeed, all of them include the node tr[3]
that in the new release becomes tr[4]. Some of them do not
work because they locate another element (i.e., the “gender”
field), while others are not able to locate any element (e.g.,
the locator generated by XPath Helper). Thus, when using a
generic XPath generator, the test case must be repaired, while
with ROBULA no modifications are needed.

In this regard it is important to highlight two aspects.
First, the change to the application shown in this simple
example replicates a code evolution pattern that we frequently
encountered in the empirical evaluation of ROBULA. In such
cases, our algorithm was often able to generate robust XPath
locators. Second, even if by looking at the example it might
seem quite easy to manually define the XPath locator generated
by ROBULA (at least for an expert web tester), this is actually
not the case when one works with real web pages containing
hundreds of tags. Often, in these complex cases ROBULA finds
locators that make use of complex combinations of attributes
(e.g., /tri@class="row-2"]/td[@class="center"]).

III. ROBUST LOCALIZATION OF WEB PAGE ELEMENTS

In this section, we describe our ROBUst Locator Algorithm
(ROBULA), which generates robust XPath locators. ROBULA
follows a top-down approach, by starting from the most general
XPath expression (i.e., “//*”, matching all the elements in the
document) and specialising it via transformation steps. The
pseudo code of ROBULA is shown in Fig. 3. The algorithm
takes in input a document d (e.g., an HTML page) and an
absolute XPath abs selecting the target web page element e
(e.g., an anchor, a text field, a button, etc.). For this web page
element, the algorithm returns res (line 26), a robust relative
XPath expression (if anyone exists) able to uniquely select the

to select the target element, the test case described above will
%. XPath ROBULA (XPath abs, Document d)
3. Element e = eval (abs, d).getFirst();
Name: John 4. //abs is a locator in d"=> eval(abs, d).size() = 1
. 5. XPath res = new XPath();
Surname: Doe 5. List<XPath> p = ["//*"]
Gender: Male Tar 7. List<XPath> =11;
get Element 8. while (res.isEmpt
Phone: [123456789 |¢—— 9. (B y()}
%g XPath W[T p.removeFirst() ;
<html> . temp = [];
<body> 12. if (w.startsWith("//*"))
<table id="userInfo'"> %2 ° elsteemp'addAll (tranSfl (w)) ;
<tr><td>Name: </td><td title ="name"> John</td></tr> 15: {
<tr><td>Surname:</td><td title ="surnanme"> Doe</td></tr> 16. temp.addAll (transf2 (w)) ;
<tr><td>Gender: </td><td title ="gender"> Male</td></tr> 17. tanp.addAll{tra.nsf3 sw;;;
<tr><td>Phone: </td><td title ="mobile"> 123456789</td></tr> 18.
</table> 19. temp.addAll (transf4 (w)) ;
</body> %g for (XPath x : temp)
</html> 22. if (uniquelylocate(x, e, d)) ires = x; break;}
23.) else if (locate(x, e, df) add(x, p);
Tool XPath Locators Robustness v robust % broken 25. }
26. return res;
FirePath X /html/body/table/tr[3>4]/td[2] 27. }
FirePath X /M@id="userlnfo")/tr[3->4}td[2] List<XPath> eval (XPath abs, Document d):
Chrome X I[@id="userInfo")/tr[3>4]/td[2] returns the elements in d selected by the XPath abs
x id=" " itle=" ile™ Boolean uniquelylocate (XPath x, Element e, Document d):
i:;’a:: (I-}Islpekr . (thllbold;//'talt)leg[_)@;d/tduzserlnfo 1tr[3->4]/td[@title="mobile"] qg ¢ geval %, d) contains only &
a ecker id(userInfo')/trf Jd[2] Boolean locateéXPath x, Element e, Document d):
ROBULA v Iid[@title="mobile"] TRUE iff eval(x, d) contains e
Fig. 2. showlInfo.php — Ver. 2 — Page, Source, Locators Fig. 3. Pseudocode of ROBULA

The transformations work as follows:

