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ABSTRACT
The Artificial Intelligence (AI) revolution in software development

is just around the corner.With the rise of AI, developers are expected

to play a different role from the traditional role of programmers, as

they will need to adapt their know-how and skillsets to complement

and apply AI-based tools and techniques into their traditional

web development workflow. In this extended abstract, some of

the current trends on how AI is being leveraged to enhance web

development and testing are discussed, along with some of the main

opportunities and challenges for researchers.
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1 INTRODUCTION
Our world is changing in many ways, and one of the things which

will have a huge impact on our future is artificial intelligence (AI). AI

is a hot topic with many practical applications such as self-driving

vehicles, voice-assisted control, automated traders, and customer

service chatbots.

AI techniques have shown great results when a substantial

amount of data are available. One domain in which we have a

huge amount of data to analyze is software. However, the use of AI
in software development is still in its infancy. Thus, why not take

advantage of such powerful techniques to help software engineers

analyze and address existing challenges in software engineering?
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The goal of AI is to provide a set of algorithms and techniques

that can be used to perform tasks that humans accomplish intu-

itively and nearly automatically, but that are otherwise very chal-

lenging for computers. Research in AI embodies a large and diverse

amount of work related to automated machine reasoning (Figure 1).

However, two subfields are of interest in the scope of this paper,

namely machine learning and computer vision.

Figure 1: Image inspired by Fig. 1.4 of “Deep Learning” by
Goodfellow et al. [8].

Machine learning (ML), in a nutshell, is related to pattern recog-

nition and learning from data in order to solve classification or

regression problems. The performance of machine learning algo-

rithms depends heavily on the representation of the data they are

given. Many artificial intelligence tasks can be solved by designing

and extracting the right set of features for each task, then providing

these features to an ML algorithm. However, for many tasks, it is

difficult to know apriori what features should be extracted.

Deep learning solves the problem of finding the right representa-

tion by introducing hierarchies of representations that are expressed

in terms of other, simpler, representations. Input information is sent

through layers activated by nonlinear functions. Each layer trans-

forms the raw input (first level) into progressively more abstract

representations (inner, or hidden, levels). As such, a deep learning

algorithm is able to discover underlying hidden patterns in data,

which allow the algorithm to correctly perform a task, even on

previously unseen data.

Another AI technique that has been growing in popularity is

computer vision (CV), which provides techniques for analyzing and

understanding images, similar to the way humans perceive them.

In web development and testing, these techniques are often applied

or combined together to form powerful analysis tools (Figure 1).
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2 AI FORWEB DEVELOPMENT AND TESTING
2.1 AI for Web Development
An area in which AI is being utilized is the design and development

of graphical user interfaces (GUIs). The user interface design pro-

cess often starts with designers sharing ideas and sketches on a

whiteboard. Once a design is drawn, it is usually captured within a

picture, and manually translated by the development team into a

working HTML wireframe to begin the development process. This

requires considerable effort and often delays the design process.

Recently, several AI-based approaches have been proposed to gen-

erate HTML wireframes directly from a hand-drawn image, giving

an instant working design implementation to streamline the design

process. We describe some of the main existing approaches next.

Nguyen and Csallner [16] proposed Remaui, which aims to re-

verse engineer mobile GUIs. Given an image screenshot, Remaui

first uses Optical Character Recognition (OCR) to compute an over-

approximated set of textual elements. Then, it uses heuristics such

as the text size to remove false positives, i.e., non-word elements

that may be erroneously reported by the OCR component. Second,

Remaui uses CV to infer the hierarchy of elements on the screen-

shot. Specifically, edge detection is used to estimate the contours

of each element, and edge dilatation is adopted to merge seman-

tically close elements. Then, the bounding box of each identified

element is computed, and outputs of both OCR and CV are merged

to produce the final visually inferred GUI. However, Remaui only
classifies detected components into either text or images, and it is

not able to detect the actual type of the component (e.g., button or

text field).

The first method to adopt deep learning was pix2code, proposed
in an open access paper by Beltramelli [3]. The approach consists of

training an end-to-end model to automatically generate code from

a single input image. Initially, it uses Convolutional and Recurrent

Neural Networks to understand the given GUI image. It infers the

image’s objects, their positions, and types (i.e., buttons or labels).

