
WATERFALL: An Incremental Approach for
Repairing Record-Replay Tests of Web Applications

Mouna Hammoudi, Gregg Rothermel
University of Nebraska - Lincoln, USA
{mouna,grother}@cse.unl.edu

Andrea Stocco
Università di Genova, Italy

andrea.stocco@dibris.unige.it

ABSTRACT

Software engineers use record/replay tools to capture use case sce-

narios that can serve as regression tests for web applications. Such

tests, however, can be brittle in the face of code changes. Thus,

researchers have sought automated approaches for repairing bro-

ken record/replay tests. To date, such approaches have operated

by directly analyzing differences between the releases of web ap-

plications. Often, however, intermediate versions or commits exist

between releases, and these represent finer-grained sequences of

changes by which new releases evolve. In this paper, we present

WATERFALL, an incremental test repair approach that applies test

repair techniques iteratively across a sequence of fine-grained ver-

sions of a web application. The results of an empirical study on

seven web applications show that our approach is substantially more

effective than a coarse-grained approach (209% overall), while main-

taining an acceptable level of overhead.

CCS Concepts

•Software and its engineering→ Software verification and vali-

dation;

Keywords

test case repair, web applications, record/replay tests

1. INTRODUCTION
Record/replay tools enable software engineers to automate the

testing of web applications. Record/replay tools capture a set of in-

puts and actions (mouse clicks, keyboard entries, navigation com-

mands, etc.) that are applied to a web application by a software

engineer. During playback, these tools re-deliver the sequence of

captured inputs and actions (hereafter referred to as “tests”) to the

browser engine. The number of record/replay tools used in both re-

search and commercial realms (e.g., CoScripter [19], Jalangi [29],

Sahi [26], Selenium [27], Sikuli [37]), and Watir [28]) attest to their

importance and popularity.

Unfortunately, tests created by record/replay tools can easily stop

functioning as applications evolve [13]. Changes as simple as repo-

sitioning page elements or altering the selections in a drop-down

list can cause such tests to break. This can greatly limit engineers’

abilities to perform regression testing. For this reason, researchers

have recently begun devising techniques for automatically repair-

ing record/replay tests [5, 17]. While these techniques can be suc-

cessful at performing repairs, as we shall show, in real-case scenar-

ios they often are not.

Record/replay tests may break for a variety of reasons, but re-

searchers have singled out “locators” as being particularly prob-

lematic [5, 16, 17, 36]. Locators are used by high-level languages

such as JavaScript, and by record/replay tools, to identify and ma-

nipulate elements on web application GUIs. As web applications

evolve, locators are likely to change, and prior instances of loca-

tors become obsolete. This causes tests relying on such locators

to break. While claims about the problem of locator fragility in

the papers just cited are primarily anecdotal, in a recent study [13]

we evaluated test breakages1 that occurred in Selenium IDE tests

across 453 versions of eight web applications, and used the results

to create a taxonomy of the causes of test breakages.2 We discov-

ered 1065 individual instances of test breakages, and found that

73.62% of them were related to obsolete locators within tests. For

this reason, in this work we focus on issues related to the repair of

locators in record/replay tests.

Prior work on repairing record/replay tests has focused on situa-

tions in which a test t functions on a release R of web application

A, but breaks on the subsequent release R′ of A. Current tech-

niques for repairing these tests [5, 17] analyze differences between

R and R′ in an attempt to select an appropriate repair. Code reposi-

tories, however, routinely make applications accessible in the form

of finer-grained intermediate increments (e.g., lower-level versions

or commits), so versions of A between R and R′ are often avail-

able. By applying test repair techniques iteratively across these

finer-grained intermediate versions, we may be able to repair tests

more effectively than when we apply the same techniques across

coarser-grained sets of changes. The additional applications of re-

pair techniques, however, will entail additional costs, and thus, both

the effectiveness and the efficiency of fine-grained approaches must

be assessed relative to those of coarse-grained approaches.

1We define a test breakage as the event that occurs when a test that
used to function on a web application ceases to be applicable to a
new release of that application due to changes that cause the test to
halt prematurely. Test breakages differ from “test failures”; these
occur when tests continue to function on a new release up to a point
at which an oracle signals that a program failure has occurred. In
current practice, engineers who execute tests on a new release must
distinguish test breakages from test failures; in this work we focus
only on tests that have been determined to have broken.
2While the results presented in [13] motivate the need for auto-
mated test repair techniques, the paper does not present or investi-
gate any particular techniques.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950294

751

In this paper we present an approach, WATERFALL, that incre-

mentally repairs tests by considering code changes across finer-

grained increments of evolving web applications. While any test

repair technique could be plugged in to WATERFALL, in this paper

we make use of the locator repair component of the non-incremental

capture/replay test repair technique, WATER, presented in [5]. We

empirically study our approach on seven open-source web applica-

tions for which we had previously created record/replay tests using

Selenium IDE, on which 717 test breakages related to test loca-

tors had previously been discovered [13]. In our study, applying

a repair technique at finer granularities increased its effectiveness

(across all versions of all seven web applications) by 209% over

coarser granularities. Our results also show that, while WATER-

FALL required more execution time than the coarse-grained repair

approach overall, the overhead it imposed was not excessive. In

fact, that overhead was more than compensated for by the reduc-

tion achieved in the number of times that humans must intervene to

manually repair test cases that could not be automatically repaired.

The contributions of this work are as follows:

• a novel algorithm, WATERFALL, for applying test repairs in-

crementally across fine-grained releases of web applications;

• an implementation of our algorithm;

• an empirical study that shows that WATERFALL can be ef-

fective when applied to several non-trivial open-source web ap-

plications, without imposing excessive overhead.

2. BACKGROUND

2.1 Record/Replay Tools
Record/replay tools allow test engineers to capture sequences of

inputs and actions applied to a web application’s GUI. The record-

ing process creates a test script that can then be replayed in an unat-

tended mode. There are many record/replay tools for web applica-

tions available; in this work we utilize Selenium [27], one of the

flagship open-source test automation tools for web applications.

Figure 1 (top) depicts a typical sample web application, allowing

users to login. Figure 1 (bottom) shows the associated HTML code,

consisting of a form, two input fields for entering a username and

password, and a submit input field for submitting credentials. Ta-

ble 1 shows a test created by Selenium IDE via the application of a

sequence of inputs and actions to the login web page. Each input or

action causes a Selenese command to be inserted into the test. Each

Selenese command is denoted by a tuple: <action, locator, value>.

The action component indicates either an event that is performed

on the user interface during recording, or an action specific to Se-

lenium’s control of the replay. The locator component specifies the

web element the user is interacting with during a step of the record-

ing process. The value component refers to any input entered by the

user within the element specified by the locator.

2.2 The WATeR Test Repair Technique
While any technique could be “plugged in” to our test repair ap-

proach, for this work we chose the WATER (Web Application Test

Repair) technique, created by Choudhary et al. [5]. We chose WA-

TER because it has a procedure geared specifically towards locator

repair. While there exists one other approach for improving locator

robustness [16], that approach specifically targets only XPath loca-

tors, and applying it to the web applications used in our study would

require us to convert all other types of locators in our recorded tests

to XPath locators, rendering our results less generalizable.

At a high level, WATER is a differential testing technique used

to compare the executions of a test t over two different releases R

and R′ of a web application under test, where t runs properly on R

1 <form method="post" action=“index.php"> 
2 <input type="text" class="username"
 name="UsernameField" value=“username_val”/>
3 <input type="password" class="password"
 name="PasswordField" value="password_val"/>
4 <input type="submit" class="submitButton"
 name="submitBtn" value="submit"/>
5 </form>

username

password

Submit

localhost/web-app/login.php

Release R

Figure 1: Sample web application showing a login form (top)

and the corresponding HTML code (bottom)

Table 1: A Selenium Test for the Web Application of Figure 1

Stmt Action Locator Value

1 open localhost/web-app/login.php

2 type name=UsernameField “jsmith”

3 type name=PasswordField “secret123!”

4 click //form/input[3]

but breaks on R′. WATER executes t on R and R′ and gathers data

about these executions. WATER then examines the differences be-

tween R and R′, and based on these differences and execution data,

uses heuristics to find a set of potential repairs PR for t. For each

potential repair p in PR, WATER executes t using p. If t runs

properly on R′, p is added to a list of suggested repairs. This step

is repeated until each potential repair in PR has been considered.

