
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 1

A Survey on the Use of Computer Vision to
Improve Software Engineering Tasks

Mohammad Bajammal, Andrea Stocco, Member, IEEE Computer Society , Davood Mazinanian
and Ali Mesbah, Member, IEEE Computer Society

Abstract—Software engineering (SE) research has traditionally revolved around engineering the source code. However, novel
approaches that analyze software through computer vision have been increasingly adopted in SE. These approaches allow analyzing
the software from a different complementary perspective other than the source code, and they are used to either complement existing
source code-based methods, or to overcome their limitations. The goal of this manuscript is to survey the use of computer vision
techniques in SE with the aim of assessing their potential in advancing the field of SE research. We examined an extensive body of
literature from top-tier SE venues, as well as venues from closely related fields (machine learning, computer vision, and
human-computer interaction). Our inclusion criteria targeted papers applying computer vision techniques that address problems
related to any area of SE. We collected an initial pool of 2,716 papers, from which we obtained 66 final relevant papers covering a
variety of SE areas. We analyzed what computer vision techniques have been adopted or designed, for what reasons, how they are
used, what benefits they provide, and how they are evaluated. Our findings highlight that visual approaches have been adopted in a
wide variety of SE tasks, predominantly for effectively tackling software analysis and testing challenges in the web and mobile domains.
The results also show a rapid growth trend of the use of computer vision techniques in SE research.

Index Terms—Computer Vision, Software Engineering, Survey.

F

1 INTRODUCTION

A LL areas of the software engineering (SE) lifecycle—
such as requirements, design, development, and

testing— often have the ultimate goal of contributing to a
fundamental product of software engineering: the source
code. Accordingly, a wide range of SE activities have typ-
ically revolved around the source code, whether to improve
its quality, reliability, maintainability, or increase developers’
productivity. A relatively more recent—and less explored—
alternative approach to SE is the adoption of a computer
vision perspective. This approach utilizes one or more com-
puter vision (CV) algorithms to extract, analyze, or process
visual aspects pertaining to the software. The objective is
still focused on solving a SE problem or task, but using
visual techniques instead of relying merely on the source
code. As an example, a typical CV approach might involve
screenshot image comparison to compare or analyze two
graphical user interfaces (GUI) for testing purposes.

CV approaches have yielded promising results in devel-
oping robust and accurate solutions for various SE tasks.
For instance, they have been successfully adopted to im-
prove regression testing of GUIs [1, 2, 3], to identify cross-
browser incompatibilities in web pages [4, 5, 6], to perform
bug detection and automated program repair [7, 8], or to
simplify software requirements modelling [9, 10].

In this manuscript, we survey the literature on the use of
computer vision in performing software engineering tasks.
The aim of this work is to explore and analyze the adoption
of CV approaches in the field of software engineering.

• Mohammad Bajammal, Davood Mazinanian, and Ali Mesbah are with
the University of British Columbia, Vancouver, BC, Canada.

• Andrea Stocco is with the Università della Svizzera Italiana, Switzerland.

Our work highlights new techniques and perspectives of
addressing existing research topics in SE, what benefits
they may provide compared to existing approaches, and
what limitations they might bear. We believe this can be
helpful in providing a distilled and concise overview of
CV approaches in software engineering, building a concrete
understanding of the advances made, and synthesizing in-
sights for future research directions.

We conducted the survey by formulating a number of re-
search questions to fulfill the goal of the study; we then pro-
ceeded by systematically collecting a pool of publications,
and applied a number of inclusion and exclusion criteria.
Subsequently, we analyzed and synthesized the collected
papers by taking into account a number of dimensions, such
as what area of software engineering (e.g., testing, mainte-
nance) they brought benefit to, what specific task is being
addressed (e.g., regression testing), what CV techniques
have been used, and what is the rationale for their adoption.
This manuscript makes the following contributions:

• the first survey on the use of computer vision in soft-
ware engineering tasks.

• a study of the software engineering areas and tasks
benefiting from CV approaches.

• a synthesis of the motivations behind the use of CV
approaches in software engineering research.

• an analysis of the CV methods used in software engi-
neering as well as their benefits.

• an investigation of the open challenges pertaining to
the use of CV approaches in software engineering.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 2

2 PRIOR WORK

To the best of our knowledge, there are no existing sur-
veys or systematic literature reviews that share a similar
goal as this manuscript. Accordingly, this section discusses
a broader range of research areas in order to put this
manuscript in its proper context. We therefore begin by dis-
cussing secondary studies concerning CV-based techniques
in various (non-SE) engineering fields. Second, we explore
other surveys that are interdisciplinary in nature, given the
interdisciplinary nature of our survey. Finally, we discuss
visual GUI testing techniques, an area with a relatively large
number of papers employing CV techniques.

Surveys on Computer Vision-based Engineering. In this
subsection, we discuss some of the surveys or systematic
literature reviews concerning the use of CV in various en-
gineering fields. We note that these are non-SE engineering
fields (e.g., aerospace or automotive engineering) and are
included here for the sake of completeness.

Kumar [11] catalogues the fabric defect detection
methodologies reported in about 150 references into three
main categories: statistical, spectral and model-based. They
conclude that despite the significant progress in last decade,
the problem of fabric defect detection still remains challeng-
ing and requires effort by combining existing approaches.
Kanellakis and Nikolakopoulos [12] present a comprehen-
sive literature review on vision based applications for un-
manned aerial vehicles (UAVs) focusing mainly on current
developments and trends. CV techniques are used mainly
for visual localization and mapping, obstacle detection and
avoidance, aerial target tracking, and guidance. Among
the limitations, it is mentioned that CV algorithms are
based on rigid assumptions such as low speed vehicles that
do not account for fast scene alterations. Thus, the main
challenge is to design solutions that can quickly react to
ever changing sceneries, characterized by a high degree of
dynamism and evolution. Liu and Dai [13] discusse the
CV solutions for UAVs from three main families, namely
visual navigation, aerial surveillance and airborne visual
Simultaneous Localization and Mapping (SLAM). Al-Kaff et
al. [14] provide another survey of CV techniques for UAVs,
particularly visual navigation algorithms, obstacle detection
and avoidance and aerial decision-making. It is mentioned
that artificial perception applications have represented im-
portant advances in the latest years in the expert system
field related to unmanned aerial vehicles.

Gandhi and Triveli [15] discuss the recent research on
pedestrian detection and collision prediction. Among the
information gathered by the various sensors, the camera’s
image is one of the most used, along with visual analysis
techniques for behaviour modelling in accident prediction,
direction estimation, and collision prediction. Brunetti et
al. [16] discuss vision-based pedestrian detection systems
pertaining to three different application fields: video surveil-
lance, human-machine interaction and analysis. Notably,
they discuss both the differences between 2D and 3D vision
systems, and indoor and outdoor systems. Janai et al. [17]
provides a comprehensive survey on problems, datasets,
and methods in computer vision for autonomous vehicles.
First, they overview the datasets and benchmarks used in
autonomous driving research. Then, the discuss the state

of the art on several relevant topics, including recognition,
reconstruction, motion estimation, tracking, scene under-
standing, and end-to-end learning.

In contrast, this manuscript aims at surveying the use
of CV in the requirements, design, development, testing, or
maintenance of software.
Interdisciplinary Surveys in SE. Interdisciplinary surveys
are often used to collect and analyze a body of knowledge
across the boundaries between two or more fields. Here,
we discuss some of the surveys or systematic literature
reviews that have analyzed scientific and social fields from
a software engineering perspective.

Zhang et al. [18] provide a comprehensive survey of
techniques for testing machine learning systems (ML test-
ing). The survey covers 144 papers on different testing
properties such correctness, robustness, and fairness, testing
components (e.g., data, learning program, and frameworks),
testing workflow (e.g., test generation and test evaluation),
and application scenarios (e.g., autonomous driving, ma-
chine translation). The paper also analyses trends concern-
ing datasets, research trends, and research focus, concluding
with research challenges and promising research directions
in ML testing. Beszédes [19] performed a systematic analysis
of fault localization literature across different engineering
fields, with the aim to find solutions in non-software ar-
eas that could be successfully adapted to software fault
localization. Among their findings, some classes of methods
in computer networks literature are good candidates for
adaptation, and could potentially be reused for software
fault localization. Van der Linden and Hadar [20] performed
a systematic literature review of physics of notation appli-
cations, a conceptual modelling language used for require-
ment specification. They analyzed what notations have been
evaluated and designed using the physics of notation, for
what reasons, to what degree applications consider require-
ments of their notation’s users, and how verifiable these
applications are.

Sabaren et al. [21] conduct a systematic literature review
of cross-browser regression testing. In their survey, their
goal was to collect the various techniques that have been
proposed to perform cross-browser testing. The authors also
describe several challenges in this specific context, such
as the automatic identification of dynamic components in
a user interface, which undermines the effectiveness of
proposed testing techniques, causing many false positives
in practice. We note that the survey of Sabaren et al. [21]
have found 11 papers that happened to be in our final
pool of 66 collected papers. This is a happenstance since
our survey has a completely different objective. The work
by Sabaren et al. [21] answers the following question: what
approaches have been used to conduct cross-browser re-
gression testing. In contrast, our work is not concerned at
all with that problem. Our work answers the following
question: in what ways have computer vision been used
to advance software engineering. The reason we had some
common papers is because regression testing happened to
be an area where visual techniques were found to be partic-
ularly useful. However, in terms of the scope and objective,
there is no overlap. In other words, Sabaren et al. [21]
focus on a specific problem (i.e., cross-browser regression
testing), regardless of what approaches were used (e.g.,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 3

DOM analysis, state space navigation, visual analysis). That
is, the survey in Sabaren et al. [21] is problem-specific but
approach-agnostic. In contrast, our survey is approach-specific
but problem-agnostic. We focus on a specific approach (i.e.,
computer vision techniques), but consider its potential for
any area of software engineering (e.g., testing, maintenance,
development, design, requirements).

In summary, none of the aforementioned surveys have a
similar goal as that of this manuscript, which is to examine
the use of CV techniques in software engineering tasks.

Visualization Research. Visualization is the process of cre-
ating diagrams, charts, or any other kind of representation,
from a given dataset. Visualization is part of any scientific
process regardless of the field, and therefore has also been
used in software engineering. There are a number of surveys
on the use of visualization in various aspects of software
engineering, such as surveys on visualization for software
security [22, 23], surveys on visualization for static analy-
sis [24], development coordination [25], maintenance and
evolution [26, 27], to name a few. Visualization, however, is
not the scope of this survey.