Then, pix2code uses a language model (i.e., a DSL for describing

GUIs) to generate syntactically and semantically correct GUI de-

scriptions in terms of the identified objects. Finally, it utilizes the

latent variables inferred from the image to generate corresponding

textual descriptions (i.e., source code) of the objects represented

by these variables. pix2code has shown promising results across

three different platforms, i.e., iOS, Android, and web. However, it

requires a DSL that hinders its adoption in practice.

The last described approach is ReDraw, by Moran et al. [15].

First, the approach detects the bounding boxes of logical atomic

elements of a GUI from a mock-up artifact using computer vision

techniques and mock-up metadata. Then, software repository min-

ing and automated dynamic analysis are used to collect screenshots

and GUI metadata to automatically derive labeled training data.

Such data are then utilized to train a deep convolutional neural net-

work (CNN) that classifies GUI-components into domain-specific

types (e.g., buttons). Finally, a k-nearest-neighbors (KNN) algorithm

is used to generate a hierarchical GUI structure from which a pro-

totype application can be automatically assembled. Experimental

results show that ReDraw outperforms Remaui and pix2code in
terms of accuracy of the generated GUI interfaces.

2.2 AI for Web Testing
Recently, software engineering community has witnessed an in-

creasing adoption of CV techniques for assisting or solving common

software engineering tasks.

One of the foundational approaches for computer vision applied

to testing is by Chang et al. [4]. Their tool, Sikuli, allows testers

to write a visual test script that uses images to specify which GUI

components to interact with and what visual feedback to observe.

Their work shows how this approach can facilitate a number of

testing activities such as unit testing, regression testing, and test-

driven development.

CV techniques have been employed to detect cross-browser incom-
patibilities (XBIs) in web applications. XBIs are frequently occurring
issues in a web page’s appearance and/or behaviour when the page

is viewed on different web browsers [18]. Identifying such differ-

ences requires considerable manual effort, which can be effectively

reduced using a visual-based technique. For instance, WebSee [13]

is a visual technique that compares whole images with a perceptual

difference algorithm. WebDiff [18] and X-PERT [19] utilize an

image similarity technique based on image colour histogram.

Recently, computer vision has been also applied for web test

migration and test repair. The tool PESTO [11, 12, 21] migrates

Selenium DOM-based web tests to visual tests based on Sikuli’s

image recognition capability. It proposes an auto-scaling template

matching algorithm for the automatic construction of visual loca-

tors. Visual locators are retrieved for each web element the tests

interact with, and verified on the same web page where they have

been captured. The tool Vista [22, 23] has been proposed to aid

the repair of tests, and therefore matches visual locators across ver-

sions of the same web page. This is used to validate and repair tests

during regression testing. Vista is based on a fast image-processing

pipeline that combines feature detection and template matching to

automatically suggest and apply repairs to broken web tests. The

insight is using the GUI and visual technologies to support the

preventive detection of breakages, by checking the GUI actions per-

formed by the tests and validating them at runtime, timely detecting

deviations from the correct behaviour.

Computer vision has also been adopted for root cause analysis
of presentational issues occurring in PDF files [9]. To prioritize
test reports, Feng et al. [7] use the screenshots provided by users

to augment the existing textual test prioritization techniques for

mobile applications.

Kıraç et al. [10] used an image processing pipeline for test oracle

automation of visual output systems. Bajammal et al. [1] use visual

methods to generate reusable web components from a mockup in

order to facilitate GUIweb development. In anotherwork, Bajammal

and Mesbah [2] use visual analysis to infer a DOM-like state of

HTML canvas elements, thus making them testable by commonly

used testing approaches.

Finally, to automatically generate test cases, Zhang et al. [26] use

a visual-aided approach that identifies strokes that testers draw on

screenshots taken from the apps. These sketches are used to define

test specifications (e.g., coordinates where a visual object should

be positioned to on the screen), which are subsequently used to

generate test cases automatically.
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3 CHALLENGES AND OPPORTUNITIES
3.1 Challenges
Hidden Complexity Demands Thorough Testing. Developing
reliable ML/CV code requires substantial expertise and knowledge,

arguably more than that required for tradition software develop-

ment. For instance, developers implement deep neural networks

(DNNs) using popular frameworks such as Keras [5]. Such frame-

works hide the complexity of building computational graphs behind

convenient APIs that allow the implementation of rather complex

multi-layer architectures with only a few lines of code. Unlike tradi-

tional software, in most cases, the resulting DNNwill perform train-

ing and compute a result despite the presence of functional bugs

in the model. Hence, in case of misbehaviours, the only feedback

to developers is the final classification score, while the debugging

phase needs to be performed on the entire network architecture.

To this aim, testing DNNs is a fervid and growing research area.

Researchers have proposed methods for testing DNNs [17, 24],

testing of DNN-based autonomous vehicles [25, 27], and fault lo-

calization for DNNs [6, 20].

The Need for Explainable AI. Although the learning process is

deterministic to some extent, it is almost impossible from a practical

perspective to extract the model from the internal workings of a

learning system due to its sheer complexity, caused by a myriad

of dynamic parameters (e.g., weights or biases). As a direct conse-

quence, the learned models cannot be easily interpreted, explained,

or understood by humans.

Research community ought to work towards creating ML tech-

niques that produce more explainable models, while maintaining a

high level of accuracy. Such models should enable users to under-

stand, manage, and therefore trust AI-based software.

3.2 Opportunities
Voice-based Search. Voice-based search has recently gained mo-

mentum due to the introduction of various virtual assistants, such

as Google Assistant, Amazon Alexa, and Apple Siri. With the in-

crease in the use of these digital assistants, web development needs

to look into the evolution of voice-based search. This voice-based

technology will become a complete necessity in domains such as vir-

tual shopping. Hence, AI bots powered by voice will be an essential

asset of the future of this technology.

UX & Accessibility. AI can play a vital role in the future of UX in

research and practice. For instance, image recognition can be used

to generate or fix alternative texts in webpages. Facial recognition

may soon replace CAPTCHA. Additionally, lip reading can be used

to generate video capture, or for automated text summarization. AI

can also take an active role in web accessibility, i.e., proper design

of websites for people with disabilities. For example, AI can be used

to generate Braille texts from images for visually impaired people.

Learning Change Patterns. Software repositories are invaluable
sources of information for researchers interested in automated tools

for assisting software development. For instance, Neural Machine

Translation has recently been used at Google to learn patterns

of code changes, extracted from AST diffs between failure and

resolution pairs, and to suggest candidate repairs in form of AST

changes [14]. Evaluation results show that the technique generates

approximately 50% correct fixes.

Automated Test Generation and Maintenance through AI.
Despite their wide adoption, existing test automation frameworks,

such as Selenium, have limitations. First, the development of real-

size test suites for complex web apps is still time-consuming and

laborious. Second, the maintenance cost of test code as the applica-

tion evolves is notoriously high. Additionally, such tools typically

operate at the code-level, without taking into account the visual

aspects of the application.

To mitigate these issues, a paradigm-shift in web test automa-

tion is necessary to make it easier for testers to quickly verify the

outcome of regression test suites and take corrective actions in

the test code with low effort. To this aim, a novel unified frame-

work for automated visual regression testing of web apps would

greatly alleviate the need for writing test cases manually. Our in-

sight to overcome the aforementioned limitations would be to join

the power of automated crawling with that of advanced computer

vision techniques to allow easier and more efficient (1) test case

generation, (2) test case inspection and maintenance, and (3) test

case repair.

However, there are several challenges towards the development

of such framework. The first challenge encompasses studying novel

state abstraction functions that take into account the visual charac-

teristics of a web application, e.g., robust visual perceptual hashing

for image comparison. Such algorithms may produce more user-

centric models, representing what the end-users see and perceive.

The second challenge requires devising novel techniques to com-

pare different web application models and visual test execution

traces effectively and efficiently. To aid solving regression testing-

related issues, such techniques must take advantage of the informa-

tion derived from rendering of a page in a browser. The techniques

should not only compare different models captured at different

time intervals, but also highlight differences pertaining to regres-

sion bugs in the application. To decrease the false positives rate,

these techniques should also be capable of automatically discarding

irrelevant parts of web pages, e.g., ads or timestamps.

With regard to maintenance, as a web application evolves, the

initial model should also co-evolve, which might impact the ex-

isting generated test suite. A straightforward solution may be re-

generating the test suite on each new revision by re-crawling the

application. A major drawback of this approach is the loss of all

previous testing efforts in terms of test cases and assertions, which

testers may want to retain. As a third challenge, we need to devise

techniques that are capable of updating existing models, partially

and incrementally. The results will be presented to the end users

for inspection, which can help them identify the test cases that can

be retained and those which need manual maintenance.

4 CONCLUSIONS
The decision on selecting and applying a certain learning system

depends on the problem one wants to solve, and it is always a

trade-off among efficiency, training costs, and understanding. In

this extended abstract we described applications of AI to web de-

velopment and testing, along with some of the main opportunities

and challenges for researchers.
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