
PESTO: A Tool for Migrating DOM-based to
Visual Web Tests

Andrea Stocco1, Maurizio Leotta1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

andrea.stocco@dibris.unige.it, maurizio.leotta@unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—Automated testing of web applications reduces the
effort needed in manual testing. Old 1st generation tools, based
on screen coordinates, produce quite fragile test suites, tightly
coupled with the specific screen resolution, window position and
size experienced during test case recording. These tools have been
replaced by a 2nd generation of tools, which offer easy selection
and interaction with the web elements, based on DOM-oriented
commands. Recently, a new 3rd generation of tools came up
based on visual image recognition, bringing the promise of wider
applicability and simplicity. A tester might ask if the migration
towards such new technology is worthwhile, since the manual
effort to rewrite a test suite might be overwhelming. In this
paper, we propose PESTO, a tool facing the problem of the
automated migration of 2nd generation test suites to the 3rd
generation. PESTO determines automatically the screen position
of each web element located on the DOM by a 2nd generation test
case. It then calculates a screenshot image centred around the
web element so as to ensure unique visual matching. Then, the
entire source code of the DOM-based test suite is transformed
into a visual test suite, based on such automatically extracted
images and using specific visual commands.

Keywords-Web Testing; DOM-based Testing; Visual Testing;
GUI Testing; Test Case Maintenance; Test Suite Migration; Test
Automation; Selenium WebDriver; Sikuli.

I. INTRODUCTION AND MOTIVATION

Web applications have become a core part of everyday
lives. People use online services as source of information,
means of communication, source of entertainment and venue
for commerce. Web applications often ask users to insert and
store personal information or sensitive data. Software testing
plays a crucial role in quality software production, but the
specific features of Web-based software makes the evaluation
of its correctness quite challenging for all IT experts [8].

Modern web applications are increasingly complex, char-
acterised by rapid evolution, asynchronous interactions and
tight integration of different technologies. As business and
customers’ requirements grow, so does the pressure on software
professionals to deliver new stable releases, in reduced time
and with high quality. This is why web development teams
are increasingly adopting agile techniques and test automation
practices.

Automated functional web testing is based on the creation
of test scripts that automate the interaction with a web page
and its elements. Test cases can, for instance, automatically
fill-in and submit forms and click on hyperlinks. High level
languages and friendly APIs provide commands to control the

browser and interact with the web page elements, e.g., click a
button or fill a field with text. Test scripts are then completed
with assertions, e.g., using xUnit assertions.

There are a number of commercial and open source tools
available for assisting the development of automated test suites.
Selenium toolkit1 is one of the most used open source solutions.
Its tool Selenium WebDriver offers an object oriented API
for accessing the Document Object Model (DOM) of a web
page. Hence, it belongs to the so called 2nd generation tools.
Selenium WebDriver supports test script development in a high
level language, runs such scripts automatically and provides
quick, informative feedback to web developers.

While 2nd generation web testing tools are currently widely
adopted in the industry [3], the new generation of visual
tools [1], [2] offer an interesting alternative. Indeed, there
are situations in which 2nd generation tools cannot be used
effectively [7]. For example, they do not support easily some
UI technologies in which UI elements are not identifiable or
accessible from the DOM (e.g., third party ActiveX and Flash
components). There are cases in which an entire UI region
of the web application consists of multiple functional sub-
regions represented by a single UI element (e.g., a UI element
representing a city map). The functional sub-parts (e.g., points
of interest on the map) cannot be identified by a DOM-based
tool.

In such situations, image-based testing tools come to the
rescue. Unlike 2nd generation tools, image-based tools are
completely independent from the underlying DOM structure of
the web pages. Sikuli API2 is an open source representative of
this category and is able to automate and test any graphical user
interface using screenshot images. Sikuli API provides image-
based GUI automation functionalities to Java programmers.

In this context, a development team might consider whether
the migration towards the 3rd generation technology is worth-
while. Actually in the market no single solution supports all
the available platforms and GUI objects, therefore, in some
contexts, selection of the proper test framework might be
difficult. The emergence of new complex visual components in
web pages pulls for the adoption of 3rd generation tools, but
migrating already existing DOM-based test suites turns out to
be an extremely time-consuming, error-prone and boring task.

1http://seleniumhq.org/
2http://code.google.com/p/sikuli-api/



Fig. 1. High Level Architecture of PESTO (PagE object tranSformation TOol)

In this tool demo, we describe PESTO (PagE object
tranSformation TOol), a prototype tool able to assist web
testers in the difficult task of transforming an existing DOM-
based test suite, developed using Selenium WebDriver, to an
image-based test suite, built on top of Sikuli API.