Visual GUI Testing. Issa et al [28] first introduced the
notion of visual testing as a subset of traditional GUI testing.
In their analysis, the authors conducted a study of bugs
in four open source systems, and found that visual bugs
represent between 16% and 33% of reported defects in
those systems. In recent years, researchers and practitioners
have started conducting empirical experiments aiming at
understanding the comparative performance of a few visual
testing approaches. For instance, Alégroth et al. [29, 30]
present a case study of the benefits and challenges of using
visual GUI testing by the team at one software company.
In another study, Alégroth et al. [31] study the applicabil-
ity and feasibility of Visual GUI testing in an industrial
Continuous Integration environment, describing the main
challenges faced by researchers to make it effective in prac-
tice. Garousi et al. [32] compare two popular visual testing
tools (Sikuli and JAutomate) in one industrial project, and
go through differences in test creation process, execution,
and maintenance.

All such works analyze different technical and social
aspects related to the use of Visual GUI testing in a specific
context (i.e., the development and maintenance of test code).
In contrast, our work is agnostic to any specific area or con-
text. That is, it does not aim to focus on GUI testing. Rather,
the goal is to broadly examine the use of visual techniques
across any software engineering area (e.g., requirements,
design, development, testing, maintenance) and for any task
(e.g., refactoring, reverse engineering, regression testing).

3 METHODOLOGY

In order to conduct the survey in a thorough and struc-
tured manner, we follow the established guidelines by
Kitchenham et al. [33]. We begin by introducing terminology
and concepts needed to understand the remainder of this
manuscript. Next, we define the scope of the work and flesh
it out into specific research questions we aim to answer
in this survey. We then describe the details of the paper
collection process. Finally, we specify the inclusion and

exclusion criteria applied to select the most relevant body
of work from the existing literature.

3.1 Definitions
In order to categorize the use of computer vision approaches
in software engineering, we use the terms areas and tasks.
Software engineering areas are the various stages in the
software lifecycle [34]. Examples of SE areas include soft-
ware requirements, software design, and software testing.
Within each area, different tasks can be defined. Each task
is a specific activity that aims to achieve a well-defined
objective related to that area. For instance, we refer to unit
testing or regression testing as SE tasks within the software
testing SE area, whereas code migration or code refactoring
are tasks within software maintenance area. Accordingly,
the rationale for using these two terms is to discuss our
findings in more precise levels of granularity, in order to be
able to analyze the findings across areas and for tasks within
a specific area.

Next, we define the following terms in order to clarify
which aspect of computer vision is being discussed:
Definition 1 (Visual Artifact). A visual artifact is any datum

that satisfies the following two conditions: (1) it constitutes a
digital image or video, and (2) it is associated with one or more
software engineering area(s).

Definition 2 (Visual Approach). A visual approach is an
algorithm designed to solve a software engineering problem,
which incorporates a computer vision method as one or more
of its steps, and takes as input one or more visual artifacts, and
yields an output that is used to achieve a software engineering
task.

The rationale for defining these two terms is to have
precision and clarity when describing how computer vision
is used to solve a software engineering problem. We use the
term visual approach to indicate that the approach used to
solve an SE problem is visual in nature (i.e., uses computer
vision). We use the term visual artifact to refer to software
artifacts that are visual in nature, to differentiate them from
other software artifacts that are non-visual (e.g., log files,
requirements documents). The link between the two terms is
that visual artifacts are the visual data consumed by a visual
approach. Similarly, a visual approach is the algorithm that
needs visual artifacts as input.

To clarify all of the aforementioned terms, we give a
simple example. Consider the case of cross-browser test-
ing, where the goal is to check whether a given web app
is being rendered identically in different browsers. Visual
approaches for cross-browser testing often take a screenshot
of the app in a set of different browsers, and then visually
compare the screenshots. In this case, screenshots are the
visual artifacts used or extracted from the software, and
image comparison is the visual approach used to solve the
SE task of cross-browser testing.

3.2 Scope
The scope of this work is to conduct a survey to help
structure, curate, and unify the dispersed literature in this
research area, and to analyze how computer vision tech-
niques have been used in software engineering, and what



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 4

Fig. 1: Overview of the scope of this survey.

are the challenges reported when they were used. This
would help shed light on the potential of these techniques,
and make them more visible and accessible.

Figure 1 illustrates the scope of this work in relation
to the software engineering life cycle and other software
artifacts. The figure should be viewed as a multi-step
process, beginning with visual artifacts construction, and
ending with an application to a software engineering task,
as defined in Section 3.1 As shown in the figure, the scope
is to survey the following aspects: (1) how are visual arti-
facts (defined in Section 3.1) constructed or acquired from
the software. This aspect is included in the scope because
constructing or acquiring visual artifacts is the first step
in a computer vision processing pipeline, and therefore
discussing the nature of these artifacts and how they are
constructed and used should be examined in order to have
a well-rounded survey. (2) what computer vision algorithms
are used to analyze or process the constructed visual arti-
facts. This aspect is included in the scope because examining
the visual processing or analysis conducted in order to ad-
dress a given paper’s research questions yields insight into
how visual techniques can be potentially applied to various
tasks of software engineering. (3) what are the software
engineering areas and tasks where visual approaches have
been used.

The figure also helps clarify what areas are outside the
scope of this survey. For instance, the scope is not concerned
with works where computer vision techniques were not uti-
lized, or works that do not use any visual artifacts. Section
3.4.1 fleshes out the scope into a detailed set of inclusion
and exclusion criteria.

3.3 Research Questions
As discussed in Section 3.2, the scope is to survey the use of
computer vision in solving software engineering problems.
In this section, we flesh out the scope into the following
specific research questions:

RQ1: What are the main software engineering areas and tasks
for which computer vision approaches have been used to date?

We formulate this RQ in order to construct a high
level picture of the areas of software engineering where
computer vision approaches were used. This can help
identify potential trends of areas with high adoption of
computer vision (and, subsequently, investigating why

is that the case), and conversely areas where little to no
computer vision approaches were used. This can help the
software engineering community in identifying potential
gaps in the utilization of computer vision for software
engineering.

RQ2: Why are computer vision approaches adopted?

We formulate this RQ in order to identify common
rationales for using computer vision to solve software
engineering problems. This understanding of why
computer vision approaches were used can subsequently
help identify new software engineering areas or tasks
where similar problems and rationales exist and therefore
potentially benefiting from computer vision approaches.

RQ3: How are computer vision approaches applied to software
and its visual artifacts?

This RQ is a natural progression of the previous RQs.
The previous RQs identified the rationales of using
computer vision and the SE areas where computer vision
were used. This RQ examines the “how.” That is, the
mechanism(s) by which computer vision was applied
to software. This can help guide the implementation of
computer vision approaches to solve software engineering
problems.

RQ4: How are software engineering tasks that leverage com-
puter vision techniques evaluated?

This RQ examines the methods used to evaluate the
use of computer vision approaches in software engineering
problems, as well as a summary of the reported limitations
and challenges. This may help with selecting an evaluation
strategy when exploring the use of a computer vision
approach, and informing adopters of potential challenges.

3.4 Paper Collection

Figure 2 shows our paper search and selection process. In
order to collect as many relevant literature as possible, we
used two types of sources for paper collection: paper repos-
itory databases, and major software engineering venues.

Paper Repository Databases. To conduct our search, we
used the databases of the following well-known publishers
of scientific literature: IEEE Xplore, ACM Digital Library,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 5

Fig. 2: Overview of the paper collection process.

ScienceDirect, Springer, Wiley, and Elsevier. The search cov-
ers papers that have been published until June 2020 (the
date of this writing). We used more than one database to
ensure collecting as many papers as possible from all known
publishers.

Software Engineering Venues. The preceding selection of
paper repositories aims at casting a wide net in order to
capture as many relevant literature as possible. However,
since the databases contain an extremely large number of
papers, it is possible that papers relevant to our survey are
lost in the vast number of returned papers.

For this reason, and in order to make sure we collect
highly relevant papers, we complemented the database
search with a manual issue-by-issue search within the con-
ference proceedings and journal articles from top-tier soft-
ware engineering venues (listed in Table 1). The final pool
of collected papers is the combined list of papers from both
the database search and the SE venues search.

Interdisciplinary Venues. Given the interdisciplinary na-
ture of this work, we also performed manual issue-by-issue
search within the conference proceedings of relevant fields,
namely, computer-human interaction, computer vision and
machine learning. We selected the top three venues (based
on the h5 index from Google Scholar) from each field. The
searched venues are listed in the last section of Table 1
(under “Interdisciplinary Venues”).

Search Query. For each of the aforementioned sources, we
performed a search query using various combinations of
terms to retrieve papers in different software engineering
areas that are potentially using computer vision. The query
was performed on all data fields of the paper, returning
matches to either the title, abstract, keywords, or text of the pa-
per. The query is composed of two parts: keywords related
to the approach and keywords of the various software en-
gineering areas. Keywords of the approach include strings
such as “computer vision” or “visual”. They were included
in the query in order to indicate our interest in works
that use computer vision or visual approach. Keywords
describing the areas include strings such as “development”
or “testing” or any of the software engineering life cycle
phases (e.g., requirements, maintenance). The final applied
search query is as follows:

[computer vision OR image processing OR image anal-
ysis OR visual] AND [requirements OR design

OR development OR testing OR maintenance OR
comprehension]

The result of this query led to an initial pool of 2,716
papers, which was further filtered in the next stages.
Duplicates removal. During the paper collection step, we
aimed to be thorough by including as many paper sources
as possible in order to capture all potentially relevant works.
However, this resulted in many duplicate papers since a
given paper might be included in more than one database
and venue. Therefore, we filtered the collected pool of
papers by removing duplicate works based on their titles.

