
Copyright:

Copyright © 2016 John Wiley & Sons, Ltd.

This is the accepted version of the following article:

Maurizio Leotta, Andrea Stocco, Filippo Ricca, Paolo Tonella.

ROBULA+: An Algorithm for Generating Robust XPath Locators for Web Testing.

Journal of Software: Evolution and Process, Volume 28, Issue 3, pp.177–204. John Wiley & Sons, 2016.

which has been published in final form at https://doi.org/10.1002/smr.1771.

This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy

ROBULA+: An Algorithm for Generating Robust

XPath Locators for Web Testing

Maurizio Leotta, Andrea Stocco, Filippo Ricca, Paolo Tonella

Abstract:

Automated test scripts are used with success in many web development projects, so as to

automatically verify key functionalities of the web application under test, reveal possible

regressions and run a large number of tests in short time. However, the adoption of automated

web testing brings advantages but also novel problems, among which the test code fragility

problem. During the evolution of the web application, existing test code may easily break and

testers have to correct it. In the context of automated DOM-based web testing, one of the

major costs for evolving the test code is the manual effort necessary to repair broken web

page element locators – lines of source code identifying the web elements (e.g., form fields,

buttons) to interact with.

In this work, we present ROBULA+, a novel algorithm able to generate robust XPath-based

locators – locators that are likely to work correctly on new releases of the web application.

We compared ROBULA+ with several state of the practice/art XPath locator generator

tools/algorithms. Results show that XPath locators produced by ROBULA+ are by far the most

robust. Indeed, ROBULA+ reduces the locators fragility on average by 90% w.r.t. absolute

locators and by 63% w.r.t. Selenium IDE locators.

Digital Object Identifier (DOI):

https://doi.org/10.1002/smr.1771

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2016; 00:–
Published online in Wiley InterScience (www.interscience.wiley.com).

ROBULA+: An Algorithm for Generating Robust XPath Locators
for Web Testing

Maurizio Leotta1∗, Andrea Stocco1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

SUMMARY

Automated test scripts are used with success in many web development projects, so as to automatically verify
key functionalities of the web application under test, reveal possible regressions and run a large number
of tests in short time. However, the adoption of automated web testing brings advantages but also novel
problems, among which the test code fragility problem. During the evolution of the web application, existing
test code may easily break and testers have to correct it. In the context of automated DOM-based web testing,
one of the major costs for evolving the test code is the manual effort necessary to repair broken web page
element locators – lines of source code identifying the web elements (e.g., form fields, buttons) to interact
with.
In this work, we present ROBULA+, a novel algorithm able to generate robust XPath-based locators – locators
that are likely to work correctly on new releases of the web application. We compared ROBULA+ with several
state of the practice/art XPath locator generator tools/algorithms. Results show that XPath locators produced
by ROBULA+ are by far the most robust. Indeed, ROBULA+ reduces the locators fragility on average by 90%
w.r.t. absolute locators and by 63% w.r.t. Selenium IDE locators.
Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Web Testing; Test Cases Fragility; Robust XPath Locator; Maintenance Effort Reduction;
DOM Selector.

1. INTRODUCTION

Modern web applications are developed at a fast rate to accommodate new functionalities and
security/bug fixes, as well as to update the presentation style and align it with the most recent trends.
In fact, the visual appearance of a web application is a major success factor. Within such ultra-rapid
development cycles, web testing is an option [1] only if it is strongly supported by automated tools,
which reduce the effort required from web testers for test suite execution. The fast evolution of the
web applications under test requires to evolve continuously the test suites that accompany a web
application, so as to keep test cases and application under test aligned.

Currently, the most widely used tools for web application testing are DOM-based testing tools [2],
e.g., Selenium WebDriver [3], even if other interesting proposals are emerging [4, 5, 6]. They offer
web testers a rich programmable API that can be used to define DOM-based test scripts. Using this
API, web testers can for instance locate an input text field, fill it with some text, locate a button,
click on it, locate the text that shows the result of the computation and check whether it matches

∗ Correspondence to: Maurizio Leotta - Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
(DIBRIS), Università di Genova, Genova, Italy.
E-mail: maurizio.leotta@unige.it

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

MAURIZIO LEOTTA ET AL.

the expected behaviour of the web application. All these steps are programmed using a high level
language (e.g., Java) in a similar way as done with JUnit [7].

Test automation brings several benefits, but also challenges, among which the maintenance of test
scripts during software evolution. Such maintenance consists mainly of manual repair of the locator
instructions. In fact, test scripts heavily rely on locators, to interact with the elements on the web
page – for instance to identify and fill the input portions of a web page (e.g., the form fields), to
execute some computations (e.g., by locating and clicking on buttons) and to verify the correctness
of the output (by locating the web page elements showing the results). Locators need to be checked
for correctness and possibly updated at every new release of the software. Sometimes even a slight
modification of the application under test has a massive impact on locators. This problem makes the
maintenance of web test suites extremely expensive.

Among the web element locators, XPath locators are remarkably powerful and flexible. They
represent the most general choice, since the majority of locators can be specified using properly
defined XPath expressions. In practice, manually defining a robust XPath locator turns out to be a
difficult task, which requires substantial skills and experience. For this reason, tools and browsers’
add-ons (e.g., FirePath, XPath Checker, XPath Helper) exist which compute a candidate XPath
locator for the web tester.

By robust XPath locator we mean an XPath expression that continues to select the target web
element, even if the web page has changed because of a new release of the web application.

Existing tools often create simple and brittle XPath locators [8] and even minor modifications
of the DOM structure may cause their failure, so that web testers have to correct them when the
application evolves.

In this paper, we propose a novel algorithm, called ROBULA+ (ROBUst Locator Algorithm), a
refined version of ROBULA, the algorithm we proposed in a previous work [9], able to automatically
generate robust web element locators. The algorithm starts with a generic XPath locator that returns
all nodes (“//*”) and then it iteratively refines the locator until only the element of interest is selected.
In such iterative refinement, ROBULA+ applies seven refinement transformations, according to a set
of heuristic XPath specialisation steps. Moreover, ROBULA+ makes use of prioritisation and black
listing techniques. The former is used to rank candidate XPath expressions in terms of expected
robustness, while the latter to exclude attributes that are considered intrinsically fragile.

Overall, for the eight web applications considered in our experiment, ROBULA+ has generated
locators that are much more robust than those produced by both state of the practice/art tools
(FirePath∗ and Selenium IDE†) and algorithms such as Montoto [10]. Moreover, ROBULA+ has also
drastically improved the results w.r.t. its predecessor ROBULA [9].
This paper makes the following contributions:

• ROBULA+, a novel algorithm for the automatic creation of robust XPath locators. Our approach
extends our previous proposal (ROBULA) in several directions: (1) prioritization of attributes
by recognized capability of creating robust XPath locators, and conversely (2) exclusion of
attributes that often lead to the creation of fragile XPath locators (i.e., black listing mechanism),
(3) usage of the text contained in the DOM nodes for creating XPath locators, (4) usage of
multiple attributes for the same node in the XPath locators, (5) ability of creating locators
independently from the specific DOM element type (i.e., using “*” to leave the tag name
unspecified);

• two implementations of our algorithm. One in Java used for the empirical evaluation reported
in this paper. Further, we implemented ROBULA+ as an open source plug-in for Firefox, ready
to be used by web testers;

• an empirical evaluation over more than a thousand of web elements from eight real size web
applications, assessing the effectiveness and efficiency of ROBULA+, in comparison with the
existing state of the practice/art tools/algorithms and with its predecessor ROBULA.

∗ https://addons.mozilla.org/firefox/addon/firepath/ † http://docs.seleniumhq.org/projects/ide/

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

Unlike many solutions currently proposed by the research community (e.g., ATA [6]), the major
strength of our proposal is that it can be adopted at virtually no additional cost by any web tester
developing DOM based test code. Indeed, ROBULA+ does not require to replace the testing tool or
framework (e.g., Selenium WebDriver‡) used by web testers with a specific one. A web tester who
wants to use ROBULA+ in a real industrial context has only to replace the locator generator, usually a
browser add-on like FirePath, with the one implementing our algorithm (e.g., by using the Firefox
add-on we developed). With this simple change, it is possible to produce more robust locators and
thus to reduce the effort and cost needed for repairing them. Indeed, in our experience repairing the
broken locators is the major cost factor during web testware evolution [11].

The rest of the paper is organized as follows: Section 2 introduces the problems associated with
web testware evolution and discusses the way locators are produced and evolved. Section 3 describes
our novel contribution: ROBULA+. The empirical study conducted for evaluating the robustness of
the locators produced by ROBULA+ and its efficiency is reported in Section 4. Section 5 reports the
related work. Finally, Section 6 summarizes our conclusions and future work.

2. EVOLUTION OF WEB TEST CASES

When a web application evolves to accommodate requirement changes – bug fixes or functionality
extensions – test cases may become broken. For instance, test cases may be unable to locate some
links, input fields and submit buttons, and software testers have to repair them. This is a tedious and
time-consuming task, which has to be performed manually by software testers. Indeed, automatic
evolution of test suites is far from being consolidated even if some preliminary approaches have been
proposed (e.g., [12, 13]).

A software tester executes test case repair actions according to the maintenance task that has been
performed on the web application under test (WAUT). The changes to the WAUT can be categorized
into two families: logical and structural [11]. A logical change involves the modification of the web
application logic pursuant to the introduction of new features or the modification of existing features.
On the tester side, this means adjusting the test suite, inserting, deleting or modifying (i.e., changing
the scenario) one or more test cases. A structural change impacts only the page layout/structure,
modified to beautify the web page appearance or to reorganize its content (e.g., switching from
a table-based to a tableless layout). In the test suite, the tester has to modify one or more lines
containing locators that are affected by the structural changes.

In this paper, we focus on reducing the web test suite maintenance effort due to structural changes
(i.e., changes impacting the page layout/structure) since such effort depends heavily on the robustness
of the locators. On the other hand, logical changes (i.e., changes modifying the logic of the web
application) may require manual interventions on the test suite that go beyond the creation of robust
locators. Structural changes are indeed quite important. For instance, web site re-styling, a frequently
occurring activity [11], tends to affect the DOM structure, leaving the application logic unaffected.
We address the problem of structural changes by automatically generating robust XPath locators that
retrieve the web elements required by the test cases when the WAUT evolves.

2.1. DOM-based Locators

To locate web page elements such as links, buttons, and input fields, different kinds of locators can
be employed. In particular, in the context of web application testing, three different categories of
locators are used [11]:

1. Coordinate-based locators: first generation tools just record the screen coordinates of web
page elements and use this information to locate such elements during test case replay. This
approach is nowadays considered obsolete, because it produces extremely fragile locators. In
fact, these locators could break even under imperceptible changes of the web page layout.

‡ http://docs.seleniumhq.org/projects/webdriver/

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

2. DOM-based locators: second generation tools locate web page elements using the information
contained in the Document Object Model (DOM). For example, the tools Selenium IDE
and Selenium WebDriver employ this approach and offer different ways to locate web page
elements. DOM-based tools have reached a high level of maturity and are widely used both in
academia and industry [3, 2, 14, 15, 16].

3. Visual locators: third generation tools have emerged in the last years. They make use of image
recognition techniques to identify and control GUI components. The tool Sikuli§ [4] belongs
to this category.

In this paper, we focus on DOM-based localization, since (1) it is the most adopted technology
in practice [2], (2) DOM-based locators are generally the most robust [11], albeit, in some cases
visual locators might be the best choice – e.g., with applications having complex visual components,
such as Google Maps. Using the information contained in the DOM, existing tools provide several
ways to locate web page elements. For instance, Selenium WebDriver locates a web page element
using: (1) the values of attributes id, name, and class; (2) the tag name of the element; (3) the text
string shown in the hyperlink, for anchor elements; (4) CSS and (5) XPath expressions. Not all these
locators are applicable to any arbitrary web element; e.g., locator (1) can be used only if the target
element has a unique value of attribute id, name, or class in the entire web page; locator (2) can be
used if there is only one element with the chosen tag name in the whole page; and, locator (3) can be
used only for links uniquely identified by their text string. On the other hand, XPath/CSS expressions
can always be used. In fact, as a baseline, the unique path from root to target element in the DOM
tree can always be turned into a (quite fragile) XPath/CSS locator that uniquely identifies the element.
In this paper, we focus on the robustness of XPath locators, leaving CSS locators for future work.

2.2. Why focusing on XPath Locators?

There are three main reasons to focus on XPath locators:

1. XPath locators are highly expressive. Actually, most of the other localisation methods
provided by DOM-based tools can be simulated using XPath expressions. For example,
the Selenium WebDriver method: driver.findElements(By.name(‘xy’)) is equivalent to
driver.findElements(By.xpath(‘//*[@name=“xy”]’)).