The list of suggested repairs is then output to developers for their

consideration. The list of suggestions is ordered according to a set

of heuristics, such that earlier suggestions have higher probabilities

of yielding a correct repair. Choudhary et al. [5] also explain that if

a broken test statement works correctly after a potential repair is ap-

plied, but the test encounters a breakage again at a later statement,

WATER is rerun to attempt to repair the new breakage. Space limi-

tations prevent us from providing a more detailed description of the

algorithm, but details are available in Choudhary et al.’s paper [5].

WATER can suggest locator repairs that are not, in fact, appro-

priate. Thus, Choudhary et al. state that their technique “suggests”

test repairs to engineers, rather than simply applying the repairs and

assuming that one is correct if the test runs to completion. It also

seems clear that Choudhary et al. present suggested repairs for t to

engineers only after t has run to completion, not at an earlier point

p in t at which a repair has been suggested. Finally, WATER is not

guaranteed to find a test repair. In a case study presented in their

paper, Choudhary et al. show instances in which WATER fails, in-

stances in which it suggests inappropriate repairs, and instances in

which it suggests appropriate repairs.

3. A TEST REPAIR SCENARIO
Let R and R′ be releases of web application A, and let t be a

test that runs properly on R but breaks on R′. A coarse-grained

approach to repairing t attempts to do so by applying a repair tech-

nique to (R, R′, t), and if successful, produces a repaired test tfix.

Figure 2 depicts this approach.

In the foregoing scenario, let V1, V2, . . . Vk be intermediate ver-

sions or intermediate commits created as R evolved into R′. A

fine-grained approach to repairing t attempts to execute t on the

sequence of intermediate versions or commits between R and R′.

If a breakage occurs in some intermediate version Vk, the repair

technique is applied to (Vk−1, Vk, t). If successful, the approach

produces a test that no longer breaks on Vk. The approach then

752

tfix

Release R’

t

Release R

t

Figure 2: Repairing t using a coarse-grained approach

Release

R

Release

R’

V1 V2 V3

FIX

tfix
FIX

tfix'

tfix't t
t

Figure 3: Repairing t using a fine-grained approach

iterates through subsequent intermediate versions or commits, re-

pairing t where necessary, until it has produced a repaired version

of t that runs correctly and to completion on R′.

Figure 3 shows a case in which the fine-grained approach is ap-

plied where three intermediate releases are available between R

and R′. In the figure, t passes on the initial release R. Then, t is

transferred forward to the next version, V1, where it passes and is

transferred forward to V2. When t is executed on V2 a breakage oc-

curs and t needs to be corrected. The repair technique is applied to

(V1, V2, t) and outputs tfix, which is transferred forward to the next

version, V3. Here, tfix fails and must be repaired again. The repair

technique is applied to (V2, V3, tfix) and outputs tfix′ , which is

transferred forward to the last version, R′, where it passes.

We believe that the coarse-grained approach will be less effec-

tive at repairing tests than the fine-grained approach. The number

of code changes between R and R′ can be far larger than the num-

ber of changes between any pair of successive releases or commits.

The changes between R and R′ may also be intertwined in manners

that render repair heuristics less effective. Applying a repair tech-

nique iteratively to intermediate versions or commits should leave

the technique with fewer, less intertwined changes to consider per

application, increasing its chances of success.

On the other hand, a fine-grained approach may need to apply re-

pairs many more times than a coarse-grained approach, increasing

its overall cost. This can occur, for example, if a specific loca-

tor breaks, for different reasons, across several intermediate ver-

sions. Consider Figure 3, and suppose that the test breakage in

V2 is caused by the fact that an attribute locator has been changed

from “name = Name” to “name = NewerName”, and suppose that

the test breakage in V3 is caused by the fact that the same locator

has been changed again to “name = NewestName”. In this case

the coarse-grained approach would require only one application, to

change the locator used in R (“name = Name”) to one that works

in R′ (“name = NewestName”), whereas the fine-grained approach

would be applied twice, i.e., iteratively on each problematic inter-

mediate version. In this case, the extra cost associated with extra

applications of the test repair technique across all versions may ex-

ceed the cost of applying the technique once on R and R′.

An additional cost factor concerns the manual effort within the

test repair process itself. WATER does not always succeed, and

when it fails, engineers need to intervene and find repairs manually.

Given that the fine-grained approach may require more applications

of a test repair technique than the coarse-grained approach, the fine-

grained approach may also require more manual repairs.

4. THE WATERFALL APPROACH

4.1 A Basic Algorithm
A fine-grained test repair algorithm operates on releases R and

R′ of web application A, for which a sequence of intermediate ver-

sions between R and R′ are available. Given test t, the algorithm

proceeds until either (1) it reaches release R′ and t passes and runs

properly on it, or (2) t breaks on some intermediate version Vk prior

to R′. In this case, the algorithm attempts to repair tk−1 (the test

that reaches Vk) such that it operates correctly on Vk. This process

iterates until (1) occurs or until the algorithm unable to repair a test

at some point in the sequence.

Algorithm 1 presents WATERFALL, our fine-grained test repair

algorithm. WATERFALL accepts releases R and R′, and a test t

that ran properly on R. WATERFALL initially obtains the list of

versions (VersionList) between R and R′ (Line 2), including R and

R′ at the beginning and end of the list, respectively. It then iterates

through VersionList (Lines 4-17). For each version Vnext consid-

ered, WATERFALL attempts to run (possibly previously repaired)

test t on that version. If t does not break, WATERFALL begins a

new iteration on the next version, retaining t. If t does break, WA-

TERFALL attempts to repair it (procedure RepairTest, Line 9).

If RepairTest fails to repair t, it returns null and WATERFALL

terminates. If the repair succeeds, WATERFALL begins a new iter-

ation on the next version, promoting the repaired test, tfixed, to t.

If WATERFALL reaches the end of the sequence of versions, R′,

and is able to run t on that version (or repair t so that it runs on that

version), it returns t.

Algorithm 1 Fine-grained Test Repair Algorithm

1: function WATERFALL(R,R′, t) : tfixed
2: VersionList← GetVersions(R,R′)

3: V ← R

4: for i← 0 to VersionList.length() do

5: Vnext← VersionList.get(i+ 1)

6: if RunTest(Vnext, t).passes() == true then

7: V ← Vnext

8: else

9: tfixed← RepairTest(V, Vnext, t)

10: if tfixed == null then

11: return null

12: else

13: t← tfixed
14: V ← Vnext

15: end if

16: end if

17: end for

18: return t

19: end function

Note that RepairTest could be instantiated using any test case

repair algorithm; in this work we instantiate it using our imple-

mentation of WATER. Further, if WATERFALL is unable to repair

a test, i.e., returns null (Line 11), there are additional steps that

could be taken. A test engineer could intervene and repair the test

manually, and then reapply WATERFALL from that point. Alterna-

tively, RepairTest could be invoked again to retrieve a different

suggested repair. Such an approach makes sense when utilizing

WATER, which actually suggests a list of repairs.

4.2 Example
We now illustrate WATERFALL using an example. Let the web

application in Figure 1 be R, and suppose that it undergoes a three

step evolution process. Figure 4 shows the evolution of the HTML

code for three versions, beginning with an intermediate version

V1 (top), then an intermediate version V2 (middle), and finally a

release R′ (bottom). Specific changes are enclosed in ellipses.

In V1, the values of the class and value attributes have been

modified for the username and password text fields. Further,

753

1 <form method="post" action=“index.php”>

2 <div class="login"> 

3 <input type="text" class="UserClass" name="user" value=“UserValue”/>

4 <input type="password" class="PasswordClass" name="PasswordField" value="PasswordValue"/>

5 <input type="submit" class="SubmitClass" name="sub" value=“submit_val"/>

6 </div>

7 <div class=“developer_info"> 

 . . .

11 </div>

12 </form>

1 <form method="post" action=“index.php">  

2 <input type="text" class="UserClass" name="user" value=“UserValue”/>

3 <input type="password" class="PasswordClass" name="PasswordField" value="PasswordValue"/>

4 <input type="submit" class="SubmitClass" name="sub" value=“submit_val”/>

</form>

1 <form method="post" action=“index.php">  

2 <input type="text" class="UserClass" name="UsernameField" value=“UserValue”/>

3 <input type="password" class="PasswordClass" name="PasswordField" value="PasswordValue"/>

4 <input type="submit" class="SubmitClass" name="submitBtn" value="submit"/>

5 </form>
Version V1

Version V2

Release R’

Figure 4: An Example of Web Application Evolution

the class attribute of the submit button has been modified. For

example, in the username text field (Line 2), the class attribute

has been changed from class=“username” to class=“UserClass”, and

the value attribute has been changed from value=“username_val” to

value=“UserValue”. Despite these changes, the test in Table 1 still

passes on this version, because in V1 the locators for the username
field, password field, and submit button remain stable.