3.4.1 Inclusion and Exclusion Criteria
The search conducted on the databases and venues is, by
design, very inclusive. This allows us to collect as many
papers as possible in our pool. However, this generous
inclusivity results in having papers that are not directly
related to the scope of this survey. Accordingly, we define
a set of specific inclusion and exclusion criteria and apply
them to each paper in the pool, and remove papers not
meeting the criteria. This ensures that each collected paper
is inline with our scope and research questions.
Inclusion criteria. We define the following inclusion criteria:
(1) The paper should be contributing to any stage of the soft-
ware engineering process, whether in early requirements
and modeling, through development and design, or finally
testing and maintenance. We included this criteria in order
to focus on software engineering papers. This is because
we found a notable number of computer vision papers
that were in fields other than software engineering (e.g.,
biology). (2) The paper should include a computer vision
processing of the software or its artifacts. That is, the work
achieves its objective (whether partially or fully) by ex-
tracting, analyzing, or processing visual artifacts pertaining
or relevant to the software. This is an important and key
criterion for paper selection because it ensures we meet
the core scope of our manuscript (i.e., surveying the use
of computer vision in software engineering). (3) The paper
should be a full technical research paper that has a detailed
description of the visual approach utilized. This criterion is
imposed in order to have sufficient information to answer
our research questions. Answering our research questions,
such as RQ3 and RQ4, requires that we examine technical
software engineering research papers, as opposed to, for in-
stance, technical magazine articles, industrial white papers,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 6

or similar grey literature which do not have sufficient level
of detail. Some demo/short papers can be allowed if they
have dedicated and detailed sections discussing the detailed
mechanism of the visual approach and its evaluation. This
enables creating a pool of papers that have rich and detailed
information and findings, in order to answer key research
questions related to the details of the visual approach, the
process of creating visual artifacts, and evaluation strategies.
(4) The paper should contain a section dedicated to illus-
trating some form of quantitative or qualitative evaluation
of the technique, or an illustration of its use case. This
criterion was imposed in order to enable us to fully answer
and explore our research questions regarding evaluation
strategies.

These criteria were applied in a group review process
by the authors. For each paper in the pool, each author
initially checked the title and abstract, and briefly examined
the proposed approach and results to ensure that it meets
the inclusion criteria. If this check was not sufficient to
conclusively decide whether the paper should be included
in the pool, we proceeded with a secondary in-depth exami-
nation of the paper’s objective, methodology, and evaluation
to ensure that the inclusion criteria were met. Finally, a
discussion among the authors was triggered, to decide on
the inclusion of the paper in the final list of works.
Exclusion criteria. During our initial experimental test
rounds of paper searching, we observed that a relatively
large number of retrieved papers were on visualization
research. This is understandable and expected because our
queries include terms such as image, visual, and design.

Accordingly, we exclude papers published in the area of
software visualization for the following reasons. First, the
visualization class of algorithms does not constitute a visual
approach, as defined in Section 3.1. Visualizations do not use
any visual artifact of the software as an input. Rather, such
work perform a final visual output or visual representation
of a complete, non-visual, approach. Accordingly, this area
of research is excluded since it would be outside the scope
of this work. We recall that the scope is to survey visual
approaches which, by definition, consume visual artifacts
pertaining to the software during the course of running their
algorithm or processing. Second, in addition to visualization
being outside the scope of this survey, it is already a well-
known and common aspect of software engineering, and
plenty of surveys already exist on the use of visualization
in various aspects of software engineering, as mentioned in
Section 2.

We also exclude commercial software services or open-
source tools that have no corresponding publication, due
to the following reasons. First, including services or tools
that are not peer-reviewed would negatively impact our
ability to conduct the survey because tools and services that
are not backed by a publication do not include a detailed
explanation of their approach. This reduces our ability to
answer key research questions for this survey, such as what
specific computer vision techniques were used, what is
the visual artifacts construction process, and how were the
computer vision algorithms applied to the visual artifacts.
Services and tools without a corresponding publication also
do not have a thorough systematic evaluation, and therefore
we are unable to answer research questions related to how

TABLE 1: Conference proceedings and journals considered
for paper collection (in addition to database search).

Acronym Venue

SE
C

on
fe

re
nc

es

ICSE International Conference on Software Engineering
FSE International Symposium on Foundations of Software

Engineering
ESEC/FSE Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineer-
ing

ASE International Conference on Automated Software En-
gineering

ESEM International Symposium on Empirical Software Engi-
neering and Measurement

ICST International Conference on Software Testing, Verifica-
tion and Validation

ISSTA International Symposium on Software Testing and
Analysis

MSR International Conference on Mining Software Reposi-
tories

RE International Requirements Engineering Conference
ICSME International Conference on Software Maintenance and

Evolution
MODELS International Conference on Model Driven Engineering

Languages and Systems
ISSRE International Symposium on Software Reliability Engi-

neering
EASE Evaluation and Assessment in Software Engineering

SE
Jo

ur
na

ls
TSE Transactions on Software Engineering
EMSE Empirical Software Engineering
TOSEM Transactions on Software Engineering and Methodol-

ogy
JSS Journal of Systems and Software
JSEP Journal of Software: Evolution and Process
STVR Software Testing, Verification and Reliability
ASE Automated Software Engineering
IEEE SOFTWARE IEEE Software
IET SOFTW. IET Software
IST Information and Software Technology
SQJ Software Quality Journal

In
te

rd
is

ci
pl

in
ar

y
V

en
ue

s CHI Conference on Human Factors in Computing Systems
CSCW Conference on Computer-Supported Cooperative

Work
UbiComp Conference on Pervasive and Ubiquitous Computing
UIST Symposium on User Interface Software and Technol-

ogy
NeurIPS Conference on Neural Information Processing Systems
ICLR International Conference on Learning Representations
ICML International Conference on Machine Learning
CVPR Conference on Computer Vision and Pattern Recogni-

tion
ECCV European Conference on Computer Vision
ICCV International Conference on Computer Vision

computer vision techniques were evaluated, what are the
main findings, and what were the challenges.

3.4.2 Snowballing

At the end of searching database repositories and confer-
ence proceedings and journals, and applying inclusion and
exclusion criteria, we obtained a total of 57 unique papers.
Next, to mitigate the risk of omitting relevant literature from
this survey, we also performed backward snowballing [35]
by inspecting the references cited by the collected papers so
far. Nine additional papers were retrieved during this phase,
which led to a final pool of 66 unique papers. Table 3 shows
the final pool of papers that will be discussed and analyzed
in the remainder of this work.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 7

TABLE 2: Collected data items (Synthesis Matrix)

Field Use

Title Documentation
Author(s) Documentation
DOI identification number Documentation
Abstract Paper Selection
Text Paper Selection
Venue RQ1
Year RQ1
Target platform RQ1
Software engineering area RQ1
Software engineering task RQ1
Reasons for adopting CV approach RQ2
Visual artifact(s) used RQ3
CV algorithm(s) used RQ3
Evaluation process & challenges RQ4
Main results RQ4
Limitations of CV methods used RQ4

3.4.3 Extracted Information
For each retrieved paper, we collect a set of data necessary
to answer the research questions. Table 2 shows the list of
data collected from each paper and their mapping to each
research question. As shown in the table, the title, author(s),
and document ID were used for documentation purposes
to keep track of the various papers. The abstract and text
were used for the paper selection process and applying the
inclusion and exclusion criteria. The venue, year, software
engineering area and task of each paper was also collected in
order to discuss and answer RQ1. We also extract the target
platform for each paper, which is the type of computing
device (e.g., desktop, mobile) that the analyzed software
runs on. A list of reasons for adopting computer vision was
also extracted from each paper in order to answer RQ2. The
visual artifact(s) and the visual approach utilized were also
identified in each paper in order to discuss RQ3. Finally, we
log the evaluation process and the results and findings from
each collected paper in order to answer RQ4. All these data
are collected, analyzed, and used to synthesize the findings
for the rest of this manuscript. In order to facilitate the use of
this data by the general research community, the data have
been made publicly available at http://tiny.cc/tse-2020.

4 FINDINGS

4.1 Trends and Landscape
At the end of the paper collection process, we obtained a
pool of papers spanning the years 2001-2020 (June 2020).
Table 3 shows the final list of 66 papers. Figure 3 shows
the distribution of the retrieved pool of papers across differ-
ent years of publication. Overall, we observed a generally
increasing trend in the use of computer vision approaches
in software engineering. This research area is also relatively
new, with more than half of the papers in our pool published
in the past five years. Furthermore, Figure 4 depicts the cu-
mulative number of publications per software engineering
area across different years. The results indicate that software
testing is the area exhibiting the most rapid increase in terms
of the number of publications wherein a computer vision
technique is utilized.

Figure 5 shows the distribution of the published papers
across venues. The main venues in which computer vision
approaches for software engineering were published are the
Conference on Human Factors in Computing Systems (CHI)
with 11 papers, the International Conference on Software
Engineering (ICSE) with nine papers, and the International
Conference on Automated Software Engineering (ASE) with
eight papers. The presence of traditional SE venues as well
as venues from other fields (e.g. CHI) in Figure 5 provides
some indication that research on the use of computer vision
for software engineering tasks is an interdisciplinary field.

4.2 Areas, Tasks, and Platforms (RQ1)
To study the usefulness of visual techniques for SE, we
analyzed the selected papers to find out which SE areas
have been explored, for which tasks, and on which platforms
they were used. As defined in section 3.1, SE areas are high-
level stages of the software engineering life cycle, such as
requirements, testing, or development. SE tasks are more
fine-grained activities, such as unit testing or regression
testing. The platforms are the types of computing devices
(e.g., desktop, mobile) that the analyzed software runs on.
We further looked into the papers’ discussion sections to
gain insights from the authors about other areas in which
the proposed technique could potentially be applied.

4.2.1 Software Engineering Areas and Tasks
Figure 6 presents the papers distribution across different SE
areas and tasks. Note that the number of papers indicated
in the figure is more than the total number of papers in
the pool. This is due to the fact that for some papers, the
presented approach can be utilized for more than one task.
We now discuss more in detail the trends of Figure 6.

Testing. Software testing is the most common research area
for which approaches using computer vision are proposed,
accounting for approximately half of all collected papers. A
closer look at the publications in this area reveals interesting
trends. Most of the studies use visual methods to facilitate
acceptance and regression testing e.g., by comparing visual
artifacts (e.g., the GUIs) with each other or with respect to a
given oracle. Without adopting computer vision, developers

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

P
ub

lic
at

io
n 

co
un

t

Fig. 3: Distribution of publications across years.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 8

TABLE 3: Collected pool of papers (in chronological order).

