Diversity-Based Web Test Generation

Matteo Biagiola
Fondazione Bruno Kessler
Trento, Italy
biagiola@fbk.eu

Filippo Ricca
Universita degli Studi di Genova
Genoa, Italy
filippo.ricca@unige.it

ABSTRACT

Existing web test generators derive test paths from a navigational
model of the web application, completed with either manually or
randomly generated input values. However, manual test data selec-
tion is costly, while random generation often results in infeasible
input sequences, which are rejected by the application under test.
Random and search-based generation can achieve the desired level
of model coverage only after a large number of test execution at-
tempts, each slowed down by the need to interact with the browser
during test execution. In this work, we present a novel web test
generation algorithm that pre-selects the most promising candi-
date test cases based on their diversity from previously generated
tests. As such, only the test cases that explore diverse behaviours of
the application are considered for in-browser execution. We have
implemented our approach in a tool called DIG. Our empirical eval-
uation on six real-world web applications shows that DIG achieves
higher coverage and fault detection rates significantly earlier than
crawling-based and search-based web test generators.

CCS CONCEPTS
. Software and its engineering — Software testing and de-
bugging.

KEYWORDS

web testing, test generation, diversity, page object

ACM Reference Format:

Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019.
Diversity-Based Web Test Generation. In Proceedings of the 27th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE °19), August 26-30, 2019, Tallinn,
Estonia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.
3338970

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3338970

Andrea Stocco
Universita della Svizzera Italiana
Lugano, Switzerland
andrea.stocco@usi.ch

Paolo Tonella
Universita della Svizzera Italiana
Lugano, Switzerland
paolo.tonella@usi.ch

1 INTRODUCTION

Modern web applications available nowadays provide the same
high level of user interaction as native desktop applications, while
eliminating the need for in-site deployment, installation, and up-
date. For instance, single-page web applications (SPA) achieve high
responsiveness and user friendliness by dynamically updating the
Document Object Model (DOM) of a single web page by means of
JavaScript functions that react asynchronously to user events.

To test such complex software systems, engineers typically adopt
test automation frameworks such as Selenium [46]. In this context,
the tester verifies the correct functioning of the application un-
der test (AUT) using test scripts that automate the set of manual
operations that the end user would perform on the web applica-
tion’s graphical user interface (GUI), such as delivering events with
clicks, or filling in forms [5-7, 14, 19, 24-26, 51]. Testers implement
business-focused test scenarios within such test scripts, along with
the necessary input data. Each test case, hence, exercises a specific
test path along the navigational graph of the web application.

Despite the research advancements in automated test genera-
tion [16, 18, 40, 42, 47], only a few tools have been proposed in
the web domain [5, 32, 36], whose applicability to the complex
systems available nowadays is still unfortunately quite limited.
Consequently, to date the development of system-level test cases,
such as Selenium’s, is still performed mostly manually.

Generating web test cases automatically is indeed quite challeng-
ing, because specific sequences of events and associated input data,
must be generated so as to ensure an adequate level of coverage. Ex-
isting approaches rely on crawling to obtain a navigational model
of the AUT in the form of a graph of the dynamic web pages and
the event-based interactions between them. Then, test paths (also
called abstract test cases) are derived from the model in order to
ensure full coverage of the navigational graph using e.g., breadth-
first visit [36] or semantically interacting events [32]. To generate
executable tests, test paths require specifying proper input data,
which can be produced either manually or by random generation.

However, these approaches have several drawbacks that limit
their applicability in practice. First, random input generation makes
existing approaches quite ineffective, because they may either (1) ex-
ercise the same portion of the AUT repeatedly, without exploring
new behaviours that are likely to expose previously unknown faults,
or (2) produce infeasible tests, which violate constraints and precon-
ditions of the AUT. The drawback is that a huge number of random
test cases needs to be generated before covering the navigational

https://doi.org/10.1145/3338906.3338970
https://doi.org/10.1145/3338906.3338970
https://doi.org/10.1145/3338906.3338970

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia M. Biagiola et al.

[’70/@* goToFind findOwner(id)

'
edi wner OTOI’Idex
ad oToIndex
dNeWVIs”(p et) OTO“\deX

Figure 1: Simplified navigational model of PetClinic web application. Transitions between states are labelled with the cor-
responding actions, which can be parameterized. The path in bold represents an instance of coverage-maximizing test path,
which are those our diversity-based technique aims to generate.

T S N — = md‘
ToIn S dNewOwner AddOwner)—29d(info @

goTolndex

dlsplayOwner(ownerName)

graph adequately, which is highly inefficient. Additionally, web
tests are characterized by slow execution times due to the interac-
tion with the browser, which further hinders the applicability of
existing test generation techniques when strict timing constraints
apply. As such, the mentioned techniques resort mostly to man-
ual input generation, which is however costly, and limited by the
testing resources (e.g., time) available to testers.

To overcome these limitations, in this paper, we propose a novel
solution for generating system-level web test cases. The goal of
our approach is to generate a set of test cases that diversify the
coverage of the navigational graph and the use of input data, in order
to escape infeasible scenarios that are not executable in practice, or
that do not produce any coverage improvement.

The key insight of our approach consists in assessing the quality
of newly generated test cases without executing them, just by evalu-
ating their diversity with respect to previously executed candidates.
Diversity-based test generation allows escaping local optimum re-
gions of the input space, where similar test cases might all cover the
same code and navigations, and only the most diverse candidates
are selected for in-browser execution.

We implemented our approach in a tool named DIG (DIversity-
based Generator), which automatically extracts a navigational model
of the web application through crawling and creates a code-based
abstraction of the possible actions executable in each web page,
following the page object design pattern [15]. Then, candidate test
cases (i.e., possible paths and inputs) are generated using a diversity-
based heuristics so as to cover the model adequately and efficiently.

Our work makes the following main contributions:

o A novel diversity-based system-level test case generator for
web applications.

e Analgorithm for identifying coverage- and input-maximizing
candidate test cases. Our algorithm uses a novel diversity-
aware distance metric between test cases so as to minimize
the need for in-browser executions.

e An implementation of our approach in a tool called DIG,
which automatically extracts a navigational model composed
of page object abstractions, and generates test cases maximiz-
ing both navigation sequence and input data diversity [52].

e An empirical evaluation of DIG in generating test suites for
six open-source web applications. DIG generated test suites
having higher coverage and fault detection rates significantly
faster than crawling-based and search-based test generators.

2 BACKGROUND

We present the web testing concepts that are needed to understand
the remainder of the paper. We provide background information on
the navigational model of a web application, its characteristics and
properties, and we explain how it can be used to enable automated
test case generation.

2.1 Navigational Model

The navigational model of a web application can be represented
as a State-Flow Graph (SFG), where nodes are the dynamic DOM
states of the web pages, and the edges the event-based transitions
between them [35].

DEFINITION 1 (STATE-FLOW GRAPH). A state-flow graph SFG
for a web application ‘W is a labeled, directed graph, denoted by a
4-tuple (r,V,E, G) where:

(1) r is the root node (called Index) representing the initial DOM
state when ‘W has been fully loaded into the browser.

(2) V is a set of vertices representing the nodes. Eachv € V
represents an abstract DOM state of W.

(3) & is a set of directed edges between vertices, which we call
actions. Each (v1, v2)[41a € & represents a possible transition
between two nodes v1, v if and only if node vy is reached by
executing the action a in node v1 and the guard g is satisfied.

(4) G is a set of guards on edges (v1, v2)[g]a € &

(5) SFG can have multi-edges and be cyclic. O

2.2 Example of Navigational Model

Figure 1 shows a simplified navigational model of PetClinic [43],
a web app allowing veterinarians to manage information about
their clients and their pets, which is among the experimental sub-
jects used in our evaluation. The graph consists of eight abstract
DOM states, each having several possible actions that can trigger
transitions between them.

