
CHAPTER THREE

Three Open Problems in the
Context of E2E Web Testing
and a Vision: NEONATE
Filippo Ricca*, Maurizio Leotta*, Andrea Stocco†
*DIBRIS, Università di Genova, Genova, Italy
†University of British Columbia, Vancouver, BC, Canada

Contents

1. Introduction 90
2. The Three Open Problems in the Context of E2E Web Testing 92

2.1 The Fragility Problem 93
2.2 The Strong Coupling and Low Cohesion Problem 95
2.3 The Incompleteness Problem 97

3. State of the Art on the Three Open Problems 97
3.1 State of the Art on the Fragility Problem 98
3.2 State of the Art on the Strong Coupling and Low Cohesion Problem 101
3.3 State of the Art on the Incompleteness Problem 103

4. Overcoming the Three Open Problems: The NEONATE Vision 104
4.1 The Stuck Situation 104
4.2 The Vision 105
4.3 Existing Integrated Testing Environments 106

5. Architecture of the NEONATE Integrated Testing Environment 107
5.1 Robust Web Element Locators With ROBULA+ 108
5.2 Automatic Generation of Page Objects With APOGEN 110
5.3 Generating Visual Test Suites With PESTO 111
5.4 Separating Test Specification from Test Implementation With APORES 113
5.5 Suggesting and Executing Repairs for Broken Code With AUTOREPAIR 114
5.6 Extending Existing Test Suites With TS-EXT 116
5.7 Supporting the Tester During Maintenance/Development With ASSISTANT 119

6. NEONATE’s Examples of Use 119
6.1 Automated Test Suite Development (Scenario 1) 120
6.2 Automated Test Suite Refactoring (Scenario 2) 122

7. NEONATE’s Long-Term Impact 124
7.1 Scientific 124
7.2 Practical 125
7.3 Industrial 125

Advances in Computers, Volume 113 # 2019 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
https://doi.org/10.1016/bs.adcom.2018.10.005

89

https://doi.org/10.1016/bs.adcom.2018.10.005

8. Conclusions 126
References 128
About the Authors 132

Abstract

Web applications are critical assets of our society and thus assuring their quality is of
undeniable importance. Despite the advances in software testing, the ever-increasing
technological complexity of these applications makes it difficult to prevent errors.

In this work, we provide a thorough description of the three open problems hin-
dering web test automation: fragility problem, strong coupling and low cohesion prob-
lem, and incompleteness problem. We conjecture that a major breakthrough in test
automation is needed, because the problems are closely correlated, and hence need
to be attacked together rather than separately. To this aim, we describe NEONATE, a novel
integrated testing environment specifically designed to empower the web tester.

Our utmost purpose is to make the research community aware of the existence of
the three problems and their correlation, so that more research effort can be directed in
providing solutions and tools to advance the state of the art of web test automation.

1. INTRODUCTION

Web applications pervade the lives of billions of individuals and have a

significant impact on all aspects of our society, being crucial for a multitude

of economic, social, and educational activities. Indeed, a considerable slice of

modern software consists of web applications executed in the browser, run-

ning both on desktop and on smartphone devices [1]. Associations, enter-

prises, governmental organizations, companies, scientific groups use the

web as a powerful and convenient way to promote activities/products

and to carry out their core business. People daily use online services as source

of information, means of communication, source of entertainment, and

venue for commerce [2].

Hence, the quality and correctness of web applications are of undeniable

importance. However, developing and maintaining a complex web system

has become challenging, because the advances of web technologies in the last

decade have also changed the way in which software running on the web is

developed and maintained [3]. Unfortunately, the evolution of the tools for

the analysis and testing of such complex software systems is not proceeding at

the same pace.

Functional testing is one of the main approaches for assuring the quality

of web applications. The goal of functional testing is to exercise the web

90 Filippo Ricca et al.

application under test to detect failures, where a failure can be considered as a

deviation from the system’s intended behavior. In many software projects,

functional testing is neglected because of time or cost constraints [4]. How-

ever, the impact of failures in a web application may range from simple

inconveniences (e.g., a malfunction that causes users dissatisfaction), up to

huge economic problems (e.g., interruption of business).

Today, web developers mostly test their applications manually, i.e., they

manually interact with the web applications to check if they behave as

expected. Unfortunately, this practice is prone to errors, time-consuming,

and ultimately not very effective. For these reasons, most teams try to auto-

mate manual testing activities by means of test automation tools. This pro-

cess involves a manual step which consists of implementing the test code able

to instrument the web application and run predefined test-oriented user sce-

narios. Test code provides input data, operates on GUI components, and

retrieves information to be compared with oracles (e.g., using assertions).

In the web domain, test automation tools usually operate at user interface

(GUI) level, interacting with the web elements that are displayed on the web

page, as seen by the end users. This kind of testing is called end-to-end

(E2E), because the application is tested as a whole, in its entirety, and from

the perspective of the end user. Different categories of E2E test automation

tools are available on the marketplace. For example, DOM-based tools use

objects in the Document Object Model (DOM), the hierarchical structure

underlying a HTML page, to locate and interact with web elements. Such

tools have reached a high level of maturity and popularity as, for example,

the case of Selenium [5]. A competing category of visual tools has also

appeared in the last years based on the use of image recognition techniques

to identify the web elements (e.g., JAutomate [6] and Sikuli [7]).

The economic convenience of test automation is strongly correlated to

the maintenance cost of the test suites [8]. We have identified two major

problems that contribute to increase such a cost. First, all the existing test

automation technologies suffer—in different proportions—from the fragility

problem. When a web application evolves to accommodate requirements

changes or functionality extensions, existing automated test code can easily

break, and testersmust correct it. This task is expensive, because it is usually per-

formed manually. Often breakages occur in response to minor changes, e.g.,

a change of the page layout only. In these cases the test code is named fragile.

Second, test code is usually strongly coupled with the application under

test, and full of technical details that limit greatly its readability and an easy

maintenance. This is the strong coupling and low cohesion problem.

91Three Open Problems in the Context of E2E Web Testing and a Vision

Moreover, automated test suites are inherently incomplete, because they

cover only a subset of the input and functionalities space of the application.

This third limitation,whichwe called incompleteness problem, is an open testing

problem. As we shall see in this work, the presence of these three problems

makes the activity of testing adequately the web applications challenging.

Existing test automation tools offer little to no help to overcome the three

aforementioned problems. A huge amount of resources is still required by

the testers to copewith the creation andmaintenanceof aweb test suite.Thus,

we believe a paradigm shift is necessary to advance in the state of the art of

web test automation. To this aim, we envisionNEONATE (Novel algorithms/

techniques for building and maintaining Web Test Code), an integrated

testing environment able to empower the web tester limiting the three open

problems.Wehave envisionedNEONATEout of the knowledge gainedduring

industrial collaborations and the desire to solve concrete problems [9, 10].

The contributions of this work are as follows:

– a detailed description of three big open problems in the context of web

test automation, namely, fragility problem, strong coupling and low

cohesion problem, and incompleteness problem;

– a comprehensive analysis of the state-of-the-art concerning existing tools

and solutions related to the three open problems;

– our vision of how the three problems hindering web test automation can

be mitigated. Specifically, this concerns the development and adoption of

a novel integrated testing environment called NEONATE;

– the overall description of the NEONATE integrated testing environment

prototype, together with some usage scenarios.

The chapter is organized as follows: Section 2 introduces the three open

problems in the context of web test automation, and Section 3 describes

the pertinent literature. Section 4 illustrates our vision to overcome the three

open problems, while Section 5 details the NEONATE integrated testing envi-

ronment. At last, Section 6 reports two simulated usage examples of NEO-

NATE pertaining to the creation and refactoring of a web test suite, and

Section 7 describes the possible impact of NEONATE from both the perspec-

tives of the researchers and practitioners. Section 8 concludes the chapter

and outlines the future work.

2. THE THREE OPEN PROBLEMS IN THE CONTEXT OF E2E
WEB TESTING

E2E testing is a type of black box testing based on the concept of test

scenario (or test logic), a sequence of steps/actions performed on the web

92 Filippo Ricca et al.

application under test. One or more test cases can be derived from a test sce-

nario by specifying the actual input data to use in each step and the expected

outcomes. Test cases can be manually executed by a human on the browser

or they can be implemented into test code (also known as test scripts). To this

extent, testers use a high-level programming language (e.g., Java, Python,

Ruby) to develop scripts that consist of commands simulating the user’s

actions on the GUI and retrieving information to be used in assertions ver-

ifying the expected outcomes.

The main benefits of adopting test automation are the possibility of (1)

executing the test cases more often, for instance overnight, so that to increase

the probability of bugs detection, (2) finding bugs on the early stages of

development, and (3) reusing test code across successive releases of the

web app under test (i.e., to catch regressionsa).

However, despite these benefits, test automation is not “a silver bullet”

and has limitations well known by testers. A thorough list can be found in

[11], where the authors overview benefits and challenges of test automation

based on empirical studies and experience reports in the industry. Among

the outlined limitations, two are particularly severe when the web domain

is considered: the difficulty in maintenance of test automation artefacts and the fact

that automation cannot replace manual testing.

The first limitation can be better defined in two concrete problems

namely, the fragility problem and the strong coupling and low cohesion problem.

The second limitation has deep roots and can be also associated with the

incompleteness problem. In fact, not all testing tasks can be—or are worth to

be—automated [8], thus developers automate only the test cases that they

judge to be more crucial in their setting. As a consequence, an automated

test suite covers only a small suboptimal portion of the application.

The authors of this work have matured similar opinions as Rafi’s and col-

leagues by both working within industrial projects [9, 10] and performing

academic empirical studies [12–14]. Other researchers have acknowledged

the existence of these issues and have proposed initial solutions (see Section 3

for further details).

2.1 The Fragility Problem
Themaintenance of test code during software evolution is the chief problem

of web test automation, because the cost is expected to grow with: (1) the

application size, (2) the number of test cases, and (3) the inevitable

a Regression testing aims at verifying that software previously developed and tested still behaves correctly

even after the occurrence of an evolution or maintenance activity.

93Three Open Problems in the Context of E2E Web Testing and a Vision

application evolution. Research works have singled out the manual main-

tenance of locators to be particularly problematic and expensive [13, 15].

Locators are specific commands used by test automation tools to identify

the web elements on the GUI, before to perform actions on them. Examples

of actions consist of clicking on a link, or filling in a text field in a form.

Locators are used, for instance, to identify and fill the input portions of a

web page (e.g., the form fields), to execute navigations (e.g., by locating

and clicking on links) or to verify the correctness of the output (e.g., by

locating the web page elements showing the result of a computation). It

has been shown that even slight modifications of the application under test

have a massive impact on locators [13]. For instance, changes as simple as

renaming a page element or altering the choices in a dropdown list can cause

locators to break (e.g., they become unable to select the desired element in

the web page). Thus, the specific characteristics of the web applications

make the test cases more fragile, rendering their maintenance extremely dif-

ficult and expensive as compared to maintaining test cases for a desktop

application.

Let us clarify this problem by considering a simplified web application

composed of two web pages—insertInfo.php and showInfo.php—that allow

to insert and visualize personal information of the users. The test code for

Version 1 of this web application (Test in Fig. 1) opens the insertInfo.php

page, fills the form (shown in Fig. 1, top), submits the information and ver-

ifies that the inserted data are correctly displayed in the showInfo page (not

shown for brevity). In this way, it is possible to test the correct insertion of

the information in the application. To implement this test, it is necessary to

locate some web page elements as, for instance, the field of the form for

inserting the mobile phone number (i.e., the highlighted target element

1234 shown in Fig. 1). To this aim, a developer can use tools for the auto-

matic generation of locators as FirePath,b which generates XPath expressions

for the elements in a web page that can be used as locators. In our example,

suppose that FirePath would produce the following XPath locator for the

“Mobile” text field: //*[@id¼”userInfo”]/tr[3]/td[2].

We now consider a new version of the web application (Version 2). In

this evolved version, the user is required to type also the gender information,

and the corresponding text field has been inserted between the “Surname”

and the “Mobile” text fields (see Fig. 1, bottom). In this scenario, Test is no

longer able to select correctly the mobile phone number because its locator

b https://addons.mozilla.org/firefox/addon/firepath/.

94 Filippo Ricca et al.

https://addons.mozilla.org/firefox/addon/firepath/
https://addons.mozilla.org/firefox/addon/firepath/

“points to” another element, i.e., the “Gender” text field. As a consequence,

let us assume that the test would break, because the input validation of the

application would not consider a phone number as a valid gender (e.g., the

application could stop the insertion and visualize an error message). Hence,

Test must be manually repaired.

