Fine-Grained Test Minimization

Arash Vahabzadeh
University of British Columbia
Vancouver, BC, Canada
arashvhb@ece.ubc.ca

ABSTRACT

As a software system evolves, its test suite can accumulate redun-
dancies over time. Test minimization aims at removing redundant
test cases. However, current techniques remove whole test cases
from the test suite using test adequacy criteria, such as code cov-
erage. This has two limitations, namely (1) by removing a whole
test case the corresponding test assertions are also lost, which can
inhibit test suite effectiveness, (2) the issue of partly redundant
test cases, i.e., tests with redundant test statements, is ignored. We
propose a novel approach for fine-grained test case minimization.
Our analysis is based on the inference of a test suite model that
enables automated test reorganization within test cases. It enables
removing redundancies at the test statement level, while preserving
the coverage and test assertions of the test suite. We evaluated our
approach, implemented in a tool called TESTLER, on the test suites of
15 open source projects. Our analysis shows that over 4,639 (24%) of
the tests in these test suites are partly redundant, with over 11,819
redundant test statements in total. Our results show that TESTLER
removes 43% of the redundant test statements, reducing the number
of partly redundant tests by 52%. As a result, test suite execution
time is reduced by up to 37% (20% on average), while maintaining
the original statement coverage, branch coverage, test assertions,
and fault detection capability.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

KEYWORDS

test minimization, test reduction, test redundancy, test model

ACM Reference Format:

Arash Vahabzadeh, Andrea Stocco, and Ali Mesbah. 2018. Fine-Grained Test
Minimization. In Proceedings of 40th International Conference on Software
Engineering (ICSE ’18). ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3180155.3180203

1 INTRODUCTION

Testing has become a widespread practice to ensure the quality and
correctness of software systems. As the production code evolves,
new test cases are added and existing ones are modified. Over time,
a test suite can accumulate redundant test cases [3, 9, 21], without
benefiting the overall test suite coverage or effectiveness.

Test suite minimization —also known as reduction— techniques
aim at eliminating redundant test cases from test suites to reduce
their maintenance and regression testing costs [35]. Existing re-
duction techniques, however, use adequacy criteria, such as code

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
2018. ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180203

Andrea Stocco
University of British Columbia
Vancouver, BC, Canada
astocco@ece.ubc.ca

Ali Mesbah
University of British Columbia
Vancouver, BC, Canada
amesbah@ece.ubc.ca

coverage, as a guideline to remove whole test cases with redun-
dant coverage [48]. A potential drawback of such techniques is
the deletion of a test case having similar code coverage as other
test cases, but different test statements and assertions. This can
severely modify the intended test suite behaviour [35], because how
a production method is called and asserted influences the overall
test suite effectiveness [50] and fault finding capability [34, 44].

To overcome this issue, an approach targeting more fine-grained
redundancies within test statements is needed. However, reorga-
nizing (or refactoring) test cases is a challenging task. Developers
use the test suite to check that the behaviour of the system is pre-
served when production code is changed. In contrast, such a safety
net does not exist when a test suite needs to go through internal
changes. Moreover, it is not straightforward to manually re-order
complex test cases in a way that retains the semantics.

In this paper, we propose a novel approach to fine-grained test
minimization, while preserving the original behaviour of the test
suite. Our approach analyses test cases at the statement level and
infers a test model that captures the relationships between test
statements and test states. The test model allows fine-grained test
re-organizational tasks such as identifying and removing redundant
test statements. As opposed to existing test reduction techniques,
our fine-grained test minimization technique: (1) models the actual
behaviour of the test suite by capturing the production method calls
together with their inputs, instead of simply relying on code cov-
erage, (2) removes redundant test statements, instead of removing
whole test cases, and (3) preserves all test assertions in a test suite,
in addition to maintaining the coverage and fault finding capability.

Our work makes the following main contributions:

e A novel test minimization technique for eliminating fine-
grained redundancies in test cases that is safe and accurate.
A test model capturing test statements and test states, along
with their relationships.

e An algorithm for identifying behaviour-preserving refactor-
ings in a test suite. It uses the test model to reorganize tests
in a way to minimize redundant test statements.

¢ An implementation of our approach in a tool called TESTLER,
which supports Java code and JUnit4 and is available [41].

e An empirical evaluation of TESTLER performed on test suites
of 15 open source projects. Our results show, on average,
a 43% decrease in the number of redundant statements, a
52% decrease in the number of partly redundant tests, and
a test suite execution time reduction by up to 37% (20% on
average).

2 A MODEL FOR ANALYZING TESTS

Our test suite model that enables our fine-grained test analysis is
defined as follows.


https://doi.org/10.1145/3180155.3180203
https://doi.org/10.1145/3180155.3180203
https://doi.org/10.1145/3180155.3180203

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

A. Vahabzadeh et al.

1 @Test

2 public void testAdd() {

3 Complex x = new Complex(3.0, 4.0);

4 Complex y = new Complex(5.0, 6.0);

5 Complex z = x.add(y);

6 assertEquals (8.0, z.getReal(), 1.0e-5);
7}

8 @Test

9 public void testSubtract() {

10 Complex x = new Complex(3.0, 4.0);

11 Complex y = new Complex(5.0, 6.0);

12 Complex z = x.subtract(y);

13 assertEquals(-2.0, z.getReal(), 1.0e-5);
14 3}

15 @Test

16 public void testMultiply () {
17 Complex x = new Complex(3.0, 4.0);
18 Complex y = new Complex(5.0, 6.0);
19 Complex z = x.multiply(y);

20 assertEquals(-9.0, z.getReal(), 1.0e-5);
21 }
22 @Test

23 public void testDivide() {

24 Complex dividend = new Complex(3.0, 4.0);

25 Complex divisor = new Complex(5.0, 6.0);

26 Complex q = dividend.divide(divisor);

27 assertEquals(39.0 / 61.0, q.getReal(), 1.0e-5);
28}

Figure 1: Four tests from Apache Commons Math. Fine-
grained redundancies are highlighted.

DEFINITION 1 (TEST SUITE MODEL). A Test Suite Model is a
directed graph denoted by a triple (r,V, E) whereV is a set of vertices
representing test states, E is a set of directed edges representing test
statements and assertions, and r denotes the root of the graph, which
is the initial empty state.

To explain our model, we use the ComplexTest class from the
Apache Commons Math project [2], one of the experimental sub-
jects used in our evaluation. The test class, shown in Figure 1,
consists of four test cases with redundant statements (i.e., the ini-
tialization of the objects x and y of the class Complex, at Lines 3-4,
10-11, 17-18, and 24-25). Figure 2 shows how these redundant state-
ments are removed by our approach.

Figure 3 illustrates the test suite model obtained for the class
ComplexTest. Rectangles denote test states (nodes), whereas round
boxes (the annotated edges) depict test statements, and dashed lines
represent the compatibility between a test state and a test statement
(explained in Section 2.4).

Next, we define the properties of our model, the notions of test
statement and test state, as well as their relationships in the model.

2.1 Model Properties

There are a number of properties that our model needs to exhibit.
First, the model should capture how the production code meth-
ods are called by the test suite. This is important to preserve the
behaviour of the test suite after any refactoring activity. Second,
the model should capture dependencies at the test statement level
to support test reorganization. Since a test statement might have
dependencies on previous statements, it is important to know how
to safely move test statements within or among tests. Finally, the
model should facilitate the discovery and removal of redundancies
in test cases.

1 @Test

2 public void testAdd_Subtract_Multiply_Divide() {
3 Complex x = new Complex(3.0, 4.0);

4 Complex y = new Complex(5.0, 6.0);

5 Complex z = x.add(y);

6 assertEquals (8.0, z.getReal(), 1.0e-5);

7 Complex z_subtract = x.subtract(y);

8 assertEquals(-2.0, z_subtract.getReal(), 1.0e-5);
9 Complex z_multiply = x.multiply(y);

10 assertEquals(-9.0, z_multiply.getReal(), 1.0e-5);
1 Complex q = x.divide(y);

12 assertEquals(39.0 / 61.0, q.getReal(), 1.0e-5);

Figure 2: Reorganized tests of Figure 1. The redundant test
statements are removed and four test cases are merged into
one.

