
Automatic Page Objects Generation with APOGEN

Andrea Stocco1, Maurizio Leotta1, Filippo Ricca1, Paolo Tonella2

1 DIBRIS – Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

andrea.stocco@dibris.unige.it, maurizio.leotta@unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract. Page objects are used in web test automation to decouple the test cases
logic from their concrete implementation. Despite the undeniable advantages they
bring, as decreasing the maintenance effort of a test suite, yet the burden of their
manual development limits their wide adoption. In this demo paper, we give an
overview of APOGEN, a tool that leverages reverse engineering, clustering and
static analysis, to automatically generate Java page objects for web applications.

1 Introduction and Motivation

Automated web test code created for tools such as Selenium3 is renown for being difficult
to maintain as the application under test evolves [1]. When the same functionality must
be necessarily invoked within multiple test cases (e.g., user login), a major drawback is
the duplication of code within the test suite.

Page objects can effectively improve the maintainability and longevity of a web test
suite [1], because they hide the technical details about how the test code interacts with
the web page behind a more readable and business-focused facade. Indeed, they can be
considered as an API toward the web application: the web pages are represented as object-
oriented classes, encapsulating the functionalities offered by each page as methods. In
this way, the tests specification is well separated from their concrete implementation.

There are clear advantages stemming from the adoption of page objects within the
test code [1]. However, their manual development is expensive and existing tools (e.g.,
OHMAP4, SWD Page Recorder5, or WTF PageObject Utility Chrome Extension6) offer
poor assistance in the creation of the source code [3]. In short, most of the page objects
development effort is still on the shoulders of the tester.

Our tool APOGEN [3, 4] is the first solution providing a considerable degree of
automation, offering a more complete page objects generation tool, that can be used as a
baseline to create well-architected, and thus more maintainable, web test suites.

The demo paper is organised as follows: Section 2 describes the high level architec-
ture of APOGEN and illustrates its functioning from the user’s perspective, by means of
a running example. Conclusions are drawn in Section 3.

3 http://www.seleniumhq.org/
4 http://ohmap.virtuetech.de/
5 https://github.com/dzharii/swd-recorder
6 https://github.com/wiredrive/wtframework/wiki/WTFPageObjectUtilityChromeExtension

2 Tool Architecture and Running Example

We now explain the tool architecture, how a web tester can automatically generate page
objects using APOGEN, and how such page objects are used for the construction of a
web test case. Fig. 1 shows the high level architecture of APOGEN [4]. APOGEN has
been developed in Java, making use of several external libraries and tools.

Crawler

Web Application

Code
Generator

Page Objects for
Web Application

Static Analyser

Clusterer

= full automatic module = (possible) manual intervention

(1) (2) (3)

(4)(5)

Cluster
Visual Editor

Fig. 1. High level architecture of APOGEN

The Crawler (1) is built on top of Crawljax [2], a state of the art tool for fully
customisable exploration of highly-dynamic web applications. Since the model retrieved
by the Crawler can be huge, the Clusterer (2) groups conceptually correlated web pages
within the same cluster [4], using clustering algorithms available from the popular
machine learning library WEKA [5].

The Clusters Visual Editor (CVE) (3) is a web-based tool developed using the D3
library7. It supports the tester with an interactive cluster visualisation and editor facility,
allowing her to inspect and modify the clustering results. Indeed, CVE allows the tester
to interactively move nodes to the cluster they should belong to, in order to manually
refine the output of the Clusterer (see the stickman in Fig. 1).

The Static Analyser (4) uses JavaParser8 and XMLUnit9. The former is used to
gather information from the web pages Document Object Model (DOM) and build an
abstract representation for each cluster of web pages. The latter, instead, is used to collect
the dynamic portions of the web pages within the same cluster (performing intra-cluster
DOM differencing), on top of which the tester might create test case assertions.

In the last step, the Code Generator (5) transforms each cluster into a Java page
object, tailored for the Selenium WebDriver framework10. The Code Generator uses
JavaParser to iteratively create from scratch the abstract syntax trees (AST) of the Java
page objects. The class name derives from information associated with the cluster,
together with a standard package name (po) and the necessary WebDriver imports. The
class is populated with a WebElement instance for each web element in the cluster,
properly annotated with a @FindBy annotation, specifying the locator (XPath or CSS).
The class constructor contains a Selenium WebDriver variable to control the browser

7 http://d3js.org/
8 http://javaparser.github.io/javaparser/
9 http://www.xmlunit.org/

10 http://www.seleniumhq.org/projects/webdriver/

and resorts to the PageFactory11 pattern to initialise the web elements at once. The
methods that APOGEN generates are of three types: navigations between page objects,
representing the links and the graph transitions (e.g., login page → home page), actions
wrapping every data-submitting form and exposing the associated functionality (e.g., the
login form), and getters – methods which retrieve textual portions of a web page that
can be used to verify the behaviour of the web application through test case assertions
(e.g., the total of a shopping cart).

The output of APOGEN is a set of Java page objects that reflect the pages of the
web application, organised using the Page Factory design pattern, as supported by
the Selenium WebDriver framework. The generated code can of course be modified
according to the tester’s wishes. A more detailed description and evaluation of the tool
can be found in our recent papers [3, 4], while a web page containing demo videos is
available at: http://sepl.dibris.unige.it/APOGEN.php.
Running APOGEN on PETCLINIC. Let us consider PETCLINIC12, a veterinary clinic
web application allowing veterinarians to manage data about pets and their owners.
PETCLINIC makes use of technologies as Java Spring Framework, JavaBeans, MVC
presentation layer and Hibernate. It consists of 94 files of various type (Java, XML,
JSP, XSD, HTML, CSS, SQL, etc.), for a total of about 12 kLOC, of which 6.1 kLOC
accounting for Java source files (63 Java classes). Hence, it is a medium size web system,
with features and technologies that are quite typical of many similar systems available
on the web.

We provided APOGEN with the URL of PETCLINIC (http://localhost:9966/petclinic/ on
ours local machine), together with the data necessary for the login and form navigation.
This task can be performed either via the tool’s GUI, or by setting a configuration file.
In the next step, the Crawler (1) reverse-engineered a graph-based representation of the
web application, coming up with 26 nodes, i.e., 26 dynamic states of the web pages, and
105 event-based transitions between such nodes.

However, the manual inspection of such graph was challenging. Indeed, the high
number of dynamic states (26) and transitions (105) made the visualisation of the graph
quite tangled, definitely undermining its understandability and reducing the effectiveness
of the automated page object creation. For this reason, the Clusterer (2) executed a
clustering algorithm over the graph, with the aim of grouping within the same cluster
web pages conceptually correlated among each other. Clusterer’s default setting is
[clustering algorithm=“Hierarchical Agglomerative”, feature vector=“DOM tree-edit
distance”], because this was empirically found to be effective in producing clusters
of web pages close to those manually defined by a human tester [4]. In the case of
PETCLINIC, 10 clusters were found and displayed by CVE (3). We manually inspected
the clustering results. Since the Clusterer was able to find the best page-to-cluster
assignment automatically, no manual adjustments were necessary. It is worth to mention
that, without the use of clustering, APOGEN would have been generated 26 page objects
for PETCLINIC (a 160% increment in the amount of generated page objects, and therefore
of duplicated and useless code). In the next steps of the approach, the Static Analyser (4),

11 https://code.google.com/p/selenium/wiki/PageFactory
12 https://github.com/spring-projects/spring-petclinic

public class TestAddOwnerWithPageObjects {
 @Test
 public void testAddOwner(){
 WebDriver driver = new FirefoxDriver().get(“http://localhost:9966/petclinic/”);
 Index indexPage = new Index(driver);
 Find findPage = indexPage.goToFind();
 New1 addOwnerPage = findPage.goToNew1();
 addOwnerPage.add_owner_form(“Betty”, “Davis”, “638 Cardinal Ave.”, “Sun Prairie”, “6085551749”);
 OwnerInfo newOwnerPage = new OwnerInfo(driver);
 AssertThat(newOwnerPage.get_b_Name(), is(“Betty Davis”));
 driver.quit();
 } }

public class New1 {
// Web Elements
@FindBy(css = "#firstName")
private WebElement input_firstName;
@FindBy(css = "#lastName")
private WebElement input_lastName;
...
// Action
public void add_owner_form(
String args0, String args1,
String args2, String args3, String args4){

input_firstName.sendKeys(args0);
input_lastName.sendKeys(args1);
input_address.sendKeys(args2);
input_city.sendKeys(args3);
input_telephone.sendKeys(args4);
button_Add_Owner.click();

} }

public class Find {
// Web Elements
@FindBy(xpath=“…/A”)
private WebElement add_owner;
...
// Navigation
public New1 goToNew1(){

add_owner.click();
return new New1();

}
...
// Action
public Owners findOwners(

String s){
lastname.sendKeys(s);
findButton.click();
return new Owners();

}
 }

public class OwnerInfo {
// Web Elements
@FindBy(xpath=“…/B”)
private WebElement b_name;
...
// Getters
public String get_b_Name() {

return b_Name.getText();
}
...

}

W
eb

 P
ag

es
Pa

ge
 O

bj
ec

ts
Te

st
 C

as
e

public class Index {
// Web Elements
@FindBy(xpath=“…/A”)
private WebElement

find_owners;
...
// Navigation
public Find goToFind(){

find_owners.click();
return new Find();

}
...

 }

Fig. 2. Page objects generated by APOGEN to support a web test case development

and the Code Generator (5) ran to completion and automatically generated 10 Java page
objects for PETCLINIC.
Page Objects to Support Test Case Development. Fig. 2 shows a test case for the “Add
Owner” functionality of PETCLINIC, developed using the methods of the page objects
generated by APOGEN. For space constraints, we limit the code only to the methods that
are used by the test, in the considered test scenario. We can see how the page objects
effectively realise the use case scenario steps as methods, and thus, are an effective aid
for the tester during the creation of a real web test case for PETCLINIC.

3 Conclusions
We presented APOGEN, a prototype research tool for the automatic generation of page
objects to be used for web applications testing. APOGEN leverages a combination of
non-trivial techniques, such as reverse-engineering, machine learning, web-visualisation,
HTML static analysis and differencing, and AST creation. APOGEN represents the most
advanced state of the art tool for the automatic generation of page objects for web
applications, because it is the first solution providing a high degree of automation.

References

1. M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Approaches and tools for automated end-to-end
web testing. Advances in Computers, 101:193–237, 2016.

2. A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. TWEB, 6(1):3:1–3:30, 2012.

3. A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why creating web page objects manually if it
can be done automatically? In Proc. of AST, pages 70–74. IEEE, 2015.

4. A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Clustering-aided web page objects generation.
In Proc. of 16th International Conference of Web Enginnering, ICWE, 2016.

5. I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

A Appendix

APOGEN’s home-page is at: http://sepl.dibris.unige.it/APOGEN.php
The web page includes the papers references, the tool source code, a demo of the Clusters
Visual Editor (CVE), and two demo videos. A user manual with step-by-step instructions
on how to install and use APOGEN is available at:

http://www.disi.unige.it/person/StoccoA/apogen/APOGEN-user-manual.pdf

The tool demonstration will be along the same spirit as the example in Section
“Running APOGEN on PETCLINIC” of the demo paper. However, it will run interactively
on a real-world application and it will include many more details on the benefits in real
testing scenarios, the tool architecture, and the functionalities it offers. The demo will
consists of three parts:

– An overview of APOGEN, where we discuss its general design principles and its
overall usage workflow (as in Fig. 1);

– A demonstration consisting of a step-by-step illustration of how to use APOGEN
to generate page objects for a sample real-world application. We will conduct the
demo on a web application hosted on our local machine, to avoid any delays, or
potential communication overhead. We will show how to setup the tool parameters
via the GUI, illustrating each step of the page objects generation, and discussing
each intermediate module (e.g., the use of the CVE, see Figure 3);

– A concluding part, where we will develop one or more simple functional test cases,
using the freshly generated page objects of APOGEN for the sample web application.
The aim is dual: (1) demonstrate the effective aid for the tester during the creation
of real web test cases, and (2) illustrate the structure and readability of the generated
code.

APOGEN Clusters Visual Editor
Drag the states outside or inside the clusters to modify the configuration

Refresh Save

Fig. 3. Clusters Visual Editor (CVE) of APOGEN