Reference Title Venue Year

Landay and Myers [36] Sketching Interfaces: Toward More Human Interface Design IEEE Computer 2001
Caetano et al. [37] JavaSketchIt: Issues in Sketching The Look of User Interfaces AAAI 2002
Fails and Olsen [38] A Design Tool for Camera-based Interaction CHI 2003
Coyette et al. [39] Multi-fidelity Prototyping of User Interfaces INTERACT 2007
Zheng et al. [40] Correlating Low-level Image Statistics with Users - Rapid Aesthetic and Affective Judgments of Web Pages CHI 2009
Chang et al. [1] GUI Testing Using Computer Vision CHI 2010
Choudhary et al. [41] WEBDIFF: Automated Identification of Cross-browser Issues in Web Applications ICSM 2010
Li et al. [9] FrameWire: A Tool for Automatically Extracting Interaction Logic from Paper Prototyping Tests CHI 2010
Dixon and Fogarty [42] Prefab: Implementing Advanced Behaviors using Pixel-based Reverse Engineering of Interface Structure CHI 2010
Delamaro et al. [43] Using Concepts of Content-based Image Retrieval to Implement Graphical Testing Oracles STVR 2011
Dixon et al. [44] Content and Hierarchy in Pixel-based Methods for Reverse Engineering Interface Structure CHI 2011
Seifert et al. [45] Mobidev: A Tool for Creating Apps on Mobile Phones MobileHCI 2011
Choudhary et al. [46] Crosscheck: Combining Crawling and Differencing to Better Detect Cross-browser Incompatibilities in Web

Applications
ICST 2012

Givens et al. [47] Exploring The Internal State of User Interfaces by Combining Computer Vision Techniques with Grammatical
Inference

ICSE 2013

Liang et al. [48] SeeSS: Seeing What I Broke – Visualizing Change Impact of Cascading Style Sheets (CSS) UIST 2013
Scharf and Amma [10] Dynamic Injection of Sketching Features Into GEF-based Diagram Editors ICSE 2013
Alégroth et al. [2] JAutomate: A Tool for System- and Acceptance-test Automation ICST 2013
Semenenko et al. [4] Browserbite: Accurate Cross-Browser Testing via Machine Learning over Image Features ICSM 2013
Roy Choudhary et al. [5] X-PERT: Accurate Identification of Cross-Browser Issues in Web Applications ICSE 2013
Lin et al. [3] On the Accuracy, Efficiency, and Reusability of Automated Test Oracles for Android Devices TSE 2014
Mahajan and Halfond [7] Finding HTML Presentation Failures Using Image Comparison Techniques ASE 2014
Amalfitano et al. [49] Towards Automatic Model-in-the-loop Testing of Electronic Vehicle Information Centers WISE 2014
Selay et al. [6] Adaptive Random Testing for Image Comparison in Regression Web Testing DICTA 2014
Bao et al. [50] scvRipper: Video Scraping Tool for Modeling Developers’ Behavior Using Interaction Data ICSE 2015
Nguyen and Csallner [51] Reverse Engineering Mobile Application User Interfaces with REMAUI ASE 2015
Burg et al. [52] Explaining Visual Changes in Web Interfaces UIST 2015
Mahajan and Halfond [53] Detection and Localization of HTML Presentation Failures Using Computer Vision-Based Techniques ICST 2015
Hori et al. [54] An Oracle based on Image Comparison for Regression Testing of Web Applications SEKE 2015
Reinecke et al. [55] Enabling Designers to Foresee Which Colors Users Cannot See CHI 2016
Deka et al. [56] ERICA: Interaction Mining Mobile Apps UIST 2016
Ponzanelli et al. [57] Too Long; Didn’t Watch! Extracting Relevant Fragments from Software Development Video Tutorials ICSE 2016
Mahajan et al. [58] Using Visual Symptoms for Debugging Presentation Failures in Web Applications ICST 2016
Feng et al. [59] Multi-objective Test Report Prioritization Using Image Understanding ASE 2016
Patrick et al. [60] Automatic Test Image Generation Using Procedural Noise ASE 2016
He et al. [61] X-Check: A Novel Cross-browser Testing Service Based on Record/Replay ICWS 2016
Deka et al. [62] Rico: A Mobile App Dataset for Building Data-Driven Design Applications UIST 2017
Wan et al. [63] Detecting Display Energy Hotspots in Android Apps STVR 2017
Bao et al. [64] Extracting and Analyzing Time-series HCI Data from Screen-captured Task Videos EMSE 2017
Zhang et al. [65] Sketch-guided GUI Test Generation for Mobile Applications ASE 2017
Chen et al. [66] UI X-Ray: Interactive Mobile UI Testing Based on Computer Vision IUI 2017
Wu et al. [67] Automatic Alt-text: Computer-generated Image Descriptions for Blind Users on a Social Network Service CSCW 2017
Reiss and Miao [68] Seeking the User Interface ASE J. 2018
Kıraç et al. [69] VISOR: A Fast Image Processing Pipeline with Scaling and Translation Invariance for Test Oracle Automation

of Visual Output Systems
JSS 2018

Leotta et al. [70] Pesto: Automated Migration of DOM-based Web Tests Towards the Visual Approach STVR 2018
Bajammal and Mesbah [71] Web Canvas Testing through Visual Inference ICST 2018
Xu and Miller [72] Cross-Browser Differences Detection Based on an Empirical Metric for Web Page Visual Similarity TOIT 2018
Kuchta et al. [73] On the Correctness of Electronic Documents: Studying, Finding, and Localizing Inconsistency Bugs in PDF

Readers and Files
EMSE 2018

Bao et al. [74] VT-Revolution: Interactive Programming Video Tutorial Authoring and Watching System TSE 2018
Moran et al. [75] Automated Reporting of GUI Design Violations for Mobile Apps ICSE 2018
Chen et al. [76] From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation ICSE 2018
Sun et al. [77] Neural Program Synthesis from Diverse Demonstration Videos ICML 2018
Lim et al. [78] Ply: A Visual Web Inspector for Learning from Professional Webpages UIST 2018
Moran et al. [79] Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps TSE 2018
Stocco et al. [8] Visual Web Test Repair FSE 2018
Tanno and Adachi [80] Support for Finding Presentation Failures by Using Computer Vision Techniques ICST 2018
Bajammal et al. [81] Generating Reusable Web Components from Mockups ASE 2018
Moran et al. [82] Detecting and Summarizing GUI Changes in Evolving Mobile Apps ASE 2018
Natarajan and Csallner [83] P2A: A Tool for Converting Pixels to Animated Mobile Application User Interfaces MOBILESoft 2018
Osman et al. [84] An Automated Approach for Classifying Reverse-engineered and Forward-engineered UML Class Diagrams SEAA 2018
Xiao et al. [85] Automatic Identification of Sensitive UI Widgets based on Icon Classification for Android Apps ICSE 2019
Huang et al. [86] Swire: Sketch-based User Interface Retrieval CHI 2019
Zhao et al. [87] ActionNet: Vision-Based Workflow Action Recognition from Programming Screencasts ICSE 2019
Yu et al. [88] LIRAT: Layout and Image Recognition Driving Automated Mobile Testing of Cross-Platform ASE 2019
Swearngin and Li [89] Modeling Mobile Interface Tappability using Crowdsourcing and Deep Learning CHI 2019
Yuan and Li [90] Modeling Human Visual Search Performance on Realistic Webpages using Analytical and Deep Learning

Methods
CHI 2020

Wu et al. [91] Predicting and Diagnosing User Engagement with Mobile UI Animation via a Data-Driven Approach CHI 2020



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 9

0

5

10

15

20

25

30

35

2001 2002 2003 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Publication year

C
um

ul
at

iv
e 

pu
bl

ic
at

io
n 

co
un

t
Design

Development

Maintenance/
Comprehension

Requirements

Testing

Fig. 4: Cumulative distribution of publications across years
per SE area. Testing is the most common area, followed by
development and maintenance.

would most likely need to perform some kind of manual
evaluation, e.g., through eyeball analysis to spot deviations
from the expected visual presentation—a daunting and
error-prone task.

Apart from GUI comparisons, CV techniques have been
also utilized for other software testing tasks. For example,
Kuchta et al. [73] introduce a technique for regression test-
ing of PDF reader software and localizing faulty parts of
PDF files. The adopted technique exploits differential testing,
where the (visual) output of multiple implementations of a
program—the PDF viewer—is compared to the same input
to spot deviations. In another work, Leotta et al. [70] propose
an automated code migration tool for automatically convert-
ing end-to-end Selenium web tests to visual web tests based
on Sikuli’s [1] image recognition capabilities. Kıraç et al. [69]
provide an image comparison technique for black-box, re-
gression testing of visual-output software used in consumer
electronics. The approach removes noise to eliminate image
differences caused by scaling and translation, and is eval-
uated on the output of digital TVs. Bajammal and Mesbah
[71] propose a technique to test state-free canvas elements

1

2

3

4

5

6

7

8

9

10

11

CHI

IC
SE

ASE
IC

ST
UIS

T

STVR
TSE

EM
SE

IC
SM

AAAI
ASEj

CSCW
DIC

TA FSE
IC

M
L

IC
W

S

IE
EECom

pu
te

r

IN
TERACT IU

I
JS

S

M
ob

ile
HCI

M
OBIL

ESof
t

SEAA
SEKE

TO
IT
W

IS
E

Venue

P
ub

lic
at

io
ns

 c
ou

nt

Fig. 5: Distribution of the publications across venues.

Fig. 6: Papers distribution across different Software Engi-
neering Areas and Tasks

on web pages by reverse-engineering a visual model. This
allows unit testing of the specific visual elements contained
in the canvas.

A significant class of software testing techniques leverag-
ing visual methods aims at automatically identifying cross-
browser incompatibilities (XBIs) for web applications [4, 5, 6,
41, 46, 61, 72]. XBIs are frequently-occurring issues in web
pages’ appearance and/or behavior when the same page
is viewed on different web browsers [5]. Identifying such
differences requires laborious human judgement, which can
be effectively reduced using an automated visual-based
technique. A recent literature review by Sabaren et al. [21]
surveys the techniques proposed to tackle XBIs.

A similar problem involves using visual methods for
root cause analysis of presentational issues occurring on web
pages [7, 53, 58]. In addition to the web domain, root
cause analysis is also used to identify rendering issues in
PDF files [73], as well as, the causes of excessive energy
consumption of UIs in mobile applications [63].