This tool demo paper is organised as follows: Section II
provides some background on 2nd and 3rd generation web
testing tools. Section III describes our tool using a simple test
suite as use case, followed by conclusions and future work.

II. BACKGROUND

Nowadays, tools interact with the web pages elements mostly
using one of the following two techniques [7]:
1) DOM-based localisation: web page elements are retrieved

using the information in the Document Object Model, by
means of different mechanisms (e.g., by ID, XPath and
LinkText).

2) Visual localisation: web page elements are identified using
screenshots, representing their visual appearance as rendered
by the browser, and image recognition algorithms.

A. The Page Object and the Page Factory Patterns

Page Object is a quite popular web test design pattern,
which aims at improving the test case maintainability and
reducing the duplication of code. A Page Object is a class that
represents the web page elements as a series of objects and
that encapsulates the features of the web page in methods. All
the functionalities to interact with or to make assertions about
a web page are offered in a single place, the Page Object, and
can be easily called and reused within any test case. The use of
Page Object reduces the coupling between web pages and test
cases, promoting reusability, readability and maintainability of
the test cases [5], [6].

B. DOM-based and Visual Web Testing

In this paper, we consider Selenium WebDriver3 as a
representative tool for the implementation of DOM-based web
test suites (for short, WebDriver). WebDriver is completely open
source and provides comprehensive APIs to control the browser.
Test cases are written manually in a high level programming
language (we used Java), using WebDriver commands and
JUnit or TestNG assertions.

Sikuli is an academic and research project at the MIT4.
It is an open source image based technology to automate
testing of graphical user interfaces. Sikuli supports major
OS platforms (Windows, Mac and Linux). It ships with an
integrated development environment (IDE) for writing visual
scripts and an API that can be used from any Java program.
The core of Sikuli script consists of a Java robot which delivers
keyboard and mouse events to appropriate locations on the
screen. Image recognition is provided by the OpenCV (Open
Source Computer Vision) C++ engine5 that is connected to
Java via JNI (Java Native Interface).

We believe that Sikuli API is a good target for the migration
of WebDriver test suites, since it permits the creation of
test cases structurally similar to those written for WebDriver.
Moreover, it is open source and we can use the same program-
ming environment with both the chosen testing frameworks:
same programming language (Java), IDE (Eclipse), and testing
framework (JUnit).

III. TOOL ARCHITECTURE AND USE CASE

This section describes the design and architecture of PESTO.
The tool automatically transforms a DOM-based web test suite,
created using WebDriver and adopting the Page Object design

3http://seleniumhq.org/projects/webdriver/
4http://www.sikuli.org/
5http://opencv.org/



Fig. 2. Visual Locators Generator (Module 1)

pattern, into a visual web test suite based on the Sikuli image
recognition capabilities.

For the interested reader, a demo video of PESTO
and the source code can be downloaded from
http://sepl.dibris.unige.it/2014-PESTO.php.

Fig. 1 shows the high level structure of PESTO, which is
logically divided into two main modules: the Visual Locators
Generator (Module 1) and the Test Suite Transformer (Module
2). The input of PESTO consists of a DOM-based web test
suite, and it produces in output an image-based web test suite.

In the following we describe the modules composing PESTO,
considering as a use case a simple test suite of a real web
application: PHP Address Book6. It is a simple Web-based
address and phone book, contacts manager, and organiser.

A. Visual Locators Generator (Module 1)
In the first phase, we need to build a catalogue of all the

web elements the test cases interact with. In the DOM-based
approach, web elements are identified by locators, lines of
source code containing the specification of how to select a
particular target element in the DOM. With the visual approach,
a web element is instead identified by an image representing the
portion of the web page displaying it. The visual appearance
of the rendered elements may change during the application
execution and some elements may be not visible until a
specific event occurs. For this reason, we need to capture
the screenshots of the web elements at runtime, while the test
suite is executing. This has been achieved by means of the
aspect-oriented programming (AOP) paradigm [4], specifically
the AspectJ language7.

Fig. 2 illustrates the process of the runtime creation of
visual locators. Here, we detail each step, following the same
enumeration as in the figure.

6http://sourceforge.net/projects/php-addressbook/
7https://eclipse.org/aspectj/

(1) In Eclipse IDE, JUnit runs the WebDriver test suite,
developed following the Page Object design pattern. For
example, a test case may open the browser page, type the
web application URL and perform some operations.