In particular, the locator could be modified from //*[@id¼”userInfo”]/tr

[3]/td[2] to //*[@id¼”userInfo”]/tr[4]/td[2]) in order to select the correct web

element.

2.2 The Strong Coupling and Low Cohesion Problem
Test code produced by means of test automation tools often tends to merge

two different notions: the test scenario (i.e., what to test) with test implemen-

tation (i.e., how to test). As a result, the test code is full of implementation

details, that do not pertain to the test scenario. Thus, tests become difficult to

read and understand, and costly to maintain and evolve. This is a common

pitfall that leads to the strong coupling and low cohesion problem, i.e., the

produced test code is strongly coupledwith the web page structure and merges

two different concerns. As an example, let us consider the fragment of code

in Listing 1, which is a possible partial implementation of the Test of Fig.

1, developed with Selenium WebDriver [5]. The test code implements a

portion of a simple test scenario which requires to enter the form data (name,

surname, mobile number), click on the Enter button, and then (not shown)

verify that the user has been correctly saved. As evident from our example,

WAUT —Version 2

WAUT —Version 1

Test

Test’

OK

FAILURE

//*[@id="userInfo"]/tr[3]/td[2]

OK

//*[@id="userInfo"]/tr[4]/td[2]

Locator selects

Male and not 1234!

//*[@id="userInfo"]/tr[3]/td[2]

Repairing:

Tester has to

manually repair

Test code

Fig. 1 Fragility problem explained by means of an example.

95Three Open Problems in the Context of E2E Web Testing and a Vision

the test code is strongly coupled with the web pages composing the appli-

cation under test. The highlighted portions of the test are indeed related to

technicalities such as locators used for retrieving the web elements to interact

with (e.g., //*[@id¼”userInfo”]/tr[3]/td[2]), or command calls to the browser-

specific APIs of the test automation tool (e.g., driver.findElement(…)) that

fall outside the test scenario.

Listing 1 An excerpt of strongly coupled and low cohesive test
code. Implementation details are highlighted in red.

It is important to highlight that the strong coupling and low cohesion

problem emphasizes the fragility problem discussed in Section 2.1. In fact,

if the test suite is strongly coupled with the web application under test, sev-

eral locators are inevitably repeated in the test code. If such locators become

fragile after an evolution step, multiple repair activities would need to be

carried out [14].

Fortunately, there is a solution to mitigate the strong coupling and low

cohesion problem in the test code. The test scenario can be well separated

from its technical implementation by using the Page Object (PO) design

patternc [16]. Page objects serve as an interface of the web app: they repre-

sent the GUIs as a series of object-oriented classes that encapsulate the fea-

tures offered by each page into methods. Thanks to its adoption, the

implementation details are moved into the page objects, a bridge between

web pages and test cases, with the latter only containing the test logics.

c https://github.com/SeleniumHQ/selenium/wiki/PageObjects.

96 Filippo Ricca et al.

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

2.3 The Incompleteness Problem
Even if techniques for automatically generating test cases for web applica-

tions have been proposed [17–19], typically test suites are still developed

manually. Web testers study requirements documents and create test cases

that cover the requirements of the web application under test. Then, they

implement the test cases in test code. Being manual, these activities are time

consuming, expensive, and not very effective. The direct consequence is the

inability of the test suites to cover the input space of the application thor-

oughly, because only specific paths of the web application under test are

exercised, leading to a low coverage of the functionalities and thus to a

poorly tested web application.

We have observed this problem repeatedly during our industrial collab-

orations. For example, during a project with a company we found out that

only a small portion of their tests was automated [10].

At last, we want to highlight that the fragility and strong coupling prob-

lems contribute to have incomplete test suites. Indeed, testers spend most of

their time correcting/maintaining existing fragile/strong coupled code,

rather than actually developing new test cases. In short, limiting the first

two problems (fragility and strong coupling) implies to (indirectly) mitigate

also the third one (incompleteness).

In conclusion, the three problems are correlated and, in order to find an

effective solution, they need to be addressed together. We believe that by lim-

iting the first two problems (fragility and strong coupling), also the incom-

pleteness problem would be (indirectly) mitigated, leading to better tested

web applications.

3. STATE OF THE ART ON THE THREE OPEN PROBLEMS

In the last 15 years, the research community has been particularly

active in proposing new approaches and tools to advance the state of the

art and practice in web test automation. Fig. 2 overviews the most relevant

contributions and their mapping with the three open problems affecting web

test automation and described in Section 2. In this section, we provide a

detailed description of the investigations carried out by researchers and their

findings. We, by no means, claim that our list represents all the relevant and

noteworthy research performed in the area of web testing. However, we

present the research solutions that, according to the experience and personal

opinion of the authors, are mostly correlated with the three open problems.

97Three Open Problems in the Context of E2E Web Testing and a Vision

3.1 State of the Art on the Fragility Problem
The brittleness of web test cases developed with test automation tools is a

well-known problem among practitioners, and it has also been acknowl-

edged and studied by many researchers [20–23]. However, a first study

on the causes behind test breakages was by performed only recently, by

Hammoudi and colleagues [15]. In this paper, they developed test suites

for eight popular web applications and simulated a regression testing sce-

nario, through the manual evolution of those test suites on 453 releases.

Then, they characterized and collected the reasons for which tests broke.

As an outcome, they developed a taxonomy of breakages for record/replay

tests. As a confirmation of the findings of our previous research work [14,

24], also Hammoudi and colleagues have singled out locators as constructs

that are particularly fragile in the face of software evolution, accounting

for the three-quarters of the total amount of breakages.

The fragility of web test code can be mitigated in two different yet com-

plementary ways. First, one can prevent the occurrence of test breakages, by

creating test code which is designed to be robust to minor application

changes. A second mitigation rule would be to use repair techniques to fix

the broken test code automatically.

3.1.1 Robust Data Extraction
In the context of information retrieval and web data mining, researchers

have proposed techniques for the robust extraction of information from

evolving structured documents (e.g., XML documents). As an example,

Dalvi and colleagues [25] propose to generate high-level XPaths that are

Fig. 2 Existing research proposals and tools addressing the three open problems
individually.

98 Filippo Ricca et al.

resilient to minor page changes and thus can be used to retrieve the same

information in evolving versions of an HTML document. In another work

[26] twomodels were used to study robustness: the adversarial model, which

includes the worst-case robustness of wrappers, and the probabilistic model,

which is based on the expected robustness of wrappers, as web pages evolve.

By using both models, robust wrapper can be constructed. An evaluation on

real websites demonstrated that such algorithms are highly effective in cop-

ing up with changes in websites and reduce the wrapper breakage by up to

500% over existing techniques.

The downside of such techniques is that they require learning a proba-

bilistic model from a corpus of documents. For this reason, they cannot be

directly adopted in a typical software engineering scenario, where the testing

phase is usually characterized by strict timing constraints. In order to be use-

ful, wrapper generation techniques must be adapted for generating robust

locators—rather than wrappers—to be used in web testing environments,

where there is a similar need by the tests to target the same web element,

across different releases of the same web application.

3.1.2 Breakage Prevention
To this extent, the ROBULA+ algorithm [24] uses heuristics adapted from

the information retrieval field in order to generate robust XPaths that can

be used as locators in web test cases. A robust locator is likely to work

correctly also if the web application undergoes minor GUI changes on

new releases. The intuition behind ROBULA+ is to carefully combine XPath

predicates in order to maintain the locators as short and compact as possible,

while retaining a low level of fragility. Empirical results have demonstrated

such an intuition: ROBULA+ locators exhibited a lower fragility than the

state-of-the-practice/art locator generator algorithms such as FirePath or

Selenium IDE.

LED [27] is a programming-by-example tool that automatically synthe-

sizes web element locators based on positive and negative examples of DOM

elements provided as input by the developer. LED casts the problem of find-

ing a locator to solving a constraint satisfaction problem over the group of

valid DOM states in a web application. Results show that LED can synthe-

size DOM element locators with a 98% recall and 92% precision, with as low

as five positive and five negative relevant examples.

Other notable solutions are ATA [20] and its successor ATA-QV [28].

For brevity, we describe only the enhanced latest version ATA-QV. The

tool uses visual landmarks (named contextual clues in the paper) to identify

99Three Open Problems in the Context of E2E Web Testing and a Vision

objects on the GUI. For each element with which the test interacts, ATA-

QV retrieves a list of potential visual “clues” to be used as reliable landmarks

to identify such elements uniquely. Let us consider the form of Fig. 1. ATA-

QV would automatically retrieve the labels that are associated to each text

field (i.e., that are positioned above, or besides them), so that, for example,

the first text field would be associated to its descriptive label “Name”, the

second text field with the label “Surname”, and so on. Bymeans of this map-

ping, ATA-QV then converts manual test steps into more abstract com-

mands, which should be more resilient to the evolution of the

applications, if the set of GUI changes remains limited. Even if very prom-

ising, ATA and ATA-QV suffer two major limitations: (1) if a descriptive

label cannot be found, the tool will use the typical DOM-based locators such

as the XPath of the element, making the script susceptible of the fragility

problem, (2) the tool does not guarantee that the labelswill be persistent across

versions (for instance, if the tagname of the element gets modified—from

input to button—then the tool would fail in targeting the correct element),

and (3) such techniques are embedded into commercial tools, and are not

available “as-is” to practitioners.

3.1.3 Web Test Repair
In the context of Web, the state-of-the-art test repair algorithm is WATER

[29]. WATER is based on differential testing and compares the execution

of the tests on two different releases: one in which the tests run properly,

and another in which the tests break. By gathering data about these execu-

tions, WATER uses heuristics to find a set of potential fixes for the broken

tests. While the repair algorithm of WATER has a straightforward design

and can manage a good number of cases (such as locators or assertions), it

has limitations that derive from its DOM-related narrowness. First, the algo-

rithms can produce a great number of false positives, as recognized by the

authors of the paper [29]. Second, only relying on the DOM may be insuf-

ficient to find candidate repairs. Third, the algorithm only triggers repairs at

the point in which the test stops, which makes it impossible to handle prop-

agated breakages [15], i.e., cases in which a breakage appears in a later point

of the test execution. In many of such cases, it is imperative for the tester to

inspect the GUI or replay the tests to find the root cause behind a breakage,

because existing repair algorithms are inapplicable.

Recently, an enhanced repair algorithm has been proposed, named

WATERFALL [30]. WATERFALL is built on top of WATER and suggests repairs

100 Filippo Ricca et al.

for broken Selenium IDE test scripts. The algorithm is also based on differ-

ential testing, but it does take into account all the intermediate minor ver-

sions that occur between twomajor releases of a web application and uses the

WATER heuristics to trigger the repairs. The results of the empirical study on

seven web applications show that WATERFALL is more effective than WATER

(with a 209% improvement on the number of correct repairs suggested).

This is because the number of code changes between two major releases

is typically larger than the number of changes between any pair of successive

releases or commits, and are also be intertwined in manners that render

repair heuristics less effective. Applying a repair technique iteratively to

intermediate versions or commits leaves the technique with fewer, less

intertwined changes to consider per application, increasing its chances of

success [30].

3.2 State of the Art on the Strong Coupling and Low Cohesion
Problem

As far as maintenance is concerned, Page Object has proven successful in

web test automation, where it has emerged as the leading pattern for enhanc-

ing test maintenance, reducing code duplication and lowering the coupling

between test cases and web applications. Page objects provide an unique

location for maintenance activities. Since no duplications are present, a sin-

gle code fragment needs to be corrected, and the modification is propagated

on the entire test suite.

Martin Fowler first described the page object pattern under the name

Window Driver [16]. Fowler illustrates basic rules of thumb for page object

creation, as that “it should provide an easy programmable interface to the program,

hiding the underlying widgetry in the window.” Furthermore, Fowler advocates

assertions-free page objects, meaning that “although they are commonly used for

testing, they should not make assertions themselves. Their responsibility is to provide

access to the state of the underlying page, leaving the testers to carry out the assertion

logic” [16]. However, the term “page object” has been popularized by the

Selenium web testing framework, which has become the generally used

name. Selenium’s wiki strongly encourages the use of page objects as a best

practice and provides advices on how they should be implemented [31].

Berner and colleagues [8] report on observation and experiences made in

a dozen of projects in the area of test automation. Both works push on the

concepts of reuse and single responsibility, of which the page object pattern

is an important candidate for the implementation of such best practices

within a web test suite. In another empirical study [32], studies on the

101Three Open Problems in the Context of E2E Web Testing and a Vision

prevalence of Selenium-based tests among open-source applications are

presented. The most frequent subjects to change are quantitatively and qual-

itatively assessed, e.g., it has been found that 75% of web tests are no longer

maintained after two/three releases due to impracticality to coevolve them

together with the software under test. In their future work, the authors sug-

gest the use of design pattern, such as the Page Object, to maintain the trace-

ability between unit tests and web application portions.