2. XPath locators are sometimes the only option. Some localisation methods, as discussed
before, are applicable only to specific cases (e.g., By.id is not applicable when the identifier is
not present). With XPath expressions it is always possible to locate every web page element.
In our previous work [8], we developed six Selenium WebDriver and IDE test suites for six
different web applications. In these test suites, whenever possible we used Selenium specific
localisation methods (e.g., the WebDriver commands By.id, By.name). In such study, we found
that 1587 over a total of 2735 locators use such specific localisation methods. The remaining
are XPath and CSS-based locators (respectively 791 (29%) and 357 (13%) over 2735 locators).
It should be noticed that all the locators that do not make use of XPaths can be easily rewritten
as XPath locators with no substantial impact on their understandability. We found similar
XPath locator occurrences in an open source test suite¶ created for a real web application,
Moodle, where 102 XPath and 43 CSS expressions over 254 locators are used (i.e., respectively
40% and 16% of the total).

3. XPath locators are generally considered fragile, but this strongly depends on how they
are created. The common belief on the fragility of XPath locators largely depends on how
XPath locators are generated by tools. In our previous work [8], we found that: 58% of the 791
XPath locators were broken from a release to a subsequent one, while for the other types of
locators the breakage percentages were extremely lower (e.g., less than 2% for the id locators;
about 12% for LinkText and 18% for the Name locators). By inspecting the XPath locators,
most of which automatically generated by FirePath‖, we realised that their quality, from the

§ http://www.sikuli.org/ ¶ https://github.com/moodlehq/functional-test-suite
‖ https://addons.mozilla.org/firefox/addon/firepath/

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

robustness point of view, was largely sub-optimal and that better XPath locators could be
defined manually. However, careful manual definition of robust XPath locators requires a lot of
experience and a big effort.

2.3. Generating XPath Locators in Practice

Currently there exist several tools that a web tester can use to build XPath expressions. In web testing,
it is usually preferable to have a browser-integrated add-on. Among the Mozilla Firefox Add-Ons,
FirePath and XPath Checker∗∗ are the most popular††. FirePath is among the most downloaded
and used in the practice. It is a Firebug extension that adds a development tool to edit, inspect
and generate XPath expressions based on the information contained in the DOM structure. Such
expressions include the full path from the root (e.g. /html/body/div[2]/div/a) or make use of id-based
expressions (e.g., //div[@id="content"]/a), if an id attribute is available. This creation strategy is quite
simplistic to be effective during software evolution, because in real world applications the DOM
structure changes frequently. Therefore, FirePath expressions tend to be not resilient even to small
changes of the page, resulting in fragile test scripts [9]. XPath Checker is also quite used, but it
provides expressions similar to FirePath ones. Among the others, we considered the Google Chrome
add-ons: the built-in add-ons and XPath Helper‡‡. Chrome built-in add-ons’ expressiveness is similar
to the Mozilla one, since they produce absolute paths or id-based relative expressions. XPath Helper
merges the two approaches, providing absolute expressions enriched with an attribute (if any is
available) for every tag of the expression. Our tool ROBULA+ offers a much more reliable solution to
robust locator creation (see empirical results in Section 4) and its implementation as a Firefox add-on
makes it quite easy to adopt in practice.

2.4. Are XPath Locators so Fragile?

Despite the common belief, it is not true that XPath locators are generally more fragile than the other
kinds of locators, because the expressiveness of the XPath language permits to simulate almost all
the other DOM-based localization methods, thus achieving at least the same fragility.

XPath locators are often adopted when the other methods cannot be employed. In these cases, web
testers generally rely on sub-optimal XPath locators (from the robustness point of view), provided by
the tools mentioned in Section 2.3 (e.g., absolute XPath or id-based relative XPath expressions). On
the other hand, building robust locators manually requires strong knowledge of the XPath language
and involves a time consuming analysis of the web page structure. For this reason, XPath locators are
often perceived, by web testers, as the most fragile kind of locators.

In an industrial case study [17], we found absolute XPath locators to be very fragile since they
contain the entire specification of how to traverse the DOM tree, from the root to the target element.
The tools mentioned above could generate more robust relative XPath expressions, by relying on
Ids that are unique in the web page. Indeed, by W3C standards, Ids should be unique in the page.
“Ids are often the safest locator option and should always be considered as the first choice”§§. In
some cases Ids may be less robust, especially if they are automatically re-generated at every new
release. In this case their robustness depends on the adopted Id-generation algorithm. However, in
our experience [17], automatically generated Ids have shown a low level of fragility. The robustness
of relative locators anchored on Ids varies, depending on the position of the first id in the ancestors’
chain starting from the target element. If the first id is in the target node itself, the associated XPath
locator is probably very robust, because the developer intentionally put a meaningful id that probably
is likely to be the same in subsequent releases of the application. If the first id is near to the root
of the DOM, the relative XPath locator from such id to the target node becomes very similar to the
absolute XPath, thus exhibiting low robustness.

∗∗ https://addons.mozilla.org/firefox/addon/xpath-checker/ †† http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#locating-elements
‡‡ https://chrome.google.com/webstore/detail/xpath-helper/hgimnogjllphhhkhlmebbmlgjoejdpjl
§§ http://blog.mozilla.org/webqa/2013/09/26/writing-reliable-locators-for-selenium-and-webdriver-tests/

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

<html>

 <body>

 <table id="userInfo">

 <tr><td>Name: </td><td title ="name"> John</td></tr>

 <tr><td>Surname:</td><td title ="surname"> Doe</td></tr>

 <tr><td>Mobile: </td><td title ="mobile"> 123456789</td></tr>

 </table>

 </body>

</html>

 Tool Kind Generated XPath Locators for the Target Element

FirePath abs /html/body/table/tr[3]/td[2]
FirePath rel //*[@id="userInfo"]/tr[3]/td[2]
Chrome rel //*[@id="userInfo"]/tr[3]/td[2]
XPath Helper abs /html/body/table[@id="userInfo"]/tr[3]/td[@title="mobile"]
XPath Checker rel id('userInfo')/tr[3]/td[2]

ROBULA+ rel //*[contains(text(),'123456789')]

Name: John
Surname: Doe
Mobile: 123456789

Target Element

Figure 1. showInfo.php – Ver. 1 – Page, Source, Locators

<html>

 <body>

 <table id="userInfo">

 <tr><td>Name: </td><td title ="name"> John</td></tr>

 <tr><td>Surname:</td><td title ="surname"> Doe</td></tr>

 <tr><td>Gender: </td><td title ="gender"> Male</td></tr>

 <tr><td>Phone: </td><td title ="mobile"> 123456789</td></tr>

 </table>

 </body>

</html>

Tool XPath Locators Robustness robust broken

FirePath /html/body/table/tr[34]/td[2]

FirePath //*[@id="userInfo"]/tr[34]/td[2]

Chrome //*[@id="userInfo"]/tr[34]/td[2]

XPath Helper /html/body/table[@id="userInfo"]/tr[34]/td[@title="mobile"]

XPath Checker id('userInfo')/tr[34]/td[2]

ROBULA+ //*[contains(text(),'123456789')]

Name: John
Surname: Doe
Gender: Male
Phone: 123456789

Target Element

Figure 2. showInfo.php – Ver. 2 – Page, Source, Locators

In this work, we adopt XPath locators for their high expressivity and we aim at automatically
building XPath locators that are ideally as robust as the best locators that web testers can possibly
choose among the available options.

2.5. XPath Locators and Software Evolution: an Example

Let us consider Ver. 1 of a simplified web application composed of two web pages — insertInfo.php
and showInfo.php — that allow users to insert and visualise some personal information previously

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

stored in a database. A test case for this functionality may open the insertInfo.php page, fill a form,
submit the information and verify that the inserted data are correctly displayed in the resulting
showInfo.php page, shown in Figure 1 (top). In this way it is possible to test the correct saving of the
information in the database.

To implement this test case, it is necessary to locate some web page elements as, for instance, the
field of the table showing the mobile phone number (see the underlined td in Figure 1 (center)). With
Selenium WebDriver, the methods By.id, By.name, By.className are not applicable, since the target
element has no id, name and className attributes. By.tagName is applicable, but does not allow to
build a locator since multiple td elements are present in the page. By.linkText and By.partialLinkText
are not applicable since the target element is not a link. Thus, we have to employ an XPath locator
and the straight solution is using one of the XPath generator tools mentioned in Section 2.3. Figure 1
(bottom) lists the XPath locators provided by these tools and by ROBULA+ (the algorithm we propose
in the following). The various tools create either relative (rel) or absolute (abs) XPath locators and, to
this end, different generation strategies are adopted resulting in different expressions.

We now consider a new version of the web application (Ver. 2), after a maintenance intervention,
in which the user is allowed to insert gender information (see Figure 2 (top)). Depending on the
robustness of the XPath locator used to select the target element, the test case described above will be
broken (and will have to be repaired) or will work without problems. Looking at Figure 2 (bottom),
we can see that only the locator generated by ROBULA+ works, while all the other locators are
broken. Indeed, all of them include the node tr[3] that in the new release becomes tr[4]. Some of them
do not work because they locate another element (i.e., the “gender” field), while others are not able to
locate any element (e.g., the locator generated by XPath Helper). Thus, when using a generic XPath
generator, the test case must be repaired, while with ROBULA+ no modifications are needed.

In this regard it is important to highlight two aspects. First, the change to the application shown
in this simple example replicates a code evolution pattern that we frequently encountered in the
empirical evaluation of ROBULA+. In such cases, our algorithm was often able to generate robust
XPath locators. Second, albeit by looking at the example it might seem quite easy to manually define
the XPath locator generated by ROBULA+ (at least for an expert web tester), this is actually not
the case when one works with real web pages containing hundreds or thousands of tags. Often, in
these complex cases ROBULA+ finds instantly locators that make use of complex combinations of
attributes (e.g., //*[@class="row-2"]/td[@class="center"]).

3. ROBUST LOCALIZATION OF WEB PAGE ELEMENTS

In this section, we describe our Robust Locator Algorithm, ROBULA+, for the automated generation
of robust XPath locators. It consists of an evolution of ROBULA [9], which enhances our previous
algorithm with several improvements: (i) the adoption of a prioritisation strategy, to rank candidate
XPath expressions by heuristically estimated attribute robustness, useful when multiple attributes are
available for a DOM element; (ii) the adoption of a blacklisting technique, to exclude attributes that
are recognized as intrinsically fragile; (iii) the usage of textual information as additional information
for building the predicates composing the XPath locators – the text can represent a potentially reliable
anchor when the web application evolves; (iv) the usage of multiple attributes for the same node in
the XPath locators; (v) the ability of creating locators independently from the specific DOM element
type (i.e., using “*” to leave the tag name unspecified).

ROBULA+ follows a top-down approach, by starting from the most general XPath expression (i.e.,
“//*”, matching all the elements in the document) and specialising it via transformation steps.

3.1. Specialisation Transformations for XPath Expressions

ROBULA+ specialises an XPath expression applying seven transformations according
to an established order: transfConvertStar, transfAddID, transfAddText, transfAddAttribute,
transfAddAttributeSet, transfAddPosition, and transfAddLevel. The transformations work as shown
in Figure 3. All the transformations are only applied at the head of the XPath expression (i.e.,

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

Let:
– xp = the XPath expression to specialize, e.g., //td
– N = the length (in nodes/levels) of xp

e.g., //td⇒ N=1; //*/td⇒ N=2; //table/tr/td⇒ N=3;
– L = the list of the ancestors of target element e in the considered DOM (i.e., web page), starting and

including e
e.g., given L=[td,tr,table,body,html] the call L.get(2) returns the element tr

The transformations work as follows:
– transfConvertStar

Precondition: the XPath xp starts with //*
Action: replace the initial * with the tag name of the DOM element L.get(N)
Example: xp = //*/td and L.get(2).getTagName() = tr output: //tr/td
Note: if the unspecified tag name “*” is already constrained by a position value (//*[2]), the transformation
updates also, if necessary, the position value (e.g., //*[2]/b→ //div[1]/b). This happens when an element
has preceding siblings of different types.

– transfAddID
Precondition: the Nth level of xp does not contain already any kind of predicates
Action: add the predicate based on the id (if available) of the DOM element L.get(N) to the higher level
of xp
Example: xp = //td and L.get(1).getID() = ‘name’ output: //td[@id=‘name’]

– transfAddText
Precondition: the Nth level of xp does not contain already any predicate on text or any predicate on
position
Action: add a predicate on the text contained (if any) in the DOM element L.get(N) to the higher level of
xp
Example: xp = //td and L.get(1).getText() = ‘John’ output: //td[contains(text(),‘John’)]

– transfAddAttribute
Precondition: the Nth level of xp does not contain already any kind of predicates
Action: for each available attribute-value pair of the DOM element L.get(N), generate a candidate locator
by adding a predicate based on such value to the higher level of xp
Example: xp = //tr/td and L.get(2).getAttributes() = {name=‘data’, class=‘table-row’}
output: //tr[@name=‘data’]/td, and //tr[@class=‘table-row’]/td

– transfAddAttributeSet
Precondition: the Nth level of xp does not contain already any kind of predicates
Action: for each element (with cardinality >1) of the powerset generated from the set of all the attribute-
value pairs of the DOM element L.get(N), generate a candidate locator by adding a predicate based on
such element to the higher level of xp
Example: xp = //tr/td and L.get(2).getAttributes() = {name=‘data’, class=‘table-row’}
output: //tr[@name=‘data’ and @class=‘table-row’]/td

– transfAddPosition
Precondition: the Nth level of xp does not contain already any predicate on position
Action: add the position of the element L.get(N) to the higher level of xp
Example: xp = //tr/td and L.get(2).getPosition() = {if tag-name=2, if ‘*’=3} output: //tr[2]/td
Note: the transformation considers that the position of the element L.get(N) that is added in the XPath
candidate locator xp, could change if such element is selected using a * or the actual tag name. This
happens when an element has preceding siblings of different types.