— transfl replaces the * in the initial //* with the tag
name of the element L.get(N)
e.g., [/ /td — //tr/td

— transf£2 adds the predicates (one at time) of the element
L.get(N) to the first node in w.
e.g., //tr/td — /[tr[@name =‘data’]/td

— trans£3 adds the position of the element L.get(N) to the
first node in w
e.g., //tr/td — //tr[2]/td

—transf4 adds //x at the top of w (iff N < L.lenght())
e.g., //tr/td — [/ x [tr/td

Where:

—w = the XPath expression to specialize, e.g., //td

— N = the length (in nodes/levels) of w
e.g., //td = N=1; // % [td = N=2;

— L = the list of elements ancestor of target element e in the
considered DOM (i.e., web page), starting and including
e
e.g., [td, tr,table, body, html]
L.get(2) returns the element ¢r

Fig. 4. Specialization transformations used by ROBULA

target element, i.e., a robust XPath locator. If a relative XPath
expression does not exist, ROBULA returns an absolute XPath
similar to the one taken in input.

The algorithm starts its execution by retrieving the element
e selected by the absolute XPath abs (line 3) and initialising
the list p of XPath expressions with the most general one (i.e.,
“I/I*") (line 6).

Then, it iterates until a result (i.e., an XPath locator) is found
(line 8). At each cycle, it removes the first XPath expression
(w) from the list p and it applies, in an established order,
four transformations (transf1, transf2, trans3, and transf4) to
specialise w. Precisely, if w starts with “/*” (line 12) then w is
specialised using transf1, otherwise transf2, and transf3 (lines

16-17) are applied. Finally, transf4 is always applied (line 19).

The transformations work as shown in Fig. 4. transfi
introduces a specific tag name to replace the wildcard “*” in
the XPath expression. transf2 and transf3 add constraints to a
tag which is already in the XPath expression, by respectively
considering only tags containing specific attribute-value pairs
or only tags at specific positions. transf4 adds a new level to
the current XPath expression by extending it with a wildcard
tag “*” added at the beginning.

All the XPath expressions generated by applying these
transformations are inserted into a list named temp. At this
point (lines 22 and 23), the algorithm cycles through the XPath
expressions contained in temp, considering in turn each XPath
expression x. If x is a locator for the target element e (the
function uniquelyLocate is used to determine this), the algorithm
returns it and terminates. Otherwise, if x selects more elements
including the target one, x is inserted into the list p, to be
specialised in the next iteration of the algorithm (i.e., the
target element is among the elements retrieved by these XPath

expressions, whose result set contains more than one element).
The remaining XPath expressions, which are not able to locate e,
are discarded, since no further specialisation steps can generate
a locator for e.

A. Algorithm’s Implementation and Analysis

ROBULA has been implemented in Java using JSoup® to
generate an equivalent XHTML code for the HTML web
pages taken in input and JDOM’ for manipulating XHTML
documents and evaluate XPath expressions on them. For
the interested reader, ROBULA can be downloaded from
http://sepl.dibris.unige.it’2014-ROBULA.php.

Since our implementation returns only the first locator found
by the algorithm, it is very important to consider the order of
execution of the transformations. If the current XPath expression
w starts with //*, only transf1 is executed so we have no problem
of order. Otherwise, we can execute two transformations (transf2
and transf3), and an order of execution must be defined.
We decided to choose as first transformation transf2 since
attribute values are usually more robust than position values.
Indeed, attribute values usually include meaningful names (e.g.,
id="result” or name="username”), while position values are
always bound to the web page structure and so they are more
fragile [11]. We decided to execute transf4, which adds //* in
front of an XPath expression, as the last transformation since
we want to maintain the XPath locators as short as possible (in
principle, a short locator is less coupled with the page structure
than a long one, so it should be more robust).