The benefits associated with the adoption of the Page Object pattern in

the maintenance of web test suites have been empirically measured, both

within an industrial environment and in academia. A first empirical work

shows that test suites developed with a programmable approach (e.g.,

Selenium WebDriver) exhibit higher benefits than those developed with a

capture and replaymethod (e.g., Selenium IDE) [12]. In addition,maintaining

a programmable test suite required less effort, thanks to the introduction of the

Page Object design pattern, able to decouple the test logics from that of the

application. This insight is confirmed by another investigation within a real

world industrial setting [10]. Thanks to the Page Object, the maintenance

effort is drastically reduced when the software evolves, thus justifying their

initial implementation effort. Unfortunately, in case of big web applications,

the creation of page objects can be a laborious task.

Concerning how page objects should be implemented, a state-based gen-

eralization, based on UML state charts, is proposed in [33]. For Van Deursen,

a behavioral state machine of the web application can effectively guide a tester

toward the generation of page objects, following the typical user scenarios. In

his proposal, each page object corresponds to a state in the state machine, and

hence becomes a state object. A state object has a set of well-defined respon-

sibilities, defined by its methods. There are two kinds of behavioral methods.

The inspection methods return the textual value of web elements displayed on

the browser, when it is in a given state (typically, they can be used in test

scenarios to verify that the browser displays the expected values, e.g., the user

name of the current logged user must be present on the home page). The

trigger methods, on the other hand, correspond to functions that make the

browser change state. Inspection methods can also be useful as a self-check,

to verify that a series of constraints hold when the application is in a particular

state (for example, in the authenticating state, one would expect to find input

fields for the insertion of user name and password).

In a recent work, Yu and colleagues [34] propose an automatic test gen-

eration technique for dynamic web applications. The technique decouples

102 Filippo Ricca et al.

test code fromweb pages by automatically generating page objects. Based on

the page objects, tests are created performing an iterative feedback-directed

random test generation. On top of the retrieved methods, sequences of calls

are generated with Randoop [35] for the automatic construction of test cases.

3.3 State of the Art on the Incompleteness Problem
Achieving total coverage in testing is definitely impossible, due to the lim-

ited amount of resources or the combinatorial explosion of the inputs in case

of complex applications. However, research efforts have been directed to

improve the state of the art with test augmentation and test generation

techniques.

To the best of our knowledge, TESTILIZER is the first work aimed at exten-

ding an existing web application test suite by leveraging existing test cases

[36]. This approach reuses knowledge in existing human-written test cases

and uses a web crawler to extend the navigation paths. In particular,

TESTILIZER exploits input values in existing tests to explore alternative paths

and mined oracles for regenerating assertions for such alternative paths.

Results show that, on average, TESTILIZER can generate test suites with

improvements of up to 150% on the fault detection rate and up to 30%

on the code coverage, compared to the original test suite.

Current web testing techniques simplify the test oracle problem in the

generated test cases by using “soft” oracles, such as invalid HTML and

runtime exceptions [36]. However, “soft” oracles are limited and not able

to find bugs pertaining to the functional requirements of the application.

To be really useful, automatically generated test cases should contain

“strong” oracles (i.e., assertions) to determine whether the application under

test works as requested. Indeed, it has been empirically evaluated that asser-

tions are strongly correlated with the test suite effectiveness [37]. Code

coverage is certainly a desirable characteristic for a test suite. However, that

paper shows that there is a very strong correlation between the effective-

ness of a test suite and its size, with the quantity and quality of assertions it

contains.

In the context of web test generation, ARTEMIS is a feedback-directed

automated test generation for JavaScript in which execution is monitored

to collect information that directs the test generator toward inputs that

yield increased coverage [38]. The generated tests can be used for instance

to detect HTML validity problems and other programming errors. Mesbah

103Three Open Problems in the Context of E2E Web Testing and a Vision

and colleagues [17] propose a new testing technique that features the power

of automated exploration (by means of a crawler) with invariant-based test-

ing. In this technique, the user interface is checked against different con-

straints, expressed as invariants, which can act as oracles to automatically

conduct sanity checks at a DOM level. For example, generic invariants

include the absence of broken links, or the validity of the HTML. Con-

cerning JavaScript applications, JSEFT is a framework that targets test gener-

ation for JavaScript applications. The approach employs a combination of

function coverage maximization and function state abstraction algorithms

to efficiently generate unit test cases with automatically generated

mutation-based oracles [39]. ATRINA [40] infers test oracles from existing

UI-level test cases to generate JavaScript unit tests. SUBWEB [41] is a new

search-based web test generation technique, in which page objects and

genetic operators are used to drive the generation of both test inputs and

feasible navigation paths. On a first case study, SUBWEB was able to achieve

higher coverage of the navigation model than a typical crawling-based

approach.

4. OVERCOMING THE THREE OPEN PROBLEMS:
THE NEONATE VISION

After the insights gained in years devoted to research in the web testing

field [12, 23, 24, 42–46] and our analysis of the state of the art and practice

related to this field, we have matured a vision of how to overcome the exis-

ting open problems affecting web test automation.

4.1 The Stuck Situation
First, we want to summarize the current problematic situation in three

points as follows.

– First, web applications are complex, heterogeneous, distributed systems

that are highly dynamic with unpredictable control flows. Specific

requirements characterize them, such as huge time-to-market pressure,

distributed infrastructure, high asynchronicity, and constant shifts in

user requirements. Thus, in those years, developing high-quality web

applications and testing web systems have become one of the most chal-

lenging goals among software engineers, demanding for novel approaches/

techniques.

104 Filippo Ricca et al.

– Second, web testers are often not able to develop robust and maintainable

test code. One might argue that this is due to the testers’ inexperience or

the lack of skills. While this is likely possible, we believe the increasing

complexity of web applications and the three aforementioned problems

(see Section 2) to have a predominant role.

– Third, when test code is produced, it often exhibits characteristics as fra-

gility, strong coupling with the web application under test, and incom-

pleteness. Thus, such automated test suites are underused or quickly

abandoned, despite their potential value to catch errors and regressions.

As a result of this tangled situation, we currently live with “buggy” web

applications.

Thus, what we really need is a major breakthrough in web application

testing, i.e., a new way of doing test automation.

4.2 The Vision
The vision behind the NEONATE project is to empower the Web tester with an

integrated testing environment (ITE) composed by techniques and tools that are

specifically designed to deal with (and hopefully overcome) the three big

problems affecting web test automation.

In our vision, NEONATE will offer the tester automatic support in the: (1)

creation of robust test code, (2) repair of broken test code, (3) separation of

the test logic from the implementation details, (4) extension of existing test

suites, and (5) migration to novel visual testing technologies.

We believe that NEONATE will facilitate the development and mainte-

nance of web test suites. As a result, web applications will be tested more

intensively, and hopefully this will benefit their correctness.

The need of integrating various testing tools in a ITE has been pointed

out by several researchers in the last 20 years. For instance, one of the first

works on this topic is the one of Gao et al. [47]. They developed a web-based

system for test information sharing, control and management. Moreover,

they report that big companies have strong demand for integrated testing

environments providing: (1) test information bank (supporting the test infor-

mation sharing among engineers in different phases), (2) facility tools for test

information tracking, analysis and reporting, and (3) a systematic transparent

interface to plug-in various test tools. Subsequently, Williams et al. in [48]

describe an architecture for integrating both new and existing testing tools

into solutions adopted in testing organizations across IBM. More in detail,

this integrated testing environment supports the control and data integration

105Three Open Problems in the Context of E2E Web Testing and a Vision

across tools and repositories, provides an unique graphical user interface, and

can be extended to support new tools.

Agreed with the authors of these works, we designed the architecture of

NEONATE on a plug-in infrastructure. In this way the functionalities offered

by our ITE can be easily extended to include the most novel state-of-the-art

solutions that will be eventually proposed in the future.Moreover, NEONATE

is equipped with a GUI-based module that first analyses the test code

looking for code deficiencies, and then presents—in a coherent, unified

way—several wizards conceived to help the tester in executing the suggested

improvement tasks (see additional details in Section 5).

4.3 Existing Integrated Testing Environments
To the best of our knowledge, no integrated testing environments (ITE)

have been proposed to face simultaneously the three open problems in

the context of web testing.

A notable ITE is FITTEST [49], whose purpose is to automatically generate

test cases for web applications. Such test cases are generated using a combina-

tion of different techniques: model-based testing, combinatorial testing,

mutation, and search-based testing techniques. NEONATE, on the other hand,

encompasses a set of prototype tools for improving, maintaining, and exten-

ding aweb test suite.Thus, the goals of the twoprojects are orthogonal and can

be eventually utilized together (however, the engineering integration cost

between the artifacts producedby twodifferent ITEsmight be nonnegligible).

FITE [50] is a static and dynamic analysis ITE, not specific for web appli-

cations.We share with the authors of FITE the same basic idea: developing an

integrated testing environment able to continuously analyze the increments

and produce recommendations to the tester. As in our proposal, the role of

the user is essential, and the purpose of the testing environment is to

empower the human tester. One of the most interesting aspects of FITE

is its pluggable view-based approach, i.e., the tester can select a kind of

analysis (e.g., performance analysis) and the tool produces only recommen-

dations related to that selection. For example, for the “performance” selec-

tion, the tool might show code paths with the highest execution times. The

main difference with respect to NEONATE is in the level of testing: FITE is

able to assist the developer with unit tests whereas NEONATE manages

E2E test code. Moreover, the considered quality factors are different: FITE

targets security and performance aspects, while NEONATE focuses on the

quality and correctness of the test source code.

106 Filippo Ricca et al.

One of the first works emphasizing the importance of having an ITE in

the web application context is by Margaria and colleagues [51] where the

authors present a methodology with the aim of granting coverage of all

the functionalities of a web application. The core module is the Test Coor-

dinator that drives the generation, execution, evaluation, and management

of the system-level tests. Differently fromNEONATE, in [51] a model checker

and the concept of property are at the base of the proposal, as well as a graph-

ical test cases design facility that is not present in NEONATE.

5. ARCHITECTURE OF THE NEONATE INTEGRATED
TESTING ENVIRONMENT

In this section, we present the architecture of the NEONATE integrated

testing environment. In our vision, NEONATE will be a full-fledged toolset

composed by a set of joinable integrated prototypes (hereafter referred also

as modules), each of which addresses a particular development/maintenance

task on web test code. NEONATE will be built on top of Selenium

WebDriver, the flagship open-source test automation tool for web applica-

tions. We have opted for the WebDriver framework because it is a remark-

able open-source solution, widely adopted both in the academia and in the

industry [32]. The maturity of WebDriver on the worldwide testing sce-

nario has been also recognized by the W3C consortium, of which it has

become a standard.d NEONATE will be realized by relying on the Eclipse plat-

form and its plug-in-oriented architecture. Fig. 3 gives a high-level over-

view of NEONATE: each module will communicate by means of a

lightweight protocol, will share a common repository containing the test

code (repository software architecture), and will eventually be combined

in a tool-chain. On top of the plug-in architecture, a GUI will allow the

web tester to use the tools in stand-alone modality or combine them. NEO-

NATE will support modules for the development of test code (i.e., those

labeled with “D”) and the maintenance of existing test code (i.e., those

labeled with “M”). NEONATE will feature the ASSISTANT module, i.e., an

orchestrator mechanism based on wizards able to suggest the testers which

plug-in, or set of plug-ins, needs to be executed for a specific purpose. For

instance, if the tester wants to refactor an existing SeleniumDOMbasedweb

test suite, to enhance its robustness and structural quality, the ASSISTANT will

suggest to apply in series the modules ROBULA+ and APORES. In the

d http://www.w3.org/TR/webdriver/.

107Three Open Problems in the Context of E2E Web Testing and a Vision

http://www.w3.org/TR/webdriver/
http://www.w3.org/TR/webdriver/

following sections, we describe in turn each module of NEONATE. We

underscore that some prototypes have already been implemented as part

of our research (the colored modules in Fig. 3) while some others are part

of our ongoing work (the gray modules).

5.1 Robust Web Element Locators With ROBULA+
Usually, the first aspect on which it is important to intervene is the test suite

robustness. As already said, locators play a major role in the fragility problem.