– transfAddLevel
Precondition: N < L.lenght()
Action: add //* at the top of xp
Example: xp = //tr/td output: //*/tr/td

Figure 3. Specialization transformations used by ROBULA+

they work at the higher level of the XPaths). transfConvertStar introduces a specific tag name to
replace the wildcard “*” in the XPath expression. transfAddID, transfAddText, transfAddAttribute
and transfAddPosition add predicates to the XPath expression, by respectively considering only
DOM elements containing specific id values, text values, attribute-value pairs or occupying specific
positions among their siblings. transfAddAttributeSet adds elements of the powerset generated from
the set of attributes of each DOM element. transfAddLevel adds a new level to the current XPath
expression by extending it with the wildcard tag “*” added at the beginning.

Some considerations about the transformations reported in Figure 3 are as follows:

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

• As already outlined previously, all the seven transformations are applied only to the last level
of the XPaths (i.e., on the portion of the XPath next to the initial “//”). On the one hand, this
constraint allows to reduce the number of applicable specializations to each XPath expression,
with clear advantages on the execution time. On the other hand, this constraint, is not restrictive
in terms of generated XPaths. In fact, by means of subsequent applications of the various
transformations it still ensures the generation of all possible XPaths for the selected target
element. In practice, this constraint avoids to execute many derivations leading to the same
XPath by modifying the lower levels of the specializing expression. For instance, with this
constraint the XPath //tr/td[2] cannot be generated by means of the following steps //*→1 //*/*
→2 //tr/* →3 //tr/*[2] →4 //tr/td[2] which would require to apply the transformations also to
the lower level of the XPaths (look at the transformation steps 3 and 4 that are executed on
the tail of the XPaths). However, the same XPath can be produced by ROBULA+ by applying
transformations only to the head of the XPath expression (e.g., //*→1 //td→2 //td[2]→3 //*/td[2]
→4 //tr/td[2]).

• The goal of the transformations’ preconditions is threefold: (1) avoid to add multiple times the
same predicate; (2) avoid inadmissible transformations; and, (3) avoid to generate different
XPaths having exactly the same behaviour, due to the presence of different permutations
of the predicates they contain (e.g., the XPath //td[contains(text(),‘John’)][2]is equivalent to
//td[2][contains(text(),‘John’)]).
• The transformations shown in Figure 3 generate only XPath expressions that locate the target

element, since they add only constraints derived from information contained in the target
element or its ancestors.

3.2. The Algorithm

The pseudocode of ROBULA+ is shown in Figure 4. The algorithm takes in input a document d (i.e.,
an HTML page) and an absolute XPath abs selecting only the target web page element e (e.g., an
anchor, a text field, a button, etc.). For this web element, the algorithm returns x (line 18), a robust
relative XPath expression (if anyone exists) able to uniquely select the target element, i.e., a robust

1. XPath ROBULA+(XPath abs, Document d)
2. {
3. Element e = eval(abs, d);
4. List<XPath> xpList = ["//*"];
5. while (true)
6. {
7. XPath xp = xpList.removeFirst();
8. List<XPath> temp = [];
9. temp.append(transfConvertStar(xp));
10. temp.append(transfAddID(xp));
11. temp.append(transfAddText(xp));
12. temp.appendAll(transfAddAttribute(xp));
13. temp.appendAll(transfAddAttributeSet(xp));
14. temp.append(transfAddPosition(xp));
15. temp.append(transfAddLevel(xp));
16. for (XPath x : temp)
17. {
18. if (uniquelyLocate(x, e, d)) return x;
19. else xpList.append(x);
20. }
21. }
22. }

List<XPath> eval(XPath abs, Document d):
 returns the element in d selected by the XPath locator abs

Boolean uniquelyLocate(XPath x, Element e, Document d):
 TRUE iff eval(x, d) contains only e

Figure 4. Pseudocode of ROBULA+

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

XPath locator. If a relative XPath expression does not exist, ROBULA+ returns an absolute XPath
similar to the one taken in input.

The algorithm starts its execution by retrieving the element e selected by the absolute XPath abs
(line 3) and initializing the list xpList of XPath expressions with the most general one (i.e., “//*”)
(line 4).

Then, it iterates (line 5) until a result (i.e., an XPath locator) is found (line 18). At each cycle,
it removes the first XPath expression (xp) from the list xpList and it applies, in the established
order, seven transformations (transfConvertStar, transfAddID, transfAddText, transfAddAttribute,
transfAddAttributeSet, transfAddPosition, and transfAddLevel) to specialize xp.

All the XPath expressions generated by applying these transformations are inserted into a list
named temp. At this point (line 16), the algorithm cycles through the XPath expressions contained
in temp, considering in turn each XPath expression x. If x is a unique locator for the target element
e (the function uniquelyLocate is used to determine this), the algorithm returns it and terminates.
Otherwise, by construction we know that x selects more elements than desired, among which the
target one is included. Thus, x is inserted into the list xpList, to be specialised in the next iterations of
the algorithm (i.e., the target element is among the elements retrieved by these XPath expressions,
whose result set contains more than one element). The actual implementation of ROBULA+ employs
a data-structure containing all the useful information (e.g., tag name, attributes, positions) of the
target element and its ancestors up to the root node. During the creation of such data-structure, for
each element it computes also the power-set of its attributes.

Since ROBULA+ returns the first locator found (i.e., the one that is considered as the most robust),
it is very important to consider (1) the order of execution of the transformations; and, (2) the order in
which each transformation returns its results (this second aspect will be considered in Section 3.4).
At each iteration of the main cycle (line 5), all the transformations could potentially be executed and
thus an order of execution must be defined.

We decided to choose as first transformation transfConvertStar, since a locator specifying only
the tag name of the target element can be considered the simplest and most essential form of locator
(e.g., //td). Then, transfAddID is executed, because the values of the id attributes are usually very
robust (e.g., id=“result”). Indeed, as already mentioned in Section 2.2, during a previous study [8]
where we built several Selenium test suites containing 2735 locators, we found that id locators are the
most robust, with less than the 2% of the 459 used id locators broken. Moreover in another work [17]
we found that even locators using auto-generated ids are quite robust. The text property (e.g., the
text of a link) is also commonly perceived as quite robust and in our previous study [8] we found
that only the 12% of the 473 LinkText locators were broken. Their robustness is lower only to the id
locators’ one. Thus, in ROBULA+, the transformation transfAddText is executed after transfAddID.
Then transfAddAttribute is executed since attribute values are usually more robust than position
values. Indeed, attribute values usually include meaningful names (e.g., name=“username”), while
position values are always bound to the web page structure and so they are the most fragile [18]. It
should be noticed also that transfAddAttributeSet is executed before transfAddPosition, since relying
on a combination of attributes is expected to provide better robustness than relying on positions
values. We execute transfAddPosition and then transfAddLevel, which adds //* in front of an XPath
expression, as the last transformation, since we want to maintain the XPath locators as short as
possible (in principle, a short locator is less coupled with the page structure than a long one, so it is
expected to be more robust).

3.3. Algorithm’s Analysis

The algorithm is ensured to terminate, since in the worst case returns an absolute XPath (similar to the
one taken in input). This is actually the case in which it is not possible to generate a shorter locator. In
fact, every element in the DOM tree can be uniquely located by an absolute XPath that contains only
tag names and positions (this is a straightforward consequence of the correspondence between DOM
node names and HTML tag names). Among the transformations in Figure 3, transfConvertStar can
be used to add the tag name and transfAddPosition to add the position. Hence, repeated applications

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

of these two transformations will generate an absolute path consisting of all tags, possibly including
element positions, from the root to the element to be located.

The worst-case complexity of ROBULA+ is exponential in the number of predicates (i.e., attributes,
text and position) and levels that can be found between the target element and the root of the DOM.
This is due to the fact that, in the worst case, ROBULA+ has to generate virtually all the XPaths of
length from 1 to h, with h the length of the absolute XPath (i.e., the distance between the target web
element and the root of the DOM).

In detail, given a target element e, let Xe be the set of all the XPaths that can be generated for e by
repeatedly applying the transformations shown in Figure 3, and thus by ROBULA+. Each XPath in
Xe can be a locator for e or simply include e among the web elements it selects. The cardinality of
Xe depends on: (1) h the number of levels between e and the root of the DOM (i.e., the length of
the full absolute locator for e); and, (2) the cardinality of each Pi, the set of predicates that can be
applied at the i-th level using the information available for the i-th ancestor of e. More specifically:

|Xe| =
h∑

i=1

2(
∑i

k=1 |Pk|)+i (1)

As an example, let us consider the following DOM of a simplified HTML page:

<html>
<p c l a s s = ‘a ’ >X< / p> <−−−− T a r g e t Web Element e
<p c l a s s = ‘a ’ >Y< / p>
< div c l a s s = ‘a ’ >X< / div >

< / html>

In this case, for the target element <p> we have a total number of levels h = 2 (i.e., <p> and
<html>). Counting backward from <p>, these two levels are associated with two sets of predicates:
P1={text()=‘X’, @class=‘a’, position=1} and P2={position=1}. The XPath expressions that contain
only one level start either with //* or //p. They are completed with the addition of a subset of the
predicates in P1 (including the case of the empty set). Since there are 2 possible starting XPaths,
completed by any of the 2|P1| subsets of P1, in total there are 2 · 2|P1| = 2|P1|+1 = 23+1 = 24 = 16
possible XPaths one level long. The XPath expressions that contain two levels start with //* or //html,
possibly completed with the addition of any subset of predicates from P2, and followed by the next
level, starting with /* or /p and completed with any subset of predicates from P1. Hence, in total,
there are 2 · 2|P2| · 2 · 2|P1| = 2(|P1|+|P2|)+2 = 2(3+1)+2 = 26 = 64 XPaths two level long. In total,
|Xe| = 16 + 64 = 80. Although the size of Xe grows exponentially with h and with the number
of available predicates, the heuristics introduced in the algorithm (i.e., the order of execution of
transformations, as well as prioritisation, black list, discussed below) aim at making the execution
time acceptable in practical cases, as confirmed by the results presented in Section 4.

3.4. Attribute Prioritization and Black List

The order in which a transformation provides its results affects the final output of ROBULA+.
This is true in the case of a transformation that can return more than one results, such as
transfAddAttribute. In fact, if we have more than one attribute (e.g., name=“username” and
width=“210px”) for the DOM element matching the beginning of the XPath expression (e.g.,
//input) and transfAddAttribute is executed, we obtain more than one candidate locator for the
target element (e.g., //input[@name=“username”] and //input[@width=“210px”]). In the original
version of ROBULA [9], we simply inserted the attribute values in the XPath expression in the same
order as they were found in the HTML source code after the associated tag. We discovered that this
is not always effective, because some attributes are more relevant than others if we want to locate
a web element robustly for testing purposes. For instance, the name of an input field is probably
more robust than its width. For this reason, transfAddAttribute and transfAddAttributeSet implement
a (1) prioritization (i.e., they prioritize the attributes by expected robustness) and (2) black-listing
(i.e., they discard the attributes considered too fragile).

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

Prioritization: we manually defined a prioritized list of HTML attributes, based on our previous
experience in test suite construction for web testing [8, 17]. Thus, transfAddAttribute tries, first of all,
to use predicates containing the name attribute, which is regarded as the most robust after id. Then,
the transformation tries with the following attributes, that usually contain meaningful values: class,
used to specify a class name for a web element; title, used to specify extra information about a web
element, usually shown as a tooltip text (e.g., for an image) when the mouse moves over the element;
alt, used to specify an alternate text for an image; value, used for instance, to define the text shown
on submit buttons or the initial (default) value of input fields. Thus, the prioritized list of HTML
attributes contains (name, class, title, alt, value). Note that the id attribute has the highest priority
since it is inserted first, by the dedicated transformation transfAddID and thus is not included here.
Then, transfAddAttribute uses the attributes not included in the prioritized list in the same order as
they are found in the DOM. When generating sets of attributes, transfAddAttributeSet inserts first the
sets containing the highest priority attributes (in this case including id) as predicates in the candidate
XPath expressions, starting from the smaller sets (with cardinality equal to 2) till to the complete set
of all the attributes of the DOM element. For each cardinality, the transformation inserts first the sets
composed of attributes with higher priority.