(2) At the same time, an AspectJ procedure is active and
able to intercept all WebDriver calls to the methods click(),
sendKeys(...) and getText(), using properly defined join
points. Fig. 3 depicts this situation: a test case executing the
login function is running and the AspectJ procedure intercepts
the WebDriver call to the sendKeys(...) method while the
username value is being inserted. Correspondingly, a yellow
highlight (in b/w printed paper, dashed rectangle) is displayed
to the user (see Fig. 3).

Fig. 3. AspectJ procedure in action

When a given join point matches, an advice method with an
@Before action is run, generating a visual locator by means
of the following steps: (2.1) the AspectJ procedure calls a
WebDriver method that returns a screenshot of the entire web
page (e.g., the entire login page shown in Fig. 3) containing



the web element of interest (e.g., the username textBox);
(2.2) the AspectJ procedure calls a WebDriver method gathering
important information about the web element of interest: (i) the
coordinates of the top left-hand corner of the rendered web
element and (ii) its sizes (i.e., width and height).

(3) The Visual Locator Creator procedure calculates a precise
rectangle image based on those coordinates and centred on
the web element. The auxiliary function isUniqueMatch
checks whether it is univocal in the screenshot of the web page.
Often, a precise crop image cannot be considered a locator,
since it is not uniquely selecting the web element of interest.

Fig. 4. Log messages from the visual locator creator

Fig. 4 reports some log messages about the visual locator
creation and it shows the situation described above. We can
notice that the Visual Locator Creator searched for a unique
match of the web element screenshots/IndexPage/IndexPage-
74.png (the username textBox) in the full screenshot of the
Index page, but multiple matches are found (we remember that
in the first attempt the crop is precise). Indeed, in Fig. 3
we can see that the web page contains a form with two
identical textBoxes, both of the same sizes and appearance,
hence multiple matches are found. In this case, Sikuli will
not be able to identify such element; (3.1) therefore, the
Visual Locator Creator expands automatically the size of the

Fig. 5. Example of visual locator generated by PESTO for the username
textBox

rectangle image, scaling it up as many times as needed to
produce a unique visual locator. In fact, if we look at the
next log messages in Fig. 4, by expanding the rectangle twice,
a unique match is found and the process can proceed with
the next web element (IndexPage-75.png). The visual locator
automatically created for the username textBox is shown in
Fig. 5. The normalized correlation coefficient algorithm (NCC
– Fast Normalized Cross-Correlation) available in OpenCV is
used by the Visual Locator Creator for the calculation of the
matches.

(4) The screenshot is then saved on the filesystem, together
with a textual mapping file containing the association between
the web element and its visual locator. This information is
collected for each web element the test suite interacts with. It
represents an important input for the second module of PESTO.

B. Test Suite Transformer (Module 2)

Fig. 6 shows the two main steps of Module 2, Test Suite
Transformer: (1) transformation of the page objects (Page
Object Transformer); (2) transformation of the test cases (Test
Case Transformer).

Fig. 6. Test Suite Transformer (Module 2)



Fig. 7. Fragment of the Page Object Transformer

Fig. 7 shows an excerpt of the Page Object Transformer
that produces image-based Page Objects (step (1) in Fig. 6).
The Java code of each DOM-based Page Object is parsed by
the JavaParser parse method. Then the package definition is
modified: a new poSikuli package is created and the necessary
imports to Sikuli API components are added. In this context,
specific Sikuli visual methods need to be introduced: methods
to click or type text on a web element need to be reimplemented,
because in the visual approach web elements are images and
the interaction is purely visual, hence simple DOM-based
commands become composite visual operations. Moreover,
Sikuli sees and interacts only with the visible portion of the
desktop, hence additional scrolling operations, not needed with

Fig. 8. Redefined click method

the DOM-based approach, are required to detect every image
before performing any operation on it; otherwise, the test case
execution will fail.

Fig. 8 shows the example of the reimplementation of the
click method. Sikuli first performs a find operation to search
for the element of interest. If it is not found (i.e., null is
returned), it could be because the element is not currently
displayed in the browser. Sikuli scrolls the page down and
continues its search until it finds the correct match (in Fig. 8,
the exception handling code has been removed, for the sake
of simplicity).

Finally, WebElement attribute definitions are turned into
Target attributes. The inner code of the Page Object class
is modified as follows (see Fig. 9): in the constructor, new
visual components are added, to provide Sikuli with control
over the mouse, the keyboard and the desktop screen region.
Target attributes are initialised using the mapping information
produced by Module 1: every DOM-based locator is associated
with its visual representation.