In V2, the name attribute of the username text field has changed

from name=“UsernameField” to name=“user”. Hence, Statement 2

of the test in Table 1 breaks when executed on V2. In this case,

WATERFALL considers V1 and V2 and compares Line 2 of the

HTML code in V1 with Line 2 of the HTML code in V2. Since

all of the attribute values are identical except for the name attribute

value, WATERFALL is able to identify the equivalent username
input field in V2 and repair the locator breakage in Line 2.

In R′, the developer has modified the page layout by introduc-

ing a div (Line 2) that differentiates the “login” portion of the web

page from the “developer info” portion. This causes Statement 4

of the test in Table 1 to break, because the XPath locator no longer

reflects the hierarchical path identifying the submit button within

the DOM tree of the web page under test. In this case, WATER-

FALL compares Line 4 of the HTML code for V2 with Line 5 of the

HTML code for R′. All the attribute values of the submit button

remain unchanged in this case. Thus, WATER is able to recognize

the equivalent submit button in R′.

Table 2 displays t as repaired by WATERFALL. The first repair

updates the name locator in Line 2 from name=UsernameField to

name=user. The second repair updates the XPath locator in Line 4

of the test from //form/input[3] to //form/div/input[3]. WATERFALL is

capable of performing these repairs using a fine-grained approach;

however, neither of these breakages can be repaired by WATER us-

ing a coarse-grained approach. WATER compares the class, name

and value attributes of the username and submit button input

fields. To repair the breakage in Statement 2 of the test in Table 1

(the username locator breakage), WATER compares Line 2 in R

(Figure 1) to Line 3 in R′(Figure 4-bottom). Because the values for

the class, name and value attributes have changed, WATER is not

able to recognize the username text field in R′. Thus, WATER is

not able to suggest any repairs for the username locator breakage.

Table 2: The Repaired Selenium Test

Stmt Action Locator Value

1 open localhost/web-app/login.php

2 type name=user “jsmith”

3 type name=PasswordField “secret123!”

4 click //form/div/input[3]

Similarly, to repair the breakage encountered in Statement 4 of

the test in Table 1 (the submit button locator), WATER compares

Line 4 in R to Line 5 in R′. Because all the values for the class,

name and value attributes have changed, WATER cannot recognize

the equivalent submit button in R′. Thus, WATER is not able to

suggest any repairs for the submit button locator breakage. This

example is in fact representative of many of the breakages that we

encountered in our empirical study.

The superior performance of WATERFALL on this example is

due to the smaller number of changes made to the HTML code

across successive versions of the web app. By applying the repairs

to smaller sets of changes, WATERFALL is able to identify equiv-

alent HTML input fields across releases. Therefore, WATERFALL

is able to suggest correct repairs more often than a coarse-grained

approach in which WATER is applied just to R and R′.

4.3 Improvements to the Basic Algorithm
Given (R, R′, t), WATER outputs a set of suggested repairs.

Each suggestion allows t to run to completion on R′, but this does

not mean that t is operating as designed: e.g., it may now exercise a

different use case scenario than the one it was intended to exercise.

Thus, test engineers may wish to inspect the list of suggestions and

select a repair that allows t to run properly.

In our basic algorithm, in contrast, RepairTest is applied iter-

atively across a sequence of versions. This raises two issues which,

if addressed, might yield improvements in WATERFALL’s effec-

tiveness. To understand these issues, again consider the example

presented in Figure 3. Suppose that when RepairTest is run

on (V1, V2, t), it suggests three repairs, S1, S2, and S3. The fact

that S1, S2, and S3 are suggested means that each of them yields

a test that passes on V2. Our basic algorithm selects the first sug-

gested repair, S1, and moves forward to the next version, V3, trans-

ferring tfix to it. In our example, tfix breaks on V3. Suppose

RepairTest is now unable to find a repair for tfix on V3. In this

case, our basic algorithm terminates and returns null.

The first issue to consider for this scenario is the manner in which

the algorithm treats suggestions. If the algorithm were to select one

of the other suggestions for repairs at V2 (S2 or S3), then on reach-

ing V3 it might have found a repair there. A potential improvement

to the algorithm would allow it to backtrack to prior lists of sug-

gestions when it cannot repair a test on a subsequent breakage. In

the scenario just presented, a backtracking version of the algorithm,

having failed to find a repair at V3, would return to V2 and select a

new suggested repair, and proceed forward with that.

While theoretically feasible, backtracking versions of WATER-

FALL could face scalability problems, depending on (1) the sizes

of suggestion lists and (2) the number of times that backtracking

is called for when processing a sequence of versions. Heuristics

might be needed to avoid an exponential explosion in the number

of sequences of repairs to consider. Nevertheless, with appropri-

ate use of such heuristics, a backtracking version of WATERFALL

might be more effective than our basic version.

The second issue to consider for this scenario is the point at

which humans are asked to inspect lists of suggested repairs. WA-

TERFALL assumes that humans will be shown suggested repairs

only when R′ is reached, when a list of suggested repair sequences

is output. Engineers could, however, become involved each time a

754

breakage is located in a version Vk, and select, from the list of re-

pairs suggested at that version, the repair they consider appropriate.

This may also improve the algorithm’s effectiveness, at the cost of

additional engineer time.

5. EMPIRICAL STUDY
We consider the following research questions:

RQ1: How do coarse- and fine-grained test repair approaches

compare in terms of effectiveness?

RQ2: How do coarse- and fine-grained test repair approaches

compare in terms of efficiency?

In our study, the coarse-grained approach is represented by WA-

TER, and the fine-grained approach is represented by WATER-

FALL. In this study we utilize our basic algorithm, on the view that

it makes sense to first determine whether that algorithm has promise

prior to implementing more complex algorithms. We do provide in-

sights into the use of backtracking, however, in Section 6.3.

5.1 Objects of Analysis

5.1.1 Web Applications

As objects of analysis we chose several web applications utilized

in our earlier study of test breakages in record/replay tests [13]. The

applications selected there were required to: (i) have at least 20 in-

stallable and executable versions/commits, (ii) have at least 30,000

lines of code, (iii) have been downloaded at least 5,000 times, and

(iv) have experienced at least 300 commits. Requirement i is cru-

cial to application usability; the other requirements lessen threats

to external validity by ensuring that the selected applications are

non-trivial and widely used.

Table 3 provides data on the web applications we used, includ-

ing their names, the number of releases, versions, and commits we

used, the number of lines of code they contained (counted using

cloc
3 and averaged across the versions), the number of times they

had been downloaded, and the number of tests used for them. PH-

PAddressBook helps users manage and organize contacts. PHPA-

genda lets users manage calendars, schedule appointments, holi-

days, todo lists, and share them with other users. PHPFusion is

a content management system that helps users create, manage and

administer a web site without knowledge about web programming.

Joomla is a content management system that helps users with little

experience in web programming publish content. MyCollabora-

tion is a collaboration platform that helps users manage customer

information and projects. Dolibarr is used for enterprise resource

planning and customer relationship management. YourContacts is

used by companies to manage their contacts. While all applica-

tions use JavaScript, HTML, MySQL, and CSS, MyCollaboration

is written in Java, and the other applications are written in PHP.

5.1.2 Releases, Versions, and Commits

For each web application considered, we required a way to in-

vestigate test repair at both the coarse- and fine-grained levels. The

ways in which we were able to do this varied, however, across the

applications, because some provide (case 1) commits between ver-

sions, while others provide (case 2) only various levels of versions.

In both of these cases there are scenarios in which coarse- and

fine-grained test repair are viable. In case 1, coarse-grained repair

could be applied across pairs of successive versions, whereas fine-

grained repair could be applied across pairs of intervening com-

mits, provided these commits result in executable instances of the

web applications. In case 2, coarse-grained repair could be applied

3cloc.sourceforge.net

Table 3: Objects of Analysis

ID Web App Name Releases Versions / LOC Downloads Tests

Commits

A1 PHPADDRESSBOOK 10 74 35,675 126,146 44

A2 PHPAGENDA 6 34 43,831 64,605 42

A3 PHPFUSION 6 50 256,899 1,605,195 47

A4 JOOMLA 8 92 312,978 >50,000,000 56

A5 MYCOLLABORATION 6 30 116,345 7,638 39

A6 DOLIBARR 8 21 42,010 864,698 38

A7 YOURCONTACTS 12 88 64,765 676,543 57

across pairs of successive higher-level releases, while fine-grained

repair could be applied across pairs of intervening versions. Such

an approach could make sense in practice if regression testing is re-

stricted to higher-level releases, as might happen if the time avail-

able for testing lower-level releases were constrained. To provide

a uniform way to describe the two cases, we refer to the coarser-

granularity versions as releases and we refer to the finer-granularity

versions (whether commits or intermediate versions) as versions or

(on occasions where clarity requires) intermediate versions.