Black List: in our previous work [8] we discovered that some attributes hinder the possibility of
generating robust locators. For instance, the following XPath locator:
//a[@href=“DIR_Path/list.php?cmd=exLock&profile_id=1&offset=0”]
is inherently not robust, since it contains a path in the file system structure for the current release of
the application, which may change in a subsequent release. For this reason, we decided to define a
black-list, i.e., a list of attributes that are not considered during the execution of ROBULA+. In the
black list we have inserted: (1) “src” and “href”, because they often refer to the directory structure of
the web application, which is typically variable across releases; (2) all attributes containing JavaScript
code, such as “onclick” and “onload”, since the included JavaScript code tends to be quite volatile
across releases and hence cannot be used as a locator; (3) “tabindex”, since it specifies the tab order
of an element (used for navigating among web elements), which is very likely to change if another
element is inserted before the one to be located; (4) the attributes that are used for specifying the
dimensions of a web element, such as “width”, “height”, “size”, “maxlength”; and finally, (5) “style”,
used to specify an inline style sheet for an element. Thus, the black list of HTML attributes contains
(src, href, onclick, onload, tabindex, width, height, size, maxlength, style).

3.5. Algorithm’s Implementations

We developed two implementations of ROBULA+: one as a standalone Java program and another as
a Firefox Add-on. For the Java version, we used the JSoup¶¶ library for generating an equivalent
XHTML code for the HTML web pages taken in input, and the JDOM∗∗∗ library for manipulating
XHTML documents and evaluate XPath expressions on them. This Java implementation has been
used for evaluating the effectiveness of ROBULA+ (Section 4), since it can generate (in batch mode)
XPath locators for hundreds of web elements, as required for our study.

The equivalent JavaScript version of ROBULA+ has been developed in order to provide such
algorithm also as a Firefox add-on (see Figure 5). It can be used by web testers to generate locators
during the development of test suites in real industrial contexts. Starting from the source code of the
existing Firefox add-on FirePath, we replaced the XPath locator generation engine (absolute and id-
based) with our JavaScript implementation of ROBULA+. It allows users to experiment with various
configurations of our algorithm, by enabling or disabling the key features of ROBULA+ (e.g., it is
possible to compare the produced XPaths by enabling or disabling the blacklisting strategy). Varying
the algorithm configuration can be particularly useful when the tester is aware that a certain locator
generation strategy might be not appropriate to obtaining robust locators. For instance, suppose
that the test has to locate several target web elements having textual values which are dynamic or
vary across different versions (e.g., the total of a computation, or dates and timestamps). In these

¶¶ http://jsoup.org/ ∗∗∗ http://www.jdom.org/

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

Figure 5. The Firefox Add-on implementing ROBULA+

situations, the tester can disable the capability of creating locators based on such changing texts,
letting the algorithm find another kind of locator.

For the interested reader, our implementations of ROBULA+ can be found in our website:
http://sepl.dibris.unige.it/ROBULA.php.

4. EXPERIMENTAL RESULTS

This section describes the design, experimental objects, research questions, metrics, procedure,
results, discussion and threats to validity of the empirical study conducted to evaluate the robustness
of the XPath locators generated by ROBULA+. We follow the guidelines by Wohlin et al. [19] on
designing and reporting empirical studies in software engineering.

4.1. Study Design

The main goal of this study is to analyse the robustness of the XPath locators generated by ROBULA+
with the purpose of understanding the strengths and the weaknesses of the approach it implements.
The results of this study are interpreted according to the perspective of (1) testers and project/quality
assurance managers, interested in data about the benefits of adopting ROBULA+ as locator generator
in an industrial context, and (2) researchers, interested in empirical data about the impact of ROBULA+
on web testware evolution. The software objects, used to experiment ROBULA+, are eight open
source web applications, some of them already used in a different work [11].

4.2. Web Applications

We conducted our experiments over a sample of eight open-source web applications from
SourceForge.net. We considered only applications that: (1) are quite recent, so that they can work
without problems on the latest releases of Apache, PHP and MySQL, technologies we are familiar
with (since the XPath locators localize web elements in the HTML code processed by the client
browser, the server side technologies do not affect the results of the study); (2) are well-known and
used (some of them have been downloaded more than one hundred thousand times last year); (3) have
at least two major releases (we have excluded minor releases because with small differences between

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

Table I. Objects: Web Applications from SourceForge.net

MantisBT

PPMA
c

Claroline

Address Book

MRBS

Collabtive

TikiWiki

OrangeHRM

Release Date File
a

kLOC
b Release Date File

a
kLOC

b

MantisBT 1.1.8 Jun-09 492 90 1.2.0 Feb-10 733 115

PPMA
c 0.2 Mar-11 93 4 0.3.5.1 Jan-13 108 5

Claroline 1.10.7 Dec-11 840 277 1.11.5 Feb-13 835 285

Address Book 4.0 Jun-09 46 4 8.2.5 Nov-12 239 30

MRBS 1.2.6.1 Jan-08 63 9 1.4.9 Oct-12 128 27

Collabtive 0.65 Aug-10 148 68 1.0 Mar-13 151 73

TikiWiki 6.0 Dec-10 4841 705 12.0 Dec-13 6322 873

OrangeHRM 2.7 May-12 3019 232 3.1.3 Sep-14 3033 207

1st Release 2nd Release

b
 PHP LOC - Comment and Blank lines are not considered

c
 Without considering the source code of the framework used by this application (Yii framework - http://www.yiiframework.com/)

http://sourceforge.net/projects/tikiwiki/Wiki-CMS-Groupware solution

HR management system http://sourceforge.net/projects/orangehrm/

a
 Only PHP source files were considered

http://sourceforge.net/projects/collabtive/

Description

bug tracking system

password manager

collaborative learning environment

address/phone book, contact manager, organizer

system for multi-site booking of meeting rooms

collaboration software

Web Site

http://sourceforge.net/projects/mantisbt/

http://sourceforge.net/projects/ppma/

http://sourceforge.net/projects/claroline/

http://sourceforge.net/projects/php-addressbook/

http://sourceforge.net/projects/mrbs/

releases the majority of the locators — and, thus, of the corresponding test cases — are expected to
work without problems); (4) belong to different application domains.

Table I reports some information about the selected applications. We can notice how all of them
are quite recent (ranging from 2009 to 2014) and different in terms of number of source files (ranging
from 46 to 6322) and number of lines of code (ranging from 4 kLOC to 873 kLOC, considering only
the lines of code contained in the PHP source files, comments and blank lines excluded).

In the following, we report a short description for each selected application.

• MantisBT is a bug tracking system. Over time it has matured and gained a lot of popularity,
and now it has become one of the most popular open source bug tracking systems.

• PHP Password Manager (PPMA) is a Web based password manager. Each password is
(DES-)encrypted with an individual user password.
• Claroline is an open source collaborative learning environment allowing teachers or education

institutions to create and administer courses through the Web.
• PHP Address Book is a simple, Web-based address and phone book, contact manager, and

organiser.
• Meeting Room Booking System (MRBS) is a system for multi-site booking of meeting rooms.

Rooms are grouped by building/area and shown in a side-by-side view. Although MRBS was
initially designed as rooms booking system, it can be used to manage any resource.

• Collabtive is a collaboration software. It enables the members of geographically scattered
teams to collaboratively work using to-do lists, milestones and shared files. Moreover, it tracks
the worked time on a task-by-task basis.

• TikiWiki is an open source Wiki-CMS-Groupware solution. It has been actively developed
since 2002 and more than 250 people have contributed source code to the Tiki project.

• OrangeHRM Open Source is a free human resource management system that offers several
modules to suit company needs related to its employees.

4.3. Algorithms/Tools for Generating XPath Locators

In this work, we compare the robustness of the XPath locators generated by ROBULA+ with that
of the locators generated by five state of the practice tools/research algorithms: FirePath absolute,

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

FirePath relative, Selenium IDE, Montoto algorithm and ROBULA. The outputs of the algorithms
considered in this experimental study are usually different, as shown in Figure 6 where each algorithm
is applied to the example presented in Section 2. A description of the considered tools/research
algorithms is as follows:
FirePath Absolute: FirePath††† is a browser-integrated add-on for XPath expressions generation.
For each web element, it is able to generate a corresponding absolute XPath locator. An absolute
XPath consists of the full navigational path from the root of the DOM (i.e., the html tag) to the target
web element. Only when strictly necessary, positioning values are used to select the correct node
among the set of siblings. An example of this kind of XPath locator is /html/body/table/tr[3]/td[2], see
Figure 6.
FirePath Relative id-based: When a unique value for the id attribute exists for the target element
or one of its ancestors, FirePath can also generate a relative id-based XPath locator. Otherwise, an
absolute XPath is returned. In case of unique id values, the XPath locator selects the one closest to
the target; it then navigates the remaining path to the target as done for absolute XPaths. An example
of this kind of XPath locator is //*[@id="userInfo"]/tr[3]/td[2], see Figure 6.
Selenium IDE‡‡‡ is a capture/replay tool for quick development of web test cases. During the
test case recording phase, it is able to generate locators for the web page elements on which the
tester is performing actions. Selenium IDE contains a locator generation algorithm that generates
locators using different strategies (implemented by the so-called locator builders) and that ranks
them depending on an internal robustness heuristic§§§. In particular, as first step, Selenium IDE tries
to locate the target web element by means of its id, linkText or name values (if any). For instance,
the locator builders can generate the following locators id=XY, link=XY and name=XY that are
equivalent to the following XPath expressions //*[@id=‘XY’], //a[text()=‘XY’] and //*[@name=‘XY’].
Then, Selenium IDE tries to build a CSS locator using the corresponding locator builder. For

††† https://addons.mozilla.org/firefox/addon/firepath/ ‡‡‡ http://seleniumhq.org/projects/ide/
§§§ https://code.google.com/p/selenium/source/browse/ide/main/src/content/locatorBuilders.js

<html>

 <body>

 <table id="userInfo">

 <tr><td>Name: </td><td title ="name"> John</td></tr>

 <tr><td>Surname:</td><td title ="surname"> Doe</td></tr>

 <tr><td>Gender: </td><td title ="gender"> Male</td></tr>

 <tr><td>Phone: </td><td title ="mobile"> 123456789</td></tr>

 </table>

 </body>

</html>

Tool XPath Locators Robustness robust broken

FirePath Abs /html/body/table/tr[3]/td[2]
FirePath Rel //*[@id="userInfo"]/tr[3]/td[2]
Selenium IDE //table[@id="userInfo"]/tr[3]/td[2]
Montoto //td[text()="123456789"]

ROBULA //td[@title="mobile"]
ROBULA+ //*[contains(text(),'123456789']

Name: John
Surname: Doe
Gender: Male
Phone: 123456789 Target Element

Figure 6. showInfo.php – Ver. 2 – Page, Source, Locators

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

instance, the expression form[name="searchCourse"] > small > a that is equivalent to the XPath
//form[@name=‘searchCourse’]/small/a. Then, if no locator is found, it tries to locate the target web
element with the XPath language by applying the following locator builders in this order: (1) if the
target element is a hyperlink (i.e., tag <a>), a builder that creates a locator by using the text of the
link (if any), (2) if the target element is an image (i.e., tag), a builder that uses the value of
the attributes alt, title, and src, when any of them is available, (3) a builder that uses the values of a
predefined set of attributes contained in the target node, when any of them is indeed available, in this
order id, name, value, type, action, onclick; (4) a builder that creates an id-based XPath locator similar
to FirePath, if an id-value is available in the ancestors of the target node; (5) a builder that creates
a locator by using the value of the href attribute (if any); and, finally, (6) a builder that creates a
locator composed of tag names and position values. Each locator builder is itself a locator generation
algorithm, but it might be unable to create a locator — with the exception of the last locator builder
(i.e., (6), based on the usage of tag names and position values), which is always able to generate
an XPath locator for any target element. The Selenium IDE locator generation approach is very
different from ROBULA+. In fact, Selenium IDE tries subsequently different strategies (i.e., the
locator builders), and in case a strategy fails, it tries with the next one. On the contrary, ROBULA+
applies at each level of the XPath what it considered to be the best strategy. Moreover, it is also
able to combine different strategies at different levels. An example of Selenium IDE locator is
//table[@id="userInfo"]/tr[3]/td[2], see Figure 6. It should be noticed that, differently from ROBULA+,
Selenium does not generate XPath locators using the wildcard character “*”.
Montoto et al. [10] proposed an algorithm for identifying the target elements during the navigation of
AJAX websites. The algorithm starts from a simple XPath expression that is progressively augmented
with textual and attribute information. More precisely, the algorithm first tries to identify the target
element according to its associated text (if the element is a leaf node) and then it conjuncts, one
after the other, the predicates based on the attribute values (without prescribing any specific order of
insertion). If this is not sufficient for generating a unique locator for the target element, each ancestor
(and the value of their attributes) is subjected to the same procedure, until the root of the DOM is
reached. Even if both Montoto and ROBULA+ adopt a top-down approach in the construction of the
XPaths, remarkable differences between them exist: the XPath expressions generated by ROBULA+
are usually very different and shorter than the ones generated by Montoto. Indeed, when Montoto
is not able to create an XPath locator using only attributes and text contained in the target element:
(1) it leaves in the current level of the XPath expression all the generated predicates based on the
attribute values and text; and, then, (2) it considers the attributes of the ancestors. On the contrary, the
strategy implemented in ROBULA+ discards the redundant information contained in the lower levels
of the XPath. As an example, to localise the target div element in the web page used as an example in
the Montoto et al. [10] paper, the Montoto algorithm generates //td/a[@href=“#”]/div[@class=“c1”
and text()=“More Info”] while ROBULA+ generates the following simpler XPath expression //td/*/div.
Another example of a Montoto’s XPath locator is //td[text()="123456789"], see Figure 6.
ROBULA The previous version [9] of our ROBUst Locator Algorithm. An example of this kind of
XPath locator is //td[@title="mobile"], see Figure 6.
ROBULA+ As described in Section 3, this algorithm is an evolution of ROBULA [9], which enhances
the previous algorithm with several improvements: (i) the adoption of a prioritisation strategy, to
rank candidate XPath expressions by heuristically estimated attribute robustness; (ii) blacklisting, to
exclude attributes that are intrinsically fragile; (iii) inclusion of textual information in the predicates
composing the XPath locators; (iv) conjunction of multiple attributes for the same node in the XPath;
(v) creation of tag independent locators, thanks to the wildcard “*”, which leaves the tag name
unspecified. An example of this kind of XPath locator is //*[contains(text(),’123456789’], see Figure 6.