Next, we define the notion of feasibility, and its impact on auto-
mated test case generation on our running example.

2.3 Feasibility

Given an abstract DOM state n, the set of possible actions & may
be constrained by one or more guards (a.k.a., preconditions).

Diversity-Based Web Test Generation

DEFINITION 2 (GUARD). A guard ¢(s, a, i) is a boolean condition
over the possible input values i € I of an action a in a specific appli-
cation state s.

The guard needs to be satisfied in order to enable the transition
between state n and the target state of the action a (typically another
state n’, or n itself). The application state s includes the global
variable values, the DOM, and any persistent data that remain
available across user interactions.

Hence, satisfiability of a guard depends on: (1) the input values
i € I generated for the given action a, as well as, (2) the internal
business logic state s of the application, produced by previous user
interaction sequences.

For instance, in the Owners state of Figure 1, an action displayOwner
allows to navigate towards the OwnerInfo state. A simple guard over
this action imposes that the owner identified by the input ownerName
must be present in the application prior to executing the action.
(For readability, we omitted the guards in the figure.) As such, the
guard depends not only on the specific value assigned to the input
ownerName of the displayOwner action, but also on the internal busi-
ness logic state of the application. In fact, the owner to display must
have been previously inserted into the application by a dedicated
action (e.g., by executing the add action in the AddOwner state).

To recap, for a given action a, if the input values do satisfy the
guards g of a in the given application state s, then we say that this
transition is feasible; it is infeasible otherwise.

2.4 Test Generation Problem

Given a navigational model of a web application, the goal of a
web test generator is to automatically extract sequences of actions
and generate suitable inputs in order to exercise the application
behaviours thoroughly, potentially covering all transitions in the
navigational model.

DEFINITION 3 (TEST PATH). A Test Path is a sequence of test
states paired with a corresponding sequence of actions with unspecified
input values.

Then, a test case can be defined by instantiating concrete input
values within a test path.

DEFINITION 4 (TEST CASE). A Test Case is a sequence of concrete
values for a corresponding sequence of actions in a specific test path.

For example, in PetClinic, a simple test path that enables the addi-
tion of a new visit for a pet consists of the test state sequence (Index,
Find, AddOwner, Owners, OwnerInfo, NewVisit). The corresponding ac-
tion sequence is given by (goToFind, addNewOwner, add, displayOwner,
addNewVisit).

In this sequence of actions, three input values need to be speci-
fied: (1) info, the data of the owner to insert, required by action add
of state AddOwner, (2) ownerName, the name of the owner, required
by action displayOwner of state Owners, and (3) pet, the data of the
pet to be visited, required by action addNewVisit of state OwnerInfo.
The action addNewvVisit is guarded by a precondition that states
that the pet identified by pet must exist before the execution of
the action. Since in the considered test path no pet is added by any
action before executing addNewVisit, the chosen test path cannot
be taken, for any possible values of input pet. Therefore, we say
that such path is infeasible.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

DEFINITION 5 (TEST PATH FEASIBILITY). A Test Path is feasible
if there exists an input parameter-value assignment that satisfies
all the guards related to the actions in the test path; it is infeasible
otherwise.

2.5 Existing Test Generation Approaches

Different strategies can be adopted to generate tests cases from a
navigational model. In this section, we briefly discuss the most no-
table existing solutions, as well as their limitations, which motivate
the need for a novel and more efficient approach. In Section 3, we
will then describe our novel diversity-based test generator.

2.5.1 Graph visit approaches. Breadth-first and depth-first graph
visit algorithms have been applied to the navigational model of a
web application to derive test paths (also called abstract test cases,
i.e., sequences of states and actions lacking concrete input data to
become executable). In the tool ATUSA [37], random input data
generation has been proposed to fill the gap between test paths and
concrete test cases. However, randomly generated inputs have often
low chance of producing feasible test cases, hence they typically
require a huge number of input generations and corresponding
test executions. Moreover, ATUSA generates big test suites even
for simple web applications [5, 32], because it relies on a state
abstraction function that creates a large number of test states and,
correspondingly, a large number of test paths.

2.5.2 Semantic-based approaches. Alternatively, test paths can be
restricted to those exercising semantically relevant interactions,
i.e., event sequences in which the ordering of events affects the
state reached at the end of the interactions [57]. Such approach
has been successfully applied to web applications [32], but yet it
produces a set of abstract test cases (semantically interacting event
sequences) that require manual specification of input data to make
them executable.

2.5.3 Search-based approaches. Search-based techniques iteratively
sample the input space, selecting the fittest candidate test cases, and
evolving the fittest ones using genetic search operators to create
new test cases [29]. Since these algorithms can effectively guide
the generation of test cases even for large input spaces, they are
suited for system-level testing [58]. Concerning the web domain,
an effective fitness function can be defined based on approximate
information available in the navigational model—specifically the
actions’ guards. Researchers have shown that this approach can
guide the search toward generating test cases unaffected by the
path infeasibility problem [5]. However, this approach needs the
manual specification of all guards for each action, a task that is
time-consuming and laborious for testers. Indeed, such informa-
tion depends on the web application business logic and intended
behaviour, and thus cannot be generated fully automatically. Addi-
tionally, the evaluation of the fitness function is costly, because it
requires a large number of candidates to be generated and executed
in the browser before converging to an adequate set of tests.

2.5.4 Summary. While all discussed approaches provide theoret-
ical warranties of asymptotic convergence to the desired input
values, they exhibit poor execution time performance when ap-
plied to web applications, as compared, for instance, to standard

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Testing Model
Extraction

navigational

(1) model
= /
li! Diversity-based — :

I_- “— | Test Generation

= @

test suite

page objects

Figure 2: System-level web test generation approach

Java desktop applications [17]. The reason why both random and
search-based approaches are computationally expensive is that they
always need to execute the candidate test cases to assess their fea-
sibility and, in the latter case, the value of the fitness function. This
disadvantage is amplified in web testing because (1) the overhead
imposed by browser’s interaction makes evaluating these tests very
slow, and (2) the input space may contain local optimum regions,
in which all candidate test cases are likely to be behaviourally
equivalent (e.g., all equally infeasible), hence increasing the run
time of the test generation algorithm without benefiting the overall
coverage [5]. The limitations discussed in this section (test suite’s
size, high computational cost, need for manual guard specification)
justify the investigation of alternative, possibly cheaper and more
automated algorithms.

3 DIVERSITY-BASED WEB TEST
GENERATION

In a nutshell, our goal is to efficiently generate system-level web test
cases that exercise the application behaviours adequately. Figure 2
depicts the main steps of our approach, which is based on the
inference of testing model as follows. First, a navigational model
of the dynamic web pages is extracted @. Second, each web page
is modelled in form of page objects [15], object-oriented classes
that expose the actions executable in each web page as methods.
Finally, our test generator uses a novel metric distance between
test actions and input data to generate a test suite that exercises
the web application thoroughly @. Our approach does not require
specifying the guards of the actions in the navigational model.

We now detail each step of our approach, as well as the compu-
tation of the distance between tests, which is exemplified on our
running example.

3.1 Testing Model Extraction

In the first step, we obtain a navigational model of the web applica-
tion. This can be performed manually by testers, through manual
exploration of the web app functionalities, or automatically. Our
approach adopts this latter option: we use a web crawler to automat-
ically explore the state space of the web application (see Section 3.5
for more details). The output of this phase is a navigational model
of the application, in which nodes are the dynamic DOM states and
edges are the event-based transitions between them.

The navigational model retrieved by the crawler is used to gen-
erate an intermediate code-based abstraction that can conveniently
support our diversity-based automated test case generation. We use

M. Biagiola et al.

page objects [15] (hereafter referred to as POs) as a concrete repre-
sentation for the DOM states in the navigational model and their
actions. Following the guidelines provided by this design pattern,
each dynamic DOM state is represented as an object-oriented class
whose main functionalities are exposed to testers as PO methods.
In our running example PetClinic, for instance, the AddOwner state
would be represented by its own class, containing three methods
(add, goToIndex and goToFind).