YourContacts and Dolibarr were available at the levels of re-

leases and commits. For YourContacts we were able to utilize 12

releases, with 2–23 commits between each pair. For Dolibarr we

were able to utilize eight releases. In this case, however, there were

an enormous number of commits between each pair of releases,

many of which involved no code changes, so we selected every

75th commit between each pair. For the other five web applications

(PHPAddressBook, PHPAgenda, PHPFusion, Joomla, and MyCol-

laboration), commits were not available, but on each, there were

three levels of versions (major, minor, patch); this allowed us to

choose several versions as releases with several finer-grained ver-

sions as intermediate versions between them. This choice is moti-

vated by empirical evidence that a larger percentage of breakages

occur at intermediate release levels [25] than at higher levels. For

each of these web applications we chose, as releases, all major (e.g,

1.0 or 2.0) or minor (e.g, 1.1.0, 1.2.0) releases. As intermediate ver-

sions we selected the patch versions between successive major or

minor releases, yielding sequences such as (1.0, 1.0.1, 1.0.2, 1.1)

or (1.1.0, 1.1.1, 1.1.2, 1.2.0), respectively. We disregarded cases in

which only zero or one patch versions were available.

In either of the foregoing cases, we obtain, for each web appli-

cation, several of what we refer to as sequences of versions, which

begin with a release, end with a subsequent release, and contain

two or more intermediate versions between these releases. For ex-

ample, we obtain sequences of versions of the form (R, V1, . . .,

Vn−1, Vn, R′), where R and R′ are releases, and V1, . . ., Vn are

intermediate versions (or commits). Table 3 lists the number of re-

leases, and the number of intermediate versions (or commits), that

we ultimately retained, for each web application considered.4

5.1.3 Record/Replay Test Suites

The record/replay tests used in this study were initially created in

the context of our earlier work [13]. We created these tests because

no appropriate tests were available for the web applications uti-

lized.5 To create these tests we followed a systematic, iterative pro-

cedure for each web application, creating tests that achieved cov-

erage of use cases and exceptional behaviors. Such use-case-based

approaches to testing systems at the interface level are common in

practice, and well-suited to the use of record/replay tools.

4For a list of the actual releases, versions, and commits that we con-
sidered and pointers to the source code repositories for each object
of study, see https://sites.google.com/site/repairrecordreplaytests.
5Joomla does include 42 WebDriver tests, but no IDE tests, and
only for its first version.

755

Given a test suite T created for a version Vk the first author fol-

lowed a three-step process – a process that WATERFALL needs to

replicate, with some differences, in this current study, as described

in Section 5.3. In Step 1, she executed T on the next version of

the web application, Vk+1, and noted each case in which a test

broke. In Step 2, she manually repaired each of the tests that were

repairable – an iterative process because repairing one test break-

age might allow that test to proceed further and break again later.

In Step 3, she added new tests covering new functionality to the

test suite. This resulted in a new test suite T ′ that now functioned

on Vk+1. She then repeated these three steps for each subsequent

version of the web application until each had been tested and the

causes of all test breakages had been noted. The numbers of tests

listed in Table 3 are the numbers available on the final version of

each web application considered.

5.2 Variables and Measures

5.2.1 Independent Variables

Our independent variable is the test repair approach used: coarse-

grained (i.e., WATER) or fine-grained (i.e., WATERFALL).

5.2.2 Dependent Variables

Our goal is to assess the effectiveness and efficiency of the test

repair approaches.

Effectiveness. To measure the effectiveness of the coarse-grained

repair approach, we first count Ctot, the total number of repairs

required when applying the approach to (R, R′, t); this number

equals the total number of locator breakages of t on R′. We then

count Crep, the total number of locator breakages of t that WATER

is able to correctly repair.

To compare the overall effectiveness of the coarse- and fine-

grained repair approaches, it is not appropriate to count breakages

encountered by the fine-grained approach at intermediate versions,

because such breakages may “cancel each other out”. Section 3

provided an example of this in which an attribute locator is first

changed, in some version, from “name=Name” to “name=NewerName”,

and then changed, in a subsequent version, to “name = Newest-

Name”. In this case, the fine-grained repair approach encounters

each of these changes separately, and must repair t for each of them

independently. As far as the coarse-grained repair approach is con-

cerned, however, the only visible breakage involves the fact that

“Name”, used in R, is changed to “NewestName” in R′, and only

one repair is needed to address the resultant breakage. It is this re-

pair, and others that the coarse-grained repair approach encounters,

that matters for the sake of overall comparisons of the techniques.

Thus, to compare the overall effectiveness of the coarse- and

fine-grained test repair approaches, we consider how well the fine-

grained approach does at repairing just those breakages that the

coarse-grained approach needs to repair at R′. More precisely,

we let Ftot, the total number of breakages that need to ultimately

be repaired by WATERFALL in R′, be equal to Ctot. Then, we

count Frep, the total number of breakages out of Ftot that WA-

TERFALL was ultimately able to correctly repair – i.e., breakages

no longer present in R′ following the application of the algorithm.

The methods just described require a mechanism for determining

whether WATER is able to correctly repair a breakage. To perform

this determination, each time WATER produced a test t′ that exe-

cutes without breaking on R′, we manually inspected t′ to ascertain

whether it achieved the original goal for t, and pronounced it “cor-

rect” only if it did. When applying WATERFALL, each time it pro-

duced a test t′ that executes on all versions in a sequence without

breaking, we performed an analogous inspection.

Efficiency. We utilize two measures of efficiency. First, we mea-

sure the efficiency of the approaches in terms of execution time.

Since our algorithms and instrumentation code are implemented in

Java, we used a Java subroutine, java.lang.System.currentTimeMillis(),

which returns the current time in milliseconds. We invoked this

subroutine before and after calls to the coarse- and fine-grained re-

pair procedures (this allowed us to avoid measuring other compu-

tational load such as CPU contention and memory saturation). In

this way, we were able to derive the current time before and after

the calls, and compute run times by subtracting the second from the

first. Note that there is a complicating factor in this process involv-

ing unrepaired intermediate breakages encountered when applying

the fine-grained repair approach, that we must account for when

measuring its execution time. We discuss this in Section 5.3.

A second efficiency metric, as noted in Section 4.3, relates to the

additional costs for checking repairs, and finding and applying re-

pairs in cases where automated repair techniques fail. Without con-

ducting an empirical study of humans we cannot assess this cost in

terms of time. However, studies involving humans are expensive.

Before incurring that expense it makes sense to assess whether our

approach has prospects for success using a dependent variable that

serves as a proxy for the time spent by humans. As such a proxy, we

measure the number of manual repairs required by each approach.

To do this for the coarse-grained repair approach, we simply count

the number of unrepaired breakages that remain in R′: this is given

by Ctot − Crep. To do this for the fine-grained repair approach

there are two sets of breakages to count: (1) breakages that re-

main in R′, and (2) breakages that occur in intermediate versions

that cannot be repaired by WATERFALL and must be repaired by

engineers before the process can continue. The former is given by

Ftot−Frep, and the latter is given by Fintdone
−Fintneeded

, where

Fintdone
is the sum of repairs made by WATERFALL at each in-

termediate version between R and R′ and Fintneeded
is the sum of

repairs needed at each intermediate version between R and R′.

5.3 Study Operation
For each web application A, we considered each pair of succes-

sive releases (Ri, Rj) of A and performed the following activities.

First, for each test t applicable to Rj, we applied WATER to

(Ri, Rj, t), which resulted in a list S of suggested repairs for t.

Note that the list of locator breakages in Rj is already known (hav-

ing been determined in our earlier study [13]), and the size of that

list is Ctot. Each time WATER selected a locator repair from S, the

first author inspected it and determined, for each of the known lo-

cator breakages in Rj, whether the repair applied by WATER was

correct. The number of correct locator repairs selected from S and

applied by WATER is equal to Crep.

Second, for each test t applicable to Rj, we applied WATER-

FALL to the sequence of intermediate versions beginning with Ri

and ending at Rj. This process was more complex for two reasons:

(i) when the fine-grained approach is applied to a sequence of ver-

sions, WATERFALL can encounter, at some intermediate version, a

locator breakage that it is unable to repair, and (ii) our tests do con-

tain some breakages due to causes not involving locators that our

current implementation of WATERFALL cannot repair. In practice,

in either of these cases, an engineer would need to intervene, ad-

dress the cause of the breakage, and repair the test manually. In

our study, we simulate that practice. (We say “simulate” because

we already know where all the breakages are and what repairs are

needed to correct them, given the data from our prior study [13],

and we make use of that knowledge to apply known repairs.)