4.4. Research Question and Metrics

Our study aims at answering the following research questions:
RQ1: Does ROBULA+ reduce the number of broken XPath locators w.r.t. the state of the art/practice

XPath generation algorithms/tools?

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

The goal of the first research question is to compare the robustness of the XPath locators generated by
ROBULA+ with the robustness of XPath locators generated by: (1) FirePath (release 0.9.7), a state of
the practice XPath generator tool; (2) Selenium IDE (release 2.8.0), a state of the practice functional
web testing tool implementing a quite advanced mechanism for creating locators; (3) Montoto [10], a
state of the art algorithm for XPath locator generation (see Section 4.3). The metrics used to answer
RQ1 is the number of broken XPath locators in the next software release.
RQ2: Does ROBULA+ generate XPath locators more robust than ROBULA?
The second research question aims to compare the robustness of the locators generated by ROBULA+
with its predecessor ROBULA. In this way, we can estimate the effect of the various enhancements
introduced in ROBULA+ (see Section 3) on the robustness of the generated XPath locators. In order
to answer RQ2 we used the same metrics of RQ1 (i.e., number of broken locators).
RQ3: Does the complexity of the XPath locators structure influence their robustness?
The third research question aims to analyse the features/elements composing the XPath locators
generated by the considered algorithms, in order to understand how they influence the locators
robustness.
RQ4: Is the execution time of ROBULA+ acceptable for a web tester?
The fourth research question is about the time required for the execution of ROBULA+, as experienced
in practical cases. Given that the theoretical computational complexity of ROBULA+ is exponential,
we assess the effectiveness of the heuristics introduced in the algorithm for limiting such exponential
blow-up. We also compare the time required by ROBULA+ with that required by the other algorithms
(ROBULA and Montoto). The metrics used to answer RQ4 is the execution time in seconds.

4.5. Procedure

To answer our RQs we proceeded as follows:

1. We selected eight open-source web applications from SourceForge.net as explained in
Section 4.2.

2. For each application and for each web page related to core functionalities of the application
(e.g., we did not consider the configuration and installation pages), we manually selected all
the web elements: (1) on which it is possible to perform actions (e.g., links, input fields, submit
buttons); (2) which report information that can be used to evaluate assertions (e.g., the number
of rows in a table or a confirmation message); and, (3) which are present in both releases of
the applications. This last requirement is particularly important for computing the number of
broken locators. In order to avoid biased results, we excluded multiple instances of the same
web element present in different pages, or different web elements that can be considered the
same. In detail, we excluded: (1) the same web element repeated in different web pages as part,
for instance, of the header or the footer (e.g., the link to the main page of the web application
that can be found in every page and that has in every page exactly the same locator); and,
(2) similar web elements from common groups (e.g., for a calendar with a checkBox, for each
day we selected only one of the checkBoxes).

3. For the first release of each web application and for each selected web element, we generated:
(1) the absolute XPath locator and (2) the id-based relative XPath locator both using FirePath;
(3) the Selenium IDE locator¶¶¶ (when the locator is not an XPath expression, we manually
translated it in an equivalent XPath locator as shown in the examples in Section 4.3);
(4) the XPath locator generated by the Montoto algorithm; and, finally, (5) the ROBULA
and (6) ROBULA+ XPath locators. The result of this activity is, for each web element of the
first release of each web application, six XPath locators. While the first three kinds of locator
are generated manually using the FirePath and Selenium IDE tools, the last three (i.e., Montoto,

¶¶¶ Selenium IDE usually proposes a set of locators that can be employed for selecting the target web element (e.g., when
more than one locator builder is able to generate a locator, see Section 4.3); the first locator is the predefined choice that is
automatically inserted into the test case, but the web tester is free to select another locator. In our empirical evaluation we
always chose the first proposed locator, i.e., the one that Selenium IDE would use in the test case.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

ROBULA, and ROBULA+) are generated automatically by our Java implementations of the
respective algorithms. The absolute XPath locators are used as baseline in terms of robustness.

4. For each selected web element in the first release (located by the absolute XPath abs,
obtained from FirePath) we manually defined a mapping (abs→abs’) that associates it with
its counterpart in the second release (located by the absolute XPath abs’, also obtained from
FirePath). The absolute XPath locators defined on the second release of the applications are
used as oracles to verify the robustness of the generated XPath locators for the elements of
the first release of the applications. It should be noticed that manual definition of the oracle
abs→abs’ is unavoidable, since any hypothetical technique capable of producing such mapping
automatically would be also capable of solving the robust locator problem without errors.

To answer RQ1 and RQ2, for each web element we evaluate the robustness of the locators generated
by the six considered algorithms on the next release of each web application by automatically
verifying whether they are still able to locate the web element of interest, i.e., for each algorithm
we automatically verify if the web elements selected by the corresponding XPath locator and by the
absolute locator abs’ are the same.
To answer RQ3, for each of the six locators created for each web element, we count: (1) the number
of levels, (2) the number of position values, (3) the number of attributes, (4) the number of texts that
compose the locator itself. We analyse the correlation between the number of broken locators and the
number of XPath language constructs employed by the various algorithms. We used the Pearson’s r
coefficient, a measure of the correlation between two variables X and Y .
To answer RQ4, we measure the execution time (in seconds) required by ROBULA+ to generate
the XPath locators. We also compared this value with the time required by the other algorithms we
implemented in Java (i.e., ROBULA and Montoto). Each algorithm has been executed five times to
average over any random fluctuation of the execution time. We executed the algorithms on a machine
hosting an Intel Core i5 dual-core processor (2.5 GHz) and 8 GB RAM, with no other computation
or communication load, in order to avoid CPU and memory saturation.

4.6. Results

This section reports the quantitative results of the empirical study, while the interpretations and
implications of the results are further analysed in Section 4.7.

Table II reports the data used to answer RQ1 and RQ2. For each application and for each kind of
locator (i.e., Absolute, id-based relative, Selenium IDE, Montoto, ROBULA and ROBULA+) it reports
the number of broken locators and the corresponding breakage percentage over the total number of
locators. In the last columns, we report aggregate results over all eight web applications.

As expected, the performance of absolute XPath locators are not good. In four cases (i.e., Collabtive,
MRBS, PPMA, and OrangeHRM) out of eight, the totality of the absolute locators are broken
(i.e., they are never able to locate the corresponding web page elements in the new release of the
application). In total, considering all eight applications, 871 over 1110 absolute locators result broken
(i.e., 78%). These results reveal the high fragility of the absolute XPath locators generated by state of
the practice tools, as already reported in other works [17, 20] (see Section 2.4).

Results of FirePath id-based relative XPath locators are better than those of absolute XPath locators.
Still, in MRBS all relative locators are broken and over the eight applications, 557 out of 1110 id-
based relative locators are broken (i.e., 50%). These results are consistent with those reported in our
previous work [8], where we found that 58% of the 791 XPath locators were broken from a release to
the next one (see Section 2.2). Moreover, they confirm the common belief that in general: (1) XPath
locators are very fragile; and, (2) relative XPath locators are better than absolute ones.

In the following, in order to answer our research questions, we analyse the results of the XPath
locators generated by ROBULA+.
RQ1: the XPath locators generated by ROBULA+ are by far more robust than the absolute and
id-based relative locators in all the cases (see Table II and Figure 7). Indeed, by adopting the locators
generated by ROBULA+, we obtain only 91 broken locators out of 1110 while, as seen before,
FirePath produces respectively 871 and 557 broken locators. Thus, by adopting the ROBULA+
locators we have on average 90% ((871–91)/871) fragility reduction with respect to the absolute

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

Table II. Robustness of the various kinds of XPath locators

N of Target Web Elements

Locators Broken % Broken % Broken % Broken % Broken % Broken % Broken % Broken % Broken %

FirePath Absolute 43 54 125 100 102 100 68 29 30 100 78 76 222 96 203 100 871 78

FirePath Relative ID-based 43 54 34 27 102 100 55 23 19 63 78 76 136 59 90 44 557 50

Selenium IDE 11 14 6 5 23 23 23 10 11 37 2 2 99 43 73 36 248 22

Montoto 9 11 4 3 37 36 66 28 15 50 11 11 50 22 90 44 282 25

ROBULA 6 8 4 3 62 61 75 32 11 37 19 18 81 35 76 37 334 30

ROBULA+ 10 13 0 0 22 22 20 9 7 23 2 2 14 6 16 8 91 8

% percentage of broken locators over the total number of locators of this kind

All Apps

80 125 102 235 30 103 1110

TikiWikiAddress Collabtive MRBS Claroline PPMA Mantis

232

OrangeHRM

203

Figure 7. Robustness of the various kinds of XPath locators

0

10

20

30

40

50

60

70

80

90

100

Address Book Collabtive MRBS Claroline PPMA Mantis TikiWiki OrangeHRM All Apps

%
 o

f
b

ro
k

e
n

 X
P

a
th

 l
o

c
a

to
rs

FirePath Absolute FirePath Relative ID-based Selenium IDE Montoto ROBULA ROBULA+

XPath locators (see Table III) and 84% reduction w.r.t. id-based relative locators. The extreme case is
Collabtive, where ROBULA+ is the sole algorithm able to produce robust locators for all the web
elements (i.e., 0 broken out of 125), thus the improvement in terms of fragility reduction compared
with the other algorithms is always 100% in this case. On the other hand, still in the case of Collabtive
all the FirePath absolute locators result broken (i.e., 125 broken out of 125, see Table II). ROBULA+
is able to reduce always the fragility w.r.t. these two kinds of locators (by at least 63%, see Table III).
On four applications the reduction exceeds 82% (Collabtive, Mantis, TikiWiki, OrangeHRM).
ROBULA+ locator Example: Usually, ROBULA+ generates XPath locators by far more robust and
readable than the id-based relative XPath locators produced by FirePath. As an example, we will
consider a locator for PPMA. To locate a link used for updating a password, ROBULA+ generated
the following XPath locator //*[@title=“Update”] while FirePath generated the following id-based
relative XPath locator //*[@id=“yw2”]/table/tbody/tr/td[6]/a[1] and the following absolute XPath locator
html/body/div[1]/div[4]/div[1]/div/div[2]/table/tbody/tr/td[6]/a[1]. In this case, only the ROBULA+ XPath
locator worked without any modification on the second release of PPMA, while the locators generated
by FirePath were broken and required several modifications to locate the web element of interest
on the second release of PPMA. These are the resulting locators after such manual modification:
//*[@id=“yw1”]/table/tbody/tr/td[4]/a[2] and html/body/div[1]/div/div/div[3]/table/tbody/tr/td[4]/a[2].

The XPath locators generated by ROBULA+ are, in general, also more robust than the Selenium IDE
and Montoto locators (91 broken vs. 248 and 282 respectively considering all the web applications).
Indeed, the adoption of the ROBULA+ locators allows to reduce fragility by 63% and 68% w.r.t.
the Selenium IDE and Montoto locators (see Table III). In detail, ROBULA+ always outperforms
Selenium IDE and Montoto, with only two exceptions, the case of AddressBook, where Montoto
shows a slightly better performance (10 broken for ROBULA+ and 9 for Montoto, see Table II)
and the case of Mantis where Selenium IDE and ROBULA+ have the same performance. Note that,
AddressBook is the only application where a locator generator algorithm (i.e., Montoto) is able to
perform better than ROBULA+ (i.e., only -1 broken locator due to a web element where the title-based

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

Table III. Fragility Reduction (-) and Increase (+) when adopting ROBULA+ Locators w.r.t the other kinds of
locators

Address

Book
Collabtive MRBS Claroline PPMA Mantis TikiWiki

Orange

HRM
All Apps

FirePath Absolute -77% -100% -78% -71% -77% -97% -94% -92% -90%

FirePath Relative ID-based -77% -100% -78% -64% -63% -97% -90% -82% -84%

Selenium IDE -9% -100% -4% -13% -36% 0% -86% -78% -63%

Montoto 11% -100% -41% -70% -53% -82% -72% -82% -68%

ROBULA 67% -100% -65% -73% -36% -89% -83% -79% -73%

ROBULA+

 vs.

locator generated by ROBULA+ is broken while the src-based locator generated by Montoto is not, a
the rare case where the attributes prioritization is not effective). We analyse the reasons for these
results in Section 4.7.