The motivation for the choice of POs as our state representation
is twofold: (1) page objects are a well-known and utilized pattern
in web test automation, to enhance the development and maintain-
ability of test cases, and (2) they can be created automatically from
a given navigational model with a good degree of accuracy [50].

3.2 Diversity-based Path and Input Generation

Inspired by adaptive random testing [9], which makes the assump-
tion of contiguous failure regions, we conjecture that web applica-
tions might also have contiguous infeasibility regions. Corre-
spondingly, in the case of web apps the main advantage of test case
diversity would be the possibility of exploring the search space
at large, diversifying the region where navigation sequences are
sampled. This is expected to help escaping local solutions, as well
as avoiding generating infeasible test paths and ensuring a more
effective exploration of alternative (i.e., diverse) behaviours. Indeed,
research has shown that diversity is especially beneficial to fault
detection. Diverse inputs are necessary to expose different failures,
whereas inputs from contiguous areas of the input space are likely
to expose the same program failure [8].

A second advantage of diversity-based test case generation is its
higher efficiency with respect to existing random and search-based
approaches. In fact, the quality of a candidate test case is evaluated
by measuring its diversity with respect to previously generated test
cases and using such metric to assess its potential at increasing the
exploration of diverse behaviours.

Interestingly, such assessment can be performed without actually
executing the candidate test cases, as described in Section 3.3.

Algorithm 1 describes our overall procedure for diversity-based
path and input generation. The test generation starts from an empty
set of tests, and therefore the first generated test is random. The
algorithm generates a set C of candidate test cases, instantiating
candidate test paths along with concrete input vectors (Lines 8-10).
To select the most promising candidates, the distance between each
candidate test case and the current set of already executed test cases
Texec is computed (Lines 11-15) and only the farthest test case ¢
is executed (Line 16). Test case t is restricted to its feasible prefix
in case it includes a divergence (Line 17-18). A divergence occurs
whenever the test path of a test case ¢ differs from the execution
trace obtained by running t. Then, the test case is added to the final
test suite TSgepn only if it contributes to increase coverage of the
navigational model M (Lines 19-20).

Algorithm 2 shows how candidate test paths are created. In
our notation, V represents a state sequence, A indicates a method
sequence having X as a input vector sequence. V, A and X are
incrementally created within the main loop (Lines 5-11) by choos-
ing an edge (v, v’)[g] o randomly, with uniform probability, among
those available from state v according to the navigational model M.

Diversity-Based Web Test Generation

Algorithm 1: Diversity-based Test Case Generation

Input : M: navigational model, k: number of candidates
Output: TSgep: test suite that optimizes coverage of M

1 Texec < 0 > Set of executed test cases
2 TSgen < 0 > Set of generated test suite
3 generate randomly a test case £, add £ to Texec, and execute it
4 while M is not adequately covered by TSgen or timeout is not reached do
5 m <« GETRANDOMUNCOVEREDMETHOD(M)
6 Dmax <0
7 Ce—0 > Set of candidate test cases
8 for i « 1tok do
9 ‘ C « C U GENERATECANDIDATETEST(M, m) > see Algo 2
10 end
1 forc; € Cdo
12 di « min(p(ci, tj)) Vtj € Texec > see Eq 1
13 if di > Dyax then
14 Dmax < di
15 t—cj
16 end
n7 end
s add t to Texec and execute it
19 if t is divergent then
20 ‘ t < GETFEASIBLEPREFIX(?)
R1 end
R2 if ¢ increases coverage of M wrt. TSgen then
23 | TSgen «— TSgen U {t}
R4 end
25 end

P6 return ngen

Algorithm 2: Candidate Test Case Generation

Input : M: navigational model, m: target method
Output: (V, A, X): candidate test case reaching m
A ()
X0
v < GETROOTNODE(M)
V — (v)
while m ¢ A do
(v, UI>[g]a « GETRANDOMEDGE(M, v, m) > must ensure v ~> m
v
X < GETRANDOMINPUTVECTOR(a)
V — V.add(v)
A — A.add(a)
11 X — X.add(x)
12 end
13 return (V, A, X)

O N AU R W N

=
5}

The selection is constrained by the fact that the target method m
must remain reachable from v’. At last, a vector of input values as
parameters to a is randomly chosen (Line 8).

3.3 Distance Between Test Cases

Algorithm 1 requires a distance metric to assess the diversity be-
tween test cases. Differently from object-oriented [10, 28] or nu-
merical applications testing [8], in our setting we cannot rely only
on the input values, as the distance function p must also take into
account the sequence of actions composing a test case. As such, we
devised a novel distance metric between two test cases taking into
account the diversity of the respective sequences of actions, and, in
cases in which this is not discriminative, privileging the test case
having the farthermost diversity in terms of concrete input values.
By diversifying the sequence of actions, as well as the associated
input values, we conjecture that we can escape infeasible test path
regions and we can diversify the app behaviours.

3.3.1 Distance Formula. Intuitively, our distance formula com-
prises two terms, the first measuring the distance between the

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

action sequences in the two test cases being compared and the
second measuring the distance between the input values used by
matching actions in the two sequences. To compute the first term,
the distance function a reports the number of non-matching ac-
tions in the two sequences. To compute the second term, we rely on
the longest common subsequence to obtain the matching actions;
upon each matched actions, we compute the normalized distance
between their parameter values.

Given two test cases (tj, tj), where t; = (V;, A;, X;) and tj =
(Vj, Aj, Xj), the distance p(t;, t;) is given by Equations (1), (2):

p(ti,tj) = (X(Vi::Ai,Vj::A]’) (1)

DL BOGlk X lka])

<k1 ,kz)ELCSi‘j

By = —

| x |

Do oGkl ylkl) (2)

kell...|x]]

In Equation 1, the notation Vy::Ay indicates that the two se-
quences of actions are identified both by their actions A;, Aj and
the states V;, V; in which they are applicable. This helps disam-
biguate cases in which an action Ay is present with the same name
in different states.

Function « represents the sequence edit distance [11, 27], which
determines the number of non-matching elements in two sequences
(e.g..4=|(a, by | +| (e, f)|, when comparing (a, b, b, c) to (e, b, c, f)).
LCS is the set of matching indexes in the longest common subse-
quence [11, 27] (e.g., {(2,2), (4,3)}, when comparing (a, b, b, c) to
(e, b, c, f)). Function f computes the distance between the two pa-
rameter value sequences X;[k1], Xj[k2] of two matching actions
(indexed by k1 and k; respectively in V;::A; and Vj::Aj). At last, func-
tion § computes the normalized distance between two primitive
input values of the same type (see Table 1).

The second term of Equation 1 matches the actions A;[k1], Aj[k2]
in the two sequences. Correspondingly, the two input vectors X;[k1]
and X[k2] have the same cardinality. Function computes the aver-
age distance between the parameter values x and y of two matching
actions. It resorts to function § to compute the normalized distance
between pairs of primitive input values x[k], y[k]. The computation
of function § varies depending on the type of parameters occurring
into the actions (see Table 1). The input distance § is normalized be-
tween 0 and 1. For types string or number, normalization is achieved
using function n(x) = %7 as proposed by Arcuri et al. [2], that
maps a value x onto the range [0, 1].

Equation 1 resembles the computation of the fitness function for
branch coverage, commonly adopted in search-based testing [34].