Thus, the first module of NEONATE integrates ROBULA+ (ROBUst Locator

Algorithm+) [24], a state-of-the-art algorithm for automatically generating

robust web element locators. We define a robust locator as a selection com-

mand that continues to point to the target web element, even if the web page

has changed because of a new release of the web application. ROBULA+ is

based on the XPath query language. The intuition behind ROBULA+ is to

carefully combine XPath predicates in order to maintain the locators as short

and smart as possible, while retaining a low level of fragility. In short, the algo-

rithm starts with the most generic XPath locator that selects all nodes in the

DOM tree (//*). It then iteratively refines the locator until only the element

of interest is selected. In such iterative refinement, ROBULA+ applies

seven refinement transformations, according to a set of heuristic XPath

Web tester

G

U

I

G

U

I

NEONATE

testing environment ROBULA+ROBULA+

APOGENAPOGEN

PESTOPESTO

D
M

D

M

ASSISTANTASSISTANT

APORESAPORES

AUTOREPAIRAUTOREPAIR

M

M

TS-EXTTS-EXT

M MD

……

Fig. 3 High-level architecture of the NEONATE integrated testing environment.

108 Filippo Ricca et al.

specialization steps, prioritization, and black listing techniques. The prioriti-

zation is used to rank candidate XPath expressions in terms of expected

robustness, while the black list excludes attributes that are intrinsically con-

sidered fragile. For further technical details, we refer the reader to [24].

We have demonstrated the effectiveness of ROBULA+ in producing reli-

able locators and limiting the fragility of test cases. In brief, we have com-

pared the robustness of the locators generated by state-of-the-art/practice

tools and algorithms (i.e., FirePath absolute and ID-relative, Selenium

IDE, and Montoto [52]) with the ones generated by ROBULA+. Empirical

results (see Fig. 4) indicate that the locators generated by ROBULA+ are sig-

nificantly better in terms of robustness than all the other kinds of locators

(63%–90% fragility reduction) which is expected to be associated with a

corresponding reduction of the maintenance effort required to repair the test

cases. Moreover, the time required by ROBULA+ for generating the XPath

locators is acceptable for a human web tester (only 0.16 s per locator on

average).

We have implemented ROBULA+ as a freely available Java program, able

to generate (in batch mode) XPath locators for hundreds of web elements

(useful, for instance, when the locators of an entire test suite have to be chan-

ged with the ones generated by ROBULA+). Moreover, ROBULA+ is also

available as a Firefox add-on that can be used by web testers to generate loca-

tors during the development of test suites. We are also considering the idea

of including in NEONATE the capability of combining the locators produced

by a set of different algorithms (including ROBULA+) into a single, consol-

idated multilocator [23] based on a voting mechanism that assigns different

voting weights to different locator generation algorithms. The two

implementations of ROBULA+ are available on the tool’s web site: http://

sepl.dibris.unige.it/ROBULA.php.

871

557

248
282

91

0

100

200

300

400

500

600

700

800

900

Absolute ID-relative Selenium IDE Montoto ROBULA+

B
ro

k
e

n
 l

o
c

a
to

rs

Broken

Fig. 4 Number of broken locators out of 1110 analyzed web elements in eight web
applications (see [24]).

109Three Open Problems in the Context of E2E Web Testing and a Vision

http://sepl.dibris.unige.it/ROBULA.php
http://sepl.dibris.unige.it/ROBULA.php
http://sepl.dibris.unige.it/ROBULA.php

5.2 Automatic Generation of Page Objects With APOGEN
While developing a web test suite, it is of great importance to separate the

test logic from its technical low-level implementation. With this aim in

mind, the second module of NEONATE integrates APOGEN (Automatic

Page Object GENerator) [53], a prototype tool for the automatic generation

of page objects to support E2E web testing. Automatically generated page

objects can alleviate the manual work of web testers so as to reduce the

development costs.

APOGEN consists of five main modules (see Fig. 5): a Crawler, a Clusterer,

a Cluster Visual Editor, a Static Analyser, and a Code Generator. The input

of APOGEN is any web application, together with the input data necessary

for the login and forms navigation. The output is a set of Java page objects

as supported by the Selenium WebDriver framework. In short, APOGEN

infers a model of the target web application by reverse engineering it by

means of an event-based crawler (we chose Crawljax, a state-of-the-art

tool for the automatic crawling of interactive web applications [17, 54]).

Then, similar web pages are clustered into syntactically and semantically

meaningful groups. The event-based model and the additional information

(e.g., DOMs and clusters) are statically analyzed to generate a state object-

based model. At last, this model is transformed into Java page objects, via

model to text transformations. Since our ultimate goal is the automatic gen-

eration of meaningful page objects we share and tried to incorporate in the

development of APOGEN the guidelines and best practices reported in [33].

Crawling

Web application

Page objects for

web application

Clustering

= automatic module = (possible) manual intervention

(1) (2) (3)

(5)

Code

generation

Static

analysis

Clustering

refinement

(4)

Fig. 5 High-level overview of APOGEN’s approach for web page objects creation (see [53]).

110 Filippo Ricca et al.

Experimental results on six existing web applications indicate that

APOGEN is effective to group semantically related web pages [55]. Further-

more, the page objects obtained from the output of clustering are very sim-

ilar to the page objects that a developer would create manually. Indeed, 75%

of the code generated by APOGEN can be used “as-is” by aWeb tester, break-

ing down the manual effort for page object creation. Moreover, a big por-

tion of the page object methods (84%) created to support assertion definition

corresponds to meaningful and useful behavioral abstractions.

For further technical details, we refer the reader to [53]. All details about

APOGEN, demo video, and experimental data can be found on the tool web

site: http://sepl.dibris.unige.it/APOGEN.php.

5.3 Generating Visual Test Suites With PESTO
Depending on the characteristics of the web application under test, changing

the approach used for localizing the web elements to interact with could

change the fragility of the locators and thus the associated maintenance

effort. More in detail, nowadays there are two main approaches to web ele-

ment localization [13, 14, 56]. (1) the DOM-based approach (supported

by, e.g., SeleniumWebDrivere), where test cases access the web page Doc-

umentObjectModel (DOM) to locate the web elements (e.g., anchors, but-

tons) by accessing their properties (e.g., identifier or text), or by navigating

the DOM tree by means of XPath queries. On the other hand, (2) the visual

approach (adopted by, e.g., JAutomate [6] and Sikuli [7]) relies on image

recognition techniques to identify and control GUI components.

PESTO (PagE object tranSformation TOol) [57, 58] is a tool able to trans-

form a SeleniumWebDriver test suite into a Sikuli visual test suite automat-

ically, while retaining the same coverage and all the assertions.

PESTO can be useful when the web application under test is evolved to

adopt modern visual widgets such as Google Maps. In these cases, DOM-

based tools are not adequate, because the DOM of these visual components

is complicated to retrieve (if not impossible), and such tools do not support

visual testing (e.g., they cannot assert that an image is visually present on

the screen). Moreover, with PESTO, companies can evaluate the benefits

of third generation tools at minimum cost, without taking the risk of a sub-

stantial investment, necessary for the manual migration of existing test suites.

Automatically migrated test cases can be smoothly introduced in the existing

e http://www.seleniumhq.org/projects/webdriver/.

111Three Open Problems in the Context of E2E Web Testing and a Vision

http://sepl.dibris.unige.it/APOGEN.php
http://sepl.dibris.unige.it/APOGEN.php
http://www.seleniumhq.org/projects/webdriver/
http://www.seleniumhq.org/projects/webdriver/

testing process, so as to evaluate their effectiveness and robustness in com-

parison with the existing DOM-based suites.

To the best of our knowledge no other solution, both in the academia

and in the industry, yet exists to carry out such migration task for Selenium-

web based test cases. A proposal in the context of desktop applications is by

Al�egroth and colleagues [56], which allows to migrate existing automated

component-based GUI test cases (GUITAR [59]) to the visual approach

(VGT GUITAR).

PESTO relies on aspect-oriented programming, computer-vision, and

code-transformations. PESTO executes the transformation by means of two

main modules (see Fig. 6). The Visual Locators Generator generates a visual

locator for each web element used by the DOM-based test suite (i.e., a

unique image representing that web element on the web application

GUI). Specifically, PESTO automatically retrieves the bounding rectangle

of the web elements, and an image is automatically captured for each

web element surrounded by such rectangles. This is technically realized

by capturing the command calls to the web elements with aspect-oriented

programming (AOP). Based on the captured images, the original test suites

DOM-based test suite

TestTest POPO

Visual test suite

Visual

Locator

Visual

locator

Test’Test¢ PO’PO¢

Visual Locators

Generator

Generates a set of Visual
Locators for each Web
Element located by a
DOM-based Locator

Visual locators

generator

Generates a set of visual
locators for each web
element located by a
DOM-based locator

Test Suite

Transformer

Transforms the DOM-
based Test Suite in a

Visual Test Suite

Test suite

transformer

Transforms the DOM-
based test suite in a

visual test suite

Source

(input)

Target

(output)

DOM-based

to Visual

Locator

Mapping

DOM-based

to visual

locator

mapping

Module 1

Visual

Locator

Visual

locator
Module 2

PESTO

Fig. 6 High-level logical architecture of PESTO.

112 Filippo Ricca et al.

are automatically rewritten as visual test suites by the Visual Test Suite

Transformer. This module converts the source code of the DOM-based test

suite in order to adopt the visual approach; the majority of the changes are

concentrated in the page objects code, since page objects are responsible for

the interaction with the web pages.

The effectiveness of PESTO has been evaluated on a set of DOM-based

validation test suites, developed by an independent, professional web tester

for different open-source web applications [57]. PESTO generated the

corresponding visual test suites for the DOM-based validation test suites

requiring only a small amount of alignment work. The visual test suites auto-

matically generated by PESTO were then executed and the test cases

exhibited the correct, expected behavior. In our study, PESTO was able to

migrate 100% of the command calls used in the existing DOM-based vali-

dation test suites. Moreover, by analyzing other existing DOM-based test

suites, we found that PESTO can handle more than 95% of the employed

command calls, when an abstraction as the page object is used. The visual

locators automatically generated by PESTO were checked for readability by

the professional tester involved in our experiments and they were judged

easy to understand.

For the interested reader, a demo video of PESTO and the source code can

be found on the tool web site: http://sepl.dibris.unige.it/PESTO.php.

5.4 Separating Test Specification from Test Implementation
With APORES

The goal of the APORES (Automatic Page Objects REStructurer) prototype

is separating test specification from test implementation in test code suffering

the strong coupling and low cohesion problem. More concretely, APORES

(which is one of the modules still to be implemented) will attack the chal-

lenging problem of restructuring a test suite built without the page objects

into an equivalent one adopting them (see Fig. 7). While APOGEN creates

page objects from scratch (thus supporting development), APORES will infer

page objects from existing test code. Further, the two prototype tools can be

used together by the web tester to alleviate the incompleteness problem:

APORES will be used to transform a legacy test suite and APOGEN to generate

fresh page objects that can be used to extend the initial test suite.

We are aware that the task is challenging to be executed in an automatic

way. However, we are confident that a big portion of the transformation can

be conducted automatically, with techniques similar to those of the already

implemented prototypes of NEONATE. From the technical point of view,

113Three Open Problems in the Context of E2E Web Testing and a Vision

http://sepl.dibris.unige.it/PESTO.php
http://sepl.dibris.unige.it/PESTO.php

APORES could re-use part of the AOP infrastructure fine-tuned for PESTO

and the crawler used for APOGEN. Further, automatic code transformation

techniques (e.g., using the TXL language [60]) will be employed to effec-

tively execute the migration.

5.5 Suggesting and Executing Repairs for Broken Code With
AUTOREPAIR

The goal of the AUTOREPAIR prototype is suggesting and eventually executing

repairs for broken test code due to web application evolution. Automatic

repairing of test suites is an alternative way to face the fragility problem.

ROBULA+would prevent and limit the amount of broken locators; on the other

hand, AUTOREPAIR would intervene in all cases in which a repair is needed. In

our vision, AUTOREPAIR would manage also breakages that go beyond locator

problems, for instance, a breakage in the test workflow due to a missing state-

ment. Self-repairing test suites is a big open research problem that goes beyond

the web context (e.g., techniques could be adapted towork also in themobile

environment). Indeed, several research groups are currently working on the

test suite self-repairing problem [23, 29, 30, 61, 62].

As a first step toward the automatic repair of web test suites, we intend to

use differential testing to compare the test executions of two successive releases

of a web application: a first in which the test suite runs properly, and a second

in which breakages occur (as done in WATER [29]). Then, by means of static

and dynamic analyses techniques, we aim at (1) automatically determine the

root cause behind the breakage, (2) automatically determine repairs for the

broken statements, (3) rank the candidate repairs according to some heuristics,

(4) suggest the ordered list of repairs to the developer for inspection, and (5)

automatically fix the test with the chosen repair.

This approach is simple but effective because it is based on the assump-

tion that the evolution of the web application under test is limited. In the

DOM-based
test suite

APORES

Restructured
DOM-based

test suite

Test

Test

Page
object

Fig. 7 Input and output of APORES: it is evident the presence of the novel created page
objects.