The algorithm is ensured to terminate, since in the worst case
it returns an absolute XPath (similar to the one taken in input).
This is actually the case in which it is not possible to generate
a shorter locator. In fact, every element in the DOM tree can be
uniquely located by an absolute XPath that contains only tag
names and positions (this is a straightforward consequence of
the correspondence between DOM node names and HTML tag
names). Among the transformations in Fig. 4, transf1 can be
used to add the tag name and transf3 to add the position. Hence,
repeated applications of these two transformations will generate
an absolute path consisting of all tags, possibly including
element positions, from the root to the element to be located.

The worst-case computational complexity of ROBULA is
exponential in the DOM size. Indeed, the heuristics introduced
in the algorithm (i.e., the order of execution of transformations)
aim at making the execution time acceptable in practical cases.

IV. PRELIMINARY EXPERIMENTAL RESULTS

This section sketches the design, objects, research questions,
metrics, procedure, and results of a preliminary empirical study
conducted to evaluate the robustness of the XPath locators
generated by ROBULA. We follow the guidelines by Wohlin
et al. [14] on designing and reporting of empirical studies in
software engineering.

Shttp://jsoup.org/
Thttp://www.jdom.org/

TABLE I
ROBUSTNESS OF ABSOLUTE, RELATIVE, AND ROBULA

| Address Book | Collabtive | MRBS | Claroline | PPMA | Mantis || All |
Broken % Broken % Broken % Broken % Broken % Broken % Broken %
Absolute 45 56 125 100 102 100 72 31 30 100 78 76 452 67
Relative 43 54 34 27 102 100 63 27 19 63 78 76 339 50
ROBULA 8 10 4 3 63 62 93 40 11 37 20 19 199 29
[Total # of Locators | 80 | 125 | 102 | 235 | 30 | 103 | 675 |

A. Study Design

The goal of this study is to analyse the robustness of the
XPath locators generated by ROBULA with the purpose of
understanding the strengths and the weaknesses of the approach
it implements. The results of this study are interpreted according
to the developers and project managers perspective, interested
in data about the benefits of adopting ROBULA in an industrial
context to create XPath locators. The software objects are
six open source web applications already used in a different
work [8].

B. Research Question and Metrics

Our preliminary study aims at answering the following
research question:

RQ1: Does ROBULA reduce the number of broken XPath
locators?

The goal of the research question is to compare the
robustness of the XPath locators generated by ROBULA with
the robustness of the absolute and id-based relative XPath
locators generated by a state of the practice XPath generator
tool (in our experiment we used FirePath, release 0.9.7). This
would give developers and project managers a precise idea of
the benefits coming from the adoption of ROBULA as XPath
locator generator. The metrics used to answer RQI1 is the
number of broken XPath locators in the next software release.

C. Procedure

To answer RQ1, we proceeded as follows:

— We selected six open-source web applications from Source-
Forge.net.

— For each application and for each web page we manually
selected a set of web elements relevant for the test of the
application, while avoiding multiple instances of the same
web element from a common group (e.g., in a calendar we
selected only the first day link). In particular, we selected
web elements: (1) on which it is possible to perform actions
(e.g., links, input fields, submit buttons); (2) which report
relevant information (e.g., a div containing a string that can
be used to evaluate an assertion); (3) which belong to pages
related to core functionalities of the application (e.g., we have
not considered the configuration and installation pages); and,
(4) which are present in both releases of the applications.
This last requirement is particularly important for computing
the number of broken locators.

— For the first release of each web application and for each web
element (located by an absolute XPath), we used FirePath to
generate the id-based relative XPath locator (used as baseline)
and ROBULA to generate the robust XPath locator. The result

of this activity is, for each web element of the first release of
each web application, three XPath locators: Absolute, Relative
(id-based), and ROBULA.

— For each web element, we evaluated the robustness of the
previously computed locators on the next release of the web
application by verifying whether they are still able to locate
the web element of interest.

D. Results

Table I reports the data used to answer RQI. For each
application and for each kind of locator (i.e., absolute, id-based
relative, and ROBULA) it reports the number of broken locators
and the corresponding breakage percentage over the total
number of locators. In the last columns, we report aggregate
results over all six web applications.