Several approaches attempt to automate test execution
using visual techniques. An example is record-and-replay
testing where the screenshots of the GUI and the human
tester’s actions and inputs performed on the GUI are
recorded [1, 2, 3, 61] . Popular visual record-and-replay
tools are Sikuli [1] and JAutomate [2], which allow fast
and easy replay of the same sequence of actions: the tool
conducts a visual search on the current visible contents
of the screen to detect the widgets’ locations, triggers the
recorded actions and inputs, and finally performs a visual
assertion, comparing the observed visual outcome with the
expected oracle.

Besides record-and-replay tools, test automation with



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 10

visual analysis has been successfully applied to automotive
software engineering. Amalfitano et al. [49] propose a tool to
automate the testing of the emulated vehicle information
systems’ panels. The testers can locate visual elements on
the panel and specify their properties; the tool allows to
check the panel’s output with respect to these properties at
pre-defined timestamps.

Zheng et al. [40], Yuan and Li [90], Deka et al. [56], and
Deka et al. [62] aim to automate the testing of aesthetics or
usability of web pages. This line of work involves build-
ing computer vision models that can predict whether web
pages meet certain aesthetic requirements pertaining to the
usability of a page (e.g. visual balance of white space and
elements, consistent and simple representation of elements
on a web page).

Patrick et al. [60] propose an approach based on system-
atic image manipulation to automatically generate test input
images for regression and acceptance testing of an epidemio-
logical simulation software. The software’s output on these
input images is monitored and unexpected deviations reveal
bugs or regressions in the code.

To prioritize test reports, Feng et al. [59] use the screen-
shots provided by users to augment the existing textual test
prioritization techniques for mobile applications. Finally, to
automatically generate test cases, Zhang et al. [65] use a visual-
aided approach that identifies strokes that testers draw on
screenshots taken from the apps. These sketches are used to
define test specifications (e.g., coordinates where a visual
object should be positioned to on the screen), which are
subsequently used to generate test cases automatically.
Design. Our survey included a number of papers aiming at
facilitating the design stage of software systems by means
of computer vision. Li et al. [9] propose a tool to help
with prototyping software designs. Using computer vision
techniques, a video recording of hand-drawn GUI design
sketches are converted into a digital form. This serves as
an interactive, clickable, documentation of the prototype
which can be easily shared with stakeholders. The works
of Landay and Myers [36], Caetano et al. [37], Coyette et al.
[39], and Scharf and Amma [10] also share the same goal
of facilitating user interface prototyping by using computer
vision to convert hand-drawn GUI sketches to working GUI
prototypes.

Deka et al. [56] use a visual technique to learn features
from mobile applications’ UIs to create a database of UI de-
sign samples, forming a benchmark for design searching. In a
successive work, Deka et al. [62] record the crowed-sourced
interactions with the application’s GUIs. This allows mining
these interactions to incorporate them in new designs, and
predicting users’ perception by their interaction with new
GUIs. The works of Reinecke et al. [55], Swearngin and Li
[89], Wu et al. [91] also propose visual techniques to help UI
designers in predicting the user perception of their designs.
Reinecke et al. [55] visually examines the color spectrums
and arrangements in a web page, and informs UI designers
if certain demographics (e.g. color-blind users) would not
be able to see certain parts of their designs. Swearngin
and Li [89] build a computer vision model that mimics
users perception of “tappability” of various elements in a
mobile app. Accordingly, if an app designer has an element
that is tappable, but would not be perceived as tappable

for the average user, the tool would flag such elements.
Wu et al. [91] focuses on flagging animations that would
be perceived (by the average user) as too fast, chaotic, or
lacking transitions. The UI designer is then notified of these
issues in order to mitigate them.

Requirements Engineering. Requirements engineering was
the least explored area among all collected papers, with
only two publications. Visual techniques have been used
to generate a digital form of requirement or design models
(e.g., UML) by visually processing hand-made sketches [10],
or by augmenting existing requirement artifacts to make
them user-tractable [9].

Comprehension and Maintenance. Visual techniques have
been used in software reverse engineering. The REMAUI
tool [51] uses computer vision techniques to reverse en-
gineer the UI elements and their hierarchy in a mobile
application from a screenshot (or a mockup), which also
allows to automatically generate the UI code. Givens et al.
[47] performs a similar reverse engineering of the internal
state of desktop applications based on visual decomposition
of screenshots. Dixon et al. [44] takes this a step further by
reverse engineering the hierarchy of interface components.
Bajammal and Mesbah [71] reverse engineers the state of
web canvas elements from a visual screenshot of the canvas
itself, which also enables testing of canvas elements. Deka
et. al. [56], [62] captures traces of user’s interaction with
mobile apps, allowing the mining of user interactions from
a large collection of apps.

In another work, Burg et al. [52] use visual techniques
for localizing the JavaScript code responsible for the imple-
mentation of a single widget that determines an interactive
behaviour on a web application (i.e., feature location). Lim
et al. [78] presents a similar tool but focuses on localizing
the CSS implementation responsible for certain visual ap-
pearances.

Stocco et al. [8] present a visual approach for automated
test repair; they propose a technique to repair broken web
test cases by visually analyzing test executions. Finally,
Leotta et al’s approach [70] for migrating Selenium-based
web test cases to Sikuli can help in maintaining web tests,
i.e., when it is required to convert DOM-based locators (e.g.,
XPath expressions) to modern visual locators.

Development. Visual techniques have been used for auto-
mated code generation, simplifying the development stage of
software engineering. This includes generating UI code from
mockups [51, 76, 81], existing mobile apps UI code [56, 62],
hand-made sketches [68], or from a video recording depict-
ing the desired behavior [77]. Wu et al. [67] propose a tool
that automatically annotates HTML images with suitable
alternative texts.

Fails and Olsen [38] present a tool that helps developers
in the creation of software that processes live camera feeds,
without requiring developers to have computer vision skills.
Bao et al. [50] proposes a similar tool that facilitates scraping
of developers’ screencast videos, which simplifies searching
for code and documentation from video tutorials.

Reiss and Miao [68] propose a technique to search code
from existing repositories based on a given sketch, to make
a compilable code from the results. Ponzanelli et al. [57]
allow searching relevant code fragments from video tuto-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 11

TABLE 4: Papers distribution across different platforms

Platform Papers

Web [4, 5, 6, 7, 8, 9, 40, 41, 46, 48, 52, 53, 54, 58, 61, 67, 70,
71, 72, 78, 81, 90]

Desktop [1, 2, 10, 36, 37, 38, 39, 42, 43, 44, 47, 50, 55, 57, 59,
60, 64, 68, 73, 74, 77, 84, 87]

Mobile [3, 45, 51, 51, 56, 62, 63, 65, 66, 75, 76, 79, 80, 82, 83,
85, 86, 88, 89, 91]

Other [49, 69]

rials using visual techniques. Bajammal et al. [81] generate
UI component code (e.g., React, AngularJS) from a visual
analysis of a web app’s mockup design. Finally, Wan et al.
[63] allow to spot energy pitfalls in the UIs of mobile apps,
allowing a more performance-aware UI development.

4.2.2 Platforms
Table 4 illustrates the results of our analysis with respect
to the platforms in which visual approaches were utilized.
More than half of the collected papers target web and mobile
platforms.

Web and mobile applications are ubiquitous nowa-
days, and their sole communication interface with users is
through their GUIs. Desktop applications, on the contrary,
can often have different interfaces, e.g., a command-line
interface, or a network interface where the use of an external
client software is required. Hence, it is not surprising for
visual approaches to be more utilized in web and mobile
domains. However, there are also other interesting plat-
forms [49, 69], (e.g. automotive dashboards or digital TVs)
where visual techniques have been successfully applied.
This indicates the potential of visual techniques in any
platform where software deals with a GUI, or any artifact
that is visual in nature.

4.2.3 Summary
This section focused on exploring the areas, tasks, and
platforms where computer vision techniques have been
proposed to address software engineering problems. We
found that software testing is the most common SE area
where computer vision techniques have been used. Within
the area of software testing, cross-browser compatibility is
the most frequent task that uses computer vision. We also
found that more than half of the collected papers target web
or mobile platforms, as opposed to desktop.

4.3 Rationale (RQ2)
The goal of this RQ is to understand the motivations behind
the use of visual approaches in the collected publications.
For each paper in our pool, we analyzed the paper’s full text
and noted down the rationales mentioned by the authors
for using computer vision to solve the software engineering
problem being tackled. This resulted in three main cate-
gories, namely, context-driven, ease of use, and robustness (as
will be described in the below). For each paper that did not
explicitly mention their rationale, we analyzed the text and
classified the paper to the closest rationale category. We now
describe the three identified categories of rationale.

4.3.1 Context-driven

Computer vision has been utilized because the context is in-
trinsically visual in nature, which is the case in all the papers
that focused on GUIs. Thus, it was natural for the authors
to deal with a visual artifact through a computer vision
technique. More than half of the selected papers motivate
the use of visual approaches as such [1, 2, 6, 9, 10, 43, 49, 51,
52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 71, 72, 73].

For instance, Chang et al. [1] describe two properties of
visual approaches that make them particularly appealing for
analyzing GUI-based software: intuitiveness and universality.
They describe how for certain tasks, using visual artifacts—
such as a GUI screenshot— is a more spontaneous way of
interaction with the software. Due to their graphical nature,
elements on the GUI can be most directly represented
by screenshots. Non-visual alternatives, such as scripting,
would instead require users to manipulate GUI elements
through keywords which is arguably less intuitive.

Furthermore, screenshots are easily accessible for all
GUI-based applications. Indeed, it is virtually always pos-
sible to take a screenshot of a GUI element, across all
applications and platforms. This can make it attractive to
propose techniques based on analyzing visual artifacts.

4.3.2 Ease of Use

As a second main motivation, researchers have utilized vi-
sual approaches because they deemed them easier to use by
end users [3, 4, 5, 6, 7, 41, 43, 46, 49, 53, 58, 61, 65, 66, 72, 73].
For instance, Zhang et al. [65] propose a tool that allows
developers to draw (e.g. via tablets, digital pens) simple
sketches on app screenshots. The tool then uses CV algo-
rithms to analyze the shapes and structure of these hand
drawn sketches to decode the meaning of each sketch.
The tool then uses the sketch as a visual test spec to
automatically generate a number of GUI test suites for
mobile applications. The authors argue, and demonstrate,
that providing developers with the option of using simple
hand sketches to automatically generate test cases is a more
natural and easier to use approach to create test cases.