Fig. 9. Fragment of the Input (above) and Output (below) of the Page Object
Transformer

The Test Case Transformer modifies the test cases source
code in order to use the new visual page objects (step (2)
in Fig. 6). This is a very simple step, which requires just to
change a few import instructions, so as to replace the old Page
Objects with the freshly generated ones.
Rendering issue: Explicit vs Implicit Waits. When the
execution flow goes from one web page to the next (e.g.,
after having submitted a form or clicked a link), a little amount
of time is required for loading the new web page. If the test
case goes ahead without taking this into account, it may not
find the next target web element and thus it may return an
error. WebDriver provides specific commands to deal with this
issue8 (i.e., Explicit and Implicit Waits). For instance, in the
PHP Address Book test suite we used implicit waits, allowing
WebDriver to poll the DOM for a certain amount of time (e.g.,

8http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp



up to 5 seconds) when trying to find a web element, if it is
not immediately available. Sikuli provides an implicit wait
command that blocks and waits until the target element is
found within a given time period. The use of implicit delays
slows down the execution of the test suites in cases where the
target web element is not shown on the screen and scrolls are
required to be able to visualise it. Thus, we preferred to insert
explicit delays (e.g., Thread.sleep(1000)), whenever these
are strictly necessary, as shown in Fig. 8.

C. Test Suite Execution

At this point, through a totally automatic process, the
software tester has obtained a new, fully working visual test
suite, which reimplements WebDriver’s features for automating
the browser interactions and exploits Sikuli’s image recognition
capabilities for web element localisation. No manual corrections
are typically required. The software tester has just to run the
new test suite, in the JUnit environment, and the test cases
will deploy the new visual Page Objects instead of the old,
DOM-based ones.

Fig. 10. Run of the test suite, after the transformation

In Fig. 10, we can see that PESTO draws a red rectangle
around the portion of the screen where it has found a match
for the web element to interact with.

Fig. 11. Visual assertions of PESTO

When a visual assertion is evaluated, a canvas message is
shown to the tester (see top-right corner in Fig. 11).

IV. CONCLUSIONS AND FUTURE WORK

We have presented PESTO, a tool able to transform automat-
ically DOM-based web test suites developed using Selenium
WebDriver into visual test suites relying on the usage of Sikuli
API.

About the experiences gained in developing this tool, we
highlight:

• AOP was very useful and effective for the runtime capture
of visual locators;

• the OpenCV computer vision library was very effective
to automatically determine the number of matches of
candidate visual locators;

• the JavaParser class used for parsing and modifying the
abstract syntax trees of the test suites was simple to use
and fitted for the purpose.

In our future work, we intend to improve PESTO in order
to address its current limitations, e.g., the management of:
(1) elements with complex visual interactions (e.g., drop-down
lists); (2) elements changing their visual appearance during a
state change (e.g., checkboxes). We also plan to execute an
empirical study to measure the time required by developers
to manually transform an existing real-sized DOM-based test
suite into a visual one, in comparison with the time required
when PESTO is adopted.

REFERENCES

[1] E. Alegroth, M. Nass, and H. H. Olsson. JAutomate: A tool for system-
and acceptance-test automation. In Proceedings of 6th International
Conference on Software Testing, Verification and Validation, ICST 2013,
pages 439–446. IEEE, 2013.

[2] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using computer vision.
In Proceedings of SIGCHI Conference on Human Factors in Computing
Systems, CHI 2010, pages 1535–1544. ACM, 2010.

[3] P. Chapman and D. Evans. Automated black-box detection of side-channel
vulnerabilities in web applications. In Proceedings of 18th Conference
on Computer and Communications Security, CCS 2011, pages 263–274.
ACM, 2011.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of 11th European Conference on Object-
Oriented Programming (ECOOP 1997), volume 1241 of Lecture Notes in
Computer Science (LNCS), pages 220–242. Springer, 1997.

[5] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites
maintainability with the page object pattern: An industrial case study.
In Proceedings of 6th International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2013, pages 108–113.
IEEE, 2013.

[6] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Proceedings of 20th Working Conference on Reverse
Engineering, WCRE 2013, pages 272–281. IEEE, 2013.

[7] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-based web
locators: An empirical study. In S. Casteleyn, G. Rossi, and M. Winckler,
editors, Proceedings of 14th International Conference on Web Engineering
(ICWE 2014), volume 8541 of Lecture Notes in Computer Science (LNCS),
pages 322–340. Springer, 2014.

[8] P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.
Advances in Computers, 93:1–51, 2014.