Table 1: Input distance computation

Type Input Distance 5(w, z)

6(w,z) = {0if w = z; 1 otherwise }
enum d(w,z) = {0if w = z; 1 otherwise }
string o(w,z) = a(w,z)/(1 + a(w, z))
number dw,2)=|lw—z|/(1+|w—2]|)

boolean

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

In such a case, the two terms of the fitness function are approach
level and normalized branch distance, respectively. We share with
that definition the idea of making the first term (action sequence
distance) dominant, while resorting to the second term (input value
distance) only when the first term is not discriminative enough. In
fact, the range of a is N, so the minimum non-zero distance is 1,
whereas ff ranges between 0 and 1, such that the contribution to
p of each matching pair of actions cannot be greater than 1. The
intuition is that the major contribution to diversity comes from the
action sequence distance, while the input value distance for each
matching action pair contributes at most as the minimum non-zero
action sequence distance (i.e., 1). However, in case of a large number
of actions being matched, the aggregate value of the input value
distance might become dominant.

3.4 Example of Distance Computation

We present how the distance between test cases is computed using
a simplified notation in which only the actions are reported while
omitting the states (e.g., Index: : findOwner becomes findOwner). In
fact, in all our examples the state sequence associated with a given
action sequence will be unique (this is not true in the general case).
Moreover, parameter values are indicated in brackets rather than
separate input vectors (e.g., an action sequence A = (findOwner)
and the corresponding input sequence X = ((“John Doo”)) become
(findOwner (“John Doo™))).

Let us consider three simple test cases t1, t3, t3 for the running
example PetClinic (Section 2), defined as follows:

t1 = {findowner("John Doo"), find(161))
tz = <find0wner("]ohnny Boo"),addNewOwner, add (" Johnny Boo”)>
I3 = <find0wner("John Doo"), find(105)>

Suppose that #; is already in the list of generated test cases Tyen,
whereas t7 or t3 are in the set of generated tests C. Our algorithm
must decide which test to execute next. The sequence edit distance
between 1 and f; is @ = 3, because there are three non-matching
actions in t1, t; (find in ¢, and addNewOwner, add in £;).

Concerning the matching actions (findOwner in both #; and #3),
the input distance is computed by function f, which in turn resorts
to function ¢ for the distance between primitive values. In our
running example, S(("John Doo"), ("Johnny Boo")) = §("John Doo",
"Johnny Boo") = 3/4 = 0.75, because a("John Doo", "Johnny Boo") =
3 (the three non matching characters in "Johnny Boo" being ‘n’, ‘y’,
‘B’). Therefore, p(t1, t2) = 3 + 0.75 = 3.75.

Conversely, the sequence edit distance between t; and t3 is & = 0,
since there are no unmatched actions in the two sequences. Thus,
our distance formula relies on the input distance S(("John Doo"),
("John Doo")) = 0, and f((101), (105)) = 4/5 (we use the § function
that applies to numbers). Therefore, p(t1, t3) = 0 + 4/5 = 0.80. Thus,
the most diverse test case ts is selected and executed.

3.5 Implementation

We implemented our approach in a Java tool called DIG (DIversity-
based Generator), which is publicly available [52]. To retrieve the
PO testing model, DIG relies to Apogen [50]. Finally, our diversity-
based test generator is implemented on top of EvoSuite [17], which

M. Biagiola et al.

we extended to handle the PO model. Our algorithm uses the PO
method information to generate and evaluate candidate test cases.
At last, only the most diverse candidates are executed through
Selenium WebDriver [46] in headless execution mode.

4 EMPIRICAL VALIDATION

4.1 Research Questions

We address the following research questions:

RQ; (Effectiveness): How do diversity-, search-, and crawling-

based random test generation compare in terms of state coverage,

code coverage and fault detection?

RQ, (Efficiency): How do diversity- and search-based test generation

compare in terms of efficiency over time?

RQ3 (Distance Computation): What is the impact of distance com-

putation in the diversity-based test generation process?

RQ4 (Manual POs): What is the effect of using manually defined POs

within the diversity- and search-based test generation approaches?
RQ; and RQ; aim to compare DIG with two state-of-the-art

solutions: a search-based web test generator called SUBWEB [5], and

ATUSA [37], which is based on a crawling-based random approach.

RQ3 and RQ4 aim at assessing the impact of the internal factors

of the proposed approach (namely, distance computation and POs

generation method) on the final test suites.

4.2 Subject Systems

We overviewed the most popular JavaScript frameworks for devel-
oping web applications from GitHub Collections [21]. Popularity
was measured as the number of stars owned by the framework’s
GitHub repository at the time of writing (August 2018). We retained
five frameworks with more than 15k stars. Second, we selected web
applications developed with one of the selected frameworks and are
popular (number of stars > 50), mature (number of commits > 50)
and have been maintained recently (year of last commit > 2016).
Third, from the resulting candidate set, in order to maximize diver-
sity and representativeness, we randomly sampled six applications
considering the six most popular Javascript frameworks: dimeshift
(Backbone.js), pagekit (Vue.js), splittypie (Ember.js), phoenix-trello
(Phoenix/React), retroboard (React), PetClinic (Angular]S).

Table 2 summarizes the main characteristics of our subjects. The
size of the selected systems (> 1k client-side JavaScript LOCs, frame-
works excluded) is representative of modern web applications [39]
(Ocariza et al. [39] report an average of 1,689 LOCs for a dataset of
web applications developed with the Angular]S framework with at
least 50 stars).

Table 2: Experimental subjects

Subject Framework LOC (JS) Stars Commits Year
dimeshift [12] Backbone 5,140 127 194 2018
pagekit [41] Vue.js 4,214 4,851 4,914 2019
splittypie [48] Ember.js 2,710 67 331 2017
phoenix [44] React 2,289 2,233 422 2016
retroboard [45] React 2,144 390 476 2019
PetClinic [43] Angular]S 2,939 50 71 2018

Diversity-Based Web Test Generation

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 3: Effectiveness, Efficiency and Distance Computation results (Automated POs) for RQ1, RQ2, and RQ3 for all subjects and
approaches. Values in bold indicate statistically significant differences between DIG and SUBWEB. Stars indicate statistically
significant differences between DIGg,1 and DIGg. NC indicates non-comparable values since the test generation terminates

before the given time budget.

EFFECTIVENESS EFFICIENCY DisTaANCE COMPUTATION
Structural Coverage Faults Structural Coverage Faults Tests Distance

State Cov. (%) Branch Cov. (%) Avg Unique (#) State AUC (%) Branch AUC (%) AUC (%) Gen. Exec. #

- § z § S 3 § S 3 § 3 E z § z E z z
$ ¢ 3 ¢33 8 ¢¢38¢ g3 sz g3 & g dg ¢ ¢
A A 7 A A « < A A & < A A %2} A A 7 A A «n A A n A A A A
dimeshift 99.4 100.0 98.4 40.5 40.4 40.3 18.8 2.7 3.3 25 1.0 97.2 97.2 951 36.2 359 349 50.0 56.2 35.2 NC NC NC NC NC NC NC
pagekit 963 97.6 963 27.9 27.2 28.0 248 10 1.1 1.1 0.0 94.5 96.2 933 24.6 24.6 26.6 33.0 34.6 41.7 69.5k 7.9k 218 158 218 487k 628k
splittypie 940 938 91.0 51.9 51.7 50.1 18.6 5.6 6.0 5.6 1.0 91.0 90.7 86.3 47.3 45.8 443 84.5 89.6 86.2 11k 11.8k 329 221 236 1,227k 1,398k
phoenix 99.7 99.7 99.2 64.1 628 625 342 3.1 3.5 3.1 0.0 98.1 98.1 948 58.0 58.7 554 58.1 66.2 47.8 NC NC NC NC NC NC NC
retroboard 100.0 100.0 100.0 71.3 71.7 69.8 51.4 0.0 0.0 0.0 0.0 97.9* 96.1 963 69.1 68.7 67.4 0.0 0.0 0.0 NC NC NC NC NC NC NC
PetClinic 100.0 100.0 100.0 85.0 85.0 85.0 0.0 2.5 29 2.1 0.0 964 958 973 79.1 757 68.7 41.0 45.6 325 NC NC NC NC NC NC NC
Average 99.7 985 97.5 56.8 56.5 56.0 24.6 2.5 2.8 2.4 03 959 957 939 524 51.6 49.6 444 487 40.6 402k 153k 274 180 197 857k 1,000k

4.3 Procedure and Metrics

Effectiveness (RQ1). We ran DIG, SuBWEB and ATUSA on each
subject system. For DIG, we set the number of candidate test cases
generated at each step of the algorithm to 50. As SUBWEB requires,
we manually specified the guards for the POs methods. We granted
each tool the same time budget of 30 minutes because, in our ex-
ploratory experiments, we empirically observed convergence of
state coverage to a plateau within half an hour. Additionally, we re-
peated each experiment 15 times, and computed the average across
all executions to cope with non-deterministic behaviours.