Our simulation is similar to the three step process, by which we

evolved test suites for our web applications. To describe the process

756

●

●

●

●

●
●

●

●

●

0

200

400

600

800

1000

Efficiency (Time)

s
e
c
o
n
d
s

A
1_
C
G
_T
im
e

A
1_
F
G
_T
im
e

A
2_
C
G
_T
im
e

A
2_
F
G
_T
im
e

A
3_
C
G
_T
im
e

A
3_
F
G
_T
im
e

A
4_
C
G
_T
im
e

A
4_
F
G
_T
im
e

A
5_
C
G
_T
im
e

A
5_
F
G
_T
im
e

A
6_
C
G
_T
im
e

A
6_
F
G
_T
im
e

A
7_
C
G
_T
im
e

A
7_
F
G
_T
im
e

●

●

●

●

0

50

100

150

200

Efficiency (Manual Repairs)

#
 o

f
re

p
a
ir
s

A
1_

C
G
_M

an

A
1_

FG
_M

an

A
2_

C
G
_M

an

A
2_

FG
_M

an

A
3_

C
G
_M

an

A
3_

FG
_M

an

A
4_

C
G
_M

an

A
4_

FG
_M

an

A
5_

C
G
_M

an

A
5_

FG
_M

an

A
6_

C
G
_M

an

A
6_

FG
_M

an

A
7_

C
G
_M

an

A
7_

FG
_M

an

●

●

●

0

50

100

150

200

Effectiveness (Repairs)
#
 o

f
re

p
a
ir
s

A
1_

C
G

A
1_

FG

A
2_

C
G

A
2_

FG

A
3_

C
G

A
3_

FG

A
4_

C
G

A
4_

FG

A
5_

C
G

A
5_

FG

A
6_

C
G

A
6_

FG

A
7_

C
G

A
7_

FG

Figure 5: Effectiveness, efficiency, and manual repair results, all applications, all sequences of versions.

we refer to the scenario in Figure 3. We initialize Ftot and Frep to

zero. Suppose the breakage encountered on V2 is a locator break-

age WATERFALL can repair, and the breakage encountered in V3

is a breakage (locator or other) WATERFALL cannot repair. We

first apply WATERFALL to (V1, V2, t); WATERFALL succeeds,

creating repaired test tfix, and we increment both Ftot and Frep

by one. We next apply WATERFALL to (V2, V3, tfix), and WA-

TERFALL is unable to repair the breakage. Whether the breakage

involves a locator or not, we manually apply the repair utilized in

our first study, creating repaired test tfix′ , and increment Ftot (but

not Frep) by one. Next, we apply WATERFALL to (V3, R′, t′fix),

and t′fix passes in R′ and performs its intended behavior. Thus, t

has been successfully repaired by WATERFALL for the sequence

of versions R-R′. In this example, V3 is the last intermediate ver-

sion in the sequence R-R′, so we do not need any further repairs. If

there were additional intermediate versions between V3 and R′, we

would apply WATERFALL iteratively to each subsequent version

that triggers a test breakage, adjusting Ftot and Frep appropriately,

until no additional test breakages in subsequent versions arise.

If multiple breakages arise when running t on an intermediate

version, the foregoing process becomes more complicated but con-

tinues to function. We apply WATERFALL to each locator break-

age in t and note the locator breakages in t that it can and cannot

repair, incrementing Ftot and Frep accordingly. We then manually

correct any remaining unrepaired breakages.

In Section 5.2, when discussing our approach for measuring the

run time of the fine-grained approach, we mentioned that there

was a complicating factor in that process. That complicating fac-

tor arises in cases such as those just described, where a breakage

is encountered that WATERFALL cannot repair. In these cases,

we keep track of the execution time spent by WATERFALL on the

sub-sequence of versions up to the problematic breakage, and then

also measure execution times on following sub-sequences. The run

time of the fine-grained approach is given by the sum of the elapsed

times across all sub-sequences.

5.4 Threats to Validity
External validity threats concern the generalization of our find-

ings. We considered only seven web applications and our results

may not generalize to others. The selection criteria that we had

adopted in choosing these, however, did ensure that they were of

non-trivial size and had multiple versions, and had experienced

many downloads and commits. As a second threat, our results

are gathered relative to tests repaired using WATER and WATER-

FALL, and generalization to other repair approaches is not possible.

Internal validity threats concern uncontrolled factors that may

have affected our results. The first author created the tests. This

task, however, requires reasoning that cannot be automated, so it is

difficult to envision less threat-prone approaches. Moreover, to re-

duce the subjectivity involved, she followed a systematic and struc-

tured procedure. Finally, all of these tasks were performed during

our prior study [13], and prior to our having envisioned the ap-

proach and the study presented in this paper. This reduces potential

sources of bias that could have occurred if the tasks had been per-

formed specifically with this study in mind.

Construct validity threats concern our metrics and measures. We

measure the numbers of breakages found and repaired, but differ-

ences in these numbers across the two approaches do not neces-

sarily correlate with differences in the amount of effort needed to

manually repair breakages that remain. Similarly, we measure the

cost of the approaches in terms of the machine time required to run

techniques and the number of manual repairs required, but this may

not directly correlate with the time that may be spent, by engineers,

repairing breakages that are not automatically repaired. We return

to this latter point, however, in Section 6, where we are able to offer

some additional insights.

5.5 Results and Analysis
Figure 5 presents the data from our study graphically, in the form

of boxplots. From left to right, the three graphs present results for

effectiveness, efficiency in terms of technique execution time (in

seconds), and efficiency in terms of numbers of manual repairs re-

quired, respectively. In each graph, results are shown for each of the

seven web applications as a pair of boxplots. Each pair of boxplots

represents the datasets gathered for the coarse- and fine-grained ap-

proaches, respectively, across all of the sequences of versions con-

sidered for the given web application. For space considerations,

web applications are identified by their IDs as presented in Table 3.

Thus, for example, the first two boxes in the leftmost figure repre-

sent the distributions of the effectiveness values for web applica-

tion A1 (PHPAddressBook), for the coarse-grained (first box) and

fine-grained (second box) test repair techniques, across the nine se-

quences of versions available for that application.

The boxplots show that for every web application, (1) the fine-

grained repair approach is more effective than the coarse-grained

approach, (2) the fine-grained approach requires more time than

the coarse-grained approach, and (3) the fine-grained approach re-

quires fewer manual repairs than the coarse-grained approach.

5.5.1 RQ1: Effectiveness

Table 4 presents effectiveness results for each web application,

for each sequence of versions or commits utilized. In the column

headers, “CG” is an acronym for “coarse-grained” and “FG” is

an acronym for “fine-grained”. Column 1 lists the web applica-

757

Table 4: EFFECTIVENESS AND EFFICIENCY RESULTS ACROSS ALL SEQUENCES OF VERSIONS, FOR ALL WEB APPLICATIONS

WEB APPLICATIONS EFFECTIVENESS EFFICIENCY

CG FG Total FG FG Diff and

Repairs Repairs Repairs Diff and Int. Repairs Int. Repairs CG FG Overhead CG FG Diff and

Name Versions releases Done Done Needed Increase Done Needed Time (s) Time (s) (%) Man Man Decrease

(Crep) (Frep) (Ctot = Ftot) (%) (Fintdone
) (Fintneeded

) CM FM (%)

PHPAddressBook

R1-R2 18 10 47 59 37 (370%) 65 70 144 595 450 (312%) 49 17 32 (-65.31%)

R2-R3 9 15 48 53 33 (220%) 59 67 156 595 439 (281%) 38 13 25 (-65.79%)

R3-R4 5 6 52 56 46 (767%) 63 70 151 615 464 (308%) 50 11 39 (-78.00%)

R4-R5 14 11 51 53 40 (364%) 61 68 120 624 505 (421%) 42 9 33 (-78.57%)

R5-R6 3 18 47 50 29 (161%) 60 67 166 781 615 (369%) 32 10 22 (-68.75%)

R6-R7 5 23 52 55 29 (126%) 62 71 177 885 709 (402%) 32 12 20 (-62.50%)

R7-R8 3 15 40 42 25 (167%) 59 65 188 701 514 (274%) 27 8 19 (-70.37%)

R8-R9 6 16 33 35 17 (106%) 48 58 142 986 844 (594%) 19 12 7 (-36.84%)