This viewpoint is also evident in papers targeting the
detection of cross-browser incompatibilities (XBIs) [4, 5, 6,
41, 46, 61, 72]. This problem requires developers to detect
visual differences between web pages within the same web
application when rendered on different browsers. This task
is challenging for a number of reasons. First, manually
performing this task, for instance through eyeballing, is
neither efficient nor easy. Hence, an automatic technique
would require simulating the reasoning that humans do
while seeing and comparing two web pages. This can be easily
simulated through a computer vision technique called image
differencing, for which a plethora of different techniques have
been proposed.

However, originally, the same problem was tackled from
a non-visual perspective. First works on XBIs used well-
known DOM differencing techniques as a proxy for finding
visual defects. The main limitation was the fact that DOM-
level differences do not always correspond to a different
visual layout. Hence, this caused such techniques to have
many false positives and a low accuracy. On the other hand,
visual approaches have been proposed both as an alterna-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 12

7 6 2

7 10

8 4 2

2

22 21 5

Requirements

Design

Development

Testing

Maintenance/
Comprehension

Context−driven Ease Robustness
Rationale

S
of

tw
ar

e 
E

ng
in

ee
rin

g 
A

re
a

Fig. 7: Distribution of rationales per SE area.

tive, as well as, a complementary technique to overcome the
limitations of the DOM-based approaches.

4.3.3 Robustness
The concept of robustness of a visual approach concerns
its capability of maintaining its effectiveness despite minor
visual changes happening in the software being analyzed.

A few papers [1, 2, 80] mention robustness as rationale
for choosing computer vision. They explain that visual
approaches are used because they are considered more
change-tolerant than alternative code-based techniques. In
other words, according to the authors, using a code-based
approach for the same problem is likely to produce a fragile
tool that would require a high maintenance cost.

For instance, Chang et al. [1] describe how spatial re-
arrangements of GUI components on the page can lead to
fragile test scripts, a well-known issue in web testing [92].
According to Chang et al. [1], visual approaches are more
robust to minor layout changes and elements repositioning.
This viewpoint is discussed and confirmed in the paper by
Alégroth et al. [2], in which image recognition of GUI ele-
ments allows the development of more robust system-level
automated test suites. A similar finding is in the paper by
Stocco et al. [8], in which an image processing pipeline was
used to automatically trace web elements across different
versions of the same web applications. Their tool VISTA
exhibited a high test repair rate during software evolution,
outperforming a DOM-based test repair solution. This es-
sentially means that in the web domain, web app GUIs
exhibit less frequent changes as compared to the DOM, as
acknowledged by other researchers [93, 94, 95, 96].

The bubble chart of Figure 7 shows the distribution
of the rationales in relation to the SE areas presented in
Section 4.2. We notice that the context-driven category dom-
inates across all SE areas. In the areas of requirements, de-
sign, and maintenance, visual approaches were prevalently
used because, at this stage of the software development
lifecycle, designers or requirements engineers mostly deal
with visual abstractions of (portions) the software such as

GUI mockups, or UML models. Computer vision allows the
transformation of these visual artifacts to support successive
SE tasks. For example, in the work by Zhang et al. [65],
annotated sketches are used to specify test requirements and
test case creation. In this case, the targeted SE area is both
requirements engineering and testing.

4.3.4 Summary
In this section, the goal was to understand the rationales and
motivations for using computer vision to address software
engineering problems. An understanding of the rationales
can help researchers decide if their research area or topic has
similar problems or challenges, and then potentially explore
using computer vision for their problem. We identified three
categories of rationales: context-driven, ease of use, and
robustness. Papers were classified as context-driven when
the context of the software engineering problem itself has
dictated the use of visual approaches. The ease of use classi-
fication was used in cases where the motivation is not nec-
essarily driven by the context, but driven by the motivation
of making an existing software engineering process easier
to use (e.g. has less manual work, easier to comprehend).
Finally, papers were classified as motivated by robustness
whenever the motivation is making a software engineering
task more accurate or less fragile. Out of all three categories
of rationales, the context-driven category was the most
common.

4.4 Computer Vision Techniques (RQ3)
In order to investigate how computer vision is applied, we
studied: (1) what visual artifacts are used, generated, or
extracted from the software, and (2) what computer vision
techniques are used to process or analyze the visual artifacts.
We recall that visual artifacts are visual data (e.g., images)
used by one or more computer vision techniques, with
the final objectives of addressing a software engineering
problem.

4.4.1 Artifact Categories
Through our survey of the field, we classified the visual
artifacts used in the literature into four categories: (1) full-
interface artifacts, (2) localized artifacts, (3) temporal arti-
facts, and (4) natural input artifacts. Figure 8 shows the
distribution of such visual artifacts with respect to the SE
area/tasks.

The first category, full-interface visual artifacts, typically
represents screenshots of the entire user interface of the
system (whether a web browser or desktop application, as
well as other forms such as visual content of TVs and car
displays) [4, 5, 41, 43, 46, 51, 53, 54, 56, 58, 59, 60, 61, 62, 63,
65, 66, 69, 72, 73]. This type of artifact simply has one large
screenshot that captures the entire interface. This artifact
has been used most commonly to capture the visual state
of the application (regardless of the platform), and analyzed
further to perform various forms of testing (e.g., regression,
acceptance, or test generation).

However, full-interface artifacts capture the visual state
of the system at a coarse-grained level of granularity,
which renders them less applicable when a more detailed
analysis is needed. For these cases, our survey revealed



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 13

19 43

26 26

78 1

11

814 1

817 1

14

14

24

14

Requirements

Design

Development

Unit Testing

Test Case Generation

Root Cause Analysis

Regression Testing

Acceptance Testing

Usability Testing

Maintenance/
Comprehension

Full−interface Localized Temporal Natural Input
Visual Artifact

S
of

tw
ar

e 
E

ng
in

ee
rin

g 
A

re
a/

Ta
sk

Design Development Maintenance/
Comprehension Requirements Testing

Fig. 8: Distribution of visual artifacts per SE area & task.

the more fine-grained category of localized visual artifacts.
In this case, visual artifacts are created at the level of a
specific component, an area of interest, or a certain feature
[1, 2, 6, 7, 49, 52, 70, 71]. Compared to full-interface visual
artifacts, this type of artifact is more beneficial for scenar-
ios where analysis needs to be performed for a specific
component or feature in a system. For instance, localized
visual artifacts have been used to create a test case for
a GUI (by recording and tracking a single visual artifact
for UI elements) [1], or in debugging the rendering or
capturing the behaviour of a specific HTML element in a
web application [52].

The third category that emerged is temporal artifacts, in
which the visual information captures the dynamic behaviour
of some sequence or chain of information, states, or events
[3, 9, 57, 64]. For instance, Bao et al. [64] use a temporal
artifact (a video screen recording) to construct a tool to
help researchers conducting user studies of developers’ be-
haviours to automatically distill and transcribe their actions,
inputs, and event sequences by capturing a video screen
recording of their work session.

Finally, the last identified category is natural input ar-
tifacts. These artifacts capture a natural representation or
interaction with a human user. The only example of this
artifact that we found in the collected literature are hand-
sketches [10, 68]. This type of artifact provides a number of
benefits: (1) it provides a more intuitive and natural way for
software engineers to interact with, design, develop, or test
their software, and (2) it allows a broad degree of freedom in
capturing user input, which can be useful when modelling

Fig. 9: Synthesized taxonomy of visual techniques.

or analyzing multi-variable complex systems.

4.4.2 Visual Techniques Taxonomy

In this section, we describe a taxonomy of visual techniques.
The taxonomy was synthesized from the pool of papers
we collected in this survey. This taxonomy has not been
used elsewhere, since there are no existing surveys on the
use of computer vision techniques in software engineering.
For each paper, we analyzed the text and noted down
the computer vision algorithms utilized by the authors
to solve the software engineering problem being tackled.
After conducting this process over all collected papers, we
grouped the algorithms and identified three main patterns
of algorithms, which are then collected in a taxonomy. We
built the taxonomy in an iterative manner, where a new
taxonomy category is defined if a certain computer vision
algorithm can not be classified under any of the existing
categories.

Figure 9 shows the resulting taxonomy. As shown in
the figure, we identified three main categories of visual
techniques used in software engineering research: (1) differ-
ential, (2) transformational, and (3) search techniques, which
we will describe shortly. Each technique has sub-categories
of algorithms, which will be described in Section 4.4.3.

Differential techniques are utilized to have two or more
visual artifacts contrasted and their differences extracted [2,
3, 5, 6, 7, 41, 43, 46, 49, 52, 53, 54, 58, 59, 61, 62, 69, 72].
The nature of these differences is typically case-specific and
often targets a specific feature that the paper is considering.
Differential techniques are commonly used in situations
where a comparison of different aspects, options, or versions
of the software is desired. For instance, they have been
widely utilized for cross-browser testing [6, 41, 46, 61, 72],
where the goal is to check for any differences between two
or more browsers in the way they render a web app.

The second category, transformational techniques, achieve
a specific software engineering task by transforming the
visual artifact into a more abstract type of information
[4, 10, 51, 56, 57, 60, 63, 64, 65, 68, 71, 73]. This transfor-
mation is typically case-specific, as the higher-level abstract
information is used to solve the specific instance of problems
addressed in the paper. For instance, this approach has been
used to allow manual hand-drawn strokes as a method to
specify test executions and requirements [10], where trans-
formational techniques are applied on hand-drawn stroke



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 14

TABLE 5: Major computer vision algorithms used in the collected papers.

Visual Technique Algorithm Description Utilized in

Differential

Image diff A processing method whose output is a function of
the difference between a pair of input images (e.g.
PID–Perceptual Image Differencing [97], PHash–
Perceptual Hashing [98]).

[6, 7, 9, 41, 43, 48, 50, 52, 53, 56,
57, 58, 62, 64, 66, 69, 72, 73, 75,
78, 82, 87]

Probability distribution distance Measuring the distance between distributions of pix-
els in a pair of images (e.g. χ2 distribution distance).