We considered three metrics of effectiveness. First, we measured

the state coverage of the navigational model according to the transi-
tion coverage adequacy criterion. Second, we measured branch cov-
erage of the JavaScript code of our subject systems. We instrumented
the client-side of each web application (libraries and framework
excluded) with the tool Istanbul [20], and executed the generated
test suites against the instrumented applications. Third, we studied
the fault detection capability, by counting the number of unique
faults (i.e., unique JavaScript exceptions and errors) reported in the
JavaScript console upon test suite execution.
Efficiency (RQ3). To assess efficiency, we measured how the com-
peting algorithms perform over time in terms of state coverage,
branch coverage, and fault detection. To this aim, we computed
the area under the curve (AUC) of each metric as a function of
the test generation time, with higher values of AUC denoting a
superior efficiency of the algorithm within the given time budget
(30 minutes).

Concerning state coverage, we computed the AUC accurately,
because EvoSuite outputs the value of such metric at every new
test case generation. Differently, to measure AUC for branch cover-
age and fault detection, we had to execute each intermediate test
suite produced during the test generation process. Given the huge
number of test suites to be considered (in the order of dozens of
thousands considering all applications, approaches and repetitions),
for each subject, we sampled three time intervals: the point at which

the state coverage difference between DIG and SUBWEB is maxi-
mal, the point at which is 50% of the maximum, and 30 minutes. In
fact, by graphically plotting the two state coverage functions, we
observed that state coverage difference has a steep peak followed
by a smooth decline. Hence, in order to accurately estimate the
AUC with only a few data points (time intervals), it makes sense to
sample them where the difference is the largest, and the next one,
when it is halved.

Distance Computation (RQ3). Distance computation is expen-
sive because it grows quadratically with the number of test cases:
at each test generation step, the number of distance computations
is given by the number of previously executed test cases multiplied
by the number of candidates. The input distance term of Equation 1
further increases the cost for distance computation. To assess such
impact, we ran DIG disabling the input distance computation, thus
computing the distance as just the sequence edit distance. We refer
to these two variants of our approach as DIGg and DIGg.1, respec-
tively, and computed the same effectiveness/efficiency metrics used
for RQq and RQ,. Additionally, we assessed the overhead of distance
computation on the number of test executions by reporting the
number of tests generated and executed by each tool/configuration.
Manual POs (RQ4). A developer may develop more accurate POs
than those produced by an automatic technique. Thus, we compared
the effectiveness and efficiency of DIG and SUBWEB when manually
defined POs are utilized.

Unfortunately, none of our subjects was equipped with PO-based
test suites. Thus, we had to manually create the POs for each subject
application. To minimize any subjectivity/bias, we developed the
POs prior to running Apogen, by adopting a rigorous procedure.
Specifically, we adhered to the guidelines given by Van Deursen [53,
54] on the design of PO-based web test suites. Each PO represents a
test state, with explicit responsibilities for state navigation and state
inspection. Thus, we represented each action of a test state as a
trigger method in the page object. Instances of such methods are, for
instance, clicks and data-submitting forms that bring the browser
to a new state. Inspection methods have been used to retrieve the

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

value of key/unique elements displayed in the browser when it is
in a given state, such as a username.

In light of these design considerations, we modelled the web
applications into POs as follows. Starting from the root (i.e., the
initial web page, typically the login page), we modelled it as a PO.
Following the navigations that were possible from the initial state,
new test states were discovered (e.g., for user registration), which
in turn were modelled as POs. Then, we proceeded following the
actions that were possible in each newly discovered state, building
page objects iteratively and incrementally, until all the pages were
accounted for. Additionally, states having common behaviours (e.g.,
menu bars) were organized into reusable components [53, 54].

To compare automatically vs manually generated POs, we com-
puted the same effectiveness and efficiency metrics used to answer
RQ; and RQq, as described above.

4.4 Results

Effectiveness (RQ1). Table 3 (Effectiveness) compares DIGs., DIGsg,
and SUBWEB in terms of state coverage, code coverage and fault
detection. Statistical significance of the difference was assessed by
applying the non-parametric Mann-Whitney U test [22], with a
confidence threshold o = 0.05.

Concerning ATUSA, we do not report comparisons in terms of
state coverage, because the navigational model retrieved by the
crawler is different (usually, much larger) from those based on the
PO abstraction that DIG generates. To compare them accurately,
one would need to find the isomorphism between the two SFGs,
which requires mapping each state and each transition from one
model onto the other—a manual and expensive process. Thus, for
ATUSA, we only compare code coverage and fault detection metrics.

Looking at the results, both DIG and SUBWEB outperform ATUSA
substantially. In all cases the differences are statistically significant
(not reported in Table 3).

As far as effectiveness is concerned, when automated POs are
utilized, DIG and SUBWEB can be considered comparable test gen-
erators, with minimal performance variations.

Despite both tools cover almost all navigational models within
the given time budget of 30 minutes, there is however a remarkable
difference. DIG is totally automated, and achieved these results by
relying only its diversity heuristic. SUBWEB, on the contrary, is semi-
automatic, as it takes advantage of manually-defined preconditions
to guide the search and avoid path infeasibility.

ROQ1: Diversity- and search-based approaches achieve substan-
tially higher state coverage, code coverage and fault detection
than the crawling-based random approach. Despite being compa-
rably effective, the diversity-based approach is preferable because
it is fully automated.

Efficiency (RQ3). Table 3 (Efficiency) compares DIG and SUBWEB
in terms of state coverage, code coverage and fault detection achieved
over time (AUC metrics). DIG outperforms SUBWEB by a statistically
significant amount in 5/6 subjects for state and branch coverage.
Regarding fault detection, DIG is significantly better than SUBWEB
in 3/5 subjects (retroboard revealed no faults).

The plot in Figure 3 shows a meaningful example regarding the
efficiency difference on state coverage for phoenix. DIG reaches the
maximum state coverage after nearly one third of the total time

M. Biagiola et al.

—DIG-seq

60 - SuBWeb

40

state coverage

n
=}

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
time % over 30 min

Figure 3: Average efficiency over time in terms of state cov-
erage of the compared approaches on phoenix.

budget, whereas SUBWEB takes approximately twice as much time.
Moreover, for small time intervals, the effectiveness difference of
DIG vs SUBWEB is further amplified. For instance, the maximum
difference between the two algorithms is 22% after 2 minutes (~6%
of the time budget). In practice, this means that DIG is preferable if
strict testing time constraints apply.

RQy: The diversity-based approach achieves high coverage and
fault detection rates substantially faster than the search-based
approach.

Distance Computation (RQ3). Table 3 (Distance Computation)
shows the number of test cases generated and executed by DIG
and SUBWEB and the number of distance computations required by
DIGg, and DIGg (for SUBWEB the number of generated test cases
always equals the executed test cases).