To summarize, for what concerns research question RQ1, we can say that, for all the considered
applications, the adoption of the XPath locators generated by ROBULA+ results in a significant
reduction of the number of broken locators (in the range from -63% to -90%), which is expected
to be associated with a corresponding reduction of the maintenance effort required to repair the
test cases using such broken locators.

In our experience, repair of broken locators is the major cost factor during web testware evolution [11].
Hence, ROBULA+ can give a substantial contribution to the reduction of such cost.
RQ2: The improvements implemented in ROBULA+ strongly affect the robustness of the generated
locators and allow to obtain far better results than ROBULA. Indeed, considering all the eight
applications, ROBULA+ scores 91 broken locators against the 334 broken locators of ROBULA,
corresponding to 73% reduction of the number of broken locators. In detail, in four cases out of
eight (Collabtive, Mantis, TikiWiki, and OrangeHRM) ROBULA+ outperforms ROBULA obtaining
drastic fragility reductions (i.e., greater than 79%, see Table III). In three cases (MRBS, Claroline,
and PPMA), the fragility reductions are lower but still relevant (i.e., ranging from 73% to 36%). Only
in the case of AddressBook ROBULA performs better than ROBULA+ with 6 and 10 broken locators
respectively. This case will be analysed in more detail in Section 4.7.

To summarise, with respect to the research question RQ2, we can say that the XPath locators
generated by ROBULA+ are by far more robust than the locators generated by ROBULA (-73% of
broken XPath locators).

RQ3: Figure 8 contrasts the structure of the various kinds of XPath locators (top) and the
corresponding robustness (bottom). In particular, the histogram above reports for each kind of
XPath locator the total number of XPath language constructs used to build the locators considered in
our study, while the histogram below reports the total number of broken locators for each kind of
XPath. For instance, the ROBULA+ locators contain overall 327 additional levels (the initial level
is skipped, since each expression must be at least one level long), 111 positions, 770 attributes and
374 texts. As an example, the XPath //tr[2]/td[@name="feature" and @value="one"] has 1 additional
level, 1 position and 2 attributes. From Figure 8, it is clear that Absolute and id-based relative XPath
locators heavily resort to the usage of additional levels and position constructs. Concerning the
id-based locators, in 904 case out of 1110 (the total number of locators analysed in our study), an id
value, allowing to create a locator, is found in the target web element or in its ancestors. This helps
to reduce the number of additional levels in the XPath locator as well as the number of positions
used. The other algorithms rely by far less on the structural constructs of the XPath language (i.e.,
levels and position values) and employ as much as possible predicates based on the values of various
attributes and text. Pearson’s r correlation between the number of broken locators and the number
of additional levels or positions is respectively 0.948 and 0.942. Thus, there is a strong correlation
between number of additional levels and positions and fragility of the locators, as can be also noticed

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

Figure 8. Analysis of the XPath Language Constructs used by the various kinds of XPath Locators

Absolute ID-Relative Selenium IDE Montoto ROBULA ROBULA+

Levels 9267 3511 1008 665 447 327

Positions 4916 1721 546 56 224 111

Attributes 0 904 1032 2173 1042 770

Texts 0 0 218 391 0 374

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

X
P

a
th

L
a

n
g

u
a

g
e

C

o
n

s
tr

u
c

ts

Levels Positions Attributes Texts

871

557

248
282

334

91

0

100

200

300

400

500

600

700

800

900

Absolute ID-Relative Selenium IDE Montoto ROBULA ROBULA+

B
ro

k
e

n
 L

o
c

a
to

rs

Broken

graphically by looking at Figure 8. On the other hand, the Pearson’s r coefficient between the number
of broken locators and the number of attributes or the use of text is respectively -0.580 and -0.733.
Thus, creating XPath locators that rely more on attributes and text helps in obtaining robust locators.
Overall, analysing the total number of constructs used in the various XPath locators (i.e., levels,
positions, attributes and texts) and their corresponding robustness, for all the six algorithms, we
have a value for the Pearson’s r of 0.953, that reveals a strong correlation between the number of
constructs used by the locators and their fragility. This explains the higher robustness achieved by
ROBULA+. In fact, this algorithm has been designed so as to keep the XPath locators as short and
simple as possible.

To summarise, for what concerns research question RQ3 we can say that reducing as much as
possible the number of additional levels and position values used by the XPath locators helps
to reduce their fragility; resorting mainly to attribute-value pairs and texts helps also to reduce
fragility. In general, maintaining the XPath locators as short and simple as possible helps in
achieving lower fragility.

RQ4: We measured the execution time of ROBULA+, ROBULA and Montoto, since we implemented
these algorithms in Java. We did not measure the time required by FirePath and Selenium IDE
because these tools generate locators interactively. In our experience, they are able to generate the
locators almost instantaneously. For generating the 1110 XPath locators, ROBULA+ has required on
average 183.40 seconds. This means that, on average, the generation of a ROBULA+ locator took
only 0.17 seconds, i.e., a very short time that can be considered instantaneous from the web tester
perspective. On the other hand, ROBULA required 84.71 seconds, that corresponds to 0.08 seconds
per locator, and Montoto 7.94 seconds, that corresponds to 0.007 seconds per locator. In conclusion,
due to its elaborate design, ROBULA+ requires more execution time than its competitors. However,
this time is undoubtedly acceptable and negligible for the tester (only 0.17 seconds per locator on
average). Moreover, the robustness results highly encourage its adoption in real testing scenarios.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

To summarise, with respect to the research question RQ4 we can say that the time required by
ROBULA+ for generating the XPath locators is undoubtedly acceptable for a human tester (only
0.17 seconds per locator on average).

4.7. Discussion

Absolute XPath locators exhibited a very high level of fragility, in seven out of eight cases. In the
case of Collabtive, MRBS, PPMA, and OrangeHRM, web pages have been modified during the
evolution of the web applications at the higher levels of the DOM (i.e., the nodes close to body)
and as a consequence all absolute locators are broken. In other cases, the robustness of the absolute
locators was negatively affected by the modification of the list of the siblings preceding the target
elements. For instance, adding a field in a form breaks all the absolute locators for the subsequent
fields, if such locators use positional values, as in the case of FirePath. Only in the case of Claroline,
a good amount of absolute locators survive the software evolution (71%), because the majority of the
web pages did not significantly change their structure in the subsequent release.

id-based relative XPath locators showed a lower level of fragility (in five out of eight cases) if
compared to absolute locators. Indeed, when one of the ancestors of the target element, or the target
element itself (e.g., td), contains an id-value (e.g., id=“xy”), this can be used for generating an id-based
relative locator (e.g., //div[@id=“xy”]/.../td) that is not affected by the changes in the higher levels of
the DOM (as an absolute locator is). Thus, the availability of (meaningful) ids affects positively the
robustness of this kind of locators. In our case study, two applications (i.e., MRBS and Mantis) do not
use any id attribute in their first releases. For this reason, the id-based relative locators exhibit exactly
the same fragility as the absolute ones. On the other hand, in the case of Claroline and Collabtive,
respectively 1/5 and 1/7 of the nodes have an id attribute. Thus, FirePath is often able to generate
short locators (one or two levels long), which turn out to be robust XPath locators – for Claroline
even better than ROBULA locators, which often use the “unreliable” href attribute, but not better than
ROBULA+, which does not use it, thanks to the black list. In the other applications, we have cases
where ids are not so used, thus the obtained id-based relative locators may be as long as 5, 6 or 7
levels (hence they tend to be quite fragile) or ids are not meaningful (e.g., auto-generated ids) and as
a consequence id-based relative locators are not so robust on the next release.

ROBULA and ROBULA+ XPath locators showed a lower fragility than the one of id-based
relative locators (in seven out of eight cases, see Figure 7). The reason is that ROBULA and ROBULA+
locators are less dependent on the web page structure than id-based relative locators. In fact, the
former are by far shorter than the latter, with 447/327 vs. 3511 additional levels (see Figure 8). In the
case of Claroline (the only application in which ROBULA performs worse than FirePath), several
locators use href attributes that proved to be not very robust. Indeed, the href values used in such
locators often contain: (1) long filesystem paths changing during the evolution of the application,
or (2) parameters passed to the target page that are changed from a release to the next one (e.g.,
from //a[@href=“login.php?s=MTUv”] to a[@href=“login.php?s=MDcv”]). The same problem applies
to locators using the src attribute. Strangely enough, in the case of Claroline, ROBULA locators
are also more fragile than absolute locators, because href and src values have been changed more
frequently, among the two releases, than the full DOM paths. On the other hand, ROBULA+, thanks
to prioritisation and black listing, remains the best option also in the case of Claroline. In the case
of Mantis, ROBULA+ is significantly better than ROBULA (respectively 2 vs. 19 broken locators).
This is due to the fragile attributes (e.g., tabindex and href) used by ROBULA which are black-listed
in ROBULA+. In detail, ROBULA generated 12 locators using the tabindex attribute and 8 of them
resulted broken in the new release of Mantis, while in almost all these cases ROBULA+ generated
locators using the name attribute, resulting in only one broken locator. In the case of AddressBook
ROBULA is slightly better than ROBULA+ (6 vs. 10 broken locators respectively). This is due to the
fact that the texts used by ROBULA+ for locating some links changed across the considered releases
of the application, while the attribute values used by ROBULA remained more stable.

Comparing the ROBULA, Selenium IDE, and Montoto XPath locators we can notice that overall
they achieve a similar level of robustness (see Figure 7). Some relevant differences can be observed
in the case of: (1) Claroline, where as seen before ROBULA produces several fragile XPath locators

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

relying on the fragile href and src attributes values; for the same reason also Montoto does not
perform well. On the contrary, the performances of Selenium IDE are close to the ROBULA+ ones,
since it is able to avoid the generation of locators containing the fragile href and src attributes, thanks
to the prioritization among the different strategies for generating locators, depending on the internal
robustness heuristic strategy that such tool implements (see Section 4.3); (2) Mantis, where, Selenium
IDE and Montoto perform better than ROBULA since they avoid the usage of the href attribute and
(only in the case of Selenium IDE) of the tabindex attribute. Indeed, higher priority is given to
text-based locators and (only in the case of Selenium IDE) to the name attribute; (3) TikiWiki, where
Montoto creates more robust locators, thanks to the usage of the text contained in every kind of target
element (i.e., not only for links), and, in some cases, thanks to the usage of multiple attributes for the
same XPath element, which produces shorter and more robust XPath locators; (4) MRBS, where
ROBULA creates fragile XPaths based on the href attribute or on position values, while Montoto,
Selenium IDE (and ROBULA+), rely on the more robust text contained in the target elements.

ROBULA+ achieves by far the best performance with respect to all the other considered
algorithms/tools. In fact, it incorporates and combines various strengths of the existing solutions in
a single algorithm. ROBULA+ makes use of a prioritization strategy like Selenium IDE, even if it
is conceived and implemented in a different way. The differences between the two strategies are
remarkable. As described in Section 4.3, Selenium IDE tries to create the target locator executing,
one after the other (similarly to a pipeline), a set of different locator builders (i.e., XPath generation
algorithms). If a locator builder is not able to return a locator, Selenium IDE tries with the next locator
builder (locator builders are ordered according to an internal robustness heuristic). On the other
hand, ROBULA+ tries all the different strategies for each specialization step (e.g., use id value, text,
attribute-value pairs) and it orders them according to a robustness heuristic. For instance, ROBULA+
is able to create an XPath locator that is text-based at level 1 and attribute-based at level 2, while
this is not permitted by Selenium IDE, where only one strategy (builder) is selected to produce a
locator. This explains why in the case of Claroline ROBULA+ performs even slightly better than
Selenium IDE (i.e., avoiding the usage of href and src attributes) and by far better than ROBULA and
Montoto. ROBULA+, similarly to Montoto, is able to build XPath locators using the text contained
in every kind of DOM element, i.e., in the target and in its ancestors. This has allowed ROBULA+
to produce more robust XPath locators, for instance in the case of TikiWiki. Moreover, ROBULA+
is able to insert predicates based on multiple attribute-value pairs. But differently from Montoto,
ROBULA+ uses the smallest set of attribute-value pairs and discards each additional construct not
strictly necessary for creating a locator. This is clearly visible by looking at Figure 8, where the
locators generated by Montoto for our set of Web applications contains by far more attribute-value
pairs than ROBULA+ (respectively 2173 vs. 770).