R9-R10 11 17 30 32 13 (76%) 50 54 121 888 767 (634%) 15 6 9 (-60.00%)

Total for PHPAddressBook 74 131 400 435 269 (205%) 527 590 1363 6670 5306 (389%) 304 98 206 (-67.76%)

PHPAgenda

R1-R2 3 12 39 43 27 (225%) 67 78 144 595 450 (312%) 31 15 16 (-51.61%)

R2-R3 9 11 51 56 40 (364%) 69 86 144 615 470 (326%) 45 22 23 (-51.11%)

R3-R4 5 15 50 54 35 (233%) 65 67 141 623 483 (344%) 39 6 33 (-84.62%)

R4-R5 3 14 49 58 35 (250%) 76 80 112 778 666 (595%) 44 13 31 (-70.45%)

R5-R6 14 8 40 43 32 (400%) 62 84 116 543 427 (367%) 35 25 10 (-28.57%)

Total for PHPAgenda 34 60 229 254 169 (282%) 339 395 658 3154 2497 (380%) 194 81 113 (-58.25%)

PHPFusion

R1-R2 6 44 101 110 57 (130%) 204 230 112 457 345 (307%) 66 35 31 (-46.97%)

R2-R3 20 43 123 134 80 (186%) 210 213 113 457 344 (305%) 91 14 77 (-84.62%)

R3-R4 9 45 166 172 121 (269%) 215 221 107 502 395 (368%) 127 12 115 (-90.55%)

R4-R5 8 45 120 130 75 (167%) 186 198 106 416 311 (295%) 85 22 63 (-74.12%)

R5-R6 7 48 165 168 46 (244%) 204 227 128 567 439 (344%) 120 26 94 (-78.33%)

Total for PHPFusion 50 225 675 714 450 (200%) 1019 1089 566 2401 1834 (324%) 489 109 380 (-77.71%)

Joomla

R1-R2 26 23 67 78 44 (191%) 76 89 125 593 469 (376%) 55 24 31 (-56.36%)

R2-R3 35 20 84 87 64 (320%) 79 92 138 594 456 (330%) 67 16 51 (-76.12%)

R3-R4 4 21 73 65 42 (200%) 89 105 144 568 423 (293%) 44 18 26 (-59.09%)

R4-R5 9 22 56 70 34 (155%) 99 114 114 548 434 (381%) 48 39 19 (-39.58%)

R5-R6 5 19 55 61 36 (189%) 131 145 136 424 288 (212%) 42 20 22 (-52.38%)

R6-R7 5 28 60 67 32 (114%) 105 113 113 632 519 (460 %) 39 15 24 (-61.54%)

R7-R8 8 27 73 77 46 (170%) 143 145 165 645 480 (290%) 50 6 44 (-88.00%)

Total for Joomla 92 160 458 505 298 (186%) 722 803 935 4004 3069 (328 %) 345 128 217 (-62.90%)

MyCollaboration

R1-R2 3 12 61 66 49 (408%) 87 103 99 389 290 (293%) 54 21 33 (-61.11%)

R2-R3 5 23 59 62 36 (157%) 96 102 107 379 273 (256%) 39 9 30 (-76.92%)

R3-R4 7 14 65 72 51 (364%) 98 114 96 479 382 (397%) 58 23 35 (-60.34%)

R4-R5 11 24 73 78 49 (204%) 90 119 96 369 272 (283%) 54 34 20 (-37.04%)

R5-R6 4 22 60 66 38 (173%) 102 109 87 402 315 (360%) 44 13 31 (-70.45%)

Total for MyCollaboration 30 95 318 344 223 (235%) 473 547 486 2018 1532 (315%) 249 100 149 (-59.84%)

Dolibarr

R1-R2 3 20 73 97 53 (265%) 239 254 68 452 383 (560%) 77 39 38 (-49.35%)

R2-R3 3 23 87 95 64 (278%) 261 270 79 362 284 (361%) 72 17 55 (-76.39%)

R3-R4 3 19 82 102 63 (332%) 232 255 62 360 298 (480%) 83 43 40 (-48.19%)

R4-R5 3 21 89 98 68 (324%) 220 243 70 360 290 (414%) 77 32 45 (-58.44%)

R5-R6 3 20 90 102 70 (350%) 229 243 47 400 353 (748%) 82 26 56 (-68.29%)

R6-R7 3 25 98 118 73 (292%) 240 265 56 374 318 (573%) 93 45 48 (-51.61%)

R7-R8 3 17 81 95 64 (376%) 259 267 154 457 303 (196%) 78 22 56 (-71.79%)

Total for Dolibarr 21 145 600 707 455 (314%) 1680 1797 536 2765 2229 (416%) 562 224 338 (-60.14%)

YourContacts

R1-R2 13 32 105 135 73 (228%) 201 225 114 536 422 (371%) 103 54 49 (-47.57%)

R2-R3 6 53 161 201 108 (204%) 250 255 132 631 499 (378%) 148 45 103 (-69.59%)

R3-R4 5 47 172 182 125 (266%) 345 376 132 728 596 (451%) 135 41 94 (-69.63%)

R4-R5 23 85 196 233 111 (131%) 341 350 130 636 507 (391%) 148 46 102 (-68.92%)

R5-R6 8 25 164 188 139 (556%) 356 369 133 538 404 (303%) 163 37 126 (-77.30%)

R6-R7 3 62 161 173 99 (160%) 280 345 132 531 399 (303%) 111 77 34 (-30.63%)

R7-R8 2 71 185 213 114 (161%) 321 342 133 428 296 (223%) 142 42 93 (-65.49%)

R8-R9 8 38 133 146 95 (250%) 302 333 131 636 505 (385%) 108 44 64 (-59.26%)

R9-R10 8 67 170 186 103 (154%) 328 389 131 538 407 (311%) 119 77 42 (-35.29%)

R10-R11 4 54 140 161 86 (159%) 309 356 133 542 409 (308%) 107 68 39 (-36.45%)

R11-R12 8 81 153 171 72 (89%) 241 267 133 625 492 (370 %) 90 44 46 (-51.11%)

Total for YourContacts 88 615 1740 1989 1125 (183%) 3274 3607 1433 6367 4935 (344%) 1374 582 792 (-57.64%)

Total across all Web Apps 389 1431 4420 4948 2989 (209%) 8034 8828 5908 29679 23770 (402%) 3517 1322 2195 (-62.41%)

tions considered. Column 2 lists the pairs of releases that serve as

start/end points for sequences of versions. Column 3 lists the num-

bers of intermediate versions that occur within these sequences of

versions. Columns 4 and 5 report the numbers of coarse-grained

and fine-grained repairs performed, respectively, on each sequence

of versions by WATER and WATERFALL. Column 6 reports the

number of total repairs needed for each sequence of versions. Col-

umn 7 reports the differences between the number of fine-grained

repairs performed and the number of coarse-grained repairs per-

formed, along with the percentage increase in repairs performed.

Column 8 reports the number of repairs made by WATERFALL for

all sequences of intermediate versions lying between releases R

758

and R′. Column 9 reports the number of repairs needed for all se-

quences of intermediate versions lying between releases R and R′.

We defer discussion of the other columns to Sections 5.5.2 and 6.

Rows shaded in gray provide totals across all sequences of versions

per individual web application, and (bottom) all web applications.

Across all web applications, considering overall totals, the fine-

grained repair approach was able to repair 4420 out of 4948 (89.3%)

locator breakages, while the coarse-grained approach was able to

repair only 1431 of 4948 (28.9%) locator breakages; WATERFALL

was thus 209% more effective than WATER overall. Improvements

on individual web applications were all relatively large, ranging

from 183% on YourContacts to 314% on Dolibarr.

The results show the improved effectiveness of the fine-grained

repair approach applied across all of the sequences considered. For

example, consider YourContacts, the application in which the widest

variation in the numbers of coarse-grained repairs across sequences

of versions occurred. Here, the overall improvement of fine-grained

repair over coarse-grained repair was 183%. The lowest level of

improvement occurred on the sequence of versions R11–R12 (89%),

and the highest level occurred on the sequence of versions R5–R6
(556%). Aside from these outliers, however, all other improvement

percentages fell within a smaller range of 131% to 228%.

To assess whether the observed differences in effectiveness were

statistically significant we applied Mann-Whitney tests [15] to the

data, on a per-program basis, testing the null hypothesis that the

two approaches did not differ in effectiveness at a confidence level

of 95%. In all cases the differences were statistically significant

(we omit the data due to space limitations).