114 Filippo Ricca et al.

comparison, we will use information contained in error stack traces and out-

put messages produced by previously instrumented test code (as done for

example in the ReAssert tool [61]). AUTOREPAIR would manage program-

mable WebDriver test code instead of capture and replay (C&R) test code

(in the case of WATER specifically Selenium IDE test code) and we intend to

use effective similarity measures [63] and prioritize the given suggestions to

reduce the number of false positives repair suggestions.

In our vision, AUTOREPAIR will consider the test suites self-repairing

problem in its entirety, also managing changes at level of steps of the test

scenario (due to business logic changes) and input data (e.g., the format

of the data is changed from DD/MM/YYYY toMM/DD/YYYY). In par-

ticular, repairing automatically the steps of a test scenario is extremely chal-

lenging. Indeed, repair operations can range from simple insertion and

deletion of steps (e.g., deleting a confirmation action) to repair of multiple

steps that require to execute multiple operations in series. Considering

input data, one factor limiting the usage of web application test automation

techniques is the cost of finding appropriate input values. To mitigate this

problem, Elbaum and colleagues proposed a family of techniques based

on user-session data [64]. In general, user-session-based techniques: (1) collect

user interactions when users use aweb application, (2) store the clients requests

in the form of URLs and name-value pairs, and then (3) apply strategies to

generate test cases. Several mechanisms can be used to capture and store

user-session data (e.g., one of the simplest is configuring the web server to

log all the received requests). An example of access log for an e-commerce

application could be the following:

(2018-01-01 12:00:00) Client1 Home

(2018-01-01 12:00:01) Client1 SearchProd, prodCat=notebook

(2018-01-01 12:00:02) Client2 Home

(2018-01-01 12:00:03) Client2 FindShop, place=London,

country=UK

(2018-01-01 12:00:03) Client1 FindShop, place=Rome,

country=IT

(2018-01-01 12:00:04) Client3 Home

(2018-01-01 12:00:06) Client3 AdvSearchProd, pMin=200,

pMax=800

(2018-01-01 12:00:07) Client3 AdvSearchProd, date=01-01-

2018

115Three Open Problems in the Context of E2E Web Testing and a Vision

In particular, time stamps are assumed to be associated with each entry of

the log. Then a column contains the name of the host requesting a web page

(e.g., Client1). The next column contains the name of the requested page

followed by the name-value pairs provided to the web server (e.g., via

GET requests). When requests coming from the same host are found within

a proper time interval (which depends on the specific implementation of the

user-session data storage mechanism), it is assumed that navigation from a

previously accessed page to a new one is taking place. Otherwise, a direct

request of a page is considered to occur. Finally, when a request from a host

is not followed by any other request from the same host, this is interpreted as

the termination of the navigation session. From this simple example it is pos-

sible to extract useful input data such as geographical locations (e.g., London,

UK and Rome, IT), dates (e.g., 01-01-2018), ranges of price (e.g., from 200

to 800), and name of products (e.g., notebook). These user-session data, col-

lected in previous releases can be then reused as input data in the current

release. However, also user-session data suffer the evolution problem: ses-

sion data may become invalid due to changes in the application. Input data

repairing techniques [65] are able to alleviate this problem; in this way input

data are able to survive the application evolution.

Finally, meaningful input generation is known to be a challenging task,

due to the difficulty to find meaningful values for forms (interesting pro-

posals exist [66–68]), and the correlation they may have (e.g., the zip code

value and the country to which it refers).

5.6 Extending Existing Test Suites With TS-EXT
Human-written test suites can be a gold mine, i.e., a valuable source of

domain knowledge related to which interactions are more important to

cover, which data have been used as inputs, and what elements on the page

need to be asserted and how.

The goal of the TS-EXT (Test Suite EXTender) prototype is to improve

the effectiveness of the target test suite by extending it. With improving the

effectiveness of the target test suite we mean: augmenting the coverage and

fault finding capability of the test suite.

To implement TS-EXT a web crawler is necessary, i.e., a program that

automatically retrieves web pages of a target application and builds a web

graph model where, in the simplest case, nodes are web pages and edges

are hyperlinks between pages. There are three specific problems to address:

(1) automated input generation, (2) paths selection (among the unbounded

116 Filippo Ricca et al.

number of behaviors) and (3) assertions generation. Similarly to Fard et al.,

who proposed the TESTILIZER tool [36], we believe that these problems can

be faced by combining the manual approach with an automated one.

The idea is the following: by starting from an existing limited test suite,

TS-EXT will extend it automatically adding more test cases so as to cover

unexplored paths in the web graph model. More in detail, TS-EXT will:

(1) mine existing test code to infer existing input data and assertions, (2) exe-

cute the test code to find already explored web application paths, and (3)

expand the initial human-written test suite with other novel test cases.

To produce these novel test cases a Web crawler will be employed to dis-

cover unexplored paths while input data and assertions will be computed by

means of an input generator, leveraging available user-session data [64] (i.e.,

data gathered when users exercise aWeb application, as seen in Section 5.5),

and using a tool for generating assertions.

More in detail, assertions can be created by levering on dynamic detec-

tion of likely invariants techniques similar to the ones implemented in Dai-

kon [69]. An invariant is a property that can be relied upon to be true during

the execution of a program or a portion of it. Invariants can be used in

assert statements, documentation, and formal specifications. Examples

include: being constant (x ¼¼ a), nonzero (x ! ¼ 0), being in a range

(a <¼ x <¼ b), linear relationships (y ¼ ax + b), ordering (x <¼ y), func-

tions from a library (x ¼ f(y)), containment (x belongs y), sortedness (x is

sorted). The assertion generator of TS-EXT can benefit from a Daikon-like

automatic invariant detector. As an example of possible additional assertion,

consider a simple online shop web application. As a first step, it is required to

trace a large number of user sessions. The resulting log will include informa-

tion concerning interesting values shown on the web pages (e.g., the num-

ber of products in the carts during the users’ navigations) and the info about

every action performed by the users (e.g., adding or removing products). By

analyzing the execution traces, the invariant detector is able, for instance, to

find the following invariant: the number of products in the cart of a user

must be always equal to the number of products she/he added in—or

removed from—the cart (e.g., if five products have been added and then

two have been removed, an automatically generated invariant will check

that the cart contains three products). This kind of invariants can be added

automatically as assertions in different points of the test scripts (for instance

every time a product is added or removed from the cart).

Fig. 8 exemplifies our idea. Tc0 is the test code written by theWeb tester.

Its execution produces the path composed by blue nodes on the web graph

117Three Open Problems in the Context of E2E Web Testing and a Vision

model (see Fig. 8). On the contrary, red nodes (Fig. 8, center and right) rep-

resent further steps carried out by or via the aforementioned “ingredients”

(e.g., input generator). Tc1…Tc5 represent the code of test cases diversifying

Tc0. For example, for generating Tc1 it is sufficient to make two steps sim-

ilarly to Tc0 (i.e., the first two blue steps), a Crawler step and finally gener-

ating a fresh assertion by means of the generation assertion tool.

An ambitious goal would be to outperform TESTILIZER both in terms of

effectiveness of the extended test suite (i.e., more coverage and more faults

finding capability) and in terms of quality of the produced assertions. Indeed,

the assertions producedbyTESTILIZER are quite effective but difficult to under-

stand andmaintain because basedon the structure of the page (see Fig. 9 top for

an example). On the contrary, we intend to automatically produce “human-

like” assertions, i.e., assertions simple to understand and more similar to those

that would have produced a human (see Fig. 9 bottom for an example).

Web graph model

(using a Crawler)

Test code

Crawler step +

Assertion

generation

Crawler

step +

Assertion

reuse

Input and

Assertion

generation

Tc4

Idea: combining manual approach with automated one

TS-EXTCrawlers

Inputs

generators

Assertions
generators

User
session

data

Crawability
metrics

Page

objects

Ingredients:

Challenging task!

How can we combine them?

Crawler step +

Assertion

generation

Crawler step +

Assertion

generation

Tc2

Tc1

Tc3

Tc5

How is it difficult

for a crawler the

exploration?

Tc0

Fig. 8 Improving the effectiveness of a test suite with TS-EXT.

Fig. 9 An example of a TESTILIZER (top) and a Human-like (bottom) assertion.

118 Filippo Ricca et al.

5.7 Supporting the Tester During Maintenance/Development
With ASSISTANT

The ASSISTANT module will support the web tester in the use of NEONATE

and its modules. The goal of the ASSISTANT is suggesting to the web tester

the actions/transformations to apply to the test code that are most appropri-

ate, in order to improve its quality, or to extend an initial test suite.

In our vision, the ASSISTANT is a recommendation system that will ana-

lyze the test code looking for code smells. A repository of test code smells con-

taining potential problems identified in the test code during our analyses will

be maintained and continuously updated, as new potential threats manifest.

The test code manually written by the tester will be continuously analyzed

by means of a static analyzer (diagnosis phase), starting from the earliest stages

of development. The ASSISTANT will consult the test code smells repository

and provide the tester with suggestions/recommendations. The suggestion

can be: (1) on demand, i.e., explicitly requested by the tester or (2) in automatic

modality, when the ASSISTANTwill automatically warn the tester about a poten-

tial threat in the code, and suggest theNEONATEmodule that can be adopted to

mitigate/solve it (e.g., ROBULA+, APORES, and TS-EXT). Thus, suggestions are

displayed based on the task that the tester is performing on the test suite.

For instance, if the tester is editing a test code using fragile absolute XPath

locators in the editor, the ASSISTANT will automatically highlight the identified

smell suggesting her/him the usage of the ROBULA+ module.

A dialog-based GUI will guide the tester through the steps necessary to

execute the selected refactoring. Depending on the complexity of the

refactoring (in some cases, multiple modules have to be called in series), a

wizard or a simple dialog will be used to gather the necessary information.

Similarly to the Eclipse refactoring wizard, the ASSISTANT will be equipped

with a preview module, able to show the changes that the refactoring will

perform. This will open a view containing a list of changes to be made to the

current test code along with a link that allow to execute the refactoring on

the test code.

6. NEONATE’S EXAMPLES OF USE

This section aims at showing how NEONATE can be useful in simpli-

fying typical test code tasks. Two scenarios will be considered: (1) creation

from scratch of an automated test suite for a web application and

(2) refactoring of an existing automated test suite. Besides these two exam-

ples, NEONATE can be utilized for many other maintenance activities

119Three Open Problems in the Context of E2E Web Testing and a Vision

such as: generating robust locators for new or modified web elements with

ROBULA+, generating page objects for new portions of the web application

with APOGEN, realigning broken test code with the updated web application

with AUTOREPAIR.

6.1 Automated Test Suite Development (Scenario 1)
Let us assume that the quality assurance team (QAT) currently verifies the

correct behavior of the web application employing several web testers that

manually follow the steps of a predefined set of test cases. This is actually a

typical solution adopted in the industrial practice, as observed in our expe-

rience. However, as discussed before, this practice is error prone, time con-

suming, and ultimately not very effective.

For this reason, the QAT wishes to improve the level of automation of

the testing activities by means of automated testing tools. The desired goal is

to bring all the main benefits of automation in the current inefficient testing

setting, e.g., a fast and unattended execution of the test cases after every

change made to the web application under test (i.e., for regression purposes).

Without a ITE like NEONATE, the QAT has to manually implement the

test code able to instrument the web application and verify its behavior.

QAT can follow two strategies [14]:

– adopt a capture and replay (C&R) tool (e.g., Selenium IDE). In this for-

mer case, the web testers perform actions on the web application GUI and

execute the test scenario. The tool records such actions and generates

replayable test scripts that, in a second time, can redeliver the same actions

to the browser automatically.

– rely on a programmable test automation framework (e.g., Selenium

WebDriver). In this latter case, testers have to implement the test code

using a programming language (such as Java or Ruby) and APIs providing

commands to control the browser and interact with the web elements

composing the pages (e.g., click a button, fill in a field, or submit a form).

Both strategies have shown nonnegligible development/maintenance effort

[12] that often represents a barrier to the adoption of test automation. More

in detail, C&R test suites requires less development effort as compared to

the programmable ones. On the other hand, programmable tools show, if

the test code is well-engineered, a lower overall cost (i.e., considering both

development and maintenance costs) since the adoption of specific design

patterns. As already discussed, the page object pattern can drastically reduce

the maintenance effort of a test suite during the web application evolution.