We also analysed the effect of the transfAddAttributeSet in ROBULA+. We created a version
of ROBULA+ where such transformation is disabled. On the considered 1110 target elements we
discovered that: (1) the fragility increases by only one broken locator (i.e., from 91 to 92 broken
locators overall); and, (2) the total time required for generating the 1110 XPath locator decreases from
183.40 to 131.21 seconds. Even if in our case study the robustness level does not change significantly,
enabling transfAddAttributeSet in ROBULA+ has allowed to generate XPath locators less coupled
to the web page structure. For instance, in the case of TikiWiki, 52 locators contains both attribute-
value pairs and positions when transfAddAttributeSet is disabled (e.g., //*[2]/*[@value="comments"]),
while they contain only predicates on attribute-value pairs when such transformation is enabled
(e.g., //*[@name="permRegistered" and @value="comments"]). In Section 4.6, we have seen that
position values are correlated with a higher fragility and for this reason we think that it is always
better to include the transfAddAttributeSet transformation, except for the cases in which strong time
constraints hold.

Then, we also analysed the effect of Attribute Prioritization, Attribute Black List (see Section
3.4) and of the usage of textual values on the robustness of the locators generated by ROBULA+.
We created several versions of our algorithm where such features have been selectively disabled. The
experimental results show that by disabling selectively attribute prioritization, attribute black list and
usage of textual values, the number of broken locators increases from 91 to respectively 118, 123

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

and 246. Thus we can say that the usage of textual values has a strong effect on the robustness of
ROBULA+ locators, even though attribute prioritization and black list have also a relevant effect.

Then, we also analysed the effect of specializing the wildcard “*” in ROBULA+, i.e., the ability
of creating locators independent from the DOM element type. By removing this feature from
ROBULA+ we obtained a relevant increment, from 91 to 138, of the number of broken locators.
Among the considered releases of the eight web applications, some target web elements changed their
tag types. For instance, in OrangeHRM, there are some cases of link texts shown in boldface that are
implemented in different ways between the two releases. In the first release, the tag b is used, while
in the second release the developers opted for a better solution: the tag span and a CSS rule. In such
cases, ROBULA+ has generated a locator using “*” (e.g., similar to //*[contains(text(),‘Admin’)]), while
by disabling the star specialization the algorithm has generated a locator using the tag b (e.g., similar
to //b[contains(text(),‘Admin’)]). The first type of locators has survived the application evolution; the
second clearly not. The only advantage of disabling the star specialization is in the execution time
required for generating the 1110 XPath locator that decreases from 183.40 to 88.34 seconds. The
reason is that the search space is at least doubled when adopting the star specialization. In fact, each
candidate locator with a tag name is paired with another candidate locator with a star (“*”); the
two are combined in all possible hybrid forms of candidate locators, by specializing stars or tags at
different levels. One objection to the use of the star in locators is that in some cases, when complex
XPath locators are generated, having the tag name instead of “*” might help in locator understanding
(e.g., during maintenance of broken locators). Since usually the locators generated by ROBULA+ are
very short (typically 1 level long), this is not a relevant problem. In fact, ROBULA+ has produced, on
our set of Web applications, only 327 additional levels over 1110 XPath locator (see Figure 8), thus
on average a ROBULA+ locator is only 1 or 2 levels long (average length is 1.29).

Finally, we compared the robustness of the locators generated by ROBULA+ and Selenium IDE
focusing on the subset of web elements that Selenium IDE natively locates using XPath locators.
Over our eight subjects web applications, Selenium IDE makes use of an XPath locator for 277 over
1110 web elements (i.e., in 25% of the cases). Such XPath locators are usually very fragile: 146 out of
277 (53%) were broken when evaluated on the second release of the web applications. On the other
hand, the locators generated by ROBULA+ are by far more robust, scoring only 35 broken locators
out of 277 (i.e., 13% of the cases). By analysing the XPath locators generated by Selenium IDE we
discovered that in these cases, very often, the tool relies on id-based relative XPath locators and that
their fragility level is consistent with the one we observed for the FirePath Relative id-based XPath
locators on the entire set of web elements considered in this study (i.e., respectively 53%, as reported
above, and 50%, as reported in Table II, of broken locators). ROBULA+ promotes the generation of
shorter XPath locators, less coupled with the page structure w.r.t. id-based relative XPath locators,
which were by far more resilient to the web application evolution. Finally, it is interesting to notice
that ROBULA+ overcomes Selenium IDE also in the cases in which the latter uses non XPath locators.
Indeed, on 833 cases (i.e., 1110-277), ROBULA+ scores only 56 broken locators against 102 of
Selenium IDE.

4.8. Threats to Validity of the Study

In this section we describe the main threats to validity that could affect our empirical study [19].
Concerning the generalisation of results, we selected eight real open source web applications

belonging to different domains and overall 1110 target web elements subdivided among the chosen
applications, which makes the context realistic, even though further studies with other applications and
web elements are necessary to confirm the obtained results. We highlight that the specific technologies
and languages used to implement the server-side portion of the selected web applications (in our
case PHP language and PHP frameworks, see Section 4.2) are not a threat to the validity of this
study since we compared XPath locators, which are not dependent on the underlying server-side
technology. On the other hand, the adoption of rich internet applications (e.g., based on AngularJS)
are expected to affect the results of this study, although we think that the effect should be the same
for all kinds of XPath locators. ROBULA+ could, in certain cases, rely on attributes that are browser

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

specific. In such cases, locators result broken when evaluated in another browser. However this could
happen also when adopting the other locators generators.

One threat could be associated with the procedure used to select the target elements. To reduce as
much as possible this threat, we adopted the systematic procedure described in Section 4.5, so as to
focus on all the web page elements that could be used hypothetically in a functional web test case.
We believe that this strategy is better than selecting only the web elements exercised by an existing
test suite. First, because it is more general and second because it is more objective (i.e., the selection
of the target elements does not depend on the specific choices of the web tester and on the adequacy
level aimed for).

The choice of the releases considered in the study (see Section 4.2) may have affected the results.
In our study we considered only major releases, because with small differences between releases
the majority of the locators and, thus, of the corresponding test cases are expected to work without
problems. However, we have no reason to believe that the direction of the results would vary when
considering different releases, although the magnitude of our findings might change.

Another threat, concerning particularly RQ1 and RQ2, is the set of locators generator
tools/algorithms used in the experiment. We compared the robustness of ROBULA+ against four
different tools/algorithms (i.e., FirePath Absolute and id-based relative, Selenium IDE and Montoto)
and the initial version of our algorithm (ROBULA) but we have not considered the entire plethora of
existing solutions. In principle, different results could be obtained using other state of the practice/art
XPath locator generators. However, we want to highlight that:

• The absolute and relative XPath locators generated by the most popular state of the practice
XPath locators generation tools (e.g., XPath Helper available from the Chrome Web Store of
Google) seem to be, typically, very similar to the ones generated by FirePath. Its generation
strategies are also very similar to FirePath’s, so the results of our study are not expected to
change significantly if other tools, e.g. XPath Helper, are considered;

• To the best of our knowledge, the two state of the art locator generators are Selenium IDE and
Montoto. Both are considered in this study;

• Selenium IDE can be considered one of the flagship test automation tools, thus comparing its
effectiveness with ROBULA+ can be very interesting both for practitioners and academics;

• Montoto is a quite recent research algorithm that, to the best of our knowledge, is still not
commonly used as locator generator. However, it implements an approach that is quite different
from both Selenium IDE and ROBULA+, thus its inclusion in the comparison is interesting.

Another threat could be associated to the manual translation of Selenium IDE locators in equivalent
XPaths (performed only when Selenium IDE does not produce already an XPath locator). However,
this translation was very simple and double checked by the authors. For instance, the Selenium IDE
locators id=XY, link=XY and name=XY are trivially equivalent to the following XPath expressions
//*[@id=‘XY’], //a[text()=‘XY’] and //*[@name=‘XY’]. Moreover, in the empirical evaluation, we chose
always the default locator proposed by Selenium IDE among the proposed ones (see details in Section
4.5); in this way we had not introduced any subjectivity and evaluated the robustness of the locators
considered the best by the Selenium IDE locator generator.

Concerning RQ3, other more refined statistical strategies and analyses could be used to answer
it. However, the trend shown in Figure 8 is clear and so the simple Pearson’s correlation seemed
sufficient to us to confirm the visual interpretation of the data statistically.

Finally, concerning RQ4, the answer to this research question might depend on the actual usage of
the tool. In our experiment, we computed the execution time of ROBULA+ and of Montoto. Even
if ROBULA+ requires more time than Montoto, both execution times are largely below one second,
hence we consider them negligible for a human web tester perspective (everything happens within
the time of a click).

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

5. RELATED WORK

The problem of creating and maintaining test suites for web applications has been studied under
different points of view in the context of testing and test automation [12, 5, 6]. Other works
deal with the problem of automatically or semi-automatically extract information from structured
sources [10, 21, 22, 20, 23, 24].

5.1. Test Maintenance and Test Automation

The problem of maintaining test scripts is well-known by the practitioners and has been taken into
consideration in the last years by the research community, although there is still no consolidated
solution. Choudhary et al. [12] propose WATER, a tool that suggests changes that can be applied to
repair test scripts for web applications. This technique is based on differential testing: by comparing
the behaviour of a test case on two successive versions of the web application and analysing the
difference between these two executions, WATER suggests repairs that can be applied to update the
scripts. This work is complementary to ours since ROBULA+ aims to create robust XPath locators
that are less likely to need to be repaired in the future. We will consider automatic repair techniques
in our future work.

In the context of GUI testing, Grechanik et al. [25] describe an approach called REST for
maintaining and evolving test scripts so that they can test new versions of their respective applications.
The approach is based on GUI-tree comparison, in order to find altered GUI objects. The test script is
then analysed using static analysis to assess the impact of the differences and to provide suggestions
for changes that avoid possible failures in the GUI application. Differently from REST, ROBULA+
works in the context of web applications and interacts with the GUI elements via the DOM structure.

In the context of web testing, several papers on robust test automation and change-resilient test
script creation have been proposed by Thummalapenta and colleagues [26, 27, 5]. The tool ATA,
developed at IBM, uses a combination of natural-language processing, backtracking exploration
and learning, to improve the tester’s productivity in automating manual tests. ATA also produces
change-resilient scripts, which automatically adapt themselves in the presence of certain common
types of user-interface changes. ROBULA+ also works in a web scenario, but differently from ATA, it
aims at strengthening the resilience of DOM locators, rather than considering automatic adaptation
to changes. Recently, novel solutions to the test-script fragility problem have been proposed [6, 28].
Both Yandrapally et al.’s [6] and Pirzadeh et al.’s [28] methods are based on visual landmarks to
build locators resilient to the evolution of the applications. These approaches are promising because
they take advantage of multiple aspects of the representation of the application and eliminate almost
entirely the usage of the web page internals details (i.e., the DOM). On the other hand, using the
complete information contained in the DOM allows to generate very robust locators (see Section 4)
that cannot otherwise be created.

While the goal of some of the approaches listed above (e.g., ATA) is similar to that to ROBULA+,
the technical solution is completely different. In fact, ROBULA+ is focused exclusively on the DOM
locators and their robustness, without considering any natural language processing or visual landmark
identification for the automatic adaptation of test scripts to changes. While it would be interesting
to compare ROBULA+ with such different approaches and to integrate ROBULA+ with them, so as
to compensate for each other’s weaknesses (indeed, this is part of the plan for our future work), we
can anyway notice that operating on the DOM locators alone provides already quite remarkable
results and improvements, as reported in Section 4. Moreover, ROBULA+, differently from ATA
that requires ad-hoc tools, can be adopted by developers at virtually no additional cost, since it only
requires to replace the current locators with those generated by ROBULA+, e.g., by using the Firefox
add-on we developed.

5.2. Information Retrieval and Data Mining

Some works in the context of information retrieval and web data mining deal with robust data
extraction.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

Myllymaki and Jackson [21] describe how robust relative XPath expressions can be manually
generated in terms of hops starting from an anchor (e.g., a particularly stable page content). Due to
the relative proximity of “interesting" data, many individual elements can be effectively extracted
using the same anchor. Unfortunately, these expressions are built manually, leaving the problem
of how to automatically produce such XPath expressions open. Anton [24] introduces two variants
(F-GCP and M-GCP) of a wrapper induction algorithm (a wrapper in this context corresponds to
what we call a locator in web testing) for extracting information from semi-structured documents,
such as XML. The algorithm is built on the work of Myllymaki and Jackson [21] and gives preference
to the use of string and attribute search patterns over structural search patterns, trying to minimize the
wrapper length. The author evaluated the robustness and expressiveness of the two variants, testing
both algorithms on manually annotated example pages of two web applications.

