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ABSTRACT

Repairing broken web element locators represents the major main-
tenance cost of web test cases. To detect possible repairs, testers
typically inspect the tests’ interactions with the application under
test through the GUI. Existing automated test repair techniques
focus instead on the code and ignore visual aspects of the applica-
tion. In this demo paper, we give an overview of VISTA, a novel test
repair technique that leverages computer vision and local crawling
to automatically suggest and apply repairs to broken web tests.
URL: https://github.com/saltlab/Vista
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1 INTRODUCTION AND MOTIVATION

Automated web tests created with tools such as Selenium are renown
for being fragile as the the web application under test evolves [6].
Researchers have singled out web element locators as the main
cause of fragility [3]. Locators are commands used by test automa-
tion tools to identify elements on a web page, hanging on specific
properties found in the Document Object Model (DOM), such as
the element’s identifier, XPath, or text.

Test Breakage Problem. Unfortunately, the DOM tends to be
a quite volatile structure, which is massively updated both for
evolution and cosmetic purposes. Even simple modifications such as
elements repositioning can negatively impact the mapping between
locators and web elements, making tests inapplicable. In literature,
instances of these problems are referred to as test breakages [3].
A broken test is different from a failing test, because the natural
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software evolution is the cause of the test’s malfunction rather than
the presence of bugs in the production code. Thus, the repair activity
must be triggered on the test code, rather than on the application’s.
How Testers Repair. While repairing locators might seem a fairly
mundane task, it instead accounts for a number of different sce-
narios that makes it quite challenging and time-consuming [10].
When a test ¢ that was used to function on a version Vj breaks on a
successive version Vs, a tester needs to understand the root cause
behind the breakage and a possible fix for it. This process involves
at least four steps. (1) The tester inspects the error stack trace or
the console, which may contain information about the origin of
breakage (e.g., “NoSuchElementException occurred. Unable to locate
element with name=password”). (2) The tester inspects t, looking for
the statement st related to the error message. (3) The tester browses
the GUI of V;, trying to identify the portion of GUI related to st.
(4) The tester inspects either the DOM, or the GUI, or both the
DOM and the GUI of V; to find potential fixes. While doing so, the
tester may possibly need to manually exercise the same broken
scenario of ¢ (i.e., all the actions in the statements preceding st), in
order to replicate the breakage occurred at st and gather insights
on possible repairs.

Challenges of Manual Repair. A first challenge in repairing web
tests derives from the fact that testers often need to inspect and
link the test code behaviour with the modifications perpetrated to
the GUI and the DOM of the evolved application. In other words,
breakages are often repaired by finding candidate solutions through
the inspection of the DOM and the GUI at the same time. For this
reason, it is arguably more challenging and time-consuming to
repair Selenium tests than standard JUnit tests for desktop applica-
tions, for which the error messages are typically more informative
and IDE features make debugging activities easier.

A second challenge is related to the time needed to correct such
breakages, which can be significant [2, 4]. One of the main reasons
is due to the low tooling support by existing test automation frame-
works in understanding the root causes behind test breakages and
how they do relate with the changes made in the web applications.
The Idea. Our insight is using the GUI and visual technologies to
support the detection of breakages, by checking the GUI actions
performed by the tests and validating them at runtime (in a similar
way as testers do), timely detecting deviations from the correct be-
haviour. In this way, we can anticipate the occurrence of breakages,
and trigger repair procedures that suggest potential fixes to the
testers. Existing locator repair techniques [1, 2] are limited when
the web application undergoes drastic structural changes because
they only consider the DOM as a source where to find repairs.
The Tool. Our tool VisTa uses the visual information obtained by
the tests’ execution and, along with image processing and crawling
techniques, supports the automated repair of locator breakages.
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Figure 1: AddressBook web application evolution (v. 6.2.12 — v. 7.0.0), along with Selenium WebDriver test cases.

2 RUNNING EXAMPLE

We consider a real test regression scenario and explain the limita-
tions of WATER [1], an existing DOM-based web test repair solution,
which motivate the need for a novel visual-based approach.

Figure 1 shows two versions of the AddressBook web application,
one of the experimental subjects used in our empirical study [10].
We consider a test scenario in which a new entry is added to the
address book. In the first version 6.2.12 (Figure 1a), the test (@) logs
into the application (Lines 1-3), clicks on the “add new” link (Line 4)
and fills in the form with the new user information (Lines 5-7).

When the new version of AddressBook is released, a tester may

wish to run this test to check whether regressions have occurred
into the application during development. However, when executed
on version 7.0.0 (Figure 1b), the test (a) will cease to function because
multiple breakages are present.
Non Selections. First, the execution will stop at Line 3, when at-
tempting to locate the “Login” button, because the attribute value
has been removed from the HTML. At a visual inspection of the
two GUIs, however, a tester would expect the test to work, because
her perception is immaterial where changes at DOM-level are con-
cerned. Indeed, it is evident that the target element (i.e., the “Login”
button) is visually still present on the page, and its position on the
GUI has not changed.

This is a simple instance of direct breakage, because the test
scenario is unaltered, and no bugs are (eventually) present in the
application. However, the test is inapplicable because the synchro-
nization with the application is lost, and a fix needs to be found.
To this aim, a tester may wish to use WATER to automatically fix
the broken statement at Line 3. Specifically, another locator for the
“Login” button (3) needs to be generated, rather the relying on the
“broken” attribute value. WATER will attempt to gather information
about the broken element (such as the XPath, and the various at-
tributes) by analysing the DOM of the previous version 6.2.12, and
match such information on the evolved DOM of version 7.0.0. Un-
fortunately, WATER’s technique is ineffective in this case, because
(i) the attribute value has been deleted from the DOM, and (ii) both
the XPath and the tag of the target element have changed (from
input to button), which render impossible for WATER’s heuristic
to identify it on the evolved DOM and apply its automatic repair.
Broken Workflows. A second non-trivial breakage happens at
Line 5. When attempting to locate the “First name” text field, the
test will raise an exception of kind NoSuchElementException. Indeed,
a new intermediate confirmation page has been added (Figure 1b),
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and the navigational workflow of the test must be corrected to
reflect that of the new modified web application.

From a testing perspective, the “First name” text field can no
longer be found on the web page (test state) following the execution
of the statement at Line 4. However, conceptually, the repair action
that needs to be triggered in order to correct the test has nothing
to do with the locator at Line 5. In fact, by only looking at the
exception raised by JUnit, it is challenging for the tester to detect
this problem, unless the visual execution of the test is taken into
consideration. Even the use of WATER is unsuccessful, because the
tool would attempt to repair the broken statement at Line 5 (the
technique only handles addition of statements within forms, and
does not apply to general broken workflow scenarios).

Mis Selections. Lastly, the statements at Lines 5-6 will execute
correctly, whereas the statement at Line 7 will fill the field “Nick-
name”, instead of the field “Company”. In literature, this is known
as a mis-selection problem [1, 10]. Mis-selection of web elements
can lead to unpredictable test executions, that diverge from the
test’s intended behaviour. Depending on the kind of actions being
performed, the test’s execution might continue until it reaches a
point in which an action cannot be performed or an element cannot
be found, but the actual repair has to be triggered in a previous test
statement (propagated breakage). WATER is not designed to de-
tect mis-selections; however those scenarios are very challenging
to detect for a tester, because only at a manual visual inspection of
the test’s execution, one can recognize such breakage patterns.
Repaired Test. Figure 1b @ shows the test as repaired by Vista
(repairs are highlighted), that works correctly on AddressBook
version 7.0.0. Specifically, (i) the non-selection and mis-selection are
corrected by updating the locator component of the test statements
(Lines 3 and 5), and (ii) the broken workflow is corrected by adding
a new test statement to reach the new page (hence creating the
missing transition).

In the following of this demo paper, we illustrate our tool design
and implementation.

3 VISTA TOOL

Our intuition behind the development of Vista is that an algorithm
taking into consideration the visual execution of the tests might
be able to validate the feasibility of DOM-based locators through
their visual appearance, potentially anticipating the occurrence
of breakages. Additionally, the visual locators can be also used to
match the target element in the new evolved GUIL An assumption
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Figure 2: High-Level Architecture of Vista

of this work is that the GUI of a web application is less prone to
be drastically changed between two consecutive releases, whereas
the DOM gets updated more frequently. However, matching web
elements between two GUIs is challenging and several issues needs
to be solved. Among all (1) finding an accurate visual matching
technique that can handle multiple visual matches (visual false
positives), and, in the case a good visual match is found, (2) retriev-
ing the corresponding element in the DOM. (3) Lastly, in the case
of broken workflows, it would be desirable to automate the local
exploration of the application’s state space, looking whether the
target element has repositioned to another test state.

3.1 Tool Architecture

Figure 2 shows the high level architecture of Vista, which is logi-
cally composed by two main modules: the Visual Execution Tracer
and the Visual-Augmented Test Runner. VISTA is written in Java and
executes Selenium test cases within the Eclipse IDE analysing their
visual execution trace to detect the occurrence of locator breakages
and finding potential fixes at runtime to report to the users for
inspection.

In the following we explain the two modules on the running
example described in Section 2.

3.2 Visual Execution Tracer

In the first phase, our tool records the visual interactions of each test
statement with a correct version of the application (Web App V1).
Keeping the association between statements, DOM locators, and
their visual appearance is important because it is close to the mental
model that testers create when they manually validate the execution
of the tests through, for instance, eye-balling.

Such a mapping can be captured only at runtime, while tests
execute, because the visual appearance of the rendered elements
may change during the application’s execution and some elements
may be not visible until specific events occur. To this aim, the Visual
Execution Tracer integrates the tool PESTO [7, 9] that uses aspect-
oriented programming to intercept Selenium WebDriver method
calls (e.g., click()) and automatically creates visual locators for
each web element composing the test cases. A visual locator is the
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portion of the rendered web page that uniquely identifies that web
element on the screen [7].

For instance, for the test breakage at Line 3 in Figure 1a, the login
submit button (in the HTML <input value=‘‘Login’’>) is identified
through the XPath locator //input[@value=‘‘Login’’]. The tool
(i) saves the entire screenshot of the web page, (ii) retrieves the
web element coordinates and sizes through WebDriver, and finally
(iii) crops a rectangle image centred on the web element. Note that
a visual locator is not always the precise crop of the web element’s
bounding box. PESTO can also manage cases in which a larger crop—
taking into account the web element’s visual context—is necessary
in order to visually differentiate it from other visually similar web
elements appearing on the page (e.g., multiple text fields in a form).

When the test execution terminates, all this information (test
statements, corresponding screenshots and visual locators) is made
persistent as a json file and used by the second main component
of the tool.

3.3 Visual-Augmented Test Runner

In the second phase, Vista runs the tests on the new evolved ver-
sion of the application (Web App V2). The Visual-Augmented Test
Runner executes each test statement in a controlled loop environ-
ment in which the result of the action performed by the statement
on the web application is validated by a series of steps.

First, the tool pools the DOM of the application with the orig-
inal locator //input[@value=‘‘Login’’] to observe if an instance
of a WebElement object is returned by WebDriver. In case of non-
selections (e.g., no web elements are associated with the locator
in the new DOM), VisTA attempts at verifying if the web element is
still visually present on the web page (by means of the visual locator
saved before), and if so, it generates a new locator (see Section 3.4).

Conversely, if an element is retrieved by the original DOM loca-
tor, a further sanity check is performed, still relying on the visual
search of the web element. VisTa checks the equivalence of the
two WebElement objects retrieved by the two locators: if they do
target the same web element, the approach has visually validated
the test statement, which is executed. Then, the approach proceeds
to validating the next statement.
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In case of disagreement between the visual and DOM locators,
a possible case of mis-selection might have occurred, and Vista
outputs the result to the tester, who needs to resolve the dispute by
selecting the correct locator (if any).

A third breakage scenario occurs when neither the DOM nor
the visual locator is able to select any web element in the current
DOM (test state). This is the case of Line 5 of Figure 1a, in which
the target web element has repositioned to a new web page. In this
case, VISTA triggers a local crawling of the state space of the web
application, looking for matches which are one-level distant from
the current page. If a match is found in any of the web pages, the
workflow is repaired by adding a transition to that page generating
a new statement (i.e., a locator) for the matched element.

If all these validation checks are not successful, VIsTA assumes
the web element as being removed from the application and sug-
gests the deletion of the statement to the user.

3.4 Key Components of VisTa

For the development of the visual component of VisTa, we have
pipelined different algorithms available from the open-source com-
puter vision library OpenCV (version 2.4.9) into a custom detector.
The detector aims at assessing the presence of the visual locator in
the new DOM, and, if so, at searching for the best visual match in
the GUI and its correspondent DOM element. In the following we
briefly illustrate each step.

3.4.1 Image Processing Pipeline. The image detector combines
two feature detection algorithms, SIFT and FAST. The detector
extracts the key-points from the template image using SIFT descrip-
tors, and then adopts a Flann-based descriptor matcher with a dis-
tance threshold ratio of y = 0.8. If at least 70% of the key-points are
matched, the Fast Normalized Cross Correlation template matching
algorithm with a similarity threshold § = 0.99 is executed.

In case of multiple or false visual matches, our procedure discards
the matches that do not fall in the region where the key-points have
been found through a non-maxima suppression (NMS) operation.
In this way, only the closest match is returned (see the green thick
rectangle over the “Login” button in Figure 2).

3.4.2 From GUI to DOM. Once the best visual match has been
found, we still need to retrieve the correspondent DOM element
whose bounding box centre has coordinates (x, y). This operation
can be done in different ways, such as parsing the DOM into a
spatial structure (e.g., a R-Tree), for easier querying. Willing to
provide a runtime validation technique, this solution failed to pro-
vide acceptable performance results in our exploratory experiments
because the parsing operation is costly, and its complexity scales
up with the number of elements in the DOM tree.

Thus, Vista simply queries the browser through the JavaScript
command elementFromPoint(x,y) that returns the DOM element
whose bounding box contains x and y. Those parameters need to
specify the centre of the bounding box otherwise a DOM ancestor
of the searched web element—as a form or div container—will be
erroneously returned.

3.4.3 Locator Generator. The XPath of the retrieved web ele-
ment can already be considered a valid repair for locator breakage.
However, VisTa can synthesize different DOM locators based on
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the attributes of the element itself, such as id, or name, discarding
attributes considered fragile and prioritizing the final list based on
the alleged robustness [5, 6].

3.4.4 Local Crawling for Workflow Repair. For the local crawling
exploration, Vista features a Crawljax [8] plugin that incorporates
the image processing pipeline. In this way, the crawler can search
the desired web element visually, thus looking for repairs in the
neighbourhood of the breakage site.

For an empirical evaluation of VIsSTA in repairing the breakages of
different breakage classes, we refer the reader to our full paper [10].
VISTA was able to provide correct repairs for 81% of breakages, with
a 41% increment over WATER.

4 CONCLUSIONS AND FUTURE WORK

In this paper we described ViSTA, a novel web test repair technique
based on a fast image-processing pipeline. While Vista has shown
promising results [10], we are considering several improvements.

For future work, we plan to investigate alternative visual tech-
niques such as OCR, and evaluating the effect of varying the tem-
plate sizes on the tool’s accuracy.

Perhaps more interesting is the potential for hybridization, i.e.,
joining DOM- and visual- heuristics in a single solution. Indeed, the
visual search function can be improved by bringing in additional
information that can help filter the multiple visual matches more
intelligently. As an example, one can collect both DOM information
and the method’s call stack of the elements in order to verify the
semantic equivalence of the elements between different versions.

For the interested reader, the source code and a demo video can be

found on the tool’s repository: | https://github.com/saltlab/vista
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