[3, 5, 41, 46, 54, 59, 61, 72, 81, 82]

Transformational

Color/Spatial transformation Applying a transformation matrix to the spatial or
color-space of one or more images, or transforming
spatial regions into abstract data.

[9, 37, 38, 39, 40, 42, 44, 45, 47,
50, 55, 60, 63, 68, 69, 71, 75, 79,
83, 84, 85, 86]

Optical character recognition Recognizing images of strings and converting them
into textual data. [1, 49, 51, 57, 74, 80, 85, 88]

Template matching Finding where an image is located within another
image.

[1, 2, 3, 4, 8, 42, 47, 64, 66, 70, 74,
80, 88]

Search
Machine learning Finding closest visual matches or categories based on

learning patterns in visual data.
[10, 36, 38, 56, 65, 67, 68, 76, 77,
87, 89, 90, 91]

instances to extract testing instructions and assertions from
the strokes, and finally generate a working test case.

Finally, the third category is search techniques [1, 9, 66, 70].
In this case, a visual artifact is used as a key to find
information within a larger set of visual artifacts. A popular
example of this approach is visual record-and-playback
tools such as Sikuli [1]. These tools first record component
visual artifacts for every GUI element clicked or interacted
with by a developer or user, and then, in the playback phase,
a visual search method is employed to locate the element on
screen to perform the recorded action (e.g., click).

In order to have a better insight on the use of different
categories of visual techniques, the bubble plot of Figure 10
shows their distribution over the various SE areas. In the
plot, software testing has a finer-grained granularity since
it is by far the most represented area in our final pool
of papers. We make a number of observations from the
plot. First, we notice that transformational techniques are
relatively the most ubiquitous, as they are quite uniformly
represented across all SE areas and tasks. This is an expected
result since transformational techniques provide means for
extracting task-specific data from the visual artifacts, which
makes them conveniently applicable to a large variety of
problems. Next, we also notice that differential techniques
were more specifically instrumental to testing tasks. Regres-
sion and acceptance testing greatly benefit from differen-
tial techniques, since they are very well aligned towards
detecting differences and therefore suitable for indicating
regression faults.

4.4.3 Computer Vision Algorithms
In addition to the preceding analysis of the high-level cat-
egories of visual techniques, we also examine the specific
computer vision algorithms used in the collected pool of
papers. Table 5 shows the algorithms that have emerged
from our analysis. We now describe each of the identified
algorithms.

Image Differencing. In these CV algorithms, a pair of im-
ages is taken as input and the output is defined as a function
of the difference between the pair. Various instances of these

4 58

3 112

7 27

11

13 46

17 45

3 2

1 13

4 2

1 3

Requirements

Design

Development

Unit Testing

Test Case Generation

Root Cause Analysis

Regression Testing

Acceptance Testing

Usability Testing

Maintenance/
Comprehension

Differential Transformational Search
Visual Technique

S
of

tw
ar

e 
E

ng
in

ee
rin

g 
A

re
a/

Ta
sk

Design Development Maintenance/
Comprehension Requirements Testing

Fig. 10: Distribution of visual techniques per SE area & task.

algorithms differ in their choice of the output function. For
instance, the most common variation uses the raw absolute
difference as the output value [7, 9, 41, 57, 62, 64, 66, 69, 75],
where it is useful for faithfully detecting any pixel-level dif-
ference. Another variation adopts a more relaxed approach
where the output function captures only perceivable differ-
ences by humans using algorithms such as PID (Perceptual
Image Differencing) [97], PHash (Perceptual Hashing) [98],
and Structural Similarity Index (SSIM) [99], which aim to



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 15

reduce false positives by mimicking human perception.
These techniques were utilized in [52, 53, 58, 72, 75, 82].

Probability Distribution Distance. These algorithms quan-
tify distances in populations of pixels, as opposed to a pixel-
wise comparison. The goal here is to measure how similar
two given distributions are, such as image histograms [100]
which give the distribution of pixels in an image. This is
then used to establish whether the two distributions of pix-
els can be assumed to represent similar visual information.
The χ2 histogram distance (for both coloured and grayscale
data) is by far the most commonly used distribution distance
in our pool of papers [5, 46, 54, 59, 61, 82], as it is readily
available in many implementations and provides a simple
and effective approach for the needed quantification of
distance.

Color/Spatial Transformation. These algorithms perform a
transformation of the spatial or color-space of one or more
images [9, 60, 63, 69, 71, 75, 79, 85]. This constitutes applying
a 2D or 3D transformation matrix on the desired geometric
space (e.g., a rearrangement of color-space). This class of
algorithms has been used in our pool of papers to perform
tasks such as extracting structure from images, aligning im-
ages, and various forms of thresholding to extract content.

Template Matching. Another major class of CV algorithms
used in the papers is template matching. Here, one image
is searched within another image or set of images. That is,
a visual scan is performed to find a template image (hence
the name) in a larger image or set of images. Several papers
in our pool [1, 3, 4, 8, 64, 66, 70, 80] have used this approach
to achieve tasks such as locating and finding coordinates of
components and checking the presence/absence of compo-
nents or certain features within a set of GUIs.

Optical Character Recognition (OCR). OCR algorithms
use a series of computer vision analyses to recognize
strings in images. Once the string is recognized, another
sequence of steps converts each character in the image to
textual data. We found multiple papers in our pool (e.g.,
[1, 49, 51, 57, 74, 80, 85]) which have used OCR for tasks
such as checking GUI component labels and generating
component labels from mockups/screenshots.

Machine Learning. Machine learning has also been used
by a few papers in our pool. For instance, decision trees
were used for classifying web pages in cross-browser test-
ing [4, 46]. Convolutional neural networks (CNNs) were also
used to analyze GUIs and their content [4, 79]. Furthermore,
scale- and transformation-invariant features (e.g., SURF–
Speeded-Up Robust Features [101], Wavelets [102]), which
are basically features aiming at analyzing image structure
and content, were used to classify and detect GUI elements
[8, 64, 73, 85].

4.4.4 Libraries and Tools
We also investigated what industrial or open-source li-
braries and tools were used by the papers in their imple-
mentation of computer vision techniques. Table 6 shows a
list of the CV tools or libraries that have been used by the
papers in our pool. The first column reports the name of
the tool or library. The second column describes the scope
of the library, and the last column shows the paper(s) that

TABLE 6: Open-source and industrial computer vision tools
and libraries utilized by papers in the pool.

Name Scope Utilized in

OpenCV provides data structures and al-
gorithms for a wide variety of
advanced computer vision pro-
cessing

[1, 3, 5, 8, 41, 46,
47, 50, 51, 53,
58, 59, 64, 70,
79, 80, 85, 87]

Tesseract extensible and modular open-
source optical character recog-
nition (OCR) engine

[51, 57, 79, 88]

FineReader comprehensive OCR engine
that includes relevant pre/post-
processing steps and formats

[74]

BoofCV performance-oriented library
that focuses on real-time
processing

[57]

ImageMagick simple and easy to use tool and
library for basic image transfor-
mations and analysis of color

[7]

ITK (Insight
ToolKit)

specialized in image and co-
ordinates matching, with com-
prehensive support for high-
dimensional data

N/A

VLFeat geared towards feature extrac-
tion, covering a large set of fea-
ture descriptors

N/A

ImageJ a modular tool and library with
an extensive number of plugins
for various image analysis tasks

N/A

Amazon
Rekognition,
Google Vision
AI, Azure CV

cloud-based tools with a large
number of pretrained analysis
and recognition models

N/A

utilize a certain library to implement their CV analysis or
processing. Papers that do not state which library or tool
they used are not included in the table, and therefore the
number of papers in the table is smaller than the total pool.
For the sake of completeness, we also included other CV
tools and libraries that have not been used by any of the
papers in our pool, which are marked by the “N/A” (not
applicable) value in the last column. Due to the absence
of queryable databases in which computer vision tools are
listed, we resorted to manual search engine queries to find
computer vision tools or libraries other than those already
used by our pool. The queries we used were of the form
“alternative (libraries or tools) to X”, where X is one of the
libraries already in our pool.

The most commonly used library is OpenCV. 1 This
library has implementations for a large number of CV
algorithms, including all the algorithms we report in this
survey (Section 4.4.3). It was first released in 2000, and is
still in active development, with the latest release (as of this
writing) in July 2020.

Other than OpenCV, a few other libraries were used
by only a handful of papers. ImageMagick2 is a simple and
easy to use library offering basic quick image manipulations
(e.g., resize, rotate). ImageJ3 is also quite similar in features

1. https://opencv.org
2. https://imagemagick.org/
3. https://imagej.net



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 16

and scope. Tesseract4 is a popular open-source library that is
modular and extensible, with support for more than 100 lan-
guages. Abby FineReader5 is a commercial library that focuses
specifically on OCR and includes many related prepro-
cessing/postprocessing algorithms, as well as various file
formats. BoofCV6 focuses on performance-tuned algorithms
and is geared towards cases where real-time response is
priority. ITK7 focuses on high-dimensional visual data often
present statistics and science, and also has extensive image
coordinates matching algorithms that might be beneficial in
a number of image matching applications. VLFeat8 is geared
towards implementing a wide variety of feature extraction
and matching algorithms, enabling applications in image
search or transformation. Finally, there are cloud-based tools
offered by major cloud hosting providers (e.g. Amazon Web
Services, Google Cloud Platform, Microsoft Azure). The
defining feature of these services is their cloud nature and
the availability of many pre-trained computer vision models
for various visual tasks, such as content tagging and visual
path analysis.

4.4.5 Summary
The goal of this section was to explore what computer
vision techniques were used and what visual artifacts were
extracted from the software. To this end, we identified
four categories of artifacts. The first category, full-interface
artifacts, represents cases where the entire visual content
of a software is used (e.g., entire desktop interface, entire
console). The second category is localized artifacts, where
only a specific module or component of the software is
captured visually. Third, temporal artifacts capture the dy-
namic behavior of the states or events in a software. Fi-
nally, natural input artifacts capture natural forms of input
by humans (e.g., hand sketches). Visual artifacts are then
processed by one or more of three visual techniques. The
first category, differential techniques, are based on various
forms of contrasting two or more visual artifacts and using
the differences to solve a software engineering problem.
The second category, transformational techniques, rely on
transforming the visual artifact into a more abstract data
structure on which further analysis can be conducted. Fi-
nally, in search techniques, a visual artifact is used as a key
to find information within a larger set of visual artifacts.