5.5.2 RQ2: Efficiency

Columns 10 and 11 in Table 4 indicate, for each web applica-

tion, how many seconds the coarse- and fine-grained approaches

spent applying repair techniques. Column 12 calculates the dif-

ference in time between the two approaches, and the percentage

overhead in time required by the coarse-grained approach with re-

spect to the fine-grained approach. The fine-grained repair ap-

proach (WATERFALL) required more time than the coarse-grained

approach (WATER), on all applications and sequences of versions.

Differences ranged (across sequences of versions) from 439 to 844

seconds on PHPAddressBook, from 427 to 666 seconds on PHPA-

genda, from 311 to 439 seconds on PHPFusion, from 288 to 519

seconds on Joomla, from 272 to 382 seconds on MyCollaboration,

from 284 to 383 seconds on Dolibarr, and from 296 to 596 seconds

on YourContacts. On individual sequences of versions, the small-

est time difference was 272 seconds (4.55 minutes) on sequence

R4 − R5 of MyCollaboration and the largest was 884 seconds

(14.73 minutes) on sequence R8−R9 of PHPAddressBook.

We applied Mann-Whitney tests to the data on a per-program

basis, testing the null hypothesis that the two approaches did not

differ in efficiency at a confidence level of 95%. In all cases the

differences were statistically significant (we omit the data due to

space limitations).

We now consider the second component of efficiency: the num-

ber of test repairs that the coarse- and fine-grained approaches re-

quire engineers to accomplish manually. We denote these two costs

by CM and FM , respectively. They are displayed, for each se-

quence of versions, in Columns 13 and 14 of the table. Column 15

reports the differences between FM and CM , along with the per-

centage increase in repairs required by CM .

As the data shows, the fine-grained repair approach required far

fewer manual repairs, overall, than the coarse-grained approach.

Across all sequences of versions, the differences range from seven

(on PHPAddressBook, sequence R8 − R9, the coarse-grained ap-

proach required 19 manual repairs while the fine-grained approach

required only 12) to 126 (on YourContacts sequence R5 − R6,

the coarse-grained approach required 163 manual repairs while the

fine-grained approach required only 37).

We again applied Mann-Whitney tests to the data on numbers of

test repairs, on a per program basis; again, in all cases the differ-

ences were statistically significant.

6. DISCUSSION

6.1 Cost-Effectiveness
Comparisons of the execution times of the coarse- and fine-grained

approaches favor the former, but considering these in conjunction

with our other results suggests a different picture. Our own expe-

rience repairing tests (which we were required to do for all tests

of the web applications we considered) attests to the costliness of

the task. For example, for PHPAddressBook, the first author spent

approximately 40 hours manually repairing the 155 breakages that

occurred in the application’s tests across its versions; this amounts

to an average cost of over 15 minutes per breakages. In one extreme

case, over two hours were required to repair a breakage.

Keeping this in mind, consider the efficiency and effectiveness

results obtained on the sequence of versions R8 − R9 of PHPAd-

dressBook. Here, the difference in the number of manual repairs

that must be performed by engineers using the two approaches is

at its lowest: with coarse-grained repair, 19 (35-16) manual repairs

must still be performed by engineers, whereas with fine-grained re-

pair, 12 must be performed (two (35-33) on R′ and 10 (58-48) on

intermediate versions). In this case, coarse-grained repair requires

142 seconds, and fine-grained repair requires 986 seconds – just

over 14 minutes more. Thus, the coarse-grained approach is more

cost-effective than the fine-grained approach only if manual repairs

of the seven additional unrepaired breakages can be accomplished

in less than 14 minutes (an average of 44 seconds per breakage in

our example). Given our experiences with manual breakage repair

it seems unlikely that this would be the case in practice.

Next, consider the sequence of versions R5 − R6 on YourCon-

tacts. Here, the difference in the number of repairs that must be per-

formed by engineers using the two approaches is at its highest: with

coarse-grained repair, 163 (188-25) repairs must be performed by

engineers, whereas with fine-grained repair, 37 must be performed

(24 (188-164) on R′ and 13 (369-356) on intermediate versions).

In this case, coarse-grained repair requires 133 seconds, and fine-

grained repair requires 538 seconds – almost seven minutes more.

In this case, the coarse-grained approach is more cost-effective than

the fine-grained approach only if manual repair of the 126 addi-

tional unrepaired breakages can be accomplished in less than seven

minutes (an average of 3.33 seconds per breakage in our example).

This seems entirely impossible.

Based on our own experiences manually repairing test break-

ages, it also seems possible that it may be easier to repair breakages

in intermediate versions than in the final release of a sequence. This

is because in intermediate versions, web applications have under-

gone fewer, smaller changes with respect to prior versions, render-

ing breakages easier to analyze and repairs easier to conduct. On

the other hand, there might be some startup costs associated with

repairs that can be amortized when considering multiple breakages

at once, rendering human effort in the coarse-grained approach less

expensive. Empirical studies that measure human costs associated

with repairs will be needed to investigate these scenarios.

759

6.2 Repairing Versions Versus Commits
The first five web applications listed in our tables were consid-

ered at the level of releases and intermediate versions, whereas the

last two (Dolibarr and YourContacts) were considered at the level

of releases and commits. Where intermediate repairs completed

and needed are concerned, Dolibarr and YourContacts have higher

numbers than most of the other applications; however, these num-

bers are similar to those obtained on PHPFusion. Investigating

this further, we found that this high number of manual repairs was

needed on these applications because they contained a substantially

higher number of non-locator breakages than the other four web ap-

plications. Thus, the differences in numbers of manual repairs was

not due to the use of commits.

6.3 The Potential for Backtracking
To obtain some initial insights into the use of an enhanced ver-

sion of WATERFALL incorporating backtracking (Section 4.3), we

simulated the use of such an algorithm by considering the sequence

of versions for which WATERFALL was the least effective at per-

forming repairs: R2 − R3 of YourContacts. In this case, the fine-

grained repair approach failed to repair 40 of 201 breakages. The

first author simulated the backtracking version of WATERFALL by

considering the subset of tests that WATERFALL was not able to

repair for sequence of versions R2 − R3 of YourContacts. Your-

Contacts has 57 tests, of which WATERFALL repaired 33 initially,

leaving 24 unrepaired. The simulation involved capturing all of

the sequences of suggested repairs made by WATERFALL for any

breakage and then backtracking from R′ to R and running the test

with these suggested sequences of repairs. We simulated the on-

going applications of WATERFALL to all sequences of suggested

repairs, considering all possible combinations as the backtracking

approach might do if applied exhaustively. The process was halted

whenever a test was repaired across one of these sequences. A

test was considered to be repaired if it was found to run properly

through the last version of the sequence. We repeated this process

for all 24 unrepaired tests in the sequence of versions.

Using this simulated backtracking approach, we were able to find

repairs for 33 of the 40 breakages that were not addressed by our

basic algorithm. While this simulation does not take into account

efficiency, keep in mind that it did reduce the number of breakages

that would need manual attention by 33 (+82.5% of the repairs with

respect to the basic algorithm), and thus is worth a certain amount

of overhead. Assessing whether the cost-effectiveness tradeoff of a

backtracking algorithm would be worthwhile in practice, however,

requires further study.

7. RELATED WORK
There has been some research on automated repair of programs

(e.g., [4, 10, 20, 24, 33–35]). Our work focuses on tests.

There have been numerous papers on test repair. Several papers

have addressed the problem of repairing unit tests such as JUnit

tests or tests written in similar frameworks (e.g., [6, 7, 23]).

Many researchers have attempted to repair GUI tests, which track

sequences of user actions applied to an interface. Memon and

Soffa [22], Memon [21] and Datchayani et al. [9] use event flow

graphs and transformation techniques to repair broken GUI tests.

Huang et al. [14] use a genetic algorithm to repair GUI tests. Grechanik

et al. [11] analyze an initial and modified GUI for differences and

generate a report for engineers documenting ways in which test

scripts may be broken by changes. Daniel et al. [8] use GUI refac-

torings to track the changes engineers make to a GUI, suggesting

that this information could be used to repair tests. Such approaches,

however, do not address directly web tests produced by record/re-

play tools, although they might be adapted to do so.

Zhang et al. [38] address the problem of repairing broken work-

flows in GUI applications, where a workflow is a sequence of ac-

tivities to perform a given task. This approach, however, does not

attempt to repair actual tests.

Alshawan and Harman [1] present an approach for repairing user

session data that can be collected and used to regression test web

applications. User session data, however, differs from the data cap-

tured by record/replay tools, because it includes only requests re-

ceived by a server from the web application.