120 Filippo Ricca et al.

By adopting NEONATE, instead, the QAT can get all the benefits of high-

quality test automation code at a cost comparable with the one of a C&R

solution. In fact, the ASSISTANT contains a wizard procedure that suggests

the steps to follow during the creation of a new test suite. The first step con-

sists in developing high-quality page objects representing the web pages of

the application. This step is fully automated in NEONATE. Indeed, the ASSIS-

TANT asks only a few information about the target web application such as its

URL and the data to insert in the forms that cannot be filled with

autogenerated inputs (e.g., the login credentials). At this point, APOGEN is

executed and a set of page objects encapsulating the web pages functional-

ities is created. Thanks to the integration with ROBULA+, the locators used in

the page objects for locating the web page elements to interact with are

as robust as the best locators that a human expert would create. Fig. 10 shows

a fragment of a sample web application which is composed by various pages

such as Login, Index, Messages, Settings, etc. For each of them, APOGEN gen-

erates a page object encapsulating their functionalities (reported as gray boxes

in Fig. 10). For instance, the Login page contains a form allowing the users to

Fig. 10 Fragment of the web application and associated page objects created by
APOGEN.

121Three Open Problems in the Context of E2E Web Testing and a Vision

log in the application. Correspondingly, a Login page object is created con-

taining a method that allows to perform the authentication (see lines 15–20).
In the next step, the QAT has to manually implement the test cases into

test code by simply calling the various methods exposed by the page objects

and following the tests specifications (before driving the manual testing

activities). Fig. 11 reports an example of test code for verifying the correct

behavior of the login functionality relying on the page objects created by

APOGEN.

At this point, the automated test suite creation is completed and the test

suite executes the same test cases that were previously executed in a manual

fashion. In addition, the ASSISTANT suggests to improve the coverage of the

test suite by using the TS-EXTmodule. In this way several additional test cases

can be added to the original test suite. For instance, in our example, the test

suite contains only a positive login test (i.e., log in using correct credentials).

Thus, TS-EXT is able to find the different navigation paths that appear when

inserting incorrect or incomplete credentials and leading to one or more

“error” pages displaying specific messages to the user (e.g., invalid credentials,

empty password). Hence, new test cases are created, increasing the coverage

of the initial test suite.

Finally, whether the QAT has decided that it is better to adopt the visual

localization strategy for the web elements to interact with (instead of the

DOM-based one that is the default option in NEONATE), because for exam-

ple a refactoring toward complex visual components to offer increased user-

friendliness and responsiveness is forthcoming, it is possible to automatically

migrate (a portion of) the freshly created DOM-based test suite to the visual

approach by mean of the PESTO module.

6.2 Automated Test Suite Refactoring (Scenario 2)
In this second example of use, let us assume that the QAT has already

adopted Selenium IDE as a reference tool for web testing. Fig. 12 shows

a Selenium IDE test script used to verify the correct behavior of the login

Fig. 11 Example of page object-based programmable automated test.

122 Filippo Ricca et al.

functionality. However, QAT quickly discovered several limitations in its

usage. For instance, a C&R tool does not provide natively some useful fea-

tures, such as conditional statements, loops, logging functionality, exception

handling, and parameterized (also known as data-driven) test cases. More-

over, as mentioned in the previous section, C&R solutions have been shown

to be very expensive during maintenance. For this reason, QAT could plan

to migrate the test suite to Selenium WebDriver, i.e., adopting a program-

mable approach.

Without NEONATE, the effort of such migration is, in practice, similar to

developing a new programmable test suite from scratch. Indeed, the only

support provided by Selenium IDE is to export the test cases in Java, one

of the languages supported by Selenium WebDriver. However, in order

to take full advantage of the benefits of the programmable approach it is

required to provide the test code with a completely different organization

with respect to the one created by the simple one-to-one translation from

the Selenium IDE C&R test code. Indeed, the adoption of the Page Object

and Factory patterns drastically affects the test suite structure. Fig. 13

shows the test code (written using the Selenium WebDriver framework),

implementing the same test case, that does not adopt any design pattern

(the same result could be obtained using the export functionality of Sele-

nium IDE). This test code, even if small, is largely suboptimal considering

Fig. 12 Example of C&R automated test.

Fig. 13 Example of programmable automated test not adopting page object and fac-
tory patterns.

123Three Open Problems in the Context of E2E Web Testing and a Vision

the two factors: robustness of the locators and structural quality. On the

other hand, the test code reported in Fig. 11 is by far simpler and more

understandable since all the technical details are moved to the page objects.

With NEONATE such onerous refactoring activities are executed auto-

matically. Indeed, the ASSISTANT, analyzing the Java code exported by Sele-

nium IDE, suggests the use of the APORES module for restructuring the test

suite built without the page objects into an equivalent one adopting them.

As reported in the previous section for APOGEN, also APORES takes advantage

of ROBULA+ for generating robust web element locators. At this point, the

programmable automated test suite is completed and executes the same test

cases that were previously executed with Selenium IDE. As described in the

previous section, following the ASSISTANT suggestions, it is then possible, for

instance, to improve the test suite coverage by means of the TS-EXT module

or migrate it to the visual approach with the PESTO module.

7. NEONATE’S LONG-TERM IMPACT

We believe that NEONATE will represent a major breakthrough in the

web testing domain. Moreover, since web apps are similar to mobile apps

many of our proposals and prototype tools can also be applied to the mobile

context increasing the impact of our work. More in detail, we believe that

the impact of NEONATE will be on three lines: scientific, practical, and

industrial.

7.1 Scientific
From the scientific viewpoint, NEONATE will boost the web test automa-

tion research in novel directions such as generating robust web test code,

suggesting improvements to test code, migrating existing state-of-the-practice

test suites to novel approaches. The research of this project is strategic, because

it aims at raising the quality of all daily used apps and is original, because only

few researchers in the world are facing these problems and with solutions

complementary to ours. Currently, there is scientific evidence that test auto-

mation is hindered by the fragility problem, but its exact nature is unknown

and unaddressed. Moreover, it is not clear whether specific ad hoc remedies

and shortcuts are adopted in the industrial practice. Finally, possible relation-

ships between the problem and the available testing tools are totally unknown.

An industrial survey will be useful to answer all these questions.

124 Filippo Ricca et al.

7.1.1 Benchmarks
The possibility to compare the results of ourworkwith those of other compet-

itors is of vital importance. In general,well-defined benchmarks allowresearchers

to empirically validate their proposals and compare them against the state-of-

the-art solutions. For instance, examples of benchmarks used in testing

research involve SIR [70], Defect4J [71], and SF100 [72]. A benchmark of

this kind is absent in web testing, thus another follow up of our research con-

cerns building a benchmark of web applications, along with test suites, bug

reports, and bug fixes. Such a benchmark could be a reference for theweb test-

ing community once made publicly available.We intend to build benchmarks

onwhichwewill validate ourproposals and compare themwith state-of-the art

algorithms and tools. These benchmarkswill be a reference for the community

and we will make them publicly available. Note that, currently, although

really useful, benchmarks are not available in our community.

7.2 Practical
From a practical viewpoint, the causal implication of our project is the fol-

lowing: we aim at nullifying the impact of the fragility problem. This will

lead to a breakthrough in the practical usage of test automation. Extending

the usage of test automation will increase the coverage of tested apps (deeply

tested apps) with the indirect consequence of improving the quality of all

web apps. This will have a remarkable economic relevance and direct impact

on the daily lives of the users. It is worth noting that although our prototype

tools are dependent on the chosen testing platform (e.g., Selenium), they

will be almost independent from the technology used for developing the

web app under test (e.g., Ajax, Angular, JQuery) because E2E testing tools

consider the app as a black box and focus only on GUI interactions. More-

over, our solutions can be easily adapted/generalized to any E2E testing tool

and framework.

7.3 Industrial
Even if it is outside the scope of the project to conduct technology transfer

from academia to industry, the postproject outcome may include the

development of full-fledged industrial tools and the creation of high-tech

start-ups. Big companies and nonprofit organizations could integrate our

solutions (e.g., the algorithms for generating locators currently embedded

in the browsers produce locators that are extremely fragile) into their

browsers as plug-ins or into specialized IDE for web developers and testers.

125Three Open Problems in the Context of E2E Web Testing and a Vision

8. CONCLUSIONS

Nowadays web applications are critical assets of our society. Billions of

people use them every day as source of information, means of communica-

tion and venue for commerce. For these reasons, checking their quality and

correctness is of undeniable importance. Despite the advances in software

testing, i.e., one of the possible ways to improve web applications quality,

the ever-increasing technological complexity of modern web applications

makes current testing techniques not adequate.

To face this issue, test automation tools are adopted by software engi-

neers to automate the creation and execution of the test cases. However,

such tools in industrial practice often leads to create test code which is (1)

fragile to minor application changes, (2) strongly coupled with the web

application under test and thus poorly maintainable, and (3) incomplete, i.e.,

having a low coverage of the web application input and functionalities. As a

consequence, automated test suites are often abandoned, in spite of their

potential value to catch errors and regressions.

In this work, we have discussed the three open problems that, according

to our experience in web testing [12, 23, 24, 42–46] and our analysis of the

state of the art and practice of this field, are among the major causes that limit

the adoption of test automation in the web domain: fragility problem, strong

coupling and low cohesion problem and incompleteness problem. We have

then analyzed the existing research solutions to these problems, and we have

presented our vision to overcome them, which concerns the development

and usage of a new integrated testing environment called NEONATE. Finally,

we have sketched our ongoing work on the NEONATE project which has the

utmost purpose of representing a major breakthrough in the web testing

domain.

As seen in the chapter, NEONATE, when completed, will be a powerful

and flexible toolset focused on the development/maintenance/evolution

of web test code. Currently three out of seven expected modules (i.e.,

ROBULA+, PESTO, and APOGEN) have already been implemented and the

corresponding empirical evaluation shown that they outperform the state-

of-the-art proposals. Future work will be devoted to the design, implemen-

tation, and validation of the remaining prototype tools and to empirically

show the effectiveness of NEONATE as a whole testing framework.

In conclusion, we strongly believe that the NEONATE long-term project

will demonstrate to the research community and practitioners that it is

126 Filippo Ricca et al.

possible to create robust test code, to repair broken test code, to increase the

maintainability of test code, and, in the end, to improve the effectiveness of

existing test suites.

In our opinion, web technologies will further increase their relevance in

the next years. That is, everyday we use a web interface to access and use our

applications and data. For this reason, we hope that this work could help the

testing community to be more aware about the problems hindering web test

automation and foster more researchers to find solutions. In fact, in the web

context, new technologies emerge continuously and, each of them could

require specific solutions to solve the three problems. For example, if a

new web technology comes into the scene, the impact of the fragility prob-

lemmight be more or less severe depending on the intrinsic characteristics of

technology itself and that of the tool utilized for testing it (e.g., DOM-based

or visual). NEONATE has been specifically designed to empower the web

tester and limiting the three open problems. Thus, it has a human-centric

vision aimed at supporting the tester activities.Onother hand, novel computer-

centric testing solutions based on artificial intelligence and machine learning

are emerging with the aim of automatically creating and maintaining the

test code. Their goal is to replace, as much as possible, the humans.We believe

that the two approaches, human and computer centric, could (and probably

should) coexist and as to reinforce each other with the overall goal to improve

the final quality of the future web applications.

Moreover, also mobile applications are today very important for a great

variety of activities and businesses; and this will be even more true in the next

decade.NEONATE can influence closely related contexts such asmobile and IoT

testing research. Especially for the former, we expect mobile apps testers to

face similar problems as in the web context. Thus, we believe that our testing

framework can be adapted also to solve issues affecting themobile testing envi-

ronment and novel solutions drew on the research presented in this chapter. As

an example, theAndroid applications haveXML-based interfaces that are con-

ceptually similar to theHTML of the web applications. For this reason, similar

challenges/research problems may concern robust localization of GUI ele-

ments, mobile page objects creation, visual image recognition, or hybrid test

suites. Thus, it is realistic to hypothesize that theNEONATE ITEcould be ported

or implemented also to supportmobile applications (for instance, by leveraging

existing mobile testing frameworks and tools like Selendroidf or Appiumg).

f http://selendroid.io/.
g http://appium.io/.

127Three Open Problems in the Context of E2E Web Testing and a Vision

http://selendroid.io/
http://selendroid.io/
http://appium.io/
http://appium.io/

REFERENCES
[1] I.V. Yakovlev,Web 2.0: is it evolutionary or revolutionary? IT Prof. 9 (6) (2007) 43–45.

ISSN: 1520-9202. https://doi.org/10.1109/MITP.2007.123.
[2] T. O’Reilly, What is web 2.0? Design patterns and business models for the next gen-

eration of software, 2005. http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/
30/what-is-web-20.html.

[3] A. Mesbah, Software analysis for the web: achievements and prospects, in: Proceedings of
23rd International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016, IEEE, 2016, pp. 91–103. https://doi.org/10.1109/SANER.2016.109.