As expected, the performance of absolute XPath locators is
not good. In three cases (i.e., Collabtive, MRBS, PPMA) out of
six, all absolute locators are broken (i.e., they are never able to
locate the corresponding web page elements in the new release
of the application). In total, considering all six applications,
452 over 675 absolute locators result broken (i.e., 67%). This
result confirms what we found in a previous work [6] and what
is reported in [5], i.e., absolute XPath locators generated by
state of the practice XPath generator tools are generally very
fragile.

Results of FirePath id-based relative XPath locators are better
than those of absolute XPath locators. Still, in MRBS all relative
locators are broken and over the six applications, 339 out of
675 absolute locators are broken (i.e., 50%). These results are
consistent with the ones we reported in our previous work [7],
where, for the six considered test suites, we found that 67% of
the 177 XPath locators were broken from a release to the next
one (see Section II-B). Moreover, they confirm the common
belief that in general: (1) XPath locators are very fragile; and,
(2) relative XPath locators are better than absolute ones.
RQ1: the XPath locators generated by ROBULA are more
robust than the absolute and relative locators in all the cases,
with the exception of Claroline, see Table I. In five cases, out of
six, the adoption of ROBULA results in a significant reduction
of fragility of the XPath locators. Specifically, by adopting
the locators generated by ROBULA, we obtained, on average,
a 56% (computed as (452—199)/452) fragility reduction with
respect to the absolute XPath locators, and a 41% reduction
w.r.t. id-based relative locators. In the case of MRBS, the
advantage of adopting ROBULA locators is slightly reduced,
although still significant (38% less broken locators w.r.t. both
absolute and relative locators). Only in the case of Claroline
we obtained worse results when adopting ROBULA, with an

increment in the number of broken locators of 29% and 48%
with respect to absolute and relative locators, respectively. In
this case, ROBULA often used the href attributes to build
the XPath locators. These attributes proved to be “unreliable”
in practice (i.e., they changed often between the considered
releases).

ROBULA locator Example: Usually, ROBULA generates
XPath locators by far more robust and readable than the
id-based relative XPath locators produced by FirePath. As
an example, we will consider a locator for PPMA. To
locate a link used for updating a password, ROBULA
generated the following XPath locator //a[@title="Update”]
while Firepath generated the following id-based rel-
ative XPath locator //*[@id="yw2"]/table/tbody/tr/td[6]/a[1]
and the following absolute XPath locator html/body/-
div[1])/div[4]/div[1]/div/div[2)/table/tbody/tr/td[6])/a[1]. In this case,
only the ROBULA XPath locator worked without any modi-
fication on the second release of PPMA while the locators
generated by FirePath were broken and required several
modifications to locate the web element of interest on the
second release of PPMA. These were the resulting locators
after manual modification: //*[@id="yw1"]/table/tbody/tr/td[4]/a[2]
and html/body/div[1]/div/div/div[3]/table/tbody/tr/td[4]/a[2].

V. RELATED WORK

Montoto et al. [10] propose an automated system for
navigating AJAX websites. They use XPath expressions to
identify the target elements of user actions on a web page. The
XPath expressions they generate are quite different from ours.
Indeed, ROBULA has been developed in order to create the
simplest XPath expressions (i.e., avoiding to insert unnecessary
information), since we think that keeping the expressions
short increases their resilience to changes. For instance, to
localize the target div element in the web page used as example
in the Montoto et al. [10] paper, their algorithm generates
/hd/aj@href="#")/div[@class="c1” and text()="More Info”) while ROB-
ULA generates the following simpler XPath expression //td/a/div/.
Choudhary et al. [3] propose WATER, a tool that suggests
changes that can be applied to repair test scripts for web
applications. ROBULA, on the contrary, aims at creating robust
XPath expressions to be used by practitioners in web test suites.
Grechanik et al. [4] describe an approach for maintaining and
evolving test scripts by means of GUI-tree diffs in order to find
altered GUI objects. ROBULA instead works in the context of
web applications and interacts with the GUI elements via the
DOM structure. Thummalapenta et al. [12] present ATA, a tool
to automatically repair test script automatically for certain types
of application or environment changes. ROBULA addresses
the same web scenario but aims at strengthening the resilience
of XPath locators to the web application evolution and it does
not consider yet any automatic repair techniques.