Other research attempts to simplify the debugging of faults in

web applications. Hammoudi et al. [12] use delta debugging to

reduce recordings that expose failures to smaller versions. Wang

et al. [32] use dynamic slicing to discard events from an execu-

tion trace that are not required for failure reproduction. These ap-

proaches might be used to facilitate test repair by reducing tests to

a subset of actions that still result in breakages.

Recent papers consider problems related to the robustness and

maintainability of web test suites. Stocco et al. [30, 31] investigate

the automated generation of page objects that confine causes of test

breakages to a single class, a form of breakage prevention. Yan-

drapally et al. [36] address the problem of test script fragility in

relation to locators, proposing approaches for robustly identifying

UI elements by using contextual clues, which is also a form of pre-

vention. Another approach for producing robust locators has been

implemented in the tools ROBULA [16] and ROBULA+ [18]. Ba-

jaj et al. [2, 3] present LED, a tool that automatically synthesizes

web element locators by solving a constraint satisfaction problem

over the group of valid DOM states in a web application.

To our knowledge, there have been only two papers that have

presented techniques for repairing locator breakages in web tests.

We have already discussed the technique proposed by Choudhary

et al. [5]. In addition, the multi-locator extension of ROBULA [17]

supports automated repair of broken locators by identifying and

attempting to apply other potential locators generated by different

tools at the breakage site. WATERFALL, in contrast, is based on

differential testing.

8. CONCLUSIONS AND FUTURE WORK
We have presented WATERFALL, a fine-grained approach for

repairing record/replay tests of web applications. We have con-

ducted an empirical study comparing our approach to a coarse-

grained approach on seven non-trivial open-source web applica-

tions. Our results show that WATERFALL is far more effective

than the coarse-grained approach at automatically repairing tests.

Moreover, while WATERFALL requires more execution time than

the coarse-grained approach, the extra overhead is overshadowed

by the reduction in manual test repairs it requires.

As future work, we intend to extend our implementation of WA-

TERFALL to handle other classes of breakages that are not neces-

sarily confined to locators (e.g., repairing assertions), with the goal

of repeating the study both at coarse- and fine-grained levels. We

also intend to develop the backtracking version of WATERFALL,

in order to compare it with the multi-locator repair approach sug-

gested by Leotta et al. [17]. Finally, since our approach has demon-

strated promise, we intend to conduct an empirical study of humans

to assess its cost-effectiveness in practice.

9. ACKNOWLEDGEMENTS
This work has been partially supported by the National Science

Foundation through award IIS-1314365.

760

10. REFERENCES
[1] N. Alshawan and M. Harman. Automated session data repair

for web application regression testing. In Proceedings of the

International Conference on Software Testing, Verification,

and Validation, pages 298–307, 2008.

[2] K. Bajaj, K. Pattabiraman, and A. Mesbah. Led: Tool for

synthesizing web element locators. In Proceedings of the

International Conference on Automated Software

Engineering, pages 848–851, 2015.

[3] K. Bajaj, K. Pattabiraman, and A. Mesbah. Synthesizing web

element locators. In Proceedings of the International

Conference on Automated Software Engineering, pages

331–341, 2015.

[4] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic

debugging. In Proceedings of the International Conference

on Software Engineering, pages 121–130, 2011.

[5] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. WATER:

Web application test repair. In Proceedings of the Workshop

on End-to-End Test Script Engineering, pages 24–29, 2011.

[6] B. Daniel, T. Gvero, and D. Marinov. On test repair using

symbolic execution. In Proceedings of the International

Symposium on Software Testing and Analysis, pages

207–218, 2010.

[7] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert:

Suggesting repairs for broken unit tests. In Proceedings of

the International Conference on Automated Software

Engineering, pages 433–444, 2009.

[8] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and

M. Pezzè. Automated GUI refactoring and test script repair.

In Proceedings of the Workshop on End-to-End Test Script

Engineering, pages 38–41, 2011.

[9] M. Dhatchayani, X. A. R. Arockia, P. Yogesh, and

B. Zacharias. Test case generation and reusing test cases for

GUI designed with HTML. Journal of Software,

7(10):2269–2277, 2012.

[10] D. Gopinath, M. Z. Malik, and S. Khurshid.

Specification-based program repair using SAT. In

Proceedings of the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems,

pages 173–188, 2011.

[11] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving

GUI-directed test scripts. In Proceedings of the International

Conference on Software Engineering, pages 408–418, 2009.

[12] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel. On the

use of delta debugging to reduce recordings and facilitate

debugging of web applications. In Proceedings of the

International Symposium on the Foundations of Software

Engineering, pages 333–344, 2015.

[13] M. Hammoudi, G. Rothermel, and P. Tonella. Why do

record/replay tests of web applications break? In

Proceedings of the International Conference on Software

Testing, 2016.

[14] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI

test suites using a genetic algorithm. In Proceedings of the

International Conference on Software Testing, pages

245–254, 2010.

[15] O. Koresteleva. Nonparametric Methods in Statistics with

SAS Applications. CRC Press, Boca Raton, FL, 2004.

[16] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web

test cases aging by means of robust XPath locators. In

Proceedings of the International Symposium on Software

Reliability Engineering Workshops, pages 449–454, 2014.

[17] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using

multi-locators to increase the robustness of web test cases. In

Proceedings of the International Conference on Software

Testing, Verification and Validation, pages 1–10, 2015.

[18] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+:

An algorithm for generating robust XPath locators for web

testing. Journal of Software: Evolution and Process,

28(3):177–204, 2016.

[19] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.

CoScripter: Automating & sharing how-to knowledge in the

enterprise. In Proceedings of the Conference on Human

Factors in Computing Systems, pages 1719–1728, 2008.

[20] S. Mechtaev, J. Yi, and A. Roychoudhury. DirectFix:

Looking for simple program repairs. In Proceedings of the

International Conference on Software Engineering, pages

448–458, 2015.

[21] A. M. Memon. Automatically repairing event

sequence-based GUI test suites for regression testing. ACM

Transactions on Software Engineering and Methodology,

18(2):4:1–4:36, 2008.

[22] A. M. Memon and M. L. Soffa. Regression testing of GUIs.

In Proceedings of the International Symposium on the

Foundations of Software Engineering, 2003.

[23] M. Mirzaaghaei, F. Pastore, and M. Pezze. Supporting test

suite evolution through test case adaptation. In Proceedings

of the International Conference on Software Testing,

Verification and Validation, pages 231–240, 2012.

[24] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.

Semfix: Program repair via semantic analysis. In

Proceedings of the International Conference on Software

Engineering, pages 772–781, 2013.

[25] S. Raemaekers, A. van Deursen, and J. Visser. Semantic

versioning and impact of breaking changes in the Maven

repository. Journal of Systems and Software, 2016 (to

appear).

[26] Sahi. sahipro.com.

[27] The Selenium Project.

http://seleniumhq.org/docs/03_webdriver.html/.

[28] Watir WebDriver. http://watirwebdriver.com.

[29] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A

selective record-replay and dynamic analysis framework for

JavaScript. In Proceedings of the International Symposium

on the Foundations of Software Engineering, pages 488–498,

2013.

[30] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why creating

web page objects manually if it can be done automatically?

In Proceedings of the International Workshop on Automation

of Software Test, pages 70–74, 2015.

[31] A. Stocco, M. Leotta, F. Ricca, and P. Tonella.

Clustering-aided page object generation for web testing. In

Proceedings of the International Conference on Web

Engineering, pages 132–151, 2016.

[32] J. Wang, W. Dou, C. Gao, and J. Wei. Fast reproducing web

application errors. In Proceedings of the International

Symposium on Software Reliability Engineering, pages

530–540, 2015.

[33] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buckholz,

B. Meyer, and A. Zeller. Automated fixing of programs with

contracts. In Proceedings of the International Symposium on

Software Testing, pages 61–72, 2010.

[34] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.

761

Automatic program repair with evolutionary computation.

Communications of the ACM, 53(5):109–116, 2010.

[35] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.

Automatically finding patches using genetic programming.

In Proceedings of the International Conference on Software

Engineering, pages 364–374, 2009.

[36] R. Yandrapally, S. Thummalapenta, S. Sinha, and

S. Chandra. Robust test automation using contextual clues.

In Proceedings of the International Symposium on Software

Testing and Analysis, pages 304–314, 2014.

[37] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using GUI

screenshots for search and automation. In Proceedings of the

User Interface Software and Technology Symposium, pages

183–192, 2009.

[38] S. Zhang, H. Lü, and M. D. Ernst. Automatically repairing

broken workflows for evolving GUI applications. In

Proceedings of the International Symposium on Software

Testing and Analysis, pages 45–55, 2013.

762

