Meta-Heuristic Generation of Robust XPath Locators for Web Testing

Maurizio Leotta Andrea Stocco Filippo Ricca Paolo Tonella
Outline

- The robust locator problem in web testing
- Locator generation as graph reachability problem
- Algorithms for locator generation
 - Greedy optimal
 - Meta heuristic (GA) suboptimal
Web testing

Name: John
Surname: Doe
Mobile: 123456789

<html>
<body>
<table id="userInfo">
 <tr><td>Name: </td><td title="name">John</td></tr>
 <tr><td>Surname: </td><td title="surname">Doe</td></tr>
 <tr><td>Mobile: </td><td title="mobile">123456789</td></tr>
</table>
</body>
</html>

private final WebDriver driver;
void testMobileNumber(String name, String surname) {
 // insert name, surname; submit
 // get result page
 assertEquals(driver.findElement(By.xpath("/html/body/table/tr[3]/td[2]")).getText, "123456789");
}
Web element locators

<table>
<thead>
<tr>
<th>Tool</th>
<th>Kind</th>
<th>Generated XPath Locators for the Target Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirePath</td>
<td>rel</td>
<td>//*[@id="userInfo"]/tr[3]/td[2]</td>
</tr>
<tr>
<td>Chrome</td>
<td>rel</td>
<td>//*[@id="userInfo"]/tr[3]/td[2]</td>
</tr>
<tr>
<td>XPath Helper</td>
<td>abs</td>
<td>/html/body/table[@id="userInfo"]/tr[3]/td[@title="mobile"]</td>
</tr>
<tr>
<td>XPath Checker</td>
<td>rel</td>
<td>id('userInfo')/tr[3]/td[2]</td>
</tr>
<tr>
<td>ROBULA</td>
<td>rel</td>
<td>//td[@title="mobile"]</td>
</tr>
</tbody>
</table>

Target Element

Name: John
Surname: Doe
Mobile: 123456789
Robust locators

<table>
<thead>
<tr>
<th>Tool</th>
<th>XPath Locators Robustness</th>
<th>✓ robust</th>
<th>× broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirePath</td>
<td>✗ //*[@id="userInfo"]/tr[3→4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>✗ //*[@id="userInfo"]/tr[3→4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPath Helper</td>
<td>✗ /html/body/table[@id="userInfo"]/tr[3→4]/td[@title="mobile"]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPath Checker</td>
<td>✗ id('userInfo')/tr[3→4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBULA</td>
<td>✓ //td[@title="mobile"]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target Element: Name: John
Surname: Doe
Gender: Male
Phone: 123456789
Locator generation

transfAddName
 ///*/td -> //tr/td

transfAddPredicate
 //tr/td -> //tr[@name='data']/td
 //tr/td -> //tr[2]/td

transfAddLevel
 //tr/td -> ///*/tr/td

Completeness: repeated application of these three transformations to "///*") generate all unique locators for each web page element e. XPaths that do not include e in their result set are discarded.
XPath generation graph

DOM D of the Web Page:
```html
<html>
  <p class='a'>X</p>
  <p class='a'>Y</p>
  <div class='a'>X</div>
</html>
```

Full Absolute XPath locator for the element e:
```
/html[1]/p[text()='X' and @class='a'][1]
```

Info for G_e:
- 80 N of Vertices (XPaths) in G_e
- 1 N of Vertices with InDegree = 0
- 16 N of Vertices with OutDegree = 0
- 5 N of Boundary Locators
- 49 N of Locators

64 of length 2 + 16 of length 1

i.e., only `/**` boxed

bold – underlined in green

underlined in green

Unique locators of e are underlined in green.
XPath fragility

<table>
<thead>
<tr>
<th>Transformation</th>
<th>XPath Pattern</th>
<th>Fragility Count (FC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>transfAddName</td>
<td><code>//*</code>/td -> <code>//tr/td</code></td>
<td>FC += W_tag</td>
</tr>
<tr>
<td>transfAddPredicate</td>
<td><code>//tr/td</code> -> <code>//tr[@name='data']/td</code></td>
<td>FC += W(@name)</td>
</tr>
<tr>
<td></td>
<td><code>//tr/td</code> -> <code>//tr[2]/td</code></td>
<td>FC += W_pos</td>
</tr>
<tr>
<td>transfAddLevel</td>
<td><code>//tr/td</code> -> <code>//*;/tr/td</code></td>
<td>FC += W_lev</td>
</tr>
</tbody>
</table>

Fragility Count (FC) is zero for ``//*`; it is incremented whenever edges are added to the XPath generation graph.
XPath fragility

DOM D of the Web Page:
```html
<html>
<p class='a'>X</p>
<p class='a'>Y</p>
<div class='a'>X</div>
</html>
```

Graph G_e

Full Absolute XPath locator for the element e:
```
/html[1]/p[text()='X' and @class='a'][1]
```

Info for G_e:
- 80 N of Vertices (XPaths) in G_e
- 1 N of Vertices with InDegree = 0
- 16 N of Vertices with OutDegree = 0
- 5 N of Boundary Locators
- 49 N of Locators

Step:
1. //html[1]/p[text()='X' and @class='a'][1]
2. //p[1]
3. //*[text()='X'][1]
4. //*[@class='a'][1]
5. //html/p
6. //*[1]/p
7. //*[text()='X' and @class='a'][1]
8. //*[1]/*[text()='X' and @class='a'][1]
9. //*[1]/*[1]/*[text()='X' and @class='a'][1]
10. //*[1]/*[1]/*[1]/*[text()='X' and @class='a'][1]
11. //*[1]/*[1]/*[1]/*[1]/*[text()='X' and @class='a'][1]
12. //*[1]/*[1]/*[1]/*[1]/*[1]/*[text()='X' and @class='a'][1]
13. //*[1]/*[1]/*[1]/*[1]/*[1]/*[1]/*[text()='X' and @class='a'][1]

Minimum FC locators are at the boundary between unique and non unique locators.
Greedy algorithm

```
<html>
  <p class='a'>X</p>
  <p class='a'>Y</p>
  <div class='a'>X</div>
</html>
```

Globally optimal locator: `//p[text='X']`
Greedy algorithm

Termination: the algorithm is ensured to terminate, since in the worst case it returns the absolute XPath.

Correctness: the algorithm returns the global optimum because FC is monotonically increasing for successively explored locators.

Complexity: the algorithm is exponential in the number of predicates and levels:

\[
|V| = \sum_{i=1}^{h} 2^{(\sum_{k=1}^{i} |P_k|) + i} = |X_e|
\]
Genetic algorithm

\[fit(x) = \begin{cases}
|\text{query}(x, D)| & \text{query}(x, D) \neq \{e\} \\
\text{fc}(x) & \text{query}(x, D) = \{e\}
\end{cases} \]
Conclusions

<table>
<thead>
<tr>
<th>Tool</th>
<th>XPath Locators Robustness</th>
<th>Robust</th>
<th>Broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirePath</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FirePath</td>
<td>/[id='userInfo'][3-4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>/[id='userInfo'][3-4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPath Helper</td>
<td>/html/body/table[@id='userInfo'][3-4]/td[@title='mobile']</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPath Checker</td>
<td>id('userInfo')[3-4]/td[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBULA</td>
<td>/td[@title='mobile']</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions?

Locator generation

Greedy optimal

GA sub-optimal