2.2 Test Statements

We use test statements as the smallest unit of computation for the
test model. Using a more fine-grained unit, such as bytecode oper-
ation, would increase the model size and the analysis complexity.
On the other hand, using a larger unit, such as blocks of state-
ments, would invalidate our ability to detect and reorganize partly
redundant test cases with common test statements. Therefore, we
consider each test case as a sequence of test statements (hereafter
referred to as st). For example, each line of the test cases in Figure 1
is a st. Assertions are also a particular type of st.

A unit test case typically creates a set of variables (e.g., objects)
and assigns values to their (member) variables, then it calls the
production method under test using those variables as inputs, and
finally it asserts the value returned by the method. Our test model
needs to capture all these three entities, namely, variables and their
values, production method calls, and test assertions.

DEFINITION 2 (VARIABLE VALUE). The value of a variable x
(Val(x)) is defined as:

primitive_value : Type(x) € P
Val(x) =

{(xi, Val(x;))|x; € Fields(x)} : Type(x) ¢ P

Type(x) denotes the type of the variable x, P is the set of all prim-
itive types, and Fields(x) denotes the set of all member variables of
the object x. If the variable x is a primitive type, Val(x) is the primi-
tive value. Otherwise, if the variable x is an object, its value is a set
of (x;, Val(x;)) pairs where x; is the name of ith member variable in
x; in Java this includes private, protected and public member vari-
ables of the object. For example, in Figure 1 the value of the object x
atLine 3is Val(x) = {(Complex.r, 3.0), (Complex.i, 4.0)} given that
the Complex class has two member variables of type double named
rand i.

In order to preserve the test suite semantics, we analyze it to
capture its externally observable behaviour. We refer to methods
in the production code that are under test as production methods.
The external behaviour of a test suite can be hence modelled by
capturing all the production methods called along with their inputs.

DEFINITION 3 (PRODUCTION METHOD CALLS (PMC)). The
Production Method Calls of a test statement st (PMC(st)) is a set
of (MethodName;, InputSet;) pairs, in which MethodName; is the
qualified name of the called production method, and InputSet; is the



Fine-Grained Test Minimization

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

1, 3.0), (C i, 4. 0)}

PG

- Ci {(C

r, 3.0), (C i, 4.0)}

e c :{(C

1, 5.0), (C i, 6.0)}

S3
Complex : {(C r, 3.0), (C i, 4.0)} [of +{(C r, 3.0), (C i 40)} +{(C r, 3.0), (C i, 4.0)} Complex : {(C r, 3.0), (C i, 4.0)}
Complex : {(Complex.r, 5.0), (Complex.i, 6.0)} Complex {(Complex.r, 5.0), (Complex.i, 6.0)} Complex {(Complex.r, 5.0), (Complex.i, 6.0)} Complex : {(Complex.r, 5.0), (Complex.i, 6.0)}
Complex : {(C r, 8.0), (C i, 10.0)} Complex : {(C r, -2.0), (C i, -2.0)} Complex : {(C r, -9.0), (C i, 38.0)} Complex : {(C .1, 0.64), (C i, 0.03)}

&

27

Figure 3: Extracted partial model for the running example. Nodes (rectangles) represent test states and directed edges are test
statements. Each edge is labelled with all the information about the test statement; here we use line numbers to simplify the
graph. Dashed lines represent state compatibility relations between test states and test statements.

ordered set of (Type(x;), Val(x;j)) pairs for each input variable x; of
the method starting with this object for non-static member functions.

For example, in Figure 1, the PMC for the test statement at Line 5
is {(Complex.add, [(Type(x), Val(x)), (Type(y), Val(y))])} since, as
part of the test statement execution, the method Complex.add is
called with the two inputs x and y. The PMC of a test statement
that does not call any production methods is the empty set.

Further, our model needs to accommodate the ability of moving
test statements from a source position in one test case to a desti-
nation position in another test case. In order to preserve the test’s
behaviour and avoid undesirable side effects, we need to keep track
of the data and definition dependencies of the test statements [26].
Indeed, if we know which variables have been used as part of the
execution of a test statement, we can determine whether it can be
safely moved to another destination position in the test suite.

Concerning data dependency, we save the variables that are used
by the test statements and by the assertions, defined as follows.

DEFINITION 4 (USED VARIABLES OF TEST STATEMENTS (UVS)).

The Used Variables of a test statement stj (UVS(stj)) is a set of
(Type(x;), Val(x;)) pairs where each variable x; is used in the execu-
tion of st;.

For example, the UVS of the statement at Line 5 of Figure 1
contains {(Type(x), Value(x)), (Type(y), Value(y))}.

For assertions, we also need to keep track of the method calls
that create the value of the variables. Since assertions check the
output of particular production method calls, we need to capture
this information as part of our test model. For example, at Line 6
of Figure 1, the assertion checks the output of the method add
with specific inputs. It is possible to retrieve the whole chain of
method calls that the assertion evaluates as following: the assertion

checks the output of the add method, which uses the output of two
constructor calls of the Complex class.

DEFINITION 5 (USED VARIABLES OF ASSERTIONS (UVA)). The
Used Variables of an assertion asrt, UVA(asrt), is a set of (Type(x;),
Val(x;), Meth(x;)) tuples where as part of the assertion execution the
variable x; is used and Meth(x;) is the PMC of the test statement
that assigns the value of x;.

For example, in Figure 1, the UVA at Line 6 is {(Type(z), Value(z),
Meth(z))}, where Meth(z) = {(Complex.add, [(Type(x), Val(x)),
(Type(y), Val(y))])} since variable z is being used as part of the exe-
cution of the assertion and its value is created by the add production
method call (PMC of the test statement at Line 5).

In addition to data dependencies, a test statement can have def-
inition dependencies on previous test statements. For example, at
Line 26 of Figure 1, the test statement does not depend on the value
of the variable g. Thus, given that the data dependency of the test
statement is satisfied, it is possible to replace the variable q with
any other variable of type Complex. In order to be executed, the
test statement needs three variables of the type Complex defined in
the previous test statements, in addition to its data dependencies.
The Defined Variables (DV) set of a test statement captures this
definition dependency.

DEFINITION 6 (DEFINED VARIABLES (DV)). The Defined Vari-
ables of a test statement st, DV (st), is the set of the variable types
that are referenced in st, which need to be defined before the execution

of st.

Note that for the defined variables, we abstract away the actual
values by focusing on the types. Consider Figure 1 again. The DV
set at Line 26 is {Complex, Complex, Complex} since the variables
dividend, divisor and q need to be previously defined to satisfy the
definition dependency of the statement.




ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

2.3 Test States

To perform data and definition dependency analysis, we maintain
a test state at each test statement.

DEFINITION 7 (TEST STATE). A Test State encompasses informa-
tion pertaining to the defined variables, their values, and the PMC
that created them at a specific test statement in the test case. Formally,
the Test State (S;) is a set of (Type(x;), Val(x;), Meth(x;)) tuples for
each variable x; referable from jth test statement in the test case.

In the Java programming language and JUnit testing frame-
work, the test state includes information about local variables,
static field of loaded classes, and member variables of the test
class. For example, in Figure 1, the test state before the execu-
tion of Line 5 is {(Type(x), Value(x), Meth(x)), (Type(y), Value(y),
Meth(y))}, since the two variables x and y are referable at Line 5. Fol-

lowing our model, Meth(x) = {(Complex, {(double, 3.0), (double, 4.0)})}

since x is created by the PMC Complex (i.e., the constructor) with
two input values 3.0 and 4.0 of type double.

2.4 Test State Compatibility

It is possible to move a test statement st to a destination position d
only if the test state at d is compatible with st.

DEFINITION 8 (COMPATIBLE STATE). A test state is compati-
ble with a test statement if it satisfies the test statement data and
definition dependencies. In this case, the test statement can be exe-
cuted on the test state while preserving its behaviour. Formally, a test
state (S;) is compatible with a test statement (st;) iff its used variables
(UVS(stj)) and defined variables (DV (st})) are subsets of the test state
((UVS(stj) C Si) A(DV(stj) C Def(Si))). Def(S;) denotes the set of
defined variables in the test state S;.