Some empirical studies [23, 20] compare the robustness of absolute and relative XPath expressions
used in wrappers with manually defined relative XPaths. Kowalkiewicz et al. [20] found that, on a
dataset composed of different versions of a large number of web pages, absolute and relative XPaths
were robust respectively in 47% and 76% of the cases.

Dalvi et al. [22] make use of temporal snapshots of web pages to develop a tree-edit model
used to improve the robustness of wrapper construction. They describe an algorithm that learns a
probabilistic model from training examples and returns the complete set of minimal wrappers, i.e.,
XPath expressions containing only the necessary information to be locators, among which the most
robust candidate is selected by using the probabilistic aforementioned model. Both ROBULA and
ROBULA+ generate XPath locators by means of iterative refinements and from this point of view they
follow the same principle of the wrapper generation technique proposed by Dalvi et al. [22]. However,
the key difference of ROBULA+ w.r.t. Dalvi’s approach consists of its web testing-oriented heuristics:
prioritization, black listing, textual information, multiple attributes, etc.; see Section 3. In fact, the
adoption of the iterative refinement principle alone is not sufficient to generate robust locators, as
apparent from the differences in the results of ROBULA+ vs. ROBULA, whose implementation is a
direct derivation from Dalvi’s refinement principle. Moreover, Dalvi’s technique requires to learn a
probabilistic model from a corpus. On the contrary, ROBULA+ requires no learning phase, thus it
can be adopted quite easily by any web tester. For what concerns the algorithmic details, ROBULA+
implements several improvements over Dalvi’s approach, such as specializing only the head of an
XPath (without reducing the XPath generation power), using only information available in a node
or in its ancestors (to speed up convergence) and returning the first unique locator generated by the
algorithm, since it is by construction the best candidate to return.

6. CONCLUSIONS AND FUTURE WORK

We proposed and experimented ROBULA+, a novel algorithm for automatically generating robust
web testing-oriented XPath locators. We have compared the robustness of the locators generated by
state of the art/practice tools and algorithms (i.e., FirePath absolute and id-based relative locators,
Selenium IDE, Montoto and ROBULA) with the ones generated by ROBULA+. Results indicate that
the locators generated by ROBULA+ are significantly better in terms of robustness than all the other
kinds of locators, with 63% to 90% fragility reduction, which is expected to be associated with a
corresponding reduction of the maintenance effort required to repair the test cases. Experimental
results support the intuition behind ROBULA+, i.e., that maintaining the XPath locators as short
as possible together with a smart combination of predicates help to obtain a lower fragility. The
time required by ROBULA+ for generating the XPath locators is acceptable for a human web tester
(only 0.17 seconds per locator on average). The Java implementation of ROBULA+ can be freely
downloaded from our web site, as well as a preliminary version of a Firefox add-on implementing
the algorithm (we plan to make it available on short notice in the official Firefox add-on store).

In our short term future work, we plan to: (1) experiment ROBULA+ with more web applications
(considering also rich internet applications) and web elements, (2) develop a transformation tool
able to restructure a whole test suite, replacing fragile locators with ROBULA+’s generated locators.
For this task, we will use a technique similar to the one we adopted in a previous work [29] for

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

MAURIZIO LEOTTA ET AL.

migrating DOM-based test code to the Visual approach. Moreover, we plan to formulate the problem
of generating robust XPath locators as a graph search problem [30], so that we may apply greedy and
meta-heuristic solutions (e.g., based on a genetic algorithm). For cross-browser compatibility, we also
plan to extend ROBULA+ in order to generate locators that are ensured to work on different browsers.
We plan to evaluate the actual readability of ROBULA+ locators (e.g., comparing ROBULA+ with
the other algorithms, but also the various variants of ROBULA+, e.g., enabling or not the wildcard
“*” specialization) by means of controlled experiments with humans. Finally, after having used a
preliminary version of the Robust Locator Algorithm as part of the multi-locator approach [31], we
plan to investigate the problem of generating robust XPath expressions able to select at the same time
multiple DOM-elements.

REFERENCES

1. Tonella P, Ricca F, Marchetto A. Recent advances in web testing. Advances in Computers 2014; 93:1–51, doi:
10.1016/b978-0-12-800162-2.00001-4. URL http://dx.doi.org/10.1016/b978-0-12-800162-2.
00001-4.

2. Chapman P, Evans D. Automated black-box detection of side-channel vulnerabilities in web applications. Proceedings
of the 18th Conference on Computer and Communications Security, CCS 2011, ACM: New York, NY, USA, 2011;
263–274, doi:10.1145/2046707.2046737. URL http://dx.doi.org/10.1145/2046707.2046737.

3. Bruns A, Kornstadt A, Wichmann D. Web application tests with Selenium. IEEE Software 2009; 26(5):88–91,
doi:10.1109/ms.2009.144. URL http://dx.doi.org/10.1109/ms.2009.144.

4. Chang TH, Yeh T, Miller RC. GUI testing using computer vision. Proceedings of the 28th ACM Conference on
Human Factors in Computing Systems, CHI 2010, ACM, 2010; 1535–1544, doi:10.1145/1753326.1753555. URL
http://dx.doi.org/10.1145/1753326.1753555.

5. Thummalapenta S, Devaki P, Sinha S, Chandra S, Gnanasundaram S, Nagaraj DD, Sathishkumar S. Efficient and
change-resilient test automation: An industrial case study. Proceedings of the 35th International Conference
on Software Engineering, ICSE 2013, IEEE Press, 2013; 1002–1011, doi:10.1109/icse.2013.6606650. URL
http://dx.doi.org/10.1109/icse.2013.6606650.

6. Yandrapally R, Thummalapenta S, Sinha S, Chandra S. Robust test automation using contextual clues. Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014, ACM, 2014; 304–314,
doi:10.1145/2610384.2610390. URL http://dx.doi.org/10.1145/2610384.2610390.

7. Massol V, Husted T. JUnit in Action. Manning Publications Co.: Greenwich, CT, USA, 2003.
8. Leotta M, Clerissi D, Ricca F, Tonella P. Capture-Replay vs. Programmable Web Testing: An Empirical Assessment

during Test Case Evolution. Proceedings of 20th Working Conference on Reverse Engineering, WCRE 2013, IEEE,
2013; 272–281, doi:10.1109/WCRE.2013.6671302. URL http://dx.doi.org/10.1109/WCRE.2013.
6671302.

9. Leotta M, Stocco A, Ricca F, Tonella P. Reducing web test cases aging by means of robust XPath locators.
Proceedings of 25th International Symposium on Software Reliability Engineering Workshops, ISSREW 2014, IEEE,
2014; 449–454, doi:10.1109/ISSREW.2014.17. URL http://dx.doi.org/10.1109/ISSREW.2014.17.

10. Montoto P, Pan A, Raposo J, Bellas F, Lopez J. Automated browsing in Ajax websites. Data & Knowledge
Engineering 2011; 70(3):269 – 283, doi:10.1016/j.datak.2010.12.001. URL http://dx.doi.org/10.1016/
j.datak.2010.12.001.

11. Leotta M, Clerissi D, Ricca F, Tonella P. Approaches and tools for automated end-to-end web testing. Advances in
Computers 2016; 101:193–237, doi:10.1016/bs.adcom.2015.11.007. URL http://dx.doi.org/10.1016/
bs.adcom.2015.11.007.

12. Choudhary SR, Zhao D, Versee H, Orso A. WATER: Web application TEst repair. Proceedings of the 1st International
Workshop on End-to-End Test Script Engineering, ETSE 2011, ACM, 2011; 24–29, doi:10.1145/2002931.2002935.
URL http://dx.doi.org/10.1145/2002931.2002935.

13. Mirzaaghaei M. Automatic test suite evolution. Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ESEC/FSE 2011, ACM, 2011; 396–399,
doi:10.1145/2025113.2025172. URL http://dx.doi.org/10.1145/2025113.2025172.

14. Leotta M, Clerissi D, Ricca F, Spadaro C. Improving Test Suites Maintainability with the Page Object Pattern: An
Industrial Case Study. Proceedings of 6th International Conference on Software Testing, Verification and Validation
Workshops, ICSTW 2013, IEEE, 2013; 108–113, doi:10.1109/ICSTW.2013.19. URL http://dx.doi.org/10.
1109/ICSTW.2013.19.

15. Christophe L, Stevens R, De Roover C, De Meuter W. Prevalence and maintenance of automated functional tests
for web applications. Proceedings of the 30th International Conference on Software Maintenance and Evolution,
ICSME 2014, IEEE, 2014; 141–150, doi:10.1109/ICSME.2014.36. URL http://dx.doi.org/10.1109/
icsme.2014.36.

16. Collins E, de Lucena V. Software test automation practices in agile development environment: An industry experience
report. Proceedings of the 7th International Workshop on Automation of Software Test, AST 2012, IEEE, 2012;
57–63, doi:10.1109/iwast.2012.6228991. URL http://dx.doi.org/10.1109/iwast.2012.6228991.

17. Leotta M, Clerissi D, Ricca F, Spadaro C. Comparing the Maintainability of Selenium WebDriver Test Suites
Employing Different Locators: A Case Study. Proceedings of 1st International Workshop on Joining AcadeMiA and
Industry Contributions to testing Automation, JAMAICA 2013, ACM, 2013; 53–58, doi:10.1145/2489280.2489284.
URL http://dx.doi.org/10.1145/2489280.2489284.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

ROBULA+: AN ALGORITHM FOR GENERATING ROBUST XPATH LOCATORS

18. Rao G, Pachunoori A. Optimized identification techniques using XPath. Technical Report MSU-CSE-00-2, IBM
Developerworks 2013.

19. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers: Norwell, MA, USA, 2000.

20. Kowalkiewicz M, Orlowska ME, Kaczmarek T, Abramowicz W. Robust web content extraction. Proceedings of
the 15th International Conference on World Wide Web, WWW 2006, ACM, 2006; 887–888, doi:10.1145/1135777.
1135928. URL http://dx.doi.org/10.1145/1135777.1135928.

21. Myllymaki J, Jackson J. Robust web data extraction with XML path expressions. IBM Research Report 2002; .
22. Dalvi N, Bohannon P, Sha F. Robust web extraction: an approach based on a probabilistic tree-edit model. Proceedings

of the 35th ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, ACM, 2009; 335–348,
doi:10.1145/1559845.1559882. URL http://dx.doi.org/10.1145/1559845.1559882.

23. Abe M, Hori M. Robust pointing by XPath language: authoring support and empirical evaluation. Proceedings of
the 3rd Symposium on Applications and the Internet, SAINT 2003, IEEE, 2003; 156–165, doi:10.1109/saint.2003.
1183044. URL http://dx.doi.org/10.1109/saint.2003.1183044.

24. Anton T. XPath-wrapper induction by generating tree traversal patterns. Lernen, Wissensentdeckung und Adaptivität,
GI Workshops, LWA 2005, DFKI, 2005; 126–133.

25. Grechanik M, Xie Q, Fu C. Maintaining and evolving GUI-directed test scripts. Proceedings of the 31st International
Conference on Software Engineering, ICSE 2009, IEEE, 2009; 408–418, doi:10.1109/icse.2009.5070540. URL
http://dx.doi.org/10.1109/icse.2009.5070540.

26. Thummalapenta S, Singhania N, Devaki P, Sinha S, Chandra S, Das AK, Mangipudi S. Efficiently scripting change-
resilient tests. Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012, ACM, 2012; 41:1–41:2, doi:10.1145/2393596.2393643. URL http://dx.doi.org/
10.1145/2393596.2393643.

27. Thummalapenta S, Sinha S, Singhania N, Chandra S. Automating test automation. Proceedings of the 34th
International Conference on Software Engineering, ICSE 2012, IEEE Press, 2012; 881–891, doi:10.1109/icse.
2012.6227131. URL http://dx.doi.org/10.1109/icse.2012.6227131.

28. Pirzadeh H, Shanian S. Resilient user interface level tests. Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 2014, ACM, 2014; 683–688, doi:10.1145/2642937.2642954.
URL http://dx.doi.org/10.1145/2642937.2642954.

29. Leotta M, Stocco A, Ricca F, Tonella P. Automated generation of visual web tests from DOM-based web tests.
Proceedings of 30th ACM/SIGAPP Symposium on Applied Computing, SAC 2015, ACM, 2015; 775–782, doi:
10.1145/2695664.2695847. URL http://dx.doi.org/10.1145/2695664.2695847.

30. Leotta M, Stocco A, Ricca F, Tonella P. Meta-heuristic generation of robust XPath locators for web testing.
Proceedings of 8th IEEE/ACM International Workshop on Search-Based Software Testing, SBST 2015, IEEE, 2015;
36–39, doi:10.1109/SBST.2015.16. URL http://dx.doi.org/10.1109/SBST.2015.16.

31. Leotta M, Stocco A, Ricca F, Tonella P. Using multi-locators to increase the robustness of web test cases. Proceedings
of 8th IEEE International Conference on Software Testing, Verification and Validation, ICST 2015, IEEE, 2015;
1–10, doi:10.1109/ICST.2015.7102611. URL http://dx.doi.org/10.1109/ICST.2015.7102611.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls

