
APOGEN: automatic page object generator for web
testing

Andrea Stocco1 • Maurizio Leotta1 • Filippo Ricca1 •

Paolo Tonella2

� Springer Science+Business Media New York 2016

Abstract Modern web applications are characterized by ultra-rapid development cycles, and

web testers tend to pay scant attention to the quality of their automated end-to-end test suites.

Indeed, these quickly become hard to maintain, as the application under test evolves. As a

result, end-to-end automated test suites are abandoned, despite their great potential for

catching regressions. The use of the Page Object pattern has proven to be very effective in

end-to-end web testing. Page objects are façade classes abstracting the internals of web pages

into high-level business functions that can be invoked by the test cases. By decoupling test

code from web page details, web test cases are more readable and maintainable. However, the

manual development of such page objects requires substantial coding effort, which is paid off

only later, during software evolution. In this paper, we describe a novel approach for the

automatic generation of page objects for web applications. Our approach is implemented in

the tool APOGEN, which automatically derives a testing model by reverse engineering the

target web application. It combines clustering and static analysis to identify meaningful page

abstractions that are automatically turned into Java page objects for Selenium WebDriver.

Our evaluation on an open-source web application shows that our approach is highly

promising: Automatically generated page object methods cover most of the application

functionalities and result in readable and meaningful code, which can be very useful to

support the creation of more maintainable web test suites.

& Andrea Stocco
andrea.stocco@dibris.unige.it

Maurizio Leotta
maurizio.leotta@unige.it

Filippo Ricca
filippo.ricca@unige.it

Paolo Tonella
tonella@fbk.eu

1 DIBRIS - Università degli Studi di Genova, Genoa, Italy

2 Fondazione Bruno Kessler, Trento, Italy

123

Software Qual J
DOI 10.1007/s11219-016-9331-9

http://orcid.org/0000-0001-8956-3894
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0002-3928-5408
http://orcid.org/0000-0003-3088-0339
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9331-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9331-9&domain=pdf

Keywords Web testing � End-to-end testing � Page object pattern � Reverse engineering �
Selenium WebDriver � Clustering

1 Introduction

Developing large web-based software systems is a challenge for software companies.

Modern web applications undergo ultra-rapid development cycles, because business needs

demand quick turnaround, pushing new features and bug fixes to production within days,

along with quality assurance. Software organizations want to adequately test their software,

as quickly as possible, because of time and cost constraints. In this context, manual testing

is inadequate, since it is labor-intensive, error-prone, and it does not support the same kind

of quality checks that are possible through the use of an automated testing framework.

In test automation, testers develop test scripts representing requirements scenarios,

using a high-level programming language (e.g., Java, Python, Ruby). Automated tests can

run fast and frequently, making them quite cost-effective for web software with a rea-

sonable life expectancy. In an agile environment, the ability to react fast to ever-changing

requirements is essential, because new test cases are developed and added to existing test

suites in parallel with the development of the software itself. Automated testing shortens

testing cycles and helps teams become more agile. For these reasons, test automation tools

have become quite popular in the industry during the last 10 years across a wide range of

testing tasks such as regression, system or GUI testing (Binder 1996; Fewster and Graham

1999; Ramler and Wolfmaier 2006; Nguyen et al. 2014; Gao et al. 2015).

Despite their wide adoption, end-to-end test automation tools bring the problem of

maintaining test scripts during software evolution—an issue well-known by practitioners.

In fact, albeit they make the interaction between tests and applications easier, they do not

help testers to write well-architected test suites. This may generate serious issues during

maintenance, because the effort to adapt a test suite to a web application in continuous

evolution can be burdensome. The consequences range from lack of product quality,

customer dissatisfaction and, ultimately, project failure. While there are interesting

research contributions that try to address the testware evolution problem (Leotta et al.

2016a, 2014b, 2015; Thummalapenta et al. 2013; Yandrapally et al. 2014; Choudhary

et al. 2011; Hammoudi et al. 2016a), we are far from a consolidated solution.

Software engineering best practices, such as design patterns, have proven to be suc-

cessful in industrial settings. Above all, in web test automation, the ‘‘Page Object’’ design

pattern has emerged as the most important pattern for enhancing test maintenance,

reducing code duplication and lowering the coupling between test cases and web appli-

cations. A Page Object is an object-oriented class that serves as an interface toward a web

page of the application under test (AUT). Test cases use the methods of the page object

class whenever they need to interact with an element of the user interface (GUI). The

benefit is that the test scripts do not need to be modified if the application underneath them

changes. There is empirical evidence of the benefits associated with the adoption of the

Page Object pattern in the maintenance of web test suites, both within an industrial

environment (Leotta et al. 2013a) and in academia (Leotta et al. 2016a, 2013b). Unfor-

tunately, the burden for the manual implementation of page objects is still on the shoulders

of testers. In fact, existing tools are very limited and no automatic and effective research

solutions have been proposed yet. We are the first to address the challenging research

Software Qual J

123

problem of the automatic generation of page objects for web testing by means of our tool

APOGEN.

The motivation behind our work is twofold. First, APOGEN can help the tester save

precious testing time in the creation of test suites for web applications, by automating the

creation of a considerable amount of code that should be otherwise written manually.

Second, it has been empirically shown that low-quality test suites are often abandoned

(Christophe et al. 2014). For a tester, it is challenging to cope with the rapid evolution of

the web application under test, because even small layout changes may result in several

breakages (Leotta et al. 2016a, b; Hammoudi et al. 2016b). A possible solution to mitigate

this problem is to have well-architected test suites, based on consolidated design patterns,

which make them easy to modify and evolve. This motivates the importance of having

page objects within web test suites, as well as our efforts in the development of APOGEN.

This article is an extended version of our original short paper about APOGEN (Stocco

et al. 2015). It includes the following contributions:

– a detailed description of our approach for automatic page object generation;

– the tool APOGEN, which implements our approach;

– two totally new modules of APOGEN (the Clusterer, and the Cluster Visual Editor) able

to improve the usage and effectiveness of the version of APOGEN presented in Stocco

et al. (2015);

– the automatic creation of page object getter methods, capable of detecting and

reporting Document Object Model (DOM) differences observed between web pages

within the same cluster;

– a case study illustrating APOGEN on a real-world web application.

The paper is organized as follows: Sect. 2 provides background on the Page Object

design pattern and presents the case study used for the evaluation and the tools available to

help developers in the page object creation. Section 3 describes our approach and the tool

APOGEN, detailing each step on examples taken from the case study. Section 4 presents

some initial experimental results to evaluate the effectiveness of APOGEN, as well as its

limitations, and the future work we plan to carry out to improve our tool. Related works are

commented in Sect. 5, while conclusions are drawn in Sect. 6.

2 Background

In this section, we concisely present our case study, PETCLINIC, and we introduce the Page

Object design pattern, explaining why its adoption in test suites for web applications brings

considerable advantages. At last, we briefly classify the tools available on the market to

assist testers in the implementation of page objects, together with their limitations.

2.1 Case study

In this paper, we use as case study, PETCLINIC,1 a veterinary clinic web application allowing

veterinarians to manage data about pets and their owners. PETCLINIC has been developed

with the Java Spring Framework2 and makes use of technologies as JavaBeans, MVC

presentation layer and Hibernate. PETCLINIC consists of 94 files of various type (Java,

1 https://github.com/spring-projects/spring-petclinic.
2 http://projects.spring.io/spring-framework/.

Software Qual J

123

https://github.com/spring-projects/spring-petclinic
http://projects.spring.io/spring-framework/

XML, JSP, XSD, HTML, CSS, SQL, etc.), for a total of about 12 kLOC (thousands Lines

Of Code), of which 6.1 kLOC accounting for Java source files (63 Java classes). Hence, it

is a medium-size web system, with features and involving technologies that are quite

typical of many similar systems available nowadays on the web. PETCLINIC supports the

following use cases:

– View a list of veterinarians and their specialties

– View information pertaining to a pet owner

– Update the information pertaining to a pet owner

– Add a new pet owner to the system

– View information pertaining to a pet

– Update the information pertaining to a pet

– Add a new pet to the system

– View information pertaining to a pet’s visitation history

– Add information pertaining to a visit to the pet’s visitation history

2.2 Tension between test specification and implementation

End-to-end functional testing of web applications is a type of black box testing based on

the concept of test scenario, a sequence of steps/actions performed on the AUT. One or

more test cases can be derived from a test scenario by specifying the actual input data to

use in each step, and the expected outcomes. In automated web testing, web testers

implement scenarios by writing test code composed by commands, which provide input

data and set the values of GUI components, and by assertions to determine whether the

program behaves correctly. Unfortunately, resulting test code is usually difficult to

maintain and evolve. One of the main issues is the duplication of code among the test

cases. When the same functionality must be necessarily invoked within multiple test cases

(e.g., user login), a major drawback is the presence of the same code fragment within

different test cases. Often, such code fragment only specifies implementation details (e.g.,

username.sendKeys(‘‘admin’’)), which are duplicated, instead of being shared and reused

across test cases. Indeed, while performing any testing activity, it is important to distin-

guish between test specification and test implementation, keeping the test logic separated

from the implementation details.

Figure 1a displays a page of PETCLINIC in which users are allowed to search for pets’

owners, by specifying the last name. A test specification for the ‘‘happy scenario’’ might

be:

When the user enters an owner’s last name and clicks the hFind Owner i button, she

can access her pets list

This scenario describes a specification of what the test should do. On the other hand, the

test implementation includes all the details on how to technically perform it, dealing with

concrete aspects like: the surname field is named ‘‘lastname’’ and the submit button is

found on the GUI by the XPath ‘‘//*[@id=’search-owner-form’]/fieldset/div[2]/button.’’

Thus, the test implementation is often strongly coupled with the underlying HTML page.

When a maintenance activity occurs on the AUT, e.g., for functionalities improve-

ment/correction, most of such technical details are impacted and need the tester

intervention to correct all test cases invalidated by the changes. On the other hand, the

test specification is less prone to change (users still need to insert the last name and click

the submit button) and should be preserved (Leotta et al. 2014a).

Software Qual J

123

Separating the test specification from its implementation makes tests more concise and

maintainable. However, test specification and implementation are often mixed up in the

test code, and the lack of a proper abstraction for recurring functionalities makes the two

notions collide. Ideally, if a web page of the AUT changes, testers would like to modify

only a single, reused code fragment, instead of changing every single test case impacted by

the change.

2.3 Page objects to the rescue

The test specification can be separated from its implementation by using the Page Object

design pattern. Page objects hide the technical details about how the test code interacts

with the web page, behind a more readable and business-focused façade. Specifically, page

objects act as a programmable interface toward the web application: They represent the

GUIs as a series of object-oriented classes that encapsulate the functionalities offered by

each page into methods.

For instance, Figure 1a shows a web page of our case study, PETCLINIC, for which we

provide an abstract representation in terms of web elements and functionalities in Fig. 1b.

The Web Elements are the GUI entities on which a user can interact, whereas the Func-

tionalities are behaviors triggered after an event has occurred on a web element (e.g., a

click on the Veterinarians link performs a navigation toward the veterinarians page). In

Fig. 1c, we can see how this information can be represented in a Java page object,

implemented upon the Selenium WebDriver framework:3 Each GUI element becomes a

3 http://docs.seleniumhq.org/projects/webdriver/.

(a)

(b)

(c)

Fig. 1 A web page of the case study PETCLINIC (a), together with its abstract representation in terms of Web
Elements and Functionalities (Navigations and Actions) (b), and an associated page object in Java language
(c)

Software Qual J

123

http://docs.seleniumhq.org/projects/webdriver/

WebElement class instance, properly named and annotated with a @FindBy annotation

containing the locator,4 i.e., the specification of how to identify such web element on the

GUI. The page object exposes the web page functionalities as methods. For what concerns

navigations, in PETCLINIC there are navigational methods for the four menu bar links (in

Fig. 1c, due to space constraints, we report only the navigation toward the Home page).

The form for finding the pet’s owners is wrapped in a method, which exposes the asso-

ciated behavior. We call actions every data-submitting functionality in a web page. As a

rule of thumb, page objects methods should return other page objects (Fowler 2013).

2.4 Limitations of the existing page object creation tools

While there are clear advantages in adopting page objects within the test code, their manual

development is expensive and it is expected to increase with the application size. More-

over, manual creation of page objects includes many repetitive and boring tasks that could

be automated. In fact, usually a tester has to: (a) manually inspect the AUT to gather

insights about its functionalities; (b) decide upon which page objects to associate with

separate classes; (c) collect the locators for the web elements with which tests shall interact

(e.g., using tools as FirePath,5 a popular tool for the automatic generation of XPath

expressions for elements inside web pages).

We carried out a review of the tools available in the market. The existing open-source

tools supporting page object creation offer very limited assistance in these tasks. In fact,

existing solutions mostly wrap the HTML content of a unique page and offer limited aid to

the creation of the source code. Tools that are worth to mention are:

– OHMAP:6 An online website allowing users to copy HTML code portions in a text

area. The tool generates a simple Java class containing a WebElement instance for

each input field. Variable names are taken from HTML attributes, and locators are

XPaths similar to the ones generated by FirePath;

– SWD Page Recorder:7 It allows users to launch a web application and to inspect the

GUI with a click&record feature: after every click on the interface, a drop-down menu

is shown for the manual insertion of the web element variable name, while a relative

XPath locator is produced. Code export is available for several languages (Java, C#,

Python, Ruby and Perl);

– WTF PageObject Utility Chrome Extension:8 It assists the tester in the creation of page

objects (providing only access to the web elements), by generating locators of kind: id,

name, CSS, XPath. The output code is in Python.

Beyond the described tools, there are other open-source projects, mostly abandoned or

targeting only specific architectures like .NET9 or Ruby.10

As an example, let us consider the Find Owner web page of PETCLINIC in Fig. 1a. In the

corresponding page object, a web tester would expect to find at least: (1) the necessary web

4 http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#locating-elements.
5 https://addons.mozilla.org/en-US/firefox/addon/firepath/.
6 http://ohmap.virtuetech.de/.
7 https://github.com/dzharii/swd-recorder.
8 https://github.com/wiredrive/wtframework/wiki/WTF-PageObject-Utility-Chrome-Extension.
9 https://github.com/patrickherrmann/Bumblebee.
10 https://github.com/cheezy/page-object

Software Qual J

123

http://docs.seleniumhq.org/docs/02%5fselenium%5fide.jsp%23locating-elements
https://addons.mozilla.org/en-US/firefox/addon/firepath/
http://ohmap.virtuetech.de/
https://github.com/dzharii/swd-recorder
https://github.com/wiredrive/wtframework/wiki/WTF-PageObject-Utility-Chrome-Extension
https://github.com/patrickherrmann/Bumblebee
https://github.com/cheezy/page-object

elements declarations (annotated with the respective locators), (2) four navigational

methods for the menu bar and (3) one action method performing the search.

Figure 2a shows the code automatically generated by OHMAP. As we can notice, the

level of automation of OHMAP is scarce: The tool detected the web elements only within

the Find Owner form, and the generated Java code is merely limited to the declarations of

such web elements. Further, the choice of a meaningful class name is left to the tester, and

no methods for any functionality are present.

Figure 2b shows the code generated by SWD Page Recorder. We recall that the

approach is similar to a capture&replay tool such as Selenium IDE, and thus it is semi-

automated and does need the tester’s intervention. The web elements shown in Fig. 2b are

those interacted with while using SWD Page Recorder. Variable names have to be man-

ually inserted, while locators are created by the tool. Also in this case, the generated Java

code is limited to web element declarations only, and no methods were automatically

recorded/generated.

Figure 2c shows the code generated by WTF PageObject Utility Chrome Extension.

Also in this case, the approach is similar to a capture&replay tool such as Selenium

IDE, and thus it is semi-automated and does need the tester’s intervention. The web

elements shown in Fig. 2c are those interacted with while using the plugin. Variables

names have to be manually inserted, while locators are created by the tool. In this case,

an additional, though trivial, method is present: _validate_page, for evaluating whe-

ther the page is in the correct state. This method performs two checks: It evaluates the

equality between the web page URL and the output of the call to webdriver.cur-
rent_url, and the equality between the web page title and the output of the call to

webdriver.title. No further methods for any other functionality were automatically

recorded/generated.

To summarize, existing tools suffer several, severe limitations and offer low support to

the web tester. In particular: (1) only one page at a time is taken into account, without

considering any notion of dynamism or web application structure, (2) only a small subset

of web elements, among those that can be used in a test, is taken into account, (3) the

generated code consists of basic class skeletons, while the key characteristics of page

objects would be to expose the web application functionalities in methods. This last,

important feature is completely missing in the tools we analyzed so far, with the only

exception being WTF PageObject Utility Chrome Extension, which only creates a trivial

method to verify whether the current page is in the expected state.

With APOGEN we enhanced the level of automation far beyond the creation of a class

skeleton containing web elements, exploiting the knowledge present in the application

itself. Figure 3 shows the code generated by APOGEN for the Find Owner page of PETCLINIC

in Fig. 1a. Let us analyze it in detail.

First, the class provides an automatically generated and meaningful class name (i.e.,

Find), which is retrieved by parsing the URL of the web page. Second, all the web

elements of interest for web testing are present, with automatically generated variable

names, which are very understandable and are easy to trace back to the web page GUI.

Third, a constructor adopting the Page Factory pattern is automatically created. The

constructor aims at initializing the web elements and the WebDriver instance within the

class. Fourth, all the navigational methods are automatically generated for all the menu

bar links in the page. The return parameter is the target page object, and the method

name is, in most cases, very understandable. Finally, there is a method (e.g.,

search_new_owner_form) exposing the action within the form. The method name is

also very understandable. The return parameter is left void, because the target page

Software Qual J

123

object is unknown, since APOGEN misses the next dynamic state. In fact, in this case there

could be multiple targets (i.e., multiple dynamic states) depending on the provided input

(see Sect. 4.3).

To summarize, the page objects generated full automatically by APOGEN reflect the

structure of the web pages and are enriched with the following features: (1)

WebElement instances for each ‘‘clickable’’ element (i.e., an element on which it is

possible to perform an action, e.g., links, buttons, input fields); (2) methods to navigate

the aforementioned graph structure; (3) methods to fill and submit forms. Our approach

overcomes the limitations of the existing tools, offering a by far more complete page

object generation approach, so as to substantially reduce the testers’ manual develop-

ment effort.

The gap between APOGEN and the existing tools is huge, as evident from our example.

For this reason, we did not perform an empirical comparison, which would have been of

little scientific interest. We instead preferred to evaluate the level of automation of APOGEN

with respect to human-generated page objects, and we carried out such comparison by

manually defining a gold standard, used as a reference for human generation.

(a)

(b)

(c)

Fig. 2 Comparison between page objects generated by a OHMAP, b SWD Page Recorder and c WTF
PageObject Utility Chrome Extension for the Find Owner page of PetClinic (top)

Software Qual J

123

3 APOGEN approach

Our approach for the automatic generation of page objects consists of the steps summarized in

Fig. 4. First, we infer a model of the AUT by reverse engineering it by means of an event-

based crawler. Then, similar web pages are clustered into syntactically and semantically

meaningful groups. The event-based model (Graph) and the additional information (e.g.,

DOMs and clusters) are statically analyzed to generate a state object-based model. At last, this

model is transformed into meaningful Java page objects, via model to text transformation. In

the following, we detail each step on our case study, PETCLINIC.

The tool APOGEN implements the described approach. It consists of five main modules

(see Fig. 4): a Crawler, a Clusterer, a Cluster Visual Editor, a Static Analyzer and a Code

Generator. The input of APOGEN is any web application, together with the input data

necessary for the login and form navigation. The output is a set of Java page objects,

organized using the Page Factory11 design pattern, as supported by the Selenium Web-

Driver framework.

Fig. 3 The page object generated by APOGEN for the Find Owner page of PetClinic in Fig. 1a

11 PageFactory is used to initialize the web elements and helps to remove boiler-plate code from the page
objects methods. https://code.google.com/p/selenium/wiki/PageFactory.

Software Qual J

123

https://code.google.com/p/selenium/wiki/PageFactory

APOGEN generates page objects automatically, though manual interventions are possible

to refine the result of clustering, or to refine the generated code. We further discuss these

aspects in Sects. 3.3 and 4.3, respectively.

For the interested reader, further details about APOGEN, the source code and demo

videos, are available at: http://sepl.dibris.unige.it/APOGEN.php.

3.1 Crawler

The first step of our approach consists of exercising the web application functionalities. We

perform this task by means of an automatic tool, called crawler (or spider), i.e., a software

able to automatically browse and navigate a web application, reverse engineering its

structure. The goal is to retrieve a high-level representation of the AUT in the form of a

state-based model of the dynamic Document Object Model (DOM) states (Tonella et al.

2014).

For the development of this task in APOGEN, we chose Crawljax (hereafter referred as the

crawler), a state of the art tool for the automatic crawling of interactive web applications

(Mesbah et al. 2012a, b). The crawler automatically creates a state-based graph consid-

ering the dynamic DOM states and the event-based transitions between them. The crawling

results can be visually inspected with the crawler’s built-in plugin, CrawlOverview. The

state graph of PETCLINIC is shown in Fig. 5.

The crawler is fully customizable for ad hoc exploration. In detail, we provided it with

the URL of the AUT, setting no limits on crawling depth, run time and number of states,

albeit the crawler has an internal heuristic to determine whether the crawl is over. Login

credentials and input data are specified separately, to access the application portions and

Fig. 4 High-level overview of APOGEN ’s approach for web page objects creation

Software Qual J

123

http://sepl.dibris.unige.it/APOGEN.php

crawl the states accessible only when specific inputs (e.g., user credentials) are provided.

When the crawling is over, the crawler outputs a result.json file containing the graph

of the web app. Moreover, it returns information about each visited dynamic state: (1)

URL, (2) list of ‘‘clickable’’ elements on the page, (3) DOM, (4) screenshot image and (5)

list of links to other states.

3.2 Clusterer

The crawler is able to expose the visible and hidden portions of the application, as well as,

the connections among web pages. For a tester, however, the manual inspection of this

dense structure can be extremely challenging (see Fig. 5).

The first issue comes from the number of retrieved dynamic states that can be huge (in

the order of hundreds of web pages). The default state abstraction of the crawler is affected

by minor GUI changes leading to the presence of many states (web pages), conceptually

clones of each other. Basically, when it visits the same page with different input data, the

crawler often creates different dynamic states, even though the page is conceptually the

same (Ricca and Tonella 2001; Ricca 2004; Tonella et al. 2014).

The second issue is in the number of edges between the states, which makes the

visualization of the graph quite tangled.

Fig. 5 State graph representation of PETCLINIC, based on dynamic DOM states retrieved by Crawljax, the
crawler adopted in APOGEN

Software Qual J

123

In conclusion, when crawling a non-trivial application, the size of the extracted model

can be huge, undermining its understandability and reducing the effectiveness of the

automated page object creation. In fact, the number of resulting page objects can be

excessively high, including many replications and many similar classes that could be

instead joined together.

To address both issues, we extended APOGEN with an additional module, the Clusterer,

which runs a clustering algorithm over the model. The idea is that web pages worthy to be

represented within the same page object are grouped in the same cluster (as, for instance,

those in Fig. 6). Correspondingly, edges are limited to the cross-cluster connections. We

will deepen such aspects in Sect. 3.4.

We opted for two popular clustering algorithms from the machine learning literature:

Hierarchical Agglomerative (Kaufman and Rousseeuw 1990) and K-means?? (Arthur

and Vassilvitskii 2007). We integrated in APOGEN the implementations available from the

popular Java machine learning library WEKA (Witten et al. 2011).

Clustering algorithms rely on the concept of similarity between web pages. There exist a

number of works studying the factors affecting web page similarity (Blanco et al. 2011;

Sampath 2012; Tombros and Ali 2005), in which authors observed that structural features

are related to semantic properties of the data and provide meaningful means of comparison

between web pages. To this aim, the Clusterer considers the following features: Tag

Frequency, Word Frequency, URL and Document Object Model (DOM). The Clusterer is

able to automatically extract syntactic feature matrixes from the web pages, which are then

used by the clustering algorithms to compute the similarities. For instance, in the case of

the Tag Frequency (which measures the frequency at which tags occur in a web page), the

Clusterer extracts a matrix TL�W , being TL the complete list tags used in the web

application, and W the complete set of web pages. A complete list of the possible

state17

state50state54

state1

state35 state39

index

state63
state68

Fig. 6 Logical cluster-based representation of a portion of the PETCLINIC dynamic DOM states

Software Qual J

123

(algorithm, feature) pairs, their evaluation, together with our in-depth analysis can be

found in Stocco et al. (2016).

The tester can specify which algorithm and feature matrix the Clusterer must use, by

simply editing a configuration file. Clusterer’s default setting is [clustering algo-

rithm=‘‘Hierarchical Agglomerative,’’ feature matrix=‘‘DOM tree-edit distance’’], because

this was empirically found to be effective in producing clusters of web pages close to those

manually defined by a human tester (Stocco et al. 2016). In case the output clusters are not

satisfactory, the tester can experiment with a different combination of algorithms and

features.

Technically, the Clusterer takes in input the graph from the file result.json,

computes the clusters and outputs the result in a separate file cluster.json.

3.3 Cluster visual editor

Since there is no perfect clustering technique working for all web applications, the result

might be somehow imprecise and might need to be manually refined. To this aim, APOGEN

has been extended to support the tester with an interactive cluster visualization and editor

facility, allowing her to inspect and modify the clustering results, as shown in Fig. 7.

The Cluster Visual Editor (CVE) is a web-based tool developed using the Javascript

library D3.12 CVE reads the cluster.json file, opens a browser session by means of

Selenium WebDriver, and shows the clusters by means of a force-based layout template,13

where points are attracted by the center of gravity of their own cluster. Each cluster is

represented as a colored convex hull containing as many points as the cluster cardinality.

APOGEN Cluster Visual Editor

Refresh Save

Fig. 7 Cluster visual editor (CVE) of APOGEN

12 http://d3js.org/.
13 A customization of http://bl.ocks.org/gmamaladze/9320969.

Software Qual J

123

http://d3js.org/
http://bl.ocks.org/gmamaladze/9320969

Each point is labeled with the dynamic state id retrieved by the crawler (e.g., state31), thus

giving the tester full traceability with the previous crawling phase.

Looking at Fig. 4, there are three possible outcomes: (1) Clustering is largely unsat-

isfactory: groups of web pages are formed but strongly in disagreement with the tester’s

perspective. In this case, the tester can step back and run another clustering algorithm or

choose a different number of clusters; (2) clustering is satisfactory: the tester proceeds with

the page object generation; (3) clustering is good enough, but few modifications are

required to produce better groups of web pages. In this last case, CVE allows the tester to

interactively move points to the cluster they should belong to. Indeed, the tester can drag

them far from the center of gravity, near to another group. When she drops them, the

points, attracted by another center of gravity, snap to the new group. Once the clustering is

aligned with the tester’s perspective, CVE updates the clusters.json file.

3.4 Static analyzer

The Static Analyzer (SA) is the fourth component of APOGEN, and it is responsible for the

creation of the AUT abstraction in terms of state objects. The process is mainly divided

into three parts: DOM diff calculation, FSM modification and merged state object creation.

3.4.1 Intra-cluster DOM differencing

In functional web testing, a tester verifies the behavior of the web application through test

case assertions on the visible portion of the web page. Hence, in the page objects, it is

important to have ‘‘getter’’ methods retrieving textual portions of a web page that can be

used by a tester for defining assertions. The automatic creation of getter methods is a

challenging task and was a feature totally missing in the preliminary version of APOGEN

(Stocco et al. 2015).

In this paper, we support the automatic creation of getter methods in the page objects

based on the differences between the web pages within the same cluster (namely, intra-

cluster DOM differencing).

Figure 8 illustrates an overview of the intra-cluster DOM differencing mechanism. For

each cluster in the clusters.json file, SA identifies the ‘‘master’’ and the ‘‘slaves’’

states. A master state is a state that can be regarded as representative of all the others,

which we instead tag as slaves. The rationale behind this choice is to select a unique web

page inside a cluster as the best page object candidate, so as to merge all the slaves inside

the master. The master can be identified in various ways. The heuristic implemented in

APOGEN takes as master the state having the lowest id among the states within that cluster,

which means that it was the first dynamic state retrieved by the crawler. Then, SA cal-

culates the differences between the DOM of each slave and the master, to collect the

dynamic portions of each web page, on top of which a tester might be interested in creating

an assertion. For instance, Fig. 8 shows two dynamic states (state35 and state39) of the

same PETCLINIC web page, displaying information about the owner. We can see how these

two states differ only on some textual content. Correspondingly, a possible assertion might

check whether the owner name is the correctly displayed to the user, since the actually

displayed name varies from execution to execution.

The detection of the DOM-level differences is based on the differencing engine of

XMLUnit,14 which are also saved in the clusters.json file. In order to try to

14 http://www.xmlunit.org/.

Software Qual J

123

http://www.xmlunit.org/

minimize the number of false positives (i.e., irrelevant differences), the differencing engine

ignores case sensitivity, white spaces, attribute value order and whitespaces, retaining only

the differences in the textual node elements which were modified or added.

3.4.2 Cluster-based graph modification

We incorporate the new information about the clusters and the master/slave states into the

graph produced by the crawler, by modifying the result.json file. Figure 9 shows a

high-level overview of a portion of the PETCLINIC graph before (a) and after (b) such

modification.

Figure 9a shows three clusters of five web pages: C0 ¼ findex; state1g, C1 ¼ fstate17g
and C2 ¼ fstate35; state39g. The master state of each cluster is marked with a capital

‘‘M’’; the slaves with a lowercase ‘‘s.’’ The dashed arrows are the intra-cluster edges (e.g.,

index ! state1), whereas the thick arrows represent the inter-cluster connections (e.g.,

state35 ! state17). In Fig. 9b, we can see how the graph connections have been trans-

formed: Intra-cluster edges are removed, because the included web pages form a unique

page object, while inter-cluster edges are modified as follows. Let Cx and Cy be two

clusters:

1) edgeðMx ! MyÞ: When two master states are connected (e.g., state35 and state17), no

modification is triggered on the graph;

Fig. 8 Pictorial view of the intra-cluster DOM differencing mechanism: The dynamic textual portions of
the web pages are detected so as to support the generation of getter methods for each page object

Software Qual J

123

2) edgeðMx ! syÞ: This is the case of clusters C0 and C2 and of the edge connecting

state35 and state1. In this case, since state1 is a slave state, the target of the edge must be

modified, so as to connect it to the master of the cluster, which is index. Thus,

edgeðMx ! syÞ becomes edgeðMx ! MyÞ;
3) edgeðsx ! MyÞ: There is an edge between a slave of a cluster and a master of another

cluster. This is the case of clusters C1 and C2 with the edge connecting state39 and

state17. In this case, since state39 is a slave state, the source of the edge must be

modified, so that it departs from the master of the cluster, which is state35. Thus,

edgeðsx ! MyÞ becomes edgeðMx ! MyÞ;
4) edgeðsx ! syÞ: There is an edge between a slave of a cluster toward a slave of another

cluster (e.g., state39 and state1). In this case, we connect the masters of the respective

clusters (i.e., state35 and index), thus modifying edgeðsx ! syÞ into edgeðMx ! MyÞ.

3.4.3 Merged state object creation

At this point of the process, APOGEN has an abstract graph-based representation of the AUT

in the result.json file, with the clusters and diffs saved in the clusters.json file.

This information is parsed by the SA to create the state object-based model of the web

application. For each dynamic state, a page object abstraction is created. In detail:

1. The URL is parsed and trimmed to get a meaningful class name for the page object

abstraction. For instance, state3 of PETCLINIC has URL localhost/petclinic/owners/

find.html, from which the Find class name is extracted. In cases of Ajax single page

applications, in which many dynamic pages share the same URL, an integer counter is

added to the page object name;

2. The web elements on which the crawler fired an event are inserted as WebElement
instances in the page object abstraction. For each of them, a meaningful variable name

is retrieved by parsing the textual information and the attributes of the corresponding

HTML tags. The XPath locators retrieved by the crawler are used to localize the web

elements;

3. The transitions toward other states, specified in the result.json file, are associated

with a functionality of type ‘‘Navigational’’;

(a) (b)

Fig. 9 An example of graph modification

Software Qual J

123

4. The DOM is analyzed with JavaParser15 to acquire information about forms, which are

associated with a functionality of type ‘‘Action.’’ In particular, for each form, APOGEN

collects a series of data to be used for method generation: (1) A meaningful method

name is obtained by parsing and trimming the id, name and value attributes of the

FORM tag; (2) the list of HTML elements contained in the FORM tag are saved as

WebElement instances, together with their associated CSS locators, as retrieved by

JavaParser;

5. the DOM differences contained in the cluster.json file are associated with a

functionality of type ‘‘Getter.’’ It should be noticed that these are present only for the

states considered as masters, since the DOM differencing component of APOGEN

compares the master against each slave.

After generating each page object abstraction in isolation, a merging phase is necessary

to reflect the clusters in the cluster.json file. Figure 10 shows how the merge of two

page object abstractions is performed.

Let us consider cluster C2 ¼ fstate35; state39g of Fig. 9a, where state35 and state39

contain the same navigational web elements, two different textual elements, with state39

having an additional action. Without considering the output of clustering, APOGEN would

generate two page objects PO1 and PO2 for state35 and state39, with the same navigational

method navigation1 replicated twice in the two page objects.

Although the example reported here is overly simple, when clusters contain tens of

pages, for a web tester would be quite difficult to decide which page object to use (PO1 or

PO2 in our example). Moreover, manual corrections and adjustments to the automatically

generated page objects should be repeated multiple times.

The clustering-aided version of APOGEN, instead, generates a merged page object, rep-

resenting the entire cluster. The navigational method navigation1 appears only once in

such page object. Textual elements that differ across web pages are turned into getter

methods. In our example, state35 is a structural clone of state39 (i.e., their DOMs are

structurally equivalent). Since text1 differs from text2, a getter method to retrieve the value

of the dynamically variable textual element, namely getter1, is generated. Thus, the

merged page object PO1�2 ¼ fnavigation1; action1; getter1g exposes all the functionali-

ties of both state35 and state39 that we believe are relevant for web test creation.

15 http://javaparser.github.io/javaparser/.

state39

state35

PO1-2

Action1

Navigation1

Getter1

Navigation1

text1

PO1

Action1

Navigation1

PO2

text2

Fig. 10 An example of page object merge

Software Qual J

123

http://javaparser.github.io/javaparser/

3.5 Code generator

In the last step of our approach, the Code Generator transforms the state object-based

model produced by the Static Analyzer into working page object code for the Selenium

WebDriver framework. Again, we used JavaParser to iteratively create the abstract syntax

trees (AST) of the Java page objects. More specifically, for each merged state abstraction

(i.e., cluster), the Code Generator:

1. Creates a Java compilation unit (class) with the name obtained from the Static

Analyzer, a standard package name (po) and the necessary Selenium WebDriver

imports;

2. Creates a WebElement instance for each web element. For all of them, a @FindBy
annotation, specifying the locator, is associated with the WebElement;

3. Creates a default constructor with a Selenium WebDriver variable to control the

browser. The constructor resorts to the PageFactory pattern to initialize all the web

elements;

4. Creates a method of type ‘‘Navigational’’ for each transition from the master page of

the current cluster toward other clusters. The return type is the master page of the

target cluster;

5. Creates one or more methods of type ‘‘Action’’ for each data-submitting form. We

distinguish two cases: whether the form has (1) one submit button or (2) multiple

submit buttons. In the former case, Code Generator creates a method for populating

and submitting the form and its components. All form fields are associated with a

variable name and a default action (e.g., submit.click()). In the latter case, the form is

assumed to be used as a container for multiple web elements, which correspond to

different functionalities. Correspondingly, the Code Generator creates multiple

method skeletons. In both cases, the generated methods return void, because the type

of the return parameter (e.g., Index or Error page object) depends on the input

provided to the form (e.g., correct or incorrect credentials, respectively).

6. Creates a method of type ‘‘Getter’’ for each retrieved intra-cluster difference. Such

getters return a String value.

4 APOGEN evaluation on PetClinic

In this section, we evaluate the artifacts produced by APOGEN on the case study PETCLINIC.

Our goal is to analyze the effectiveness of APOGEN in generating high-quality page objects,

with the purpose of understanding the strengths and the weaknesses of the proposed

approach.

4.1 Procedure

We evaluated the quality of the page objects generated by APOGEN on PETCLINIC by

comparing them against a manually created gold standard (GS), according to the following

procedure:

1. We manually inspected PETCLINIC in order to understand which page objects a tester

would create, and which functionalities each page object should expose. The first two

authors created, in isolation from each other, their own page object gold standards.

Software Qual J

123

Then, they established a discussion to produce a unique gold standard (GS) for the

page object of PETCLINIC. The differences were minimal: Indeed, the number of page

objects was exactly the same, as well as their association with the conceptual pages of

PETCLINIC (e.g., Login, Owners and Pets, Veterinarians). A few minor differences were

in the definitions of the page object methods.

2. We ran APOGEN to create the page objects for PETCLINIC. As recommended by our

approach (see Fig. 4), we inspected the results of the clustering by means of the

Cluster Visual Editor. Since clusters were equal to those in the GS, no manual

modifications were required, and APOGEN could complete the page objects generation

in a fully automated fashion.

3. We inspected the page objects automatically generated by APOGEN, and we compared

each page object against the corresponding one in the GS. In particular, for each page

object method: (1) We classified the kind of functionality as navigational, action or

getter; (2) we determined whether each GS page object method had a semantically

equivalent counterpart in the automatic page object, accepting only minor syntactical

differences, as different variable/method names. We tagged such methods as

Equivalent; (3) we determined the GS methods having a counterpart in the automatic

page object in need of minor modifications (i.e., partially correct and requiring a few

minor manual modifications, as the addition of a parameter). We tagged such methods

as To Modify; (4) we determined any missing methods. We tagged such methods as

Missing. Further, we are interested in determining if the approach implemented in

APOGEN leads to the generation of extra methods, i.e., methods not contained in the GS.

We manually inspected each automatic page object, counting and tagging such

methods as Extra.

The number of Equivalent, To Modify, Missing and Extra methods provides an indi-

cation of the possibility to use the code produced by APOGEN as is and of the effort needed

to manually correct the methods to be modified, or to add/delete the missing/extra methods.

4.2 Results

The number of page objects generated by APOGEN for PETCLINIC is 11, equal to the number

of page objects in the GS. Moreover, we found a perfect match, i.e., each page object in GS

for a conceptual page of PETCLINIC (e.g., Login, Owners and Pets, Veterinarians) corre-

sponds to one page object generated by APOGEN and vice versa. This means that, in the case

of PETCLINIC, APOGEN was able to cluster perfectly the various instances of each conceptual

page (e.g., the web pages showing the data of different veterinarians were grouped into a

single cluster from which the page object Veterinarians.java was generated).

Of course, in the general case there might be mismatches between the automatic clusters

and the gold standard. In our paper (Stocco et al. 2016), in which we evaluated the

performance of various clustering algorithms on six real-size web applications, we have

observed that, in the case of Hierarchical Agglomerative clustering, the realignment is

negligible, i.e., the minimum number of web pages that must be moved between clusters to

make them equal to the gold standard is in the range [0–9].

It is interesting to notice that the introduction of clustering techniques in APOGEN has

drastically reduced the amount of duplicated and useless code. Indeed, disabling the

Clusterer leads to the generation of 26 page objects (corresponding to a 160 % increment

in the number of generated page objects, and therefore of duplicated and useless code).

Moreover, in the PETCLINIC case study, both clustering algorithms available in APOGEN (i.e.,

Software Qual J

123

Hierarchical Agglomerative and K-Means??) were able to find the same page-to-cluster

assignment.

Table 1 shows the number of methods (navigational, action or getter) tagged as

Equivalent, To Modify, Missing and Extra, in the page objects generated by APOGEN for

PETCLINIC w.r.t. the ones in the GS. The page objects in the GS contain overall 29 methods,

while APOGEN generated 23 methods. In the case of PETCLINIC, all the generated methods

were found semantically equivalent to the methods reported in the GS, which explains the

absence of ‘‘To Modify’’ methods. Looking at the results by type, for what concerns

navigational methods, all of them are usable directly as produced by APOGEN, while in the

case of action and getter methods, only six are missing (three each, respectively). At last,

no methods tagged as Extra were generated.

Table 2 provides additional details on the comparison between the page objects in the

GS, and those generated by APOGEN. We reported the functionality of the page object

methods in the GS (Column 1), with the indication of the page object they belong to, either

in the GS (Column 2) or in APOGEN ’s output (Column 3). Moreover, in Column 4, Table 2

reports the method type (NAV, ACT, GET). The last three columns indicate if the method

was tagged as Equivalent (Eq), To Modify (TM), or Missing (Mis). Looking at the last

column (Mis), we can observe that the six missing methods (equally divided between

actions and getters) are concentrated in 3 page objects: Owners, Error, Veterinarians. For

instance, in the Error page object, the getter method is missing because all the web pages in

this cluster show exactly the same error message and thus the differencing mechanism (see

Sect. 3.4.1) is unable to capture any dynamic information to be reported as getters. Further

details on the missing methods are provided in Sect. 4.3.

In conclusion, we can say that APOGEN has very good performances on the PETCLINIC

case study: 23/29 methods are equivalent, none is to modify, and only 6/29 are missing. No

extra methods are produced. In our paper (Stocco et al. 2016), we observed that the

generation of additional methods affect only the getter category (an average of 9 extra

getters over all the page objects, on six web applications). However, this is not expected to

impact so negatively the activity of the tester.

4.3 Qualitative analysis

In this section, we analyze the code automatically generated by APOGEN. We consider three

representative web pages (OwnerInfo, Add Owner, Veterinarians) and their associated

automatic page objects (OwnerInfo, New7 and Vets, respectively), with the aim of

evaluating the degree of support they provide to web test case development.

Figure 11 shows a page of PETCLINIC displaying owner information, together with the

page object automatically generated by APOGEN (Fig. 11 bottom-left and right). For space

reasons, we show only a subset of the web elements, whereas we report the complete list of

methods. We can see how the page object constructor makes use of the Page Factory

Table 1 Comparison between
automatic and manual page
object methods

Type of method Equivalent To modify Missing Extra

Navigational 9 0 0 0

Action 6 0 3 0

Getter 8 0 3 0

Total 23 0 6 0

Software Qual J

123

design pattern to instantiate the page object and pre-populate its fields based on the

annotations. This pattern is very important to improve the maintainability of the test suites.

In fact, when the GUI of the application under test changes, locators might need to be

changed. The Page Factory provides a centralized location that allows developers to easily

find and change locators (when needed), rather than having them search through the whole

set of page objects, since no duplications are present. Further, by correcting one single line

of code, the modification is propagated to the entire test suite (Leotta et al. 2016a).

In the body of the page object, we find the navigational methods for: (1) the menu bar

(goToIndex, goToFind, goToVets, goToOups1), (2) editing the owner information

(goToEdit1), (3) adding/editing a pet (goToNew3, goToEdit5), (4) add a visit (goTo-
New1). These methods are instances of Equivalent methods. In fact, they replicate exactly

what a tester would do while performing a navigation from the current page toward

Table 2 Detailed comparison between automatic and manual page object methods (Eq equivalent, TM to
modify, M missing)

Functionality Manual GS cluster Automatic PO Kind Eq TM Mis

Navigate to the home page Index Index NAV U

Navigate to find owners page Index Index NAV U

Navigate to error page Index Index NAV U

Navigate to veterinarians page Index Index NAV U

Add new pet Add New Pet New3 ACT U

Get owner name Add New Pet New3 GET U

Get invalid input Add New Pet New3 GET U

Navigate to the owner page Owners Owners NAV U

Search Owners Owners ACT U

Export PDF Owners Owners ACT U

Get table data Owners Owners GET U

Update owner Update Owner Edit1 ACT U

Get invalid input Update Owner Edit1 GET U

Add owner Add Owner New7 ACT U

Get error message Error Oups1 GET U

Update pet Update Pet Edit5 ACT U

Get owner name Update Pet Edit5 GET U

Get invalid date Update Pet Edit5 GET U

Add visit New Visit New1 ACT U

Get table data New Visit New1 GET U

Find owner Find Find ACT U

Search veterinarians Veterinarians Vets ACT U

Get table data Veterinarians Vets GET U

Navigate to the edit owner page OwnerInfo OwnerInfo NAV U

Navigate to the add owner page OwnerInfo OwnerInfo NAV U

Navigate to the edit pet page OwnerInfo OwnerInfo NAV U

Navigate to the add visit page OwnerInfo OwnerInfo NAV U

Get owner info OwnerInfo OwnerInfo GET U

Get pet info OwnerInfo OwnerInfo GET U

Total – – – 23 0 6

Software Qual J

123

another: click on the menu item/anchor, change the AUT state by instantiating the target

page object (e.g., Index in goToIndex), and passing it the WebDriver instance. On Fig. 11

(right), there are the getter methods exposing the dynamic portions of the web page, as

Fig. 11 A web page of the case study PETCLINIC, together with its Java page object, including examples of
navigational and getter methods

Software Qual J

123

retrieved by the DOM diff mechanism described in Sect. 3.4.1. These methods are also

tagged as Equivalent, because they capture correctly the salient information useful for

assertion definition.

Figure 12 illustrates other two interesting examples. On the top-left part is the page in

which the user can insert information about a new owner, whereas on the bottom-left is the

corresponding generated automatic page object, in which we can see an instance of action

method: add_owner_form. This method allows the tester to fill and submit the data of the

owner, by associating each web element used for data insertion with its default action (e.g.,

Fig. 12 A web page of the running example PETCLINIC, together with its Java page object, including
examples of action and missing methods

Software Qual J

123

sendKeys for the text fields and click for the submit button). The return type is void,

because the target page object is unknown since the Static Analyzer misses the next

dynamic state. In fact, in this case there could be multiple targets (multiple dynamic states)

depending on the provided input. In particular, in case of successful execution of the

method, the returned page object should be the Owners page object, whereas if an

incorrect value is passed as argument, the page object should not trigger any state change

and should manage the error. The tester, well-aware of such two possible scenarios, can

better decide if and when to return a page object representing the next dynamic state,

depending on the execution context of the test cases.

On the top-right part of Fig. 12 is the page showing the veterinarians table, and a text

field to search for a particular entry. We can notice that only the constructor and the

navigational methods are present in the automatic page object Vets. The action method to

perform the search is Missing (Search Veterinarians in Table 2). This is due to the fact that

the Static Analyzer of APOGEN builds action methods on top of FORM tags, while the

search text field is not contained in any form. Thus, our heuristic fails and the method has

to be manually added to the page object. In our future work, we will investigate solutions to

face this issue (e.g., by recognizing Javascript methods that reach to the enter key on a text

field).

4.3.1 APOGEN ’s naming convention

The assignment of meaningful names in the page objects code has a fundamental impact on

their readability. Concerning methods and fields, APOGEN employs a naming rule based on

the information contained in the Document Object Model (DOM), which is leveraged to

name the variables.

More precisely, the tag of the web element is used as prefix. Then, the value of either

attribute id, name or class is trimmed and utilized to name the variable (e.g, field a_Home
in the page object New7 of Fig. 12 (bottom-left) refers to the first anchor Home in the

menu bar).

For methods, we distinguish three cases: navigational, action and getter methods. For

the navigational methods, the name is composed of the prefix ‘‘goTo’’ and the target page

object (e.g., goToIndex). For the actions, APOGEN takes the value of either attribute id,

name or class of the HTML form tag to name them. Further, parameters of type String are

inserted (as many as the number of tags within the form), using the generic name argsn,

with n successively incremented from 0. About the getters (see Fig. 11 (right)), the name is

composed of the prefix ‘‘get_’’, the tag, and any meaningful text or label (e.g., get_b_-
Name). In case of duplicates (e.g., two table entries in which the tag and the text is exactly

identical), a numeric counter is added.

As shown in the example in Sect. 4.3, most of the page object class names are

understandable, apart from some cases (e.g., New7), in which the mapping with the web

page is less explicit.

In conclusion, when the HTML underneath the web application has meaningful values

for the tag attributes analyzed by APOGEN (as occurred in the case of PETCLINIC), the

generated page objects are very readable and understandable. In our future work, we intend

to enhance the naming strategy to support the cases in which the class names or methods

are hard to understand (e.g., page object New7 or method getToOups1 in the page object

OwnerInfo).

Software Qual J

123

4.4 Page objects to support test case development

In this section, we sketch the benefits of adopting the page objects generated by APOGEN,

during the creation of a web test case for PETCLINIC. In Fig. 13 we can see an example of

test case for testing the correct behavior of PETCLINIC, when a new owner is added. On the

left is the test code without the adoption of any page object, whereas on the right is the

same test case, modified to use the automatic page objects generated by APOGEN.

We can notice that the test case on the left is brittle and full of technicalities on how to

access to web elements in the underlying DOM structure. This limits the overall readability

of the test case and the functionalities are scarcely encapsulated.

The test code on the right, instead, is by far more readable because it corresponds more

directly to the use case scenario’s steps (e.g., open the index page, go to the find owner

page, etc). Moreover, it should be noticed that all the page object-related source code is

automatically generated and ready to use, limiting to a large extent the tester’s burden to

produce well-architected test cases, and allowing her to better focus on the test semantics

and logics.

This is evident by observing at Fig. 13. In the test case on the left, for inserting the

owner info, the test case employs six commands (rows 8–13), whereas in the test case on

the right (page object-based), the test calls a unique method add_owner_form (row 9) of

page object New7. The test case implementation is cleaner and for a tester becomes easier

to call such method with multiple different inputs (or developing more test cases). This

enlarges the input coverage and allows to better test the AUT, at a minimum effort.

Creating the required page objects manually would increase substantially the total test

case creation time and might be skipped in practical settings, despite its potential future

benefits, for lack of time before the release of the application.

Fig. 13 Two test cases created to test the Add Owner functionality of PETCLINIC: On the left is the test code
without the adoption of page objects, whereas on the right is the same test case, using the automatic page
objects generated by APOGEN

Software Qual J

123

4.5 Summary

Overall, APOGEN showed satisfactory performance on PETCLINIC. The clustering approach

was effective in producing clusters of web pages that were identical to those defined

manually, thus reducing the manual effort for creating correct web page clusters to zero.

Furthermore, the page objects generated by APOGEN were very similar to the page objects

that a developer would create manually. A challenging issue in the automatic generation

of page objects is a way to expose the web page functionalities (not just the web page

elements) in methods—a feature which is completely missing in most of the existing

tools. About 80 % of the methods generated by APOGEN, instead, can be used as is by a

tester, breaking down substantially the manual effort for page object creation. Moreover,

a big part (73 %) of the dynamic portions of the web pages is correctly captured by our

differencing mechanism. The getter methods created on top of such differences corre-

spond to meaningful and useful behavioral abstractions that help to support assertion

definition.

APOGEN performed equally well when applied to other web applications. Indeed, on six

real-size web applications, the obtained results are consistent with those of PETCLINIC,

because the clustering approach provided clusters of web pages close or identical to those

manually produced by a human (only 18 differences were noticed, over six web appli-

cations) and 75 % of the code generated by APOGEN was ready to use as is (Stocco et al.

2016).

4.6 Upcoming improvements

Improvements are still possible and in several directions. The Clusterer of APOGEN relies on

the manual choice of parameter k (the number of clusters). We believe it is important to aid

the tester in the estimation of how many clusters are reasonable for the given data. The

problem of estimating automatically the optimal number of clusters k is extremely chal-

lenging. In the machine learning literature, there exist a few alternative approaches to

estimate the number of clusters in a given dataset. According to these approaches, it is

possible to: (1) measure the percentage of variance explained as a function of the number

of clusters (Ketchen et al. 2008), (2) use cross-validation, (3) use silhouettes plots

(Rousseeuw 1987). Another set of methods is instead based on information criteria, such as

the Akaike information criterion (AIC) (Akaike 1981), and the Bayesian information

criterion (BIC) (Schwarz 1978). In our future work, we plan to empirically experiment

with such methods.

Another improvement area is related to the heuristics used to create action and getter

methods. Concerning actions, we will develop techniques to capture the missing func-

tionalities within a web page, e.g., to manage also the cases in which potential actions are

not contained in forms (as the case of Search Veterinarians in Sect. 4.3). Concerning

getters, when a cluster contains a single page, the differencing mechanism cannot be

applied (as was the case of the table of veterinarians, in Table 2). In our future work, we

plan to provide a complementary approach for input generation, capable of exposing the

variable part of the unique page in singleton clusters. Moreover, not all the differences

between web pages necessarily have a textual counterpart, and thus we plan to integrate

and experiment with image recognition mechanisms to identify the dynamic page portions

(Choudhary et al. 2010).

Software Qual J

123

5 Related work

The problem of creating and maintaining automated test suites for web applications has

been studied from different viewpoints (Choudhary et al. 2011; Thummalapenta et al.

2013; Yandrapally et al. 2014). There are research contributions using reverse engineering

techniques for testing and analysis purposes (Di Lucca et al. 2004; Marchetto et al. 2008;

Sacramento and Paiva 2014; Tonella et al. 2014), but none of them specifically addresses

the problem of the automatic representation of a web application as page objects, so as to

improve the modularity and reusability of web test suites.

Indeed, the automatic creation of page objects for end-to-end web testing is a com-

pletely novel research field and, to the best of our knowledge, there are no strictly related

works. However, there are papers that deal with applications of clustering techniques to

support web testing and engineering.

5.1 Page/state objects

Martin Fowler described this pattern under the name Window Driver (Fowler 2013).

Fowler illustrates basic rules of thumb for page object creation, as that ‘‘it should provide

an easy programmable interface to the program, hiding the underlying widgetry in the

window.’’ Furthermore, Fowler advocates assertions-free page objects, meaning that

‘‘although they are commonly used for testing, they should not make assertions themselves.

Their responsibility is to provide access to the state of the underlying page, leaving the

testers to carry out the assertion logic.’’

However, the term ‘‘page object’’ has been popularized by the Selenium web testing

framework, which has become the generally used name. Selenium’s wiki strongly

encourages the use of page objects as a best practice and provides advices on how they

should be implemented (Selenium Wiki 2013). For instance, Selenium’s wiki encourage

testers to try and think about the services that they are interacting with rather than the

implementation.

Van Deursen (2015a, b) describes a state-based generalization of page objects which

can help testers to answer to practical questions as which page objects one should create

when testing web applications, or what actions one should include in a page object. From

the tester viewpoint, moving a page object to the state level makes the design of test

scenarios easier. Besides the mere terminological difference, the work of van Deursen

depicts a series of guidelines and best practices that we share and tried to incorporate in the

development of APOGEN, in consideration of our ultimate goal which is the automatic

generation of meaningful page objects.

An empirical study by Leotta et al. (2013b) shows that test suites developed with a

programmable approach exhibit higher benefits than those developed with a capture-and-

replay method. In addition, maintaining a programmable test suite required less effort, also

thanks to the introduction of the Page Object design pattern, able to decouple the test logics

from that of the application. This insight is confirmed by a further investigation (Leotta

et al. 2013a) on the maintainability benefits when the Page Object pattern is adopted.

When the software evolves, the maintenance effort is drastically reduced, which justifies

the initial additional effort to implement the test suite using page objects. On the other

hand, the manual creation of page objects is a repetitive and time-consuming task. This

motivates the present work, focused on the problem of automatically generating page

Software Qual J

123

objects to support the creation of high-maintainable web test suites—a completely novel

research area.

5.2 Web applications clustering

Crescenzi et al. (2005) tackle the problem of automatically discovering the main pages

offered by a site, by exploring only a small yet representative portion. They propose a

model to describe abstract structural features of HTML pages, the page schema, which is

basically a subset of the root-to-link paths in the corresponding DOM tree representation,

along with the referenced URLs. Based on this model, they developed an algorithm that

accepts the URL of an entry point to a target web site, visits a limited yet representative

number of pages, and produces an accurate clustering of pages based on their structure.

The output is a model, intended to be used as input for automatic web pages’ wrapper

generation. On the other hand, in the development of the clustering module of APOGEN, we

studied several alternative structural similarity measures beyond the DOM, with the aim of

supporting the clustering of web pages from the page object perspective.

On a different line, there are several works using clustering for understanding purposes

(Tonella et al. 2003a; Lucia et al. 2009; Ricca et al. 2008). Tonella et al. (2003a) propose

a clustering method based on the automatic extraction of the keywords to produce cohesive

groups of pages. The aim is to support web site understanding, by providing clusters that

are displayed as a single node in reverse engineered diagrams. The presence of common

keywords also helps to automatically label the recovered clusters. In an extension of the

previous work, Ricca et al. (2008) propose a clustering approach based on client-side

HTML pages with similar content, which gives good results with content-oriented sites

rather than application-oriented ones. A crawler is employed to download the web pages of

the target site, and common keywords are used to group pages together. In the experiments

on 17 web sites, it is shown that the clusters produced automatically are close to those that

a human would produce for a given web site. Differently, APOGEN supports clustering over

several kinds of web page properties, such as URLs, DOMs, tags and textual content. On

the contrary, De Lucia et al. (2009) investigate the effect of using different clustering

algorithms in the reverse engineering field to identify pages that are similar either at the

structural level or at the content level.

In another work, Tonella et al. (2003b) provide two approaches for web clustering

evaluation: the gold standard and a task-oriented approach. In fact, when clustering the

entities composing a web application, several alternative options are available (using their

structure, their connectivity, or their content), and the problem is how to evaluate the

competing clustering techniques. They illustrate two methods for clustering evaluation, the

gold standard and the task-oriented approach, analyzing the advantages, disadvantages,

guidelines and examples for both of them.

In a previous paper (Stocco et al. 2016), we adopted the first approach and compared the

results of various web page clustering algorithms against a gold standard in order to ensure

its meaningfulness from the web testing viewpoint. Moreover, we did not limit to content-

based metrics and, in fact, structural properties showed to be more effective, especially

those based on the HTML structure, as DOM similarity and tag frequency.

5.3 Crawling/differencing techniques

In the last years, differencing techniques have been used to detect the so-called cross-

browser incompatibilities (XBIs), i.e., inconsistencies and issues in the existing

Software Qual J

123

applications when run of different browsers (e.g., Chrome, Opera, Safari). The detection of

XBIs requires a lot of manual effort for developers who need to make sure that web

applications are compatible with as many browsers as possible.

Choudhary et al. (2010) present a technique based on differential testing to automati-

cally detect cross-browser issues (XBIs) and assist developers in their diagnosis. They

compare the behavior of a web application in different web browsers, identifying differ-

ences in behavior as potential issues, and reporting them to the developers. Given a page to

be analyzed, the comparison is performed by combining a structural analysis of the

information in the page’s DOM and a visual analysis of the page’s appearance, obtained

through screen captures. The approach operates on single web pages and focuses on finding

XBIs, whereas we perform intra-cluster DOM differencing.

Mesbah and Prasad (2011) pose the problem of cross-browser compatibility testing of

modern web applications as a functional consistency check of web application behavior

across different browsers. They propose an automatic approach for analyzing the given web

application under different browser environments and capturing the behavior as a finite-state

machine before formally comparing the generated models for equivalence on a pairwise-

basis and exposing any observed discrepancies. Similarly, we adopt crawling and web page

differencing, but our approach is constrained to finding textual differences between intra-

cluster web pages, on top of which a tester can build meaningful assertions, because usually a

tester defines functional assertions on the visible parts of a web page.

Successively, Choudhary et al. (2012) combined and extended the two above-men-

tioned approaches for XBI detection in the tool CROSSCHECK. Even though we share some

methods, such as the reverse engineering of a web application model with a crawler, and

performs DOM differencing between web pages, we use clustering, which is an unsu-

pervised machine learning technique, instead of a classifier, to target a completely different

goal, the automatic page object construction to support web test suites development.

6 Conclusions

Page objects are used in end-to-end functional web testing to decouple the test case logic

from the technical low-level implementation. Although page objects bring undeniable

advantages, as decreasing the maintenance effort of an automated test suite, the burden of

their manual development limits their wide adoption.

We presented a novel approach for the automatic generation of page objects for web

applications, implemented in our tool APOGEN, which automatically generates Java page

objects for a web application using a combination of reverse engineering, machine

learning, web-visualization, HTML static analysis and differencing, and AST creation.

In this paper, we gave a detailed description of our tool, illustrating it by means of a case

study application, PETCLINIC. The results are promising and show that our approach for

automatic page object generation is viable. Indeed, APOGEN is able to generate meaningful

and comprehensive Java page objects that cover most of the PETCLINIC functionalities. We

have also shown that automatic page objects reduce the tester effort for test cases devel-

opment, because a substantial portion of the test code is automatically generated, and

increase the quality (namely, the understandability and maintainability) of the test code,

because they decouple its logic from its concrete implementation.

Software Qual J

123

References

Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3–14.
Arthur, D., & Vassilvitskii, S. (2007). K-means??: The advantages of careful seeding. In Proceedings of

the 18th annual ACM-SIAM symposium on discrete algorithms, SODA 2007 (pp. 1027–1035).
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.

Binder, R. V. (1996). Testing object-oriented software: A survey. Software Testing, Verification and
Reliability, 6(3–4), 125–252.

Blanco, L., Dalvi, N., & Machanavajjhala, A. (2011). Highly efficient algorithms for structural clustering of
large websites. In Proceedings of the 20th international conference on world wide web, WWW ’11 (pp.
437–446). New York, NY, USA: ACM.

Choudhary, S. R., Prasad, M. R., & Orso, A. (2012). Crosscheck: Combining crawling and differencing to
better detect cross-browser incompatibilities in web applications. In Proceedings of the 5th IEEE
international conference on software testing, verification and validation, ICST 2012 (pp. 171–180).
Washington, DC, USA: IEEE Computer Society.

Choudhary, S. R., Versee, H., & Orso, A. (2010). Webdiff: Automated identification of cross-browser issues
in web applications. In Proceedings of the 26th IEEE international conference on software mainte-
nance, ICSM 2010 (pp. 1–10). IEEE Computer Society.

Choudhary, S. R., Zhao, D., Versee, H., & Orso, A. (2011). WATER: Web application test repair. In
Proceedings of the 1st international workshop on end-to-end test script engineering, ETSE 2011 (pp.
24–29). ACM.

Christophe, L., Stevens, R., Roover, C. D., & Meuter, W. D. (2014). Prevalence and maintenance of
automated functional tests for web applications. In Proceedings of 30th international conference on
software maintenance and evolution, ICSME, IEEE.

Crescenzi, V., Merialdo, P., & Missier, P. (2005). Clustering web pages based on their structure. Data
Knowledge Engineering, 54(3), 279–299.

Di Lucca, G. A., Fasolino, A. R., & Tramontana, P. (2004). Reverse engineering web applications: The
WARE approach. Journal of Software Maintenance and Evolution, 16(1–2), 71–101.

Fewster, M., & Graham, D. (1999). Software test automation: Effective use of test execution tools. Boston,
MA, USA: Addison-Wesley Longman Publishing Co. Inc.

Fowler, M. (2013). PageObject. http://martinfowler.com/bliki/PageObject.html.
Gao, Z., Fang, C., & Memon, A. M. (2015). Pushing the limits on automation in gui regression testing. In

2015 IEEE 26th international symposium on software reliability engineering (ISSRE) (pp. 565–575).
Hammoudi, M., Rothermel, G., & Stocco, A. (2016a). WATERFALL: An incremental approach for

repairing record-replay tests of web applications. In Proceedings of 24th ACM SIGSOFT international
symposium on the foundations of software engineering, FSE 2016.

Hammoudi, M., Rothermel, G., & Tonella, P. (2016b). Why do record/replay tests of web applications
break? In Proceedings of 9th international conference on software testing, verification and validation,
ICST page (to appear). IEEE.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley
series in probability and mathematical statistics. New York: A Wiley-Interscience publication.

Ketchen, D., Boyd, B., & Bergh, D. (2008). Research methodology in strategic management: Past
accomplishments and future challenges. Organizational Research Methods, 11(4), 643–658.

Leotta, M., Clerissi, D., Ricca, F., & Spadaro., C. (2013a). Improving test suites maintainability with the
page object pattern: An industrial case study. In Proceedings of 6th international conference on
software testing, verification and validation workshops, ICSTW 2013 (pp. 108–113). IEEE.

Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. (2013b). Capture-replay vs. programmable web testing: An
empirical assessment during test case evolution. In Proceedings of 20th working conference on reverse
engineering, WCRE, 2013 (pp. 272–281). IEEE.

Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. (2014a). Visual vs. DOM-based web locators: An empirical
study. In Proceedings of 14th international conference on web engineering (ICWE 2014), volume 8541
of LNCS (pp. 322–340). Springer.

Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. (2016a). Approaches and tools for automated end-to-end
web testing. Advances in Computers, 101, 193–237.

Leotta, M., Stocco, A., Ricca, F., & Tonella, P. (2014b). Reducing web test cases aging by means of robust
XPath locators. In Proceedings of 25th international symposium on software reliability engineering
workshops (ISSREW 2014) (pp. 449–454). IEEE.

Leotta, M., Stocco, A., Ricca, F., & Tonella, P. (2015). Using multi-locators to increase the robustness of
web test cases. In Proceedings of 8th international conference on software testing, verification and
validation, ICST 2015 (pp. 1–10). IEEE.

Software Qual J

123

http://martinfowler.com/bliki/PageObject.html

Leotta, M., Stocco, A., Ricca, F., & Tonella, P. (2016b). ROBULA?: An algorithm for generating robust
XPath locators for web testing. Journal of Software: Evolution and Process, 28(3), 177–204.

Lucia, A. D., Risi, M., Scanniello, G., & Tortora, G. (2009). An investigation of clustering algorithms in the
identification of similar web pages. Journal of Web Engineering, 8(4), 346–370.

Marchetto, A., Tonella, P., & Ricca, F. (2008). State-based testing of Ajax web applications. In Proceedings
of 1st international conference on software testing, verification and validation, ICST 2008 (pp.
121–130). IEEE.

Mesbah, A., & Prasad, M. R. (2011). Automated cross-browser compatibility testing. In Proceedings of the
33rd international conference on software engineering, ICSE 2011 (pp. 561–570). New York, NY,
USA: ACM.

Mesbah, A., van Deursen, A., & Lenselink, S. (2012a). Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM Transactions on the Web (TWEB), 6(1),
3:1–3:30.

Mesbah, A., van Deursen, A., & Roest, D. (2012b). Invariant-based automatic testing of modern web
applications. IEEE Transaction on Software Engineering (TSE), 38(1), 35–53.

Nguyen, B. N., Robbins, B., Banerjee, I., & Memon, A. (2014). Guitar: An innovative tool for automated
testing of gui-driven software. Automated Software Engineering, 21(1), 65–105.

Ramler, R., & Wolfmaier, K. (2006). Economic perspectives in test automation: Balancing automated and
manual testing with opportunity cost. In Proceedings of the 1st international workshop on automation
of software test, AST 2006 (pp. 85–91). New York, NY, USA: ACM.

Ricca, F. (2004). Analysis, testing and re-structuring of web applications. In Proceedings of the 20th IEEE
international conference on software maintenance (pp. 474–478).

Ricca, F., Pianta, E., Tonella, P., & Girardi, C. (2008). Improving web site understanding with keyword-
based clustering. Journal of Software Maintenance, 20(1), 1–29.

Ricca, F., & Tonella, P. (2001). Analysis and testing of web applications. In Proceedings of the 23rd
international conference on software engineering, ICSE ’01 (pp. 25–34). Washington, DC, USA: IEEE
Computer Society.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, 20(1), 53–65.

Sacramento, C., & Paiva, A. (2014). Web application model generation through reverse engineering and UI
pattern inferring. In Proceedings of the 9th international conference on the quality of information and
communications technology, QUATIC 2014 (pp. 105–115). IEEE.

Sampath, S. (2012). Advances in user-session-based testing of web applications. Advances in Computers,
86, 87–108.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Selenium Wiki. (2013). Page objects. https://code.google.com/p/selenium/wiki/pageobjects.
Stocco, A., Leotta, M., Ricca, F., & Tonella, P. (2015). Why creating web page objects manually if it can be

done automatically? In Proceedings of 10th IEEE/ACM international workshop on automation of
software test, AST 2015 (pp. 70–74). IEEE.

Stocco, A., Leotta, M., Ricca, F., & Tonella, P. (2016). Clustering-aided page object generation for web
testing. In Proceedings of 16th international conference on web engineering, ICWE 2016, volume 9671
of LNCS (pp. 132–151). Springer.

Thummalapenta, S., Devaki, P., Sinha, S., Chandra, S., Gnanasundaram, S., Nagaraj, D. D., & Sathishku-
mar, S. (2013). Efficient and change-resilient test automation: An industrial case study. In Proceedings
of the 35th international conference on software engineering, ICSE 2013 (pp. 1002–1011). IEEE.

Tombros, A., & Ali, Z. (2005). Factors affecting web page similarity. In Proceedings of the 27th European
conference on advances in information retrieval research, ECIR 2005 (pp. 487–501). Berlin: Springer.

Tonella, P., Ricca, F., & Marchetto, A. (2014). Recent advances in web testing. Advances in Computers, 93,
1–51.

Tonella, P., Ricca, F., Pianta, E., & Girardi, C. (2003a). Using keyword extraction for web site clustering. In
Proceedings of the 5th international workshop on web site evolution, WSE 2003 (pp. 41–48).

Tonella, P., Ricca, F., Pianta, E., Girardi, C., Lucca, G. A. D., & Fasolino, A. R. et al. (2003b). Evaluation
methods for web application clustering. In Proceedings of the 5th international workshop on web site
evolution, WSE 2003 (pp. 33–40).

van Deursen, A. (2015a). Beyond page objects: Testing web applications with state objects. Queue, 13(6),
20:20–20:37.

van Deursen, A. (2015b). Testing web applications with state objects. Communications of ACM, 58(8),
36–43.

Witten, I . H., Frank, E., & Hall, M . A. (2011). Data mining: Practical machine learning tools and
techniques (3rd ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Software Qual J

123

https://code.google.com/p/selenium/wiki/pageobjects

Yandrapally, R., Thummalapenta, S., Sinha, S., & Chandra, S. (2014). Robust test automation using con-
textual clues. In Proceedings of the 25th international symposium on software testing and analysis,
ISSTA 2014 (pp. 304–314). ACM.

Andrea Stocco is a Ph.D. candidate in Computer Science at the
department of Computer Science, Biomedical Engineering, Robotics
and Systems Engineering (DIBRIS), University of Genova, Italy. His
research interests include Web Applications Testing and Empirical
Software Engineering, with particular emphasis on the improvement of
the testing techniques quality. His aim is to leverage existing testing
tools and ease future testing approaches in order to reach the goal of
software engineers testing more and better. He is the recipient of the
Best Student Paper Award at the 16th International Conference on
Web Engineering (ICWE 2016).

Maurizio Leotta is a research fellow at the University of Genova,
Italy. He received his Ph.D. degree in Computer Science from the same
University, in 2015, with the thesis ‘‘Automated Web Testing: Anal-
ysis and Maintenance Effort Reduction.’’ He is author or coauthor of
more than 40 research papers published in international journals and
conferences/workshops. His current research interests are in Software
Engineering, with a particular focus on the following themes: Web
Application Testing, Functional Testing Automation, Business Process
Modeling, Empirical Software Engineering, Model-Driven Software
Engineering. He is the recipient of the Best Student Paper Award at the
16th International Conference on Web Engineering (ICWE 2016).

Filippo Ricca is an associate professor at the University of Genova,
Italy. He received his Ph.D. degree in Computer Science from the same
University, in 2003, with the thesis ‘‘Analysis, Testing and Re-struc-
turing of Web Applications.’’ In 2011, he was awarded the ICSE 2001
MIP (Most Influential Paper) award, for his paper: ‘‘Analysis and
Testing of Web Applications.’’ He is author or coauthor of more than
100 research papers published in international journals and confer-
ences/workshops. Filippo Ricca was Program Chair of CSMR/WCRE
2014, CSMR 2013, ICPC 2011 and WSE 2008. Among the others, he
served in the program committees of the following conferences: ICSM,
ICST, SCAM, CSMR, WCRE and ESEM. From 1999 to 2006, he
worked with the Software Engineering group at ITC-irst (now FBK-
irst), Trento, Italy. During this time, he was part of the team that
worked on Reverse engineering, Re-engineering and Software Testing.
His current research interests include: Software modeling, Reverse
engineering, Empirical studies in Software Engineering, Web appli-

cations and Software Testing. The research is mainly conducted through empirical methods such as case
studies, controlled experiments and surveys.

Software Qual J

123

Paolo Tonella is head of the Software Engineering Research Unit at
Fondazione Bruno Kessler (FBK), in Trento, Italy. He received his
Ph.D. degree in Software Engineering from the University of Padova,
in 1999, with the thesis ‘‘Code Analysis in Support to Software
Maintenance.’’ In 2011, he was awarded the ICSE 2001 MIP (Most
Influential Paper) award, for his paper: ‘‘Analysis and Testing of Web
Applications.’’ He is the author of ‘‘Reverse Engineering of Object
Oriented Code,’’ Springer, 2005. He participated in several industrial
and EU projects on software analysis and testing. His current research
interests include code analysis, web and object-oriented testing, search
based test case generation.

Software Qual J

123

	APOGEN: automatic page object generator for web testing
	Abstract
	Introduction
	Background
	Case study
	Tension between test specification and implementation
	Page objects to the rescue
	Limitations of the existing page object creation tools

	APOGEN approach
	Crawler
	Clusterer
	Cluster visual editor
	Static analyzer
	Intra-cluster DOM differencing
	Cluster-based graph modification
	Merged state object creation

	Code generator

	APOGEN evaluation on PetClinic
	Procedure
	Results
	Qualitative analysis
	Apogen ’s naming convention

	Page objects to support test case development
	Summary
	Upcoming improvements

	Related work
	Page/state objects
	Web applications clustering
	Crawling/differencing techniques

	Conclusions
	References