[4] H.S. Chaini, S.K. Pradhan, Test script execution and effective result analysis in hybrid
test automation framework, in: Proceedings of International Conference on Advances
in Computer Engineering and Applications, IEEE, 2015, pp. 214–217. https://doi.org/
10.1109/ICACEA.2015.7164698.

[5] SeleniumHQ Web Browser Automation, 2017. http://www.seleniumhq.org/.
[6] E. Al�egroth, M. Nass, H.H. Olsson, JAutomate: a tool for system- and acceptance-test

automation, in: Proceedings of Sixth International Conference on Software Testing,
Verification and Validation, ICST 2013, ISBN: 978-0-7695-4968-2, pp. 439–446.

[7] T.-H.Chang, T.Yeh,R.C.Miller, GUI testing using computer vision, in: Proceedings of
28th Conference on Human Factors in Computing Systems, CHI 2010, ACM, 2010,
pp. 1535–1544.

[8] S. Berner, R. Weber, R.K. Keller, Observations and lessons learned from automated
testing, in: Proceedings of 27th International Conference on Software Engineering,
ICSE 2005, IEEE, 2005, pp. 571–579.

[9] M. Leotta, D. Clerissi, F. Ricca, C. Spadaro, Comparing the maintainability of Selenium
WebDriver test suites employing different locators: a case study, in: Proceedings of First
International Workshop on Joining AcadeMiA and Industry Contributions to Testing
Automation, JAMAICA 2013, ACM, 2013, ISBN: 978-1-4503-2161-7, pp. 53–58.
https://doi.org/10.1145/2489280.2489284.

[10] M. Leotta, D. Clerissi, F. Ricca, C. Spadaro, Improving test suites maintainability with
the page object pattern: an industrial case study, in: Proceedings of Sixth International
Conference on Software Testing, Verification and Validation Workshop, ICSTW
2013, IEEE, 2013, ISBN: 978-1-4799-1324-4, pp. 108–113. https://doi.org/10.1109/
ICSTW.2013.19.

[11] D.M. Rafi, K.R.K. Moses, K. Petersen, M.V. M€antyl€a, Benefits and limitations
of automated software testing: systematic literature review and practitioner survey,
in: Proceedings of Seventh International Workshop on Automation of Software Test,
AST 2012, IEEE, 2012, ISBN: 978-1-4673-1822-8, pp. 36–42. http://dl.acm.org/
citation.cfm?id¼2663608.2663616.

[12] M. Leotta, D. Clerissi, F. Ricca, P. Tonella, Capture-replay vs programmable web
testing: an empirical assessment during test case evolution, in: Proceedings of 20th
Working Conference on Reverse Engineering, WCRE 2013, IEEE, 2013, ISBN:
978-1-4799-2931-3, pp. 272–281. https://doi.org/10.1109/WCRE.2013.6671302.

[13] M. Leotta, D. Clerissi, F. Ricca, P. Tonella, Visual vs DOM-based web locators: an
empirical study, in: S. Casteleyn, G. Rossi, M. Winckler (Eds.), LNCS, Proceedings
of 14th International Conference on Web Engineering (ICWE 2014), vol. 8541,
Springer, 2014, pp. 322–340. https://doi.org/10.1007/978-3-319-08245-5_19.

[14] M. Leotta, D. Clerissi, F. Ricca, P. Tonella, Approaches and tools for automated end-
to-end web testing. Adv. Comput. 101 (2016) 193–237. ISSN: 0065-2458. https://doi.
org/10.1016/bs.adcom.2015.11.007.

[15] M. Hammoudi, G. Rothermel, P. Tonella, Why do record/replay tests of web appli-
cations break? in: Proceedings of Ninth International Conference on Software Testing,
Verification and Validation, ICST 2016, IEEE, 2016, pp. 180–190.

128 Filippo Ricca et al.

https://doi.org/10.1109/MITP.2007.123
http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
https://doi.org/10.1109/SANER.2016.109
https://doi.org/10.1109/ICACEA.2015.7164698
https://doi.org/10.1109/ICACEA.2015.7164698
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0035
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0035
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0035
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0035
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0040
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0040
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0040
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0045
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0045
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0045
https://doi.org/10.1145/2489280.2489284
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1109/ICSTW.2013.19
http://dl.acm.org/citation.cfm?id=2663608.2663616
http://dl.acm.org/citation.cfm?id=2663608.2663616
http://dl.acm.org/citation.cfm?id=2663608.2663616
http://dl.acm.org/citation.cfm?id=2663608.2663616
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1007/978-3-319-08245-5_19
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1016/bs.adcom.2015.11.007
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0080
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0080
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0080

[16] M. Fowler, Page Object, 2013. http://martinfowler.com/bliki/PageObject.html.
[17] A. Mesbah, A. van Deursen, D. Roest, Invariant-based automatic testing of modern

web applications, IEEE Trans. Softw. Eng. 38 (1) (2012) 35–53. http://doi.
ieeecomputersociety.org/10.1109/TSE.2011.28.

[18] S. Thummalapenta, K.V. Lakshmi, S. Sinha, N. Sinha, S. Chandra, Guided test
generation for web applications, in: Proceedings of 35th International Conference on
Software Engineering, ICSE 2013, IEEE, 2013, ISBN: 978-1-4673-3076-3.
pp. 162–171. http://dl.acm.org/citation.cfm?id¼2486788.2486810.

[19] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, M.D. Ernst, Finding bugs in
dynamic web applications, in: Proceedings of International Symposium on Software
Testing and Analysis, ISSTA 2008, ACM, 2008, ISBN: 978-1-60558-050-0,
pp. 261–272. https://doi.org/10.1145/1390630.1390662.

[20] S. Thummalapenta, S. Sinha, N. Singhania, S. Chandra, Automating test automation,
in: Proceedings of 34th International Conference on Software Engineering, ICSE 2012,
IEEE, 2012, pp. 881–891.

[21] F. Ricca, M. Leotta, A. Stocco, D. Clerissi, P. Tonella, Web testware evolution,
in: Proceedings of 15th International Symposium on Web Systems Evolution, WSE
2013, IEEE, 2013, ISBN: 978-1-4799-1608-5, pp. 39–44. https://doi.org/10.1109/
WSE.2013.6642415.

[22] M. Leotta, A. Stocco, F. Ricca, P. Tonella, Reducing web test cases aging by means of
robust XPath locators. in: Proceedings of 25th International Symposium on Software
Reliability Engineering Workshops, ISSREW, IEEE, 2014, pp. 449–454. https://
doi.org/10.1109/ISSREW.2014.17.

[23] M. Leotta, A. Stocco, F. Ricca, P. Tonella, Using multi-locators to increase the
robustness of web test cases, in: Proceedings of Eighth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, IEEE, 2015, ISBN: 978-
1-4799-7125-1, pp. 1–10. https://doi.org/10.1109/ICST.2015.7102611.

[24] M. Leotta, A. Stocco, F. Ricca, P. Tonella, ROBULA+: an algorithm for generating
robust XPath locators for web testing, J. Softw. Evol. Process 28 (3) (2016) 177–204.
ISSN: 2047-7481. https://doi.org/10.1002/smr.1771.

[25] N. Dalvi, P. Bohannon, F. Sha, Robust web extraction: an approach based on a prob-
abilistic tree-edit model, in: Proceedings of International Conference on Management
of Data, SIGMOD 2009, ACM, 2009, ISBN: 978-1-60558-551-2, pp. 335–348.
https://doi.org/10.1145/1559845.1559882.

[26] A. Parameswaran, N. Dalvi, H. Garcia-Molina, R. Rastogi, Optimal Schemes for
Robust Web Extraction, vol. 4, VLDB Endowment, 2011.

[27] K. Bajaj, K. Pattabiraman, A. Mesbah, Synthesizing web element locators,
in: Proceedings of 30th International Conference on Automated Software Engineering,
ASE 2011, IEEE, 2015, pp. 331–341. https://doi.org/10.1109/ASE.2015.23.

[28] R. Yandrapally, S. Thummalapenta, S. Sinha, S. Chandra, Robust test automation using
contextual clues, in: Proceedings of 25th International Symposium on Software Testing
and Analysis, ISSTA 2014, ACM, 2014, ISBN: 978-1-4503-2645-2, pp. 304–314.
https://doi.org/10.1145/2610384.2610390.

[29] S.R. Choudhary, D. Zhao, H. Versee, A. Orso, WATER: web application test repair,
in: Proceedings of First International Workshop on End-to-End Test Script Engineer-
ing, ETSE 2011, ACM, 2011, ISBN: 978-1-4503-0808-3, pp. 24–29.

[30] M. Hammoudi, G. Rothermel, A. Stocco, WATERFALL: an incremental approach
for repairing record-replay tests of web applications, in: Proceedings of 24th International
Symposium on the Foundations of Software Engineering, FSE 2016, ACM, 2016,
pp. 751–762.

[31] S. Stewart, Page Objects–Selenium wiki, 2017 https://github.com/SeleniumHQ/
selenium/wiki/PageObjects.

129Three Open Problems in the Context of E2E Web Testing and a Vision

http://martinfowler.com/bliki/PageObject.html
http://martinfowler.com/bliki/PageObject.html
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.28
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.28
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.28
http://dl.acm.org/citation.cfm?id=2486788.2486810
http://dl.acm.org/citation.cfm?id=2486788.2486810
http://dl.acm.org/citation.cfm?id=2486788.2486810
https://doi.org/10.1145/1390630.1390662
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0105
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0105
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0105
https://doi.org/10.1109/WSE.2013.6642415
https://doi.org/10.1109/WSE.2013.6642415
https://doi.org/10.1109/ISSREW.2014.17
https://doi.org/10.1109/ISSREW.2014.17
https://doi.org/10.1109/ICST.2015.7102611
https://doi.org/10.1002/smr.1771
https://doi.org/10.1145/1559845.1559882
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0135
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0135
https://doi.org/10.1109/ASE.2015.23
https://doi.org/10.1145/2610384.2610390
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0150
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0150
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0150
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0155
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0155
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0155
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0155
https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

[32] L. Christophe, R. Stevens, C.D. Roover, W.D. Meuter, Prevalence and maintenance
of automated functional tests for web applications, in: Proceedings of 30th International
Conference on Software Maintenance and Evolution, ICSME 2014, IEEE, 2014.

[33] A. van Deursen, Testing web applications with state objects. Commun. ACM 58 (8)
(2015) 36–43. ISSN: 0001-0782. https://doi.org/10.1145/2755501.

[34] B. Yu, L. Ma, C. Zhang, Incremental web application testing using page object,
in: Proceedings of Third Workshop on Hot Topics in Web Systems and Technologies,
HOTWEB 2015, 2015, ISBN: 978-1-4673-9688-2, pp. 1–6.

[35] C. Pacheco, S.K. Lahiri, M.D. Ernst, T. Ball, Feedback-directed random test genera-
tion, in: Proceedings of 29th International Conference on Software Engineering, ICSE
2007, IEEE, 2007, pp. 75–84.

[36] A. Milani Fard, M. Mirzaaghaei, A. Mesbah, Leveraging existing tests in automated test
generation for web applications, in: Proceedings of 29th International Conference on
Automated Software Engineering, ASE 2014, ACM, 2014, ISBN: 978-1-4503-
3013-8, pp. 67–78. https://doi.org/10.1145/2642937.2642991.

[37] Y. Zhang, A. Mesbah, Assertions are strongly correlated with test suite effectiveness,
in: Proceedings of 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, ACM, 2015, ISBN: 978-1-4503-3675-8, pp. 214–224. https://
doi.org/10.1145/2786805.2786858.

[38] S. Artzi, J. Dolby, S.H. Jensen, A. Møller, F. Tip, A framework for automated testing of
javascript web applications, in: Proceedings of 33rd International Conference on Soft-
ware Engineering, ICSE 2011, ACM, 2011, ISBN: 978-1-4503-0445-0, pp. 571–580.
https://doi.org/10.1145/1985793.1985871.

[39] S. Mirshokraie, A. Mesbah, K. Pattabiraman, PYTHIA: Generating test cases with ora-
cles for JavaScript applications, in: Proceedings of 28th International Conference on
Automated Software Engineering, ASE 2013, IEEE, 2013, pp. 610–615. https://doi.
org/10.1109/ASE.2013.6693121.

[40] S. Mirshokraie, A. Mesbah, K. Pattabiraman, Atrina: inferring unit oracles from GUI
test cases, in: Proceedings of International Conference on Software Testing, Verifica-
tion, and Validation, ICST 2016, IEEE, 2016, pp. 330–340.

[41] M. Biagiola, F. Ricca, P. Tonella, Search based path and input data generation for web
application testing, in: Proceedings of Ninth International Symposium on Search Based
Software Engineering, SSBSE 2017, Springer, 2017, pp. 18–32. https://doi.org/
10.1007/978-3-319-66299-2_2.