VI. CONCLUSIONS AND FUTURE WORK

This work has proposed and experimented ROBULA, a novel
algorithm able to partially prevent and thus reduce the aging of

web test cases by automatically generating robust web testing-
oriented XPath locators. We have compared the robustness of
the XPath locators generated by state of the practice XPath
generator tools (i.e., absolute and id-based relative locators)
with the ones generated by ROBULA. Results indicate that
the locators generated by ROBULA are significantly better in
terms of robustness than absolute and id-based relative locators.

In our future work, we intend to fine-tune ROBULA and
conduct further studies to corroborate our findings. In particular,
we would like to: (1) extend the kind of XPath constructs used
by ROBULA with, e.g., text(), to locate web elements by means
of the text they contain (i.e., an extended version of the LinkText
method provided by Selenium WebDriver [6]); (2) adopt a pri-
oritisation strategy (e.g., among different attributes) and a black-
listing strategy (i.e., excluding some attributes that are generally
fragile, e.g., href); (3) extend the empirical study with more web
applications and more releases; (4) complete the development
of a Firefox plugin implementing ROBULA; (5) compare the
robustness of the XPath expressions generated by ROBULA
with other approaches/techniques, such as Montoto et al.’s [10],
and tools, such as Selenium IDE. Although these tools do
not provide developers with a stand-alone solution for creating
XPath locators, they indeed include some algorithms to create
XPaths that are used in their test cases.

REFERENCES

[1] A. Bruns, A. Kornstadt, and D. Wichmann. Web application tests with
Selenium. IEEE Software, 26(5):88-91, 2009.

[2] P. Chapman and D. Evans. Automated black-box detection of side-
channel vulnerabilities in web applications. In Proc. of CCS 2011, pages
263-274, New York, NY, USA, 2011. ACM.

[3] S.R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application
test repair. In Proc. of ETSE 2011, pages 24-29. ACM, 2011.

[4] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed
test scripts. In Proc. of ICSE 2009, pages 408—-418. IEEE, 2009.

[5] M. Kowalkiewicz, M. E. Orlowska, T. Kaczmarek, and W. Abramowicz.
Robust web content extraction. In Proc. of WWW 2006, pages 887-888.
ACM, 2006.

[6] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Comparing the
maintainability of Selenium WebDriver test suites employing different
locators: A case study. In Proc. of the Ist International Workshop on
Joining AcadeMiA and Industry Contributions to testing Automation,
JAMAICA 2013 at ISSTA 2013, pages 53-58. ACM, 2013.

[71 M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Proc. of 20th Working Conference on Reverse Engineering,
WCRE 2013, pages 272-281. IEEE, 2013.

[8] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-
based web locators: An empirical study. In Proc. of 14th International
Conference on Web Engineering (ICWE 2014). Springer, 2014.

[9]1 M. Mirzaaghaei. Automatic test suite evolution. In Proc. of ESEC/FSE

2011, pages 396-399. ACM, 2011.

P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lopez. Automated

browsing in ajax websites. Data & Knowledge Engineering, 70(3):269—

283, 2011.

G. Rao and A. Pachunoori. Optimized identification techniques using

XPath. Technical Report MSU-CSE-00-2, IBM Developerworks, 2013.

S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,

D. D. Nagaraj, and S. Sathishkumar. Efficient and change-resilient test

automation: An industrial case study. In Proc. of ICSE 2013, pages

1002-1011. IEEE, 2013.

P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.

Advances in Computers, 93:1-51, 2014.

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslén.

Experimentation in Software Engineering - An Introduction. Kluwer

Academic Publishers, 2000.

[10]

(1]

[12]

[13]

[14]