On average, DIG computed a large number of distances (857k
by DIGs,1 and 1, 000k by DIGs). Such computations reduces the
time available for test case execution. Thus, while SUBWEB run
on average 274 test cases, DIGg,1 and DIGs run an average of 94
and 77 less test cases, respectively (dimeshift, phoenix, retroboard
and PetClinic are excluded from the analysis since they always
terminate before 30 minutes, which means that the number of test
executions is not constrained by the time budget).

The number of generated test cases (not necessarily executed)
by DIG is substantially higher than the test cases generated and
executed by SUBWEB (e.g., 40.2k and 15.3k vs 274). However, de-
spite a lower number test executions, the time spent in distance
computation allows DIG to produce test cases that have a higher
chance of increasing coverage and fault detection (see results for
RQ1 and RQg). This confirms our initial hypothesis that it is possi-
ble to assess the quality of web test cases without executing them,
while still achieve high coverage and fault detection rates.

Let us now compare DIGs,] and DIGs. The extra computational
cost associated with the input distance reduces on average the num-
ber of executed test cases by #9%. On the other hand, the increased
accuracy of the distance computed by DIGg,1 does not bring con-
siderable advantages in terms of coverage or fault detection (see
results for RQq and RQy).

RQs3: The overhead brought by the distance computation is over-
shadowed by the benefits in efficiency and automation. Moreover,
the input component of the proposed distance metric can be dis-
carded with little to no associated penalty.

Diversity-Based Web Test Generation

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 4: Effectiveness, Efficiency and Distance Computation results (Manual POs) for RQ4, and RQ3 for all subjects and ap-
proaches. Values in bold indicate statistically significant differences between DIG and SUBWEB. Stars indicate statistically

significant differences between DIGg,1 and DIGg.

EFFECTIVENESS EFFICIENCY DisTaNCcE COMPUTATION
Structural Coverage Faults Structural Coverage Tests Distance
State Cov. (%) Branch Cov. (%) Avg Unique (#) State AUC (%) Gen. Exec. #
: ., £z . £ 5 5,235 , £ I S S
g ¢ B 2 g & B g g &8 g ¢g ¢ B g g B g g g g
A A 7 A A) < A A) < A A 7 A A «a A A A [a)
dimeshift 70.8 70.3 67.2 41.7 41.3 40.1 18.8 2.7 3.1 2.8 1.0 67.4 66.9 62.2 31.4k 27.0k 628 541 490 6,015k 7,331k
pagekit 65.0 65.1 61.6 345 353 333 249 2.7 2.8 2.7 0.0 60.4 60.6 56.4 9.7k 7.3k 196 146 142 965k 537k
splittypie 74.7 74.4 67.0 51.7 51.4 50.6 18.7 7.0 6.9 6.7 1.0 70.8 70.6 61.4 13.7k 12.5k 275 250 225 1,271k 1,569k
phoenix 72.1 74.6 68.8 63.4 64.4 61.8 342 2.8 2.3 1.4 0.0 69.5 72.4* 65.5 16.5k 13.6k 331 272 243 1,482k 1,856k
retroboard 85.9 88.1 85.3 822 83.1* 82.3 51.5 0.0 0.0 0.0 0.0 84.0 86.0* 81.5 23.0k 19.8k 462 396 352 3,106k 3,930k
PetClinic 69.2 69.8 65.7 49.1 46.8 44.1 0.0 3.7 3.1 3.0 0.0 66.9 67.2 62.2 12.4k 12.6k 248 253 356 1,544k 1,607k
PetClinic 69.2 69.8 65.7 49.1 46.8 44.1 0.0 3.7 3.1 3.0 0.0 669 67.2 62.2 17.8k 12.6k 356 253 248 1,544k 1,607k
Average 73.0 73.7 69.3 53.8 53.7 52.0 24.7 3.2 3.0 2.8 0.3 698 70.6 64.9 18.7k 15.5k 375 310 283 2,397k 2,805k

Manual POs (RQy). Table 4 presents the results obtained when
manually defined POs are utilized for test generation.

For all subjects, both tools did not cover the entire navigational
model within the given time budget (30 minutes). This is motivated
by the higher number of methods contained in the manual POs,
which model the web applications more accurately, at the cost of
making test generation more challenging.

Table 5 shows reports information about the size, in lines of
code (LOC), of the POs of our study, as well as the number of
methods they contain. Methods determine the transitions, hence
the complexity, of the navigational model. The manually generated
POs contain, on average, 72% more LOC (Column 4) and 127% more
transitions (Column 7) than Apogen’s POs.

For 3/6 subjects (dimeshift, phoenix, and PetClinic), we observed
no significant difference between using automated or manual POs
in terms of branch coverage and fault detection (see results of DIG
in Table 3 and Table 4).

Overall, when manually defined POs are available, DIG out-
performs SUBWEB with statistical significance in terms of state
coverage in all cases, and in 4/6 cases concerning branch coverage.

ROQy: By using manually-defined POs, the diversity-based ap-
proach outperforms the search-based approach in terms of struc-
tural coverage reached by the generated test suites.

4.5 Threats To Validity

Using a limited number of subject systems in our evaluation poses
an external validity threat, in terms of generalizability of our results.
We tried to mitigate this threat by choosing six subject systems
developed with real-world JavaScript frameworks and pertaining
to different domains, although more subject systems are needed to
fully address the generalization threat.

Threats to internal validity might come from confounding factors
of our experiments. We compared all competing algorithms under
identical parameter settings (e.g., time budget intervals), on real-
world web applications. The manual PO development task poses a

Table 5: Manually vs Automatically generated POs

PO Size (LOC) # PO Methods
o =1 I o =1 =
Q. 3+ Q Q, < Q
< = k= < = k=
dimeshift 511 760 49 35 72 105
pagekit 567 2,030 258 42 214 409
Splittypie 492 560 14 31 44 42
phoenix 324 482 49 24 38 58
retroboard 292 350 20 26 29 11
PetClinic 312 450 44 20 47 135

threat to validity that we tried to mitigate by following a rigorous,
systematic procedure.

Conclusion validity is related to random variations and inappro-
priate use of statistical tests. To mitigate these threats, we ran each
experiment 15 times and used the non-parametric Mann-Whitney
U test for statistical testing.

With respect to reproducibility of our results, the source code of
DIG and all subject systems are available online [52], making the
evaluation repeatable and our results reproducible.

5 DISCUSSION

5.1 Effectiveness and Automation

By combining POs and test generation, diversity- and search-based
approaches achieved substantially higher state coverage, code cov-
erage and fault detection than a state-of-the-art crawling-based,
PO agnostic approach.

DIG is fully automated while SUBWEB is only semi-automated
as manual preconditions need to be specified. Our results show
that DIG can potentially save testers a considerable amount of

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

time by generating both POs and test cases automatically. If neces-
sary, testers can refine the generated POs with missing actions or
transitions, and repeat the test generation.

Additionally, the test suites generated by our approach are based
on the page object design pattern, which brings known advantages
in terms of maintainability [23].

5.2 Efficiency

Our efficiency results demonstrate that our approach is preferable,
especially in settings where the time devoted to testing is strict
or when test cases are executed very often during the develop-
ment process. Indeed, the diversity-based approach achieved high
coverage and fault detection scores substantially earlier than the
search-based approach, regardless the POs being used. This gives us
confidence in the applicability of our technique in modern software
development processes such as XP and DevOps.

5.3 Benefits to Feasibility

Under the conjecture of contiguous infeasibility regions, promoting
diversity is beneficial not only to a thorough exploration of the
application behaviours, but also to the feasibility of automatically
generated test cases. The search-based approach, on the contrary,
uses the guards in the navigational model explicitly to guide the
search towards inputs that satisfy them.