[42] F. Ricca, P. Tonella, Analysis and testing of web applications, in: Proceedings of 23rd
International Conference on Software Engineering, ICSE 2001, IEEE, 2001,
pp. 25–34. https://doi.org/10.1109/ICSE.2001.919078.

[43] P. Tonella, F. Ricca, Statistical testing of web applications, J. Softw. Maint. 16 (1–2)
(2004) 103–127.

[44] F. Ricca, P. Tonella, Detecting anomaly and failure in web applications, IEEE Multi-
Media 13 (2) (2006) 44–51.

[45] A. Marchetto, F. Ricca, P. Tonella, A case study-based comparison of web testing tech-
niques applied to AJAX web applications. Int. J. Softw. Tools Technol. Transfer 10 (6)
(2008) 477–492. ISSN: 1433-2787. https://doi.org/10.1007/s10009-008-0086-x.

[46] A. Marchetto, P. Tonella, F. Ricca, State-based testing of Ajax web applications,
in: Proceedings of First International Conference on Software Testing, Verification
and Validation, ICST 2008, IEEE, 2008, pp. 121–130.

[47] J. Gao, C. Chen, Y. Toyoshima, D.K. Leung, Developing an integrated testing envi-
ronment using the world wide web technology, in: Proceedings of the 21st International
Computer Software andApplicationsConference,COMPSAC1997, IEEE,Washington,
DC, USA, 1997, ISBN: 0-8186-8105-5, pp. 594–601. http://dl.acm.org/citation.cfm?
id¼645979.675991.

130 Filippo Ricca et al.

http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0165
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0165
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0165
https://doi.org/10.1145/2755501
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0175
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0175
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0175
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0180
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0180
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0180
https://doi.org/10.1145/2642937.2642991
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1145/1985793.1985871
https://doi.org/10.1109/ASE.2013.6693121
https://doi.org/10.1109/ASE.2013.6693121
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0205
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0205
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0205
https://doi.org/10.1007/978-3-319-66299-2_2
https://doi.org/10.1007/978-3-319-66299-2_2
https://doi.org/10.1109/ICSE.2001.919078
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0220
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0220
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0225
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0225
https://doi.org/10.1007/s10009-008-0086-x
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0235
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0235
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0235
http://dl.acm.org/citation.cfm?id=645979.675991
http://dl.acm.org/citation.cfm?id=645979.675991
http://dl.acm.org/citation.cfm?id=645979.675991
http://dl.acm.org/citation.cfm?id=645979.675991

[48] C. Williams, H. Sluiman, D. Pitcher, M. Slavescu, J. Spratley, M. Brodhun, J. McLean,
C. Rankin, K. Rosengren, The STCL test tools architecture, IBM Syst. J. 41 (1) (2002)
74–88. ISSN: 0018-8670.

[49] T.E.J. Vos, P. Tonella, J. Wegener, M. Harman, W. Prasetya, E. Puoskari, Y. Nir-
Buchbinder, Future internet testing with FITTEST, in: Proceedings of 15th European
Conference on Software Maintenance and Reengineering, CSMR 2011, IEEE, ISSN
1534-5351, 2011, pp. 355–358. https://doi.org/10.1109/CSMR.2011.51.

[50] M.W. Whalen, P. Godefroid, L. Mariani, A. Polini, N. Tillmann, W. Visser, FITE:
future integrated testing environment, in: Proceedings of Workshop on Future of Soft-
ware Engineering Research, FoSER 2010, ACM, 2010, ISBN: 978-1-4503-0427-6,
pp. 401–406. https://doi.org/10.1145/1882362.1882444.

[51] T. Margaria, O. Niese, B. Steffen, Demonstration of an automated integrated test envi-
ronment for web-based applications, in: Proceedings of Ninth International SPIN
Workshop, LNCS, vol. 2318, Springer, 2002, pp. 250–253.

[52] P. Montoto, A. Pan, J. Raposo, F. Bellas, J. Lopez, Automated browsing in AJAX
websites, Data Knowl. Eng. 70 (3) (2011) 269–283. ISSN: 0169-023X. https://doi.
org/10.1016/j.datak.2010.12.001.

[53] A. Stocco, M. Leotta, F. Ricca, P. Tonella, APOGEN: automatic page object generator
for web testing, Softw. Qual. J. 25 (3) (2017) 1007–1039. ISSN: 1573-1367. https://doi.
org/10.1007/s11219-016-9331-9.

[54] A. Mesbah, A. van Deursen, S. Lenselink, Crawling Ajax-based web applications
through dynamic analysis of user interface state changes, ACM Trans. Web 6 (1)
(2012) 3:1–3:30.

[55] A. Stocco, M. Leotta, F. Ricca, P. Tonella, Clustering-aided page object generation for
web testing, in: Proceedings of 16th International Conference on Web Engineering
(ICWE 2016), LNCS, vol. 9671, Springer, 2016, ISBN: 978-3-319-38790-1,
pp. 132–151. https://doi.org/10.1007/978-3-319-38791-8_8.

[56] E. Al�egroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and evaluation of
component-based testing unified with visual GUI testing: an empirical study,
in: Proceedings of Eighth International Conference on Software Testing, Verification
and Validation, ICST 2015, 2015, pp. 1–10. https://doi.org/10.1109/
ICST.2015.7102584.

[57] M. Leotta, A. Stocco, F. Ricca, P. Tonella, PESTO: automated migration of DOM-
based web tests towards the visual approach. J. Softw. Test. Verification Reliab
28 (4) (2018) e1665. ISSN: 1099-1689. https://doi.org/10.1002/stvr.1665 (John
Wiley & Sons).

[58] M. Leotta, A. Stocco, F. Ricca, P. Tonella, Automated generation of visual web
tests from DOM-based web tests, in: Proceedings of 30th Symposium on Applied
Computing, SAC 2015, 2015, ISBN: 978-1-4503-3196-8, pp. 775–782.

[59] B.N. Nguyen, B. Robbins, I. Banerjee, A. Memon, GUITAR: an innovative tool for
automated testing of GUI-driven software, Autom. Softw. Eng. 21 (1) (2014) 65–105.
ISSN: 1573-7535. https://doi.org/10.1007/s10515-013-0128-9.

[60] J.R. Cordy, TXL—a language for programming language tools and applications,
in: Proceedings of Fourth Workshop on Language Descriptions, Tools, and Applications
(LDTA 2004), Electronic notes in theoretical computer science, ISSN 1571-0661,
vol. 110, Elsevier, 2004, pp. 3–31. https://doi.org/10.1016/j.entcs.2004.11.006.

[61] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec, S.H. Tan,
D. Marinov, ReAssert: a tool for repairing broken unit tests, in: Proceedings of 33rd
International Conference on Software Engineering, ICSE 2011, IEEE, ISSN 0270-
5257, 2011, pp. 1010–1012. https://doi.org/10.1145/1985793.1985978.

[62] M. Mirzaaghaei, F. Pastore, M. Pezzè, Automatic test case evolution, J. Softw. Test.
Verification and Reliab. 24 (5) (2014) 386–411. ISSN: 0960-0833.

131Three Open Problems in the Context of E2E Web Testing and a Vision

http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0245
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0245
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0245
https://doi.org/10.1109/CSMR.2011.51
https://doi.org/10.1145/1882362.1882444
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0260
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0260
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0260
https://doi.org/10.1016/j.datak.2010.12.001
https://doi.org/10.1016/j.datak.2010.12.001
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1007/s11219-016-9331-9
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0275
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0275
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0275
https://doi.org/10.1007/978-3-319-38791-8_8
https://doi.org/10.1109/ICST.2015.7102584
https://doi.org/10.1109/ICST.2015.7102584
https://doi.org/10.1002/stvr.1665
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0295
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0295
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0295
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1145/1985793.1985978
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0315
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0315

[63] S. Barman, S. Chasins, R. Bodik, S. Gulwani, Ringer: web automation by demonstra-
tion, in: Proceedings of International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, ACM, 2016, ISBN: 978-1-
4503-4444-9. pp. 748–764. https://doi.org/10.1145/2983990.2984020.

[64] S. Elbaum, G. Rothermel, S. Karre, M. Fisher II, Leveraging user-session data to sup-
port web application testing, IEEE Trans. Softw. Eng. 31 (3) (2005) 187–202. ISSN:
0098-5589.

[65] M. Harman, N. Alshahwan, Automated session data repair for web application
regression testing, in: Proceedings of the International Conference on Software Testing,
Verification, and Validation, ICST 2008, 2008, ISBN: 978-0-7695-3127-4,
pp. 298–307.

[66] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic test
input generation for web applications, in: Proceedings of International Symposium
on Software Testing and Analysis, ISSTA 2008, ACM, 2008, ISBN: 978-1-60558-
050-0, pp. 249–260. https://doi.org/10.1145/1390630.1390661.

[67] L. Mariani, M. Pezzè, O. Riganelli, M. Santoro, Link: exploiting the web of data to
generate test inputs, in: Proceedings of International Symposium on Software Testing
and Analysis, ISSTA 2014, ACM, 2014, ISBN: 978-1-4503-2645-2, pp. 373–384.
https://doi.org/10.1145/2610384.2610397.

[68] J. Lin, F. Wang, Using semantic similarity in crawling-based web application testing,
in: Proceedings of 10th International Conference on Software Testing, Verification
and Validation, ICST 2017, 2017.

[69] M.D. Ernst, J.H. Perkins, P.J. Guo, S.McCamant, C. Pacheco,M.S. Tschantz, C. Xiao,
The Daikon system for dynamic detection of likely invariants, Sci. Comput. Program.
69 (1–3) (2007) 35–45, ISSN: 0167-6423.

[70] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing
techniques: an infrastructure and its potential impact, Empir. Softw. Eng. 10 (4) (2005)
405–435. ISSN: 1573-7616. https://doi.org/10.1007/s10664-005-3861-2.

[71] R. Just, D. Jalali, M.D. Ernst, Defects4J: a database of existing faults to enable controlled
testing studies for java programs, in: Proceedings of 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, ACM, 2014, ISBN: 978-1-4503-2645-2,
pp. 437–440. https://doi.org/10.1145/2610384.2628055.

[72] G. Fraser, A. Arcuri, Sound empirical evidence in software testing, in: Proceedings
of 34th International Conference on Software Engineering, ICSE 2012, IEEE, 2012,
ISBN: 978-1-4673-1067-3, pp. 178–188.

ABOUT THE AUTHORS
Filippo Ricca is an associate professor at the

University of Genova, Italy. He received his

PhD degree in Computer Science from the

same University, in 2003, with the thesis

“Analysis, Testing and Re-structuring of

Web Applications”. In 2011 he was awarded

the ICSE 2001 MIP (Most Influential Paper)

award, for his paper: “Analysis and Testing of

Web Applications”. He is author or coauthor

of more than 100 research papers published

in international journals and conferences/

workshops. Filippo Ricca was Program

132 Filippo Ricca et al.

https://doi.org/10.1145/2983990.2984020
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0325
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0325
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0325
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0330
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0330
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0330
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0330
https://doi.org/10.1145/1390630.1390661
https://doi.org/10.1145/2610384.2610397
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0345
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0345
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0345
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0350
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0350
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0350
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/2610384.2628055
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0365
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0365
http://refhub.elsevier.com/S0065-2458(18)30065-2/rf0365

Chair of CSMR/WCRE 2014, CSMR 2013, ICPC 2011, and WSE 2008.

His current research interests include: Software modeling, Reverse engi-

neering, Empirical studies in Software Engineering, Web applications and

Software Testing.

Maurizio Leotta is a researcher at the Uni-

versity of Genova, Italy. He received his PhD

degree in Computer Science from the same

University, in 2015, with the thesis

“Automated Web Testing: Analysis and

Maintenance Effort Reduction”. He is

author or coauthor of more than 60 research

papers published in international journals and

conferences/workshops. His current

research interests are in software engineering,

with a particular focus on the following

themes: Web\Mobile\IoT application test-

ing, functional test automation, empirical software engineering, business

process modelling and model-driven software engineering.

Andrea Stocco is a postdoctoral fellow at

the department of Electrical and Computer

Engineering (ECE) of the University of Brit-

ish Columbia, Canada. He received his PhD

in Computer Science at the University of

Genova, Italy, in 2017, with the thesis

“Automatic page object generation to sup-

port E2E testing of web applications”. He

is the recipient of the Best Student Paper

Award at the 16th International Conference

on Web Engineering (ICWE 2016). His

research interests include web testing and

empirical software engineering, with particular emphasis on test breakage

detection and automatic repair, robustness and maintainability of test suites

for web applications.

133Three Open Problems in the Context of E2E Web Testing and a Vision