The compatibility relation for assertions is defined similarly. In
Figure 3 dashed lines represent state compatibility relations be-
tween test states and test statements. For example, the statement
of Line 12 (st12) is compatible with the states Sz, S3, S4, S5, and S
since the read variable set at Line 12 {(Complex, {(Complex.r, 3.0),
(Complex.i, 4.0)}), (Complex, {(Complex.r,5.0), (Complex.i, 6.0)})}
is a subset of these test states. Note that we have illustrated only a
subset of all compatibility relations to avoid a tangled graph.

With the notion of compatible states, we can determine possible
valid reorganizations of test statements in test cases. For example,
we can relocate the test statement of Line 12 (s¢12) in Figure 3 to
any location after the states Ss, S4, S5, or Se.

2.5 Equivalent and Redundant Test Statements

To detect redundancies in the test suite, we look at the external
behaviour of each test statement to identify those that have identical
behaviour. These equivalent test statements are identical as far as
testing the production code is concerned.

DEFINITION 9 (EQUIVALENT TEST STATEMENTS). Equivalent
Test Statements are the sets of test statements that have the same set
of production method calls (PMC).

To preserve the coverage of the production code, we need to
execute (at least) one of the test statements in each set of equiva-
lent test statements. All remaining equivalent test statements are
redundant test statements and hence can be removed.

A. Vahabzadeh et al.

— —
= = Jraces -
= = Production Identify
= = I
Method equivalent test
Calls statements

Vi
i
i
i
i
i
i
i
i

Production Code TestCode 1 |

:

i

i

Instrument ! ! _{Run Instrumented

o Test Cases
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
L
-
T
i

Equivalent
Test
Statements Create

|
I
I
I
'
I
I
'
I
I
'
I
I
'
I
I
'
I
|
Test Suite |
I
I
'
I
I
'
I
I
'
I
I
'
I
I
'
I
I
'
I
'

Model

l

Identify Defined/Used
Variables

!

Identify
Compatible
States

Test Suite 1
P |
Minimization i c inimi; Reorganized Reorganize Test | !
Test Suite Test Case Test Paths Cases |

1

;

Figure 4: Overview of our approach.

For example, concerning Figure 1, the set of equivalent test
statements is {{st3, st10, st17, St24 }, {st4, St11, St18, sta5}, {sts}, {ste},
{st12}, {st13}, {st19}, {st20}, {st26}, {st27}}. In this case, in order to
maintain the coverage of the test, we only need to execute one of
the test statements from the set {sts, st1, st17, st24}, one from the
set {sta, st11, St18, St25}, as well as the sets with only one member.

DEFINITION 10 (PARTLY REDUNDANT TESTS). Test cases that
have one or more redundant test statements are called partly redun-
dant tests.

3 APPROACH

We now describe our approach for creating the model of a test suite
and reducing the redundancies given the model. Figure 4 depicts
our overall approach.

3.1 Code Instrumentation

To capture the test state at each test statement level, we store the
type and value of all referable variables through code instrumenta-
tion. We probe local variables, member variables of the test class,
and static fields of loaded classes. To capture production method
calls (PMCs), we instrument the production code to log the entry
point, input values (including the this object for non-static meth-
ods), and exit points of each method. To keep track of production
methods that are called by each test statement, we produce a sepa-
rate call stack log for each test statement of every test case. These
call stacks allow us to obtain the PMC sets directly called from test
statements.

Used and Defined Variables. For each method invocation, we
assume that all the input variables and all of their properties are
used as part of the test statement execution. This also includes all
referable variables, such as static variables and member variables
of an object that are part of a method invocation on the object. For
example, at Line 6 of Figure 1, we assume that all of the properties
of the variable z (i.e. z.r and z.1i) will be used as part of the test
statement execution (even if z.i is not actually used). This is a
conservative assumption that prioritizes the precision of detecting
compatible states for test statements. In this case, our recall might
be adversely influenced since we might miss some compatibility



Fine-Grained Test Minimization

relations, but the precision is enforced because the relations we
detect are correct. To compute the defined variables set (see Defini-
tion 6), we check for the type of the variables that are referenced
in the test statement.

3.2 Model Generation

Equivalent Test Statements. After the instrumentation phase,
we execute the instrumented test cases against the instrumented
production code, and use the traces to compute sets of equivalent
test statements (i.e., having the same PMC).

Compatible States. To compute compatible states for a test state-
ment s, we check the states in which the variables used in s have
the same values. We also make sure that the test states satisfy the
definition dependency (see Section 2.4). For assertions, additionally,
we look for the PMC that defined the most recent value for the
used variables. We require that the direct method calls and their
inputs that an assertion checks remain the same to preserve test
assertion coverage [37, 50].

With the information about equivalent test statements and com-
patible states, we create a graph representing our test suite model.

3.3 Test Suite Minimization

We use the inferred model to identify and remove redundant test
statements. For example, by reorganizing the four test cases of
Figure 1, we create the minimized test case shown in Figure 2,
which has the same coverage and assertions, but with six less
statements.

To maintain the test suite coverage, we basically need to call
each production method once. Each test case in our test model
is a path starting from the initial state. For example, in Figure 3,
the test testAdd is the path (st3, sty, sts, ste) in which st; is ith test
statement (i.e., edge). Thus, to maintain the test suite coverage,
we need to find a set of paths, starting from the initial state, that
visits at least one test statement from each set of equivalent test
statements. To find such paths, we propose a greedy algorithm.

Test Reorganization Algorithm. Algorithm 1 shows our test re-
organization algorithm. The intuition is to extend a path among
the compatible states of a test statement to cover as many unique
test statements and assertions as possible. To do so, we maintain
a set of equivalent test statements and assertions that we need to
cover (uncoveredEqStmts).

Starting from the initial state, we find the shortest path to the
nearest test statement that is still uncovered (Line 7). We repeat
this procedure from that node until path extension covering new
equivalent test statements or assertions is no longer possible (inner
loop Lines 12-20). This event occurs when all the equivalent test
statements and all the assertions in the model have been covered.
Otherwise, if there exist equivalent test statements or assertions
which are still uncovered, we start from the initial state and repeat
the procedure again (outer loop Lines 4-22). To find the shortest
path, we use a variant of the best-fit search algorithm that also
maintains the running state [36]. We track the test state at each
point in the graph by maintaining a running state (runningState).
This is essentially the test state that is computed dynamically at each
point in the graph. We update the running state at each iteration
of the algorithm (Line 9 and Line 15).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 1: Test Suite Reorganization
Input: uncoveredEqStmts: set of uncovered equivalent test statements
Input: G: the test suite model
Output: paths: set of paths that visits at least one test statement in each set of
equivalent test statements, and all assertions while minimizing number of test
statements visited
1 REORGANIZE(uncoveredEqStmts, G)
2 begin
3 paths — 0
4 do
5 first «— G.get(init)
6 runningState < 0
7 first, path < PATHTONEARESTUNCOVERED(G, first, uncoveredEqStmts,
runningState)
8 foreach st; € path do
9 ‘ runningState < APPLY(St;, runningState)
10 end
11 frontier « first
12 while frontier # null do
13 frontier, newpath «<— PATHTONEARESTUNCOVERED(G, frontier,
uncoveredEqStmts, runningState)
14 foreach st; € newpath do
15 ‘ runningState < APPLY(St;, runningState)
16 end
17 updateGraph(G, frontier, runningState)
18 markAsCovered(frontier, uncoveredEqStmts)
19 path.add(newpath)
20 end
21 paths.add(path)
22 while first # null
23 end

Each test statement operates on a compatible test state and trans-
forms the running state to another test state. Let S; and S;4+1 be the
test states before and after the execution of the test statement st;.
The function apply(st;, Si) = Si+1 applies the effect of executing
the test statement st; on the test state S; and gives us the changed
test state S;11. Thus, we know the test state before and after the
execution of each test statement in the original test execution. This
enables us to compute the effects of running the test statement on
each of its compatible states. Basically, we need to update the value
of the used variables of the compatible test state to the values of
variables in S;11.If the state S; is compatible with the test statement
st;, then apply(st;, Sj) = updateValues(USV (st;), Si+1,S;). We as-
sume that the test statement could potentially change all of its
used variables. We update the graph to include any new compat-
ibility edge based on the computed running state (Line 17). To
this aim, we compare the UVS and DV of test statements with the
computed running state to identify the compatible test statements.
The algorithm returns a set of paths (each corresponding to a re-
organized/merged test case) that cover each set of equivalent test
statements and all the assertions. For example, for the test suite
model of Figure 3, our algorithm returns the path (sts, sty, sts, stq,
sty2, St13, St19, St20, Stag, St27), which corresponds to the merged test
case of Figure 2.

Composing Minimized Test Cases. Algorithm 1 gives us a set of
paths that minimizes the number of test statements executed, while
preserving the test suite coverage. Despite the state compatibility,
however, problems may arise when moving test statements, because
of variable naming and cast issues. For example, in testDivide of
Figure 1, variables x and y have names dividend and divisor, re-
spectively. Therefore, to generate a compilable reorganized test
case, we need to rename these variables. Test statements can also
define variables that have previously been defined with the same



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 2: Test Case Composition

Input: statementsPath: ordered list of statements in the composed test case
Output: statementsPath: renamed list of statements in the composed test case
1 RENAMESTATEMENTS(statementsPath)
2 begin

3 stateBiMap (value, Set (name, type)) < 0
4 foreach stmt € statementsPath do
5 mapPreq (name, value) «— GETNAMEVALUEPREQVARSINSTATEMENT(stmt)
6 renameMap (oldName, newName) «— 0
7 castMap (varName, oldType, newType) « 0
8 foreach (varName, varValue) € mapPreq do
9 varNamesInState «— stateBiMap[varValue]
10 if varName # varNamesInState then
11 ‘ renameMap[varName] «— GENERATENAME(varNamesInState)
12 end
13 castMap <— cHECKFORTYPEs(stateBiMap, stmt)
14 end
15 leftHandSideVars (Name) «— getVarsInLeftHandSide(stmt)
16 foreach varName € mapPreq do
17 varNamelnState < stateBiMap[varName]
18 if varNamelnState # null then
19 ‘ renameMap(varName] <~ GENERATENAME(varName)
20 end
21 end
22 stmt «— RENAMESTATEMENT(stmt, renameMap, castMap)
23 updateStateMap(stateBiMap, stmt)
24 end
25 end

name. For example, in the reorganized test case, the variable z was
already defined in three out of four test cases. Thus, we need to
rename such variable definitions to avoid name clashes. Further,
test statements can use member variables and member functions of
the source test class; thus we also need to include those in the desti-
nation test class (note that this is not needed when test statements
relocate within a test class). At last, due to the polymorphism in
object oriented programs, we might need to cast a variable to its
sub or super class, if the static type of two variables having the
same value differ in the source and the destination state.

Algorithm 2 shows the pseudocode of the algorithm for com-
posing reorganized test paths. To maintain the state, we use a
bidirectional map from variable values to variable names and their
types. As we go through the test statements in the reorganized test
case path, we check, for each test statement, if we have the value
for each variable in the test statement. If such a value exists, but
has a different name in the state, we rename the variable in the
test statement to the name of the variable in the state (Lines 8-15).
If the type of the variable is different, we cast the variable to the
destination type. If there are name duplicates, we rename them
(Lines 16—-22). Finally, we update the bidirectional state map with
the changed values from test statement execution (Line 23).

3.4 Preserving Test Suite Behaviour

Assume that we reorganize a set of test cases x into the reorganized
set of test cases y, we show that y preserves the fault revealing
behaviour of x. PMC(x) denotes the set of production method calls
that the set of test cases x call with their inputs. Since PMC(x) =
PMC(y), each production method m; that is called as part of the
execution of x, will be called with the same inputs in y. Hence, both
the coverage and the implicit oracles of x are preserved. We also
retain the explicit oracles of x, because our approach keeps all the
corresponding test assertions in the reorganized test cases. Assume
that in x, assertion as; checks the return value of the production

A. Vahabzadeh et al.

method m; with the input in;. Let as; be the same assertion as;
that is included in y. Since UV A(as;) = UV A(as;), assertion as; will
check the return value of m; with the same input in;. If a fault f in
m; affects the return value of m;(in;) and is detectable by as;, it is
also detectable by as;. O

3.5 Implementation

We implemented our approach in a tool called TESTLER, which
is publicly available [41]. The tool is written in Java. It supports
analyzing Java programs with JUnit4 tests. However, our overall
approach is general and applicable to other programming languages
and testing frameworks. TESTLER takes as input the path to a Java
project. It instruments the test and production code, and runs the
instrumented test code against the instrumented production code to
obtain traces. Then, TESTLER uses the traces to create a test model,
detects and reorganizes partly redundant test cases, and generates
a new minimized test suite.

4 EVALUATION

To assess the real-world relevance and efficacy of our approach, we
address the following research questions:

RQ1 (prevalence): How prevalent are partly redundant tests in
practice?

RQ; (reduction): What is the redundancy reduction, in terms of
tests and test statements, achievable with TESTLER?

RQj3 (execution time): What is the reduction in the execution
time of the test suites reorganized by TESTLER?

RQ4 (code coverage and fault detection): Does TESTLER preserve
the code coverage and fault detection of the test suite?

RQs5 (performance): What is the runtime of TESTLER?

4.1 Subject Systems

We include 15 subject systems in our study. Our selection criteria
for the subject systems was that they should use the Maven build
system and to have executable JUnit4 test cases (as required by our
tool’s implementation), to be of various sizes in terms of lines of
code, and to span different domains. We ran TESTLER to infer the
test models on the test suites of the subject systems. For projects
that come with different modules, we repeated the analysis on a per-
module basis. Table 1 provides characteristics of the subject systems,
including their names, lines of Java production code counted using
cloc [8], lines of test code, number of test cases, as well as number
and percentage of partly redundant tests.

4.2 Procedure and Results

Prevalence (RQq). To assess the prevalence of fine-grained redun-
dancies, we measured the number of test cases that have at least one
common equivalent test statement with another test case, which we
call partly redundant tests. To do so, we inferred the test models
by running TESTLER on the test suites of the subject systems. For
each subject, we analyzed the inferred test suite model to identify
classes of equivalent test statements (see Section 2.5).

The fifth and sixth columns of Table 1 show the number and
percentage of partly redundant tests in the subject systems. Our
results show that 4,639 (24%) out of the total number of 19,350 test



Fine-Grained Test Minimization

Table 1: Subject systems and their characteristics

Lines oF Cobk (K) TEsT CASES

Prod. Test # Par. Redundant %
Collections 12.3 20.3 459 110 24
Math 45.2 59.1 3,990 1,354 34
Lang 26.6 41.6 2,344 604 26
Email 2.7 3.0 141 21 15
Assert] 6.4 24.7 4,620 947 20
CheckStyle 16.6 27.0 1,865 164 9
PMD 42.2 14.3 465 192 41
Lambda]J 3.6 4.8 260 82 32
Java-library 24.3 12.2 611 86 14
JFreeChart 98.5 17.3 187 111 59
Accumulo 192.9 13.8 987 289 29
XmlSecurity  40.0 32.3 941 190 20
Crunch 24.0 7.2 452 78 17
Tika 60.5 17.1 553 75 14
Log4] 46.2 25.0 1,475 336 23
Total/Average 642.0 319.6 19,350 4,639 24

cases in the test suites of our subject systems are partly redun-
dant. Redundancies on individual subject systems range from 9%
(CheckStyle) to 59% (JFreeChart).

Figure 5 shows boxplots about the distribution of redundant test
statements in each subject system. We observe that most of the tests
of the studied subjects share between 1-7 common test statements.
This empirical data motivates further the need for an approach
capable of detecting fine-grained redundancies in tests.

Reduction (RQ3). To assess the efficacy of our approach in reduc-
ing test statement redundancies, we ran TESTLER on the subject
systems. TESTLER reorganizes redundant test cases to avoid repeated
production method calls, thus reducing the number of redundant
test statements. The first macro-column of Table 2 (Redundancy)
presents the number of partly redundant test cases before running
TESTLER, the subset reduced by TESTLER, and the reduction per-
centage. Further, the table shows the number of partly redundant
test statements before running TESTLER, the subset reduced by
TESTLER, and the achieved reduction percentage.

On average, TESTLER was able to remove 43% of the redundant
test statements, which also resulted in a reduction of 52% in the
number of test cases. Across all test suites, 4,639 partly-redundant
test cases were reorganized into 2,236 (4,639-2,403) tests, performed
by removing 5,041 redundant test statements. XmlSecurity is our
best case with 82% test reduction, obtained by discarding 98% re-
dundant test statements. The lowest reduction was obtained for
Assert] (27%), by removing 40% redundant test statements. All test
cases that were reorganized passed successfully, with no errors or
failures. Our results confirm the design choice of our algorithm
(see Section 3.1), which prioritizes the precision of redundancy de-
tection over the detriment of the recall. We discuss why TESTLER
cannot eliminate all the partial redundancies in Section 5.

Execution time (RQ3). To assess the effects of reducing redun-
dancy on test suite execution time, we measure the execution time
of the test suites before and after the reorganization by TESTLER.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Math —
Assert) —
XmliSec —

Collections —

CheckStyle —

Javalibrary —

JFreeChart - }---
Accumulo — [:Ij

Figure 5: Distribution of redundant test statements per test
case in each subject system.

To mitigate the variability effect of non-deterministic tests, we
performed the measurements 10 times and we report the averages.

The second macro-column of Table 2 (Execution Time) shows the
execution time of the original test suite, the execution time of the
reorganized test suite, and the percentage of reduction. Percentage-
wise, TESTLER was able to reduce test execution time across all
test suites by about 20%, with the lowest being Collections and
PMD (5%) and the highest LambdaJ (37%). For nine subjects (Collec-
tions, Lang, Email, Assert], CheckStyle, PMD, Lambda], Java-library,
JFreeChart), the test suites ran in less than one minute. The absolute
execution time reductions for those “fast” test suites range between
0.211 s of JFreeChart (-10%) and 5.326 s of CheckStyle (-20%). The
other six test suites (Math, Accumulo, XMLSecurity, Crunch, Tika,
Log4]) have executions that range between 1.4 and 4.4 minutes. For
those “slower” test suites, the absolute execution time reductions
range between 10.305 s of Math (-12%) and 63.644 s of Log4] (-24%).

Code Coverage and Fault Detection (RQ4). We measured the
statement and branch coverage for each test suite before and after
reorganization, using Ec1Emma [10]. The third macro-column of
Table 2 (Code Coverage) shows these coverage numbers.

To measure fault detection rate, we mutated each subject system
using PIT [32] against the test suite before and after our refactoring.
The fourth macro-column of Table 2 (Fault Detection) shows the
mutation scores obtained. We also counted the number of test
assertions in the original and the reorganized test suites, which
remained the same in all subject systems.

Overall, our results show that (1) test assertions remain intact,
(2) the statement and branch coverage are preserved, and (3) the
fault detection rate is unchanged, for all the subject systems.

Performance (RQ5). To assess the performance of running TESTLER,
we measured the execution time on a macOS machine, equipped



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

A. Vahabzadeh et al.

Table 2: Results

REDUNDANCY ExecuTioN TIME CopE COVERAGE FAULT DETECTION ANALYSIS TIME

Par. Red. Tests Red. Test Stmts Seconds % Stmt  Branch Mut. Score CI/MG/TR (Tot)
- - 2
PSS PIES o - - - =
~ * Z ~ * 3 § = =& S & 4 ® g
¥ - o ¥ g g — g 8 B - B o B < b
° o B ° o B 8 =] = s O o @ ° D 2
et Q Q9 L Q Q9 k=) o 9 g o L Q9 et Q >
S g 2 S 3 3 2 5§ 5 & 5 & £ & 2 &
(% (] (] (% [ (] I~ Q (] %] (] (% Q (%] (] =
[as] ~ o~ [a] o~ o ~ ~ Mm ~ M ~ [aa] ~ =
Collections 110 52 47 210 165 79 17359 16.440 5 84.784.7 723723 40.0 40.0 71/70/183 (324)
Math 1,354 946 70 4,0521,623 40 83.109 72.804 12 92.792.7 85.785.7 79.0 79.0 101/401/1103 (1,605)
Lang 604 335 55 1,533 563 37 11.053 10.376 6 929929 57.557.5 66.0 66.0 38/43/372 (453)
Email 21 10 48 38 12 32 7.143 5933 17 54.654.6 50.950.9 48.0 48.0 10/12/3 (25)
Assert] 947 253 27 516 207 40 3389 2.794 18 95.695.6 92.292.2 63.0 63.0 244/37/383 (664)
CheckStyle 164 77 47 258 122 47 26361 21.035 20 954954 96.896.8 17.0 17.0 172/625/216 (1,013)
PMD 192 122 64 346 203 59 7.550 7.145 5 90.190.1 52.852.8 25.0 25.0 367/110/32 (508)
Lambda] 82 42 51 109 55 50 1.468 0.924 37 85.285.2 522522 85.0 85.0 12/6/13 (31)
Java-library 86 37 43 338 71 21 2.062 1.851 10 96.096.0 60.760.7 54.0 54.0 58/97/215 (370)
JFreeChart 111 56 50 1,657 374 23 2.752 2485 10 95.595.5 47.647.6 24.0 24.0 45/52/205 (302)
Accumulo 289 93 32 683 140 20 65.883 50.794 23 94.794.7 715715 20.0 20.0 58/333/106 (497)
XmlSecurity 190 156 82 1,102 1,079 98  68.590 57.590 16 78.778.7 54.054.0 68.0 68.0 42/179/142 (363)
Crunch 78 52 67 125 83 66 161.812137.657 15 945945 74.474.4 31.0 31.0 27/123/20 (170)
Tika 75 45 60 141 54 38 78.970 54.350 31 88.488.4 57.557.5 35.0 35.0 50/673/348 (1,071)
Log4] 336 127 38 711 290 41 261.987198.343 24 80.580.5 38.738.7 13.0 13.0 48/490/100 (638)
Total/Average 4,639 2,403 52 11,819 5,041 43 799.488 640.521 20 88.088.0 64.364.3 445 44.5 8,034/536

with a 2.3GHz Intel Core i7 and 16 GB of memory. Table 2 (Analy-
sis Time) shows the execution time in seconds, pertaining to the
three phases of our algorithm: code instrumentation (CI), model
generation (MG), and the test suite reorganization (TR), and total
(Tot).

In total, TESTLER took 8,034 seconds (2.2 hours) to analyze all
the 15 subjects test suites; 536 seconds (8.9 minutes) on average.
Email and Math were the extreme cases with 25 and 1,605 seconds,
respectively. This is not surprising as TESTLER found the least (21)
and the most (1,354) number of redundant test cases in Email and
Math, respectively. On average, code instrumentation (CI) required
approximately 1.5 minutes, the model generation (MG) 3.6 minutes,
and the reorganization (TR) 3.8 minutes. Considering the analy-
sis time in relation with the size of the test suites, TESTLER was
fastest on LambdaJ (0.12 s/test case) and slowest on Tika (1.94 s/test
case). On average, across all systems, the runtime is 0.42 seconds
(8,034/19,350) for each test case to be analyzed, reorganized, and
recomposed.

5 DISCUSSION

In this section, we discuss some of our evaluation findings, tool
design decisions and limitations, as well as threats to validity of
our study.

Automation. Our results confirm that over time (1) test suites tend
to accumulate a considerable number of partly redundant tests, and
(2) fine-grained redundancies may pertain to test statements in tests
across the whole test suite, and (3) our technique can safely remove
nearly half of these redundancies automatically. Manually finding
and reorganizing redundant tests to create a reduced test suite that

still preserves the coverage could be in fact quite challenging. Our
own experience in reorganizing tests, which we were required to
do while devising TESTLER, corroborates the difficulty of the task.
For example, for the ComplexTest class of Math, which is composed
of 139 tests, the authors spent approximately one hour to manu-
ally detect the redundant statements within that single class, and
reorganize the tests in a way to retain the coverage; analyzing and
reorganizing the remaining 3,989 test classes would be practically
infeasible to perform manually.

Test Suite Evolution. As long as the SUT stays deterministic,
TESTLER preserves all the test states and assertions also during
software evolution, because the model is created and updated based
on the actual behaviour of the test suite. An important feature of
TESTLER is that the reduced test suite does not need to be updated if
there are no changes made to the tests, as part of a commit. TESTLER
saves the inferred test model so that the whole analysis does not
need to be repeated every time a new test is added or an existing one
is changed. This means that the test model is only partially updated
when the software evolves. As discussed in our evaluations (RQs),
the test analysis process took less than half a second to complete
for each test case.

Readability. We are aware that merging tests might affect the over-
all readability of the test suite. In our experiments (RQ1), TESTLER
merged test cases having at least one common equivalent test state-
ment with another test case, because we were interested in assessing
the maximal capability of our technique at finding and eliminating
fine-grained redundancies (at the cost of producing larger merged
test classes). As far as readability is concerned, in practice the tester



Fine-Grained Test Minimization

can customize the granularity of the analysis to optimize the bal-
ance between readability and redundancy reduction. That said, the
purpose of our work is not to replace the existing test suite. TESTLER
keeps both the original and minimized versions of the test suite
and maintains links between them. This enables the user to trace
back any minimized test case (or its failure) to the test case in the
original test suite for better comprehension.

Test Execution Reduction and Overhead. Industrial projects of-
ten go through numerous changes daily, and the whole test suite
is executed after each change. For instance at Google, on a typical
workday, around 40,000 changes are committed [33]. Our results
show that by removing fine-grained redundancies, the test execu-
tion time can be minimized by 20% on average, which was achieved
by removing around 12% of the initial 19,350 test cases in our eval-
uation. A 20% reduction in test execution time would add up to a
substantial test runtime reduction quickly. In our evaluation, the
20% reduction corresponds to about 11 seconds. Hypothetically
speaking, if a minimized test suite is executed 40,000 times a day,
this would save 122 hours per day. Thus, we believe the startup
overhead associated with our analysis can be amortized quickly
when considering high commit rates in practice.

Accuracy and Efficacy. Our evaluation results show that TESTLER
removed around half of redundant test statements automatically
and safely. All the test suites that were reorganized passed success-
fully and the coverage and fault detection rates were maintained.
Therefore, we believe TESTLER is accurate in its minimization task.

Regarding the efficacy of TESTLER, we investigated why all re-
dundant test statements were not reduced. We enumerate some of
the main reasons next, which pertain to both the inherent nature of
JUnit tests and some of our design decisions in developing TESTLER.
Our analysis does not have a fully sound handling of the following
features.

First, TESTLER cannot reorganize test cases that terminate abruptly
as, for instance, those that check that an exception is thrown (e.g.,
using the JUnit annotation @Test (expected=SomeException.class)).
In our experiments, a similar behaviour was also simulated by
means of the return and fail statements. Second, although the use
of inheritance in test code is debatable [24], most of our subject sys-
tems use inheritance in their test code. We chose not to reorganize
test cases in test classes that are subclassed by another test class,
since in this case the subclass might override some of the test cases
and render the reorganized test cases useless. Third, TESTLER does
not reorganize parameterized test cases, since in this case, the test
case will be run with different inputs and can only be merged with
another test case that has exactly the same inputs. Fourth, some
tests use custom test runners to run their test cases. For example,
in one case, test cases would be retried several times with a custom
runner until they would pass. In this scenario, we can only reorga-
nize test classes that have the same custom runner. Fifth, we chose
not to reorganize test statements inside conditionals such as ifs,
for-loops, and try-catchs. Sixth, since we do not store the variable
identity as part of our test state (Definition 7), we do not support
reorganizing test cases with assertSame assertions. Finally, we do
not reorganize flaky (non-deterministic) tests, multithreaded tests,
or tests that have read/write dependencies on external resources
such as files or databases.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Side Effects or Test Dependencies. In our evaluation, we did not
witness any issues with side effects of running tests or test depen-
dencies. By creating our test model from the dynamic execution
of the test cases, we consider potential side effects and dependen-
cies of test statements and test states, using the state compatibility
notion, when reorganizing tests.

Applications. TESTLER can be used by developers to find and min-
imize redundant test statements. Our test suite model can also
be utilized for other test analysis activities, for instance, for test
bug [42] or test smell [43] detection. One of the tasks performed
during test refactoring is to reorganize test cases to remove eager
and lazy test smells [43]; in this case, our model can help with
the refactoring task, since it is not straightforward to manually
reorganize test cases in a way that preserves the behaviour of the
test suite. For instance, our test model can be used to identify small
test cases that have common test statements and merge them to
remove lazy test smells. Our test model also facilitates going the
other direction: it can be used to reorganize large test cases into
smaller ones, to remove the eager test smell, while keeping the
incurred redundancy at a minimum.

Although we evaluated TESTLER on desktop unit tests, we be-
lieve our technique can be even more effective in other domains
of testing, such as Ul, mobile, or web, where the test execution
time may be longer. For example, tests developed for the web do-
main using frameworks such as Selenium have generally a much
higher running cost than unit tests that test low-level Java methods.
This is due to the overhead imposed by the interaction with the
GUIL, the browser and the network latency. In this context, we ex-
pect TESTLER to be especially beneficial, because a minimized test
suite would contain less calls to the browser’s APIs and server-side
requests, resulting in a substantial decrease in test execution time.

Relation to Test Reduction Techniques. Traditional test suite
minimization seeks to eliminate redundant test cases in order to
reduce the number of tests to run [48]. Our technique seeks to
eliminate redundant statements in the whole test suite in order
to reduce the number of test statements to execute (as our results
show, this also results in a reduction of the number of test cases).
More importantly, a distinguishing characteristic of our work is
that we retain all the test assertions, which are known to be highly
correlated with test suite effectiveness [50].

Relation to Test Prioritization/Selection Techniques. Test pri-
oritization seeks to order test cases in such a way that early fault
detection is maximized, whereas test selection seeks to identify the
test cases that are relevant to the most recent changes [48]. Our
approach is orthogonal to those techniques, and can be combined
with them. Minimized test cases can still be prioritized. On the other
hand, test selection is change-driven. Although we do not target
software evolution in this paper, our technique can also be used to
apply change-related fine-grained minimization. Also, as the test
cases that we merge together have common test statements, it is
likely that they test the same component and thus can be selected
together as part of a selection strategy.

Parallel/Virtualized Test Execution. A number of techniques
address the problem of long running test suites by running tests
in virtualized [4], or cloud-based parallel [14, 25] environments.
Any of these techniques require complete test independency, a



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

requirement hard to meet in many real-world test suites including
those of our subject systems, which we ran sequentially. However,
such techniques can still be applied to test suites that TESTLER
minimizes.

Threats to Validity. Using a limited number of subject systems in
our evaluation poses an external validity in terms of generalizabil-
ity of our results. We tried to mitigate this threat by choosing 15
subject systems with various sizes, domains, and tests, although
we need more subject systems to fully address the generalization
threat. As reported in a recent empirical study of 20 large Java
systems [4], it is often not necessary to reset the application prior
to test execution. Our results confirm this finding as we did not
witnessed any side effects. However, in some types of applications it
might be necessary to reset the application after each test execution
session. With respect to reproducibility of our results, the source
code of TESTLER and all subject systems are available online [41],
making the evaluation repeatable and our results reproducible.

6 RELATED WORK

There is a large body of work on test suite reduction (minimization)
and test selection techniques [5-7, 19, 20, 22, 23, 29, 30, 34, 39, 40,
44, 47, 48], which have been proposed for removing redundant
test cases. These techniques use different coverage criteria, such as
statement or branch coverage to detect redundancies at the whole
test case level. Although it is possible to use coverage criteria in our
approach, we chose to preserve the test suite behaviour and find
redundant parts of test cases that call the same production methods
with exactly the same input. As opposed to these techniques that
remove whole test cases, in this paper we tackle the problem of
partly redundant tests, and we reorganize test cases by removing
only redundant test statements. This allows us to preserve the
original test suite’s coverage and retain all test assertions, without
affecting the fault finding capability.

Many techniques are proposed for regression test selection [11],
and use different levels of granularity for tracking dependencies,
such as file dependency [15] and class dependency [31], to detect
affected test cases, as part of a change to production code. More
recently, techniques have been proposed that combine test reduc-
tion, test selection, and test prioritization techniques [28, 38, 49].
However, none operates at the fine-grained test statement level.

Our test state representation is closely related to the heap rep-
resentation used by Gyori et al. [18]. They store the portions of
the concrete heap accessible from static fields of test classes. On
the other hand, in order to support test reorganization, we need
to include local variables as well as member variables used in the
test class. Our state also includes information about the production
method calls that were responsible for the creation of a specific
value in the test state.

Some approaches entirely focus on reducing the test suite ex-
ecution time [4, 16, 27]. For instance, a recent work by Bell and
Kaiser [4] uses unit test virtualization to reduce the time required
for the execution of a test suite, while leaving all the redundant
statements. Our work, on the contrary, focuses on identifying and
removing redundant test statements, which also results in test exe-
cution time reduction of the merged test suites. Moreover, in most

A. Vahabzadeh et al.

of our subjects, there are test dependencies and it is not always
possible to reset the system state prior to execution of tests.

Alipour et al. [1] present an approach that reduces a test suite by
compromising a certain amount of coverage while preserving the
overall fault-finding ability. Our technique reduces the test suite by
eliminating redundant test statements while preserving both the
original coverage and fault-finding ability.

Fang et al. [12] use assertion fingerprints to detect similar test
cases that can be refactored into one single test case. They perform
static analysis on test code and, by analyzing the control flow graph,
they compute branch count, merge count, and exceptional successor
count for each assertion. Based on these attributes, they detect
refactoring candidates. Our approach finds refactoring candidates
based on common redundant statements in test cases.

Guerra et al. [17] visually represent test cases with a graphical
notation to help developers with the refactoring activity. Our ap-
proach makes sure that reorganizing test statements in the test
suite preserves its behaviour by closely examining the production
methods called from test cases.

Xuan et al. [45] split test cases into smaller fragments to enhance
dynamic analysis, while Xuan and Monperrus [46] perform test
purification to improve fault localization. In these papers the goal
is to improve dynamic analysis by splitting test cases into smaller
units, whereas we aim at reducing redundancies in the test code
through test case reorganization.

Fraser and Wotawa [13] merge test cases generated by a model
checker by comparing the state of the application for different tests
and merging only those for which a common prefix exists. Devaki
et al. [9] merge web applications GUI test cases to reduce test exe-
cution time. They define the state of the program as a combination
of browser’s DOM and database state. These approaches can only
interleave chunks of test steps that result in the same state, whereas
our approach is capable of reorganizing and interleaving all valid
refactorings among and across unit test cases.

7 CONCLUSIONS

In this paper, we proposed a test suite model that facilitates test
code analysis at the test statement level. We used the proposed
model to present an automated technique and tool, called TESTLER,
for minimizing fine-grained statement redundancies in test cases,
while preserving the behaviour, coverage, test assertions, and fault
detection of the test suite. We empirically evaluated our technique
on 15 subject systems and overall, TESTLER was able to reduce the
number of partly redundant test cases up to 52% and test execution
time by up to 37%, while preserving the original test suite coverage
and production method call behaviour.

For future work, we plan to investigate the application of fine-
grained test analysis on test selection techniques. We also intend
to run TESTLER on more subject systems and extend the tool to
support web and mobile test suites.

REFERENCES

[1] Mohammad Amin Alipour, August Shi, Rahul Gopinath, Darko Marinov, and Alex
Groce. 2016. Evaluating Non-adequate Test-case Reduction. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). ACM, New York, NY, USA, 16-26. https://doi.org/10.1145/2970276.2970361

[2] Apache Commons Math 2018. Lightweight, self-contained mathematics and sta-
tistics components. http://commons.apache.org/proper/commons-math. (2018).


https://doi.org/10.1145/2970276.2970361
http://commons.apache.org/proper/commons-math

Fine-Grained Test Minimization

(3]

(4]

(5]

[10]
[11

[12

[13]

[14]

[15]

(16

[17]

[18]

[19]

[20]

[21

[22]

[23]

[24

[25]

G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. 2012. An empirical
analysis of the distribution of unit test smells and their impact on software
maintenance. In Proceedings of the 28th International Conference on Software
Maintenance (ICSM ’12). IEEE Press, Piscataway, NJ, 56-65.

Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
Proceedings of the 36th International Conference on Software Engineering (ICSE ’14).
ACM, New York, NY, USA, 550-561. https://doi.org/10.1145/2568225.2568248
J. Black, E. Melachrinoudis, and D. Kaeli. 2004. Bi-criteria models for all-uses test
suite reduction. In Proceedings of the 26th International Conference on Software
Engineering (ICSE '04). IEEE Computer Society, Washington, DC, USA, 106-115.
TY. Chen and M.F. Lau. 1998. A new heuristic for test suite reduction. Infor-
mation and Software Technology 40, 5 (1998), 347-354. https://doi.org/10.1016/
$0950-5849(98)00050-0

TY. Chen and M.F. Lau. 1998. A simulation study on some heuristics for test
suite reduction. Information and Software Technology 40, 13 (1998), 777-787.
https://doi.org/10.1016/S0950-5849(98)00094-9

Cloc 2018. Counts blank lines, comment lines, and physical lines of source code
in many programming languages. https://github.com/AlDanial/cloc. (2018).
Pranavadatta Devaki, Suresh Thummalapenta, Nimit Singhania, and Saurabh
Sinha. 2013. Efficient and Flexible GUI Test Execution via Test Merging. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis
(ISSTA ’13). ACM, New York, NY, USA, 34-44. https://doi.org/10.1145/2483760.
2483781

EclEmma 2018. Java Code Coverage for Eclipse. http://www.eclemma.org. (2018).
Emelie Engstrém, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Information and Software Technology
52, 1 (Jan. 2010), 14-30. https://doi.org/10.1016/j.infsof.2009.07.001

Zheng Felix Fang and Patrick Lam. 2015. Identifying Test Refactoring Candidates
with Assertion Fingerprints. In Proceedings of the Principles and Practices of
Programming on The Java Platform (PPPJ ’15). ACM, New York, NY, USA, 125-
137. https://doi.org/10.1145/2807426.2807437

Gordon Fraser and Franz Wotawa. 2007. Redundancy Based Test-suite Reduction.
In Proceedings of the 10th International Conference on Fundamental Approaches
to Software Engineering (FASE °07). Springer-Verlag, Berlin, Heidelberg, 291-305.
http://dl.acm.org/citation.cfm?id=1759394.1759425

Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas Zeller. 2017.
CUT: Automatic Unit Testing in the Cloud. In Proceedings of the 2017 International
Symposium on Software Testing and Analysis (ISSTA °17). ACM, New York, NY,
USA, 364-367. https://doi.org/10.1145/3092703.3098222

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the 2015 In-
ternational Symposium on Software Testing and Analysis (ISSTA ’15). ACM, New
York, NY, USA, 211-222. https://doi.org/10.1145/2771783.2771784

Alex Groce, Mohammed Amin Alipour, Chaogiang Zhang, Yang Chen, and John
Regehr. 2014. Cause Reduction for Quick Testing. In Proceedings of the 7th
IEEE International Conference on Software Testing, Verification, and Validation
(ICST ’14). IEEE Computer Society, Washington, DC, USA, 243-252. https:
//doi.org/10.1109/ICST.2014.37

Eduardo Martins Guerra and Clovis Torres Fernandes. 2007. Refactoring Test
Code Safely. In Proceedings of the International Conference on Software Engineering
Advances (ICSEA °07). IEEE, Piscataway, NJ, 44-44.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (ISSTA ’15). ACM,
New York, NY, USA, 223-233.

Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-
demand Test Suite Reduction. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 738-748.
http://dl.acm.org/citation.cfm?id=2337223.2337310

Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A Methodology for
Controlling the Size of a Test Suite. ACM Transactions on Software Engineering and
Methodologies 2, 3 (July 1993), 270-285. https://doi.org/10.1145/152388.152391
Benedikt Hauptmann, Elmar Juergens, and Volkmar Woinke. 2015. Generating
Refactoring Proposals to Remove Clones from Automated System Tests. In Pro-
ceedings of the 23rd International Conference on Program Comprehension (ICPC
’15). IEEE Press, Piscataway, NJ, USA, 115-124. http://dl.acm.org/citation.cfm?
1d=2820282.2820298

Dennis Jeffrey and Neelam Gupta. 2007. Improving Fault Detection Capability by
Selectively Retaining Test Cases During Test Suite Reduction. IEEE Trans. Softw.
Eng. 33, 2 (Feb. 2007), 108-123. https://doi.org/10.1109/TSE.2007.18

James A. Jones and Mary Jean Harrold. 2001. Test-Suite Reduction and Priori-
tization for Modified Condition/Decision Coverage. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM °01). IEEE Computer So-
ciety, Washington, DC, USA, 92-101. https://doi.org/10.1109/ICSM.2001.972715
Petri Kainulainen. 2014. Three Reasons Why We Should Not Use Inheritance
In Our Tests. https://www.petrikainulainen.net/programming/unit-testing/

3-reasons- why-we-should-not-use-inheritance-in-our-tests. (2014).
Sebastian Kappler. 2016. Finding and Breaking Test Dependencies to Speed Up

Test Execution. In Proceedings of the 24th ACM SIGSOFT International Symposium

[26

[27

(28]

[29

[30]

[35

[36

[37

"
&,

(39]

[40

[41

[42

[43]

(44

[45]

[46]

[47

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

on Foundations of Software Engineering (FSE ’16). ACM, New York, NY, USA,
1136-1138. https://doi.org/10.1145/2950290.2983974

Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Shadi Abdul Khalek and Sarfraz Khurshid. 2011. Efficiently Running Test Suites
Using Abstract Undo Operations. In Proceedings of the 2011 IEEE 22Nd Interna-
tional Symposium on Software Reliability Engineering (ISSRE '11). IEEE Computer
Society, Washington, DC, USA, 110-119. https://doi.org/10.1109/ISSRE.2011.20
Bogdan Korel, Luay Tahat, and Boris Vaysburg. 2002. Model based regression
test reduction using dependence analysis. In Proceedings of the International Con-
ference on Software Maintenance (ICSM °02). IEEE Computer Society, Piscataway,
NJ, 214-223.

Martina Marré and Antonia Bertolino. 2003. Using Spanning Sets for Coverage
Testing. IEEE Transactions on Software Engineering 29, 11 (Nov. 2003), 974-984.
https://doi.org/10.1109/TSE.2003.1245299

Scott McMaster and Atif Memon. 2008. Call-Stack Coverage for GUI Test Suite
Reduction. IEEE Transactions on Software Engineering 34, 1 (Jan. 2008), 99-115.
https://doi.org/10.1109/TSE.2007.70756

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT "04/FSE
’12). ACM, New York, NY, USA, 241-251. https://doi.org/10.1145/1029894.1029928
PIT 2018. PIT Mutation Testing. http://pitest.org. (2018).

Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines
of Code in a Single Repository. Commun. ACM 59, 7 (jun 2016), 78-87. https:
//doi.org/10.1145/2854146

Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An
empirical study of the effects of minimization on the fault detection capabilities of
test suites. In Proceedings of the International Conference on Software Maintenance
(ICSM °98). IEEE Computer Society, Piscataway, NJ, 34-43. https://doi.org/10.
1109/ICSM.1998.738487

Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong.
2002. Empirical studies of test-suite reduction. Software Testing, Verification and
Reliability 12, 4 (2002), 219-249.

Stuart J. Russell and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach
(2 ed.). Pearson Education.

David Schuler and Andreas Zeller. 2011. Assessing Oracle Quality with Checked
Coverage. In Proceedings of the 4th IEEE International Conference on Software
Testing, Verification and Validation (ICST '11). IEEE Computer Society, Washington,
DC, USA, 90-99. https://doi.org/10.1109/ICST.2011.32

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
Combining Test-suite Reduction and Regression Test Selection. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE ’15).
ACM, New York, NY, USA, 237-247. https://doi.org/10.1145/2786805.2786878
Adam M. Smith, Joshua Geiger, Gregory M. Kapfhammer, and Mary Lou Soffa.
2007. Test Suite Reduction and Prioritization with Call Trees. In Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE
’07). ACM, New York, NY, USA, 539-540. https://doi.org/10.1145/1321631.1321733
Sriraman Tallam and Neelam Gupta. 2005. A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE
’05). ACM, New York, NY, USA, 35-42. https://doi.org/10.1145/1108792.1108802
Testler 2018. Refactoring Java test suites to eliminate fine-grained redundancies.
https://github.com/saltlab/Testler. (2018).

Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An Empirical Study
of Bugs in Test Code. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME ’15). IEEE Computer Society, Piscataway, NJ,
101-110.

A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. 2002. Refactoring
Test Code. In Extreme Programming Perspectives. Addison-Wesley, 141-152.
http://www.cwi.nl/~arie/papers/xp2001.pdf

W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. 1995. Effect
of Test Set Minimization on Fault Detection Effectiveness. In Proceedings of the
17th International Conference on Software Engineering (ICSE *95). ACM, New York,
NY, USA, 41-50. https://doi.org/10.1145/225014.225018

Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel Seinturier,
and Martin Monperrus. 2016. B-Refactoring: Automatic test code refactoring to
improve dynamic analysis. Information and Software Technology 76 (2016), 65 —
80. https://doi.org/10.1016/j.infsof.2016.04.016

Jifeng Xuan and Martin Monperrus. 2014. Test Case Purification for Improving
Fault Localization. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE '14). ACM, New York, NY, USA,
52-63. https://doi.org/10.1145/2635868.2635906

Xue ying Ma, Zhen feng He, Bin kui Sheng, and Cheng qing Ye. 2005. A ge-
netic algorithm for test-suite reduction. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC °05). IEEE, Piscataway, NJ,


https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1016/S0950-5849(98)00050-0
https://doi.org/10.1016/S0950-5849(98)00050-0
https://doi.org/10.1016/S0950-5849(98)00094-9
https://github.com/AlDanial/cloc
https://doi.org/10.1145/2483760.2483781
https://doi.org/10.1145/2483760.2483781
http://www.eclemma.org
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1145/2807426.2807437
http://dl.acm.org/citation.cfm?id=1759394.1759425
https://doi.org/10.1145/3092703.3098222
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1109/ICST.2014.37
https://doi.org/10.1109/ICST.2014.37
http://dl.acm.org/citation.cfm?id=2337223.2337310
https://doi.org/10.1145/152388.152391
http://dl.acm.org/citation.cfm?id=2820282.2820298
http://dl.acm.org/citation.cfm?id=2820282.2820298
https://doi.org/10.1109/TSE.2007.18
https://doi.org/10.1109/ICSM.2001.972715
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests
https://doi.org/10.1145/2950290.2983974
https://doi.org/10.1109/ISSRE.2011.20
https://doi.org/10.1109/TSE.2003.1245299
https://doi.org/10.1109/TSE.2007.70756
https://doi.org/10.1145/1029894.1029928
http://pitest.org
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
https://doi.org/10.1109/ICSM.1998.738487
https://doi.org/10.1109/ICSM.1998.738487
https://doi.org/10.1109/ICST.2011.32
https://doi.org/10.1145/2786805.2786878
https://doi.org/10.1145/1321631.1321733
https://doi.org/10.1145/1108792.1108802
https://github.com/saltlab/Testler
http://www.cwi.nl/~arie/papers/xp2001.pdf
https://doi.org/10.1145/225014.225018
https://doi.org/10.1016/j.infsof.2016.04.016
https://doi.org/10.1145/2635868.2635906

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. Vahabzadeh et al.

133-139. International Symposium on Software Testing and Analysis (ISSTA ’13). ACM, New
[48] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection York, NY, USA, 235-245. https://doi.org/10.1145/2483760.2483782

and Prioritization: A Survey. Software Testing, Verification and Reliability 22, 2 [50] Yucheng Zhang and Ali Mesbah. 2015. Assertions Are Strongly Correlated with

(March 2012), 67-120. http://dx.doi.org/10.1002/stv.430 Test Suite Effectiveness. In Proceedings of the 10th Joint Meeting on Foundations
[49] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster Mutation of Software Engineering (ESEC/FSE °15). ACM, New York, NY, USA, 214-224.

Testing Inspired by Test Prioritization and Reduction. In Proceedings of the 2013 https://doi.org/10.1145/2786805.2786858


http://dx.doi.org/10.1002/stv.430
https://doi.org/10.1145/2483760.2483782
https://doi.org/10.1145/2786805.2786858