5.4 Comparison with Manual POs

The POs automatically generated by Apogen are usually simpler
than those developed manually, in terms of number and complexity
of actions being exposed for testing. Apogen creates methods based
on the actions statically extracted from each test state. As such, in
most cases, the resulting methods may miss complex interactions
that are possible on the web GUI Additionally, due to a transition
minimization strategy, Apogen does not create reusable compo-
nents for repeated headers (such as menu bars). Thus, the number
of possible test paths/cases that can be generated by DIG is lower.

Despite such limitations, automated POs are competitive with
manual POs in a subset of the considered applications. An interest-
ing option available to testers could be the refinement of automati-
cally generated POs, to achieve the same performance of manual
POs at a lower development cost. Overall, our empirical results
show that when high quality POs are available, our diversity-based
approach outperforms all other approaches both in terms of effec-
tiveness (state and branch coverage) and efficiency (rate at which
coverage is reached).

6 RELATED WORK

Automated test case generation for web applications is a challenging
and extensively researched activity, as highlighted by the high
number of papers proposed in literature only in the last few years [3,
5, 33, 35, 37, 56]. The work presented in this paper instantiates
concepts from adaptive random testing [8, 10] and diversity-based
test generation [1, 13] in the context of web testing. Specifically,
it provides a web-specific diversity-based algorithm, and defines
ad-hoc distance measures and test generation heuristics.

The main existing model-based works have been already pre-
sented and discussed in Section 2.5. On the same category, FeedEx [38]

M. Biagiola et al.

uses DOM and path diversity to guide a crawler towards the gener-
ation of smaller yet more accurate testing models. However, FeedEx
is not a test case generator, hence a direct comparison with DIG is
left for future work.

Yu et al. [56] propose an incremental two-steps algorithm imple-
mented in the prototype tool InwertGen in which creation of novel
POs and generation of test cases are intermixed. Test cases are gen-
erated using the tool Randoop [40]. SUBWEB [5] proposes a genetic
algorithm that performs path selection and input generation at the
same time, starting from a manually created PO-based model.

Existing techniques and tools for automated web test generation
either ignore path feasibility or require a high number of executions
to ensure path feasibility. Indeed, approaches based on crawling
or dynamic analysis [33, 35] generate a navigational model and
then extract paths from it, without considering that the associated
inputs must ensure feasibility.

On the other hand, all approaches [5, 56] that explicitly address
path feasibility require the execution of a huge number of test case
candidates. In fact, they employ random [56] or search based [5] test
generation algorithms, both of which assess the feasibility of the
candidate test cases by executing them. On the contrary, we assess
the quality of the candidates by their diversity, before executing
them to determine their feasibility. Our empirical studies show that
as a side effect, higher diversity results also in higher feasibility.

Recent papers have considered increasing the robustness and
maintainability of web test suites. In order to make test scripts
robust, several tools producing smart web element locators have
been proposed [4, 24, 25, 55], or to repair them [19, 51] Additionally,
Stocco et al. [49, 50] investigate the automated generation of page
objects that confine causes of test breakages to a single class, a form
of breakage prevention.

Finally, in the mobile domain, Sapienz [31] uses multi-objective
search-based testing to automatically explore and optimize test
sequences, minimizing length, while simultaneously maximizing
coverage and fault revelation. Evodroid [30] is a model-based test
generator for Android, based on an evolutionary algorithm that
performs a step-wise search for test cases.

7 CONCLUSIONS AND FUTURE WORK

We have proposed a diversity-based approach for web test genera-
tion implemented in our tool DIG. DIG can assess a high number of
test case candidates without executing them in the browser, mak-
ing test generation significantly more efficient than state-of-the-art
techniques. Differently from search-based approaches, our tool is
fully automated, and it does not require any specific guidance to
generate feasible test cases.

In our future work we plan to experiment alternative distance
metrics, among which those based on information theoretic con-
cepts, such as the normalized compression distance [13]. Moreover,
we will also decouple DIG from EvoSuite, so as to further optimize
its performance. A further interesting line would be to study the
effectiveness of DIG, SUBWEB and ATUSA starting from a naviga-
tional model produced by a diversity-oriented tool such as FeedEx.
Lastly, we plan to experiment our technique with more subjects,
as well as, to run a controlled experiment with human subjects to
measure the accuracy of the generated tests

Diversity-Based Web Test Generation

REFERENCES

(1]

(2]

[10]

[11

[12]

[13

(18]

[19]

[20

[21]
[22]

[23]

[24

[25

[26]

[27

Nadia Alshahwan and Mark Harman. 2012. Augmenting test suites effective-
ness by increasing output diversity. In 34th International Conference on Software
Engineering, ICSE. 1345-1348.

Andrea Arcuri. 2013. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and Reliability 23,
2 (2013), 119-147.

Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Mgller, and Frank Tip.
2011. A Framework for Automated Testing of Javascript Web Applications. In
Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11).
ACM, New York, NY, USA, 571-580. https://doi.org/10.1145/1985793.1985871
Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2015. Synthesizing Web
Element Locators. In Proceedings of 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’15). IEEE Computer Society, 331-341.
Matteo Biagiola, Filippo Ricca, and Paolo Tonella. 2017. Search Based Path and
Input Data Generation for Web Application Testing. In International Symposium
on Search Based Software Engineering. Springer, 18-32.

Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.
2019. Web Test Dependency Detection. In Proceedings of 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 12 pages.

Robert V. Binder. 1996. Testing object-oriented software: a survey. Software
Testing, Verification and Reliability 6, 3-4 (1996), 125-252.

Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. 2010. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software 83,
1(2010), 60-66.

Tsong Yueh Chen, Hing Leung, and IK Mak. 2004. Adaptive random testing. In
Annual Asian Computing Science Conference. Springer, 320-329.

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. 2008. ARTOO:
adaptive random testing for object-oriented software. In Proceedings of the 30th
international conference on Software engineering. ACM, 71-80.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill.
dimeshift 2018. DimeShift: easiest way to track your expenses. https://github.
com/jeka-kiselyov/dimeshift. (2018).

Robert Feldt, Simon M. Poulding, David Clark, and Shin Yoo. 2016. Test Set Diam-
eter: Quantifying the Diversity of Sets of Test Cases. In 2016 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2016, Chicago, IL,
USA, April 11-15, 2016. 223-233.

Mark Fewster and Dorothy Graham. 1999. Software Test Automation: Effective
Use of Test Execution Tools. Addison-Wesley Longman Publishing Co., Inc.
Martin Fowler. 2013. PageObject. http://martinfowler.com/bliki/PageObject.html.
(2013). Accessed: 2018-08-01.

Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole
Test Suites. In 114" International Conference on Quality Software (QSIC), Manuel
Nuiiez, Robert M. Hierons, and Mercedes G. Merayo (Eds.). IEEE Computer
Society, Madrid, Spain, 31-40.

Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (feb. 2013), 276 —291.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In Programming Language Design and Implementation
(PLDI 2005), Vivek Sarkar and Mary W. Hall (Eds.). ACM, 213-223.

Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016. WATERFALL:
An Incremental Approach for Repairing Record-replay Tests of Web Applications.
In Proceedings of 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE '16). ACM, 751-762.

Istanbul 2018. Istanbul: JavaScript test coverage made simple. https://istanbul js.
org. (2018). Accessed: 2018-08-01.

JS-frameworks 2018. Front-end JavaScript frameworks. https://github.com/
collections/front-end-javascript-frameworks. (2018).

O. Koresteleva. 2004. Nonparametric Methods in Statistics with SAS Applications.
CRC Press, Boca Raton, FL.

Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2016. Ap-
proaches and Tools for Automated End-to-End Web Testing. Advances in Com-
puters 101 (2016), 193-237. https://doi.org/10.1016/bs.adcom.2015.11.007
Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2015. Using
Multi-Locators to Increase the Robustness of Web Test Cases. In Proceedings of
8th IEEE International Conference on Software Testing, Verification and Validation
(ICST ’15). IEEE, 1-10.

Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2016. ROBULA+:
An Algorithm for Generating Robust XPath Locators for Web Testing. Journal of
Software: Evolution and Process (2016), 28:177-204.

Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2018. PESTO:
Automated migration of DOM-based Web tests towards the visual approach.
Software Testing, Verification And Reliability 28, 4 (2018).

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707-710.

[28

[29

[30

[32

[33

[34

[35

[36

[37

(38]

[39

=
2

[41

[42

[43

(44

S
&

[46

[47

(48

[49

[50

[51

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Yu Lin, Xucheng Tang, Yuting Chen, and Jianjun Zhao. 2009. A divergence-
oriented approach to adaptive random testing of Java programs. In Automated
Software Engineering, 2009. ASE’09. 24th IEEE/ACM International Conference on.
IEEE, 221-232.

Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu. Available for
free at http://cs.gmu.edu/~sean/book/metaheuristics/.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 599-609. https://doi.org/10.1145/2635868.2635896

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA,
94-105. https://doi.org/10.1145/2931037.2931054

Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-Based Testing
of Ajax Web Applications. In Proceedings of the First International Conference on
Software Testing, Verification, and Validation (ICST). 121-130.

Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-Based Testing
of Ajax Web Applications. In Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation (ICST "08). IEEE Computer Society,
Washington, DC, USA, 121-130. https://doi.org/10.1109/ICST.2008.22

Phil McMinn. 2004. Search-based software test data generation: a survey. Softw.
Test., Verif. Reliab. 14, 2 (2004), 105-156.

Ali Mesbah and Arie van Deursen. 2009. Invariant-based Automatic Testing
of AJAX User Interfaces. In Proceedings of the 31st International Conference on
Software Engineering (ICSE "09). IEEE Computer Society, Washington, DC, USA,
210-220. https://doi.org/10.1109/ICSE.2009.5070522

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-Based
Web Applications through Dynamic Analysis of User Interface State Changes.
ACM Transactions on the Web (TWEB) 6, 1 (2012), 3:1-3:30.

Ali Mesbah, Arie van Deursen, and Danny Roest. 2012. Invariant-Based Automatic
Testing of Modern Web Applications. IEEE Trans. Software Eng. 38, 1 (2012), 35—
53.

Amin Milani Fard and Ali Mesbah. 2013. Feedback-directed Exploration of Web
Applications to Derive Test Models. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE). IEEE Computer Society, 278-287.
http://www.ece.ubc.ca/~amesbah/docs/issre13.pdf

Frolin S Ocariza Jr, Karthik Pattabiraman, and Ali Mesbah. 2017. Detecting un-
known inconsistencies in web applications. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press, 566-577.
Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE °07). IEEE Computer Society,
Washington, DC, USA, 75-84. https://doi.org/10.1109/ICSE.2007.37

pagekit 2018. Pagekit: modular and lightweight CMS. https://github.com/pagekit/
pagekit. (2018).

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Trans. Software Eng. 44, 2 (2018), 122-158.
PetClinic 2018. Angular version of the Spring PetClinic web application. https:
//github.com/spring- petclinic/spring- petclinic-angular. (2018).

phoenix 2018. Phoenix: Trello tribute done in Elixir, Phoenix Framework, React
and Redux. https://github.com/bigardone/phoenix-trello. (2018).

retroboard 2018. Retrospective Board. https://github.com/antoinejaussoin/retro-
board. (2018).

Selenium 2018. SeleniumHQ Web Browser Automation. http://www.seleniumhg.
org. (2018). Accessed: 2018-08-01.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In 10th European Software Engineering Conference and 13th ACM
International Symposium on Foundations of Software Engineering (ESEC/FSE ’05),
Michel Wermelinger and Harald Gall (Eds.). ACM, 263-272.

splittypie 2018. Splittypie: easy expense splitting. https://github.com/cowbell/
splittypie. (2018).

Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2016. Clustering-
Aided Page Object Generation for Web Testing. In Proceedings of 16th International
Conference on Web Engineering (ICWE ’16). Springer, 132-151.

Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017. APOGEN:
Automatic Page Object Generator for Web Testing. Software Quality Journal 25,
3 (Sept. 2017), 1007-1039.

Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web
Test Repair. In Proceedings of the 26th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18). ACM.

tool 2019. DIG: Diversity-based E2E web test generator. https://github.com/
matteobiagiola/FSE19-submission- material-DIG. (2019).

Arie van Deursen. 2015. Beyond Page Objects: Testing Web Applications with
State Objects. ACM Queue 13, 6 (2015), 20.

https://doi.org/10.1145/1985793.1985871
https://github.com/jeka-kiselyov/dimeshift
https://github.com/jeka-kiselyov/dimeshift
http://martinfowler.com/bliki/PageObject.html
https://istanbul.js.org
https://istanbul.js.org
https://github.com/collections/front-end-javascript-frameworks
https://github.com/collections/front-end-javascript-frameworks
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICST.2008.22
https://doi.org/10.1109/ICSE.2009.5070522
http://www.ece.ubc.ca/~amesbah/docs/issre13.pdf
https://doi.org/10.1109/ICSE.2007.37
https://github.com/pagekit/pagekit
https://github.com/pagekit/pagekit
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/bigardone/phoenix-trello
https://github.com/antoinejaussoin/retro-board
https://github.com/antoinejaussoin/retro-board
http://www.seleniumhq.org
http://www.seleniumhq.org
https://github.com/cowbell/splittypie
https://github.com/cowbell/splittypie
https://github.com/matteobiagiola/FSE19-submission-material-DIG
https://github.com/matteobiagiola/FSE19-submission-material-DIG

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

[54] Arie van Deursen. 2015. Testing Web Applications with State Objects. Commun.
ACM 58, 8 (July 2015), 36-43. https://doi.org/10.1145/2755501

[55] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish
Chandra. 2014. Robust Test Automation Using Contextual Clues. In Proceedings

of 2014 International Symposium on Software Testing and Analysis (ISSTA °14).

ACM, 304-314.
[56] Bing Yu, Lei Ma, and Cheng Zhang. 2015. Incremental Web Application Testing
Using Page Object. In Proceedings of the 2015 Third IEEE Workshop on Hot Topics in

[57

[58

]

M. Biagiola et al.

Web Systems and Technologies (HotWeb) (HOTWEB ’15). IEEE Computer Society,
Washington, DC, USA, 1-6. https://doi.org/10.1109/HotWeb.2015.14

Xun Yuan and Atif M. Memon. 2007. Using GUI Run-Time State as Feedback to
Generate Test Cases. In ICSE °07: Proceedings of the 29th International Conference
on Software Engineering. IEEE Computer Society, Washington, DC, USA, 396-405.
Andreas Zeller. 2017. Search-Based Testing and System Testing: A Marriage
in Heaven. In Proceedings of 2017 IEEE/ACM 10th International Workshop on
Search-Based Software Testing (SBST ’17). 49-50.

https://doi.org/10.1145/2755501
https://doi.org/10.1109/HotWeb.2015.14

	Abstract
	1 Introduction
	2 Background
	2.1 Navigational Model
	2.2 Example of Navigational Model
	2.3 Feasibility
	2.4 Test Generation Problem
	2.5 Existing Test Generation Approaches

	3 Diversity-Based Web Test Generation
	3.1 Testing Model Extraction
	3.2 Diversity-based Path and Input Generation
	3.3 Distance Between Test Cases
	3.4 Example of Distance Computation
	3.5 Implementation

	4 Empirical Validation
	4.1 Research Questions
	4.2 Subject Systems
	4.3 Procedure and Metrics
	4.4 Results
	4.5 Threats To Validity

	5 Discussion
	5.1 Effectiveness and Automation
	5.2 Efficiency
	5.3 Benefits to Feasibility
	5.4 Comparison with Manual POs

	6 Related Work
	7 Conclusions and Future Work
	References