Table 5 shows the major computer vision algorithms
used in the collected papers. The visual technique column
describes the high-level goal of what the algorithm is trying
to achieve visually. The algorithm column lists the specific
algorithms that were used to achieve the task. For instance,
when papers wanted to do a differential examination of
visual artifacts, the two computer vision approaches that
were used were image diffing and distribution distances.

4.5 Evaluation and Challenges (RQ4)
4.5.1 Evaluation Methods
We systematically studied the selected papers to under-
stand the most common methods used for evaluating the

4. https://github.com/tesseract-ocr/tesseract
5. https://abbyy.com/
6. http://boofcv.org
7. https://itk.org/
8. https://vlfeat.org/

proposed visual approaches. Table 7 (Evaluation Methods)
depicts the results: the evaluation methods presented are
not necessarily disjoint, since one technique can for instance
be evaluated with respect to its performance (i.e., running
time), and its accuracy calculated by the judgment of human
participants.

In more than half of the works (53%), the evaluation
methods were performed using wide-spread effectiveness
assessment measures such as precision and recall [3, 5, 41,
46, 51, 53, 54, 59, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73].

Another significant body of work measured the manual
effort saved by the visual approach with respect to the
humanly performed task [4, 9, 9, 43, 53, 59, 66, 68, 70].
Moreover, several works also evaluated the performance of
the proposed approaches, usually measuring the running
time on common developer platforms (i.e., mid-level note-
books) [6, 51, 54, 60, 63, 64, 68, 69].

Performance is potentially considered as important as
the accuracy because image analysis techniques are deemed
as being computationally expensive. Thus, their application
and use must carefully evaluate the overhead imposed
by these visual approaches over the most general SE tool
being developed. Initially, this might not favor their adop-
tion if compared to other less computationally-intensive
approaches. However, the authors report that the time taken
by their proposed techniques are all reasonable in common
processing environments, suggesting that execution time
should not be considered as a deterrent decision criterion
when adopting a visual approach to support a SE task.

In several works, the human expertise was used to assess
the output of the visual techniques [5, 41, 46, 53, 54, 57, 58,
72, 73]. As an example, Mahajan and Halfond [53] examine
the efficacy of WebSee (a tool that identifies presentational
failures in HTML pages) through manual investigation of its
output when it is executed on 253 automatically-generated
test cases. This is done to see whether WebSee is able to
correctly identify the faulty HTML elements seeded when
generating the test cases. While we were expecting more
human judgment involved in the evaluation of the selected
papers, its application depends largely on the context and
the problem being solved.

Four works do not propose a quantitative empirical eval-
uation of the proposed technique, but rather present them
by means of use cases. A closer look at these publications re-
vealed that two of them are short papers [2, 10], where hav-
ing a more thorough evaluation is not mandatory. The other
two papers [52, 56] were published at the ACM Symposium
on User Interface Software and Technology (UIST), in which
use case demonstrations appear to be more frequent. Four
works included an industrial evaluation [9, 49, 53, 73] where
the work is evaluated through feedback or measurements in
an industrial setting.

Finally, we noticed diversity in the evaluation methods
of techniques aimed at solving similar problems. For exam-
ple, several works have been proposed to identify some sort
of visual defects (e.g., all the approaches dealing with XBI).
Four of these techniques [7, 53, 58, 60] use “seeded faults”
as an approach for constructing test oracles, whereas others
take a different evaluation path. For instance, Roy Choud-
hary et al. [5] manually count all XBIs detected by dif-
ferent tools (i.e., their agreement) as an upper bound for



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 17

TABLE 7: Evaluation methods and challenges.

Evaluation Methods

Accuracy Measures [3, 5, 8, 38, 41, 46, 51, 53,
54, 59, 60, 61, 63, 64, 66,
68, 69, 71, 72, 73, 75, 76,
77, 79, 80, 81, 82, 83, 84,
85, 86, 87, 89, 91]

Comparison against manual work [4, 9, 9, 40, 43, 48, 53, 59,
66, 68, 70, 75, 79, 80, 81,
82, 90]

Survey or manual validation of results [5, 37, 41, 46, 48, 53, 54,
57, 58, 67, 72, 73, 74, 76,
78, 86, 88, 91]

Time comparison [6, 8, 37, 38, 51, 54, 60,
63, 64, 68, 69, 74, 76, 80,
83]

Comparison against competitor approaches [2, 3, 8, 37, 39, 58, 61, 62,
65, 72]

Comparison to original design/output [51, 60, 63, 70, 71]
Use case demonstration [2, 10, 47, 50, 52, 56]
Industry context/feedback [9, 39, 49, 53, 73, 74, 86]
Comparison with random/brute force [6, 7, 59, 60]
Seeded faults [7, 53, 58, 60]
Differential comparisons [1, 58]
Line/state coverage [62, 65]
Comparison on different physical devices [3, 55]

Challenges
Noise [3, 8, 9, 37, 38, 39, 50, 51,

55, 57, 64, 68, 69, 70, 73,
75, 79, 80, 82, 83, 86]

Dynamicity [1, 40, 41, 48, 60, 63, 71,
74, 78]

Recognition [8, 10, 37, 38, 39, 47, 50,
64, 65, 67, 69, 73, 74, 75,
76, 77, 79, 80, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91]

Visibility [1, 41, 64, 65, 70, 74, 78]

the number of issues that an XBI detection tool should
identify, and use this number to compute the recall of X-
PERT. As a further evaluation, authors could have been also
evaluating their technique using seeded XBIs to broaden
the evaluation. Conversely, the works that only use seeded
faults could use the agreement of multiple fault detectors
to compute recall. This scenario essentially suggests that
the evaluation of some of the proposed techniques in the
literature can be substantially improved by leveraging the
evaluation approaches from other techniques that aim at
solving similar problems.

4.5.2 Challenges and Limitations
Evaluations also exposed the main challenges and limi-
tations that authors faced while developing their visual-
based solutions. Unfortunately, a subset of the papers (41%)
either do not explicitly discuss drawbacks for the visual
approach being evaluated, or do not provide concrete failing
examples. On the other hand, the majority of the papers
(59%) do report the challenges encountered during the ex-
perimentations, summarized in Table 7 (Challenges), which
we describe next.
Noise. The most recurring technical issue that inhibited the
correct functioning of visual approaches concerns the noise
present in the visual artifacts [3, 9, 51, 57, 64, 68, 70, 73].

Noise refers to the presence of other random or overlapping
items in the background of the visual artifact that prevents,
for instance, the correct detection of the target object. Hence,
before applying the desired visual method, a pre-processing
technique is often used to clear the noise out of the artifact.

As an example, Ponzanelli et al. [57] apply OCR to
detect source code in frames sampled from video tutori-
als. However, the effectiveness of OCR fluctuates dramat-
ically if the considered frame’s background contains non-
pertinent information. As a solution, the authors utilize two
additional visual techniques—shape detection and frame
segmentation—in order to focus OCR towards the area of
interest.

Another more specific noise-related limitation pertains
to the sensitivity of the visual approach to theme/surround-
ings changes, lighting conditions, and reflections [1, 3, 9,
69, 70, 73]. A possible mitigation concerns using threshold
parameters to limit their detrimental effect.

Dynamicity. Highly-variable visual artifacts are also a major
challenge for the design and development of reliable visual
approaches.

One source of fragility is due to animations [1, 41, 71].
Indeed, a continuously-changing visual artifact (e.g., a video
frame) represents a major limitation for many one-shot tech-
niques. As a possible solution, such techniques would need
to be applied repeatedly, similarly as real-time domains, or,
in extreme cases, re-designed from scratch to meet the new
domain requirements.

Another source of fragility is due to web advertise-
ments [63]. An ad is rendered as a dynamic component
within a more static container (i.e., a web page), the visual
representation of which usually changes across consecutive
loads of the web page or over different time stamps. Visual
methods need to isolate the dynamics of web pages to avoid
erroneous behaviour or false positives.

Recognition. Another challenge of visual approaches that
emerged from our study concerns (1) accurately identifying
small imperceptible differences between images and (2) rec-
ognizing complex user-defined actions such as manually
inserted strokes or handwriting.

For example, a source of false positives in VISOR [69], an
image comparison technique used for black-box testing of
digital TVs, is the tiny differences that occur when rendering
accent characters on the screen (e.g., cedillas). Typically, the
choice on whether such differences should be considered
as defects or not is left to human’s perception. Two other
works experienced recognition issues, but not at the same
pixel-level as VISOR. Bao et al. [64] discuss problems in de-
tecting visual fine-grained developers’ actions from videos,
such as code editing, text selection, and window scrolling.
Similarly, Scharf and Amma [10] mention issues in detecting
handwriting in manually-produced sketches.

These findings demonstrate how complex is the set of
visual differences that can emerge while comparing two
images, and how vast and multifaceted is the set of input
actions that are possible on a user interface. Indeed, when
a visual method is used to actively support the end user,
they arguably need to recognize a broader set of inputs than
those they would receive from another algorithm, if they
were executed in a software controlled environment. This



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 18

poses new challenges to the development of robust visual
approaches for aiding SE.

Visibility. At last, in four works, having the visual artifact
present in the main rendering area is mentioned as a re-
quirement for the visual technique to effectively fulfill its
task. This requirement can be violated by, e.g., fading [1, 70]
and scrolling [41, 64].

As an example, Leotta et al. [70]’s tool PESTO uses
template matching to detect the optimal visual locator corre-
sponding to a web element on the page. However, the web
element of interest might be outside the actual rendered web
page. This happens when a long and complex form with
multiple fields cannot be entirely visualized within the main
screen. The authors propose an engineering workaround
to solve issues related to scrolling: if the visual artifact
being searched is not immediately displayed, the tool scrolls
the page down automatically and the template matching is
repeated.

5 DISCUSSION

Increasing Adoption of Visual Approaches. Our findings
show a general growth trend in the adoption and use of vi-
sual approaches in the SE community. Most of the surveyed
papers explicitly recognize, and empirically demonstrate,
the contribution brought by visual methods in supporting
SE tasks.

Based on our examination of the literature, we attribute
this increase to two factors. First, a sizeable number of
software developed nowadays have a GUI or other visual
interfaces. The end-user experience is increasingly becoming
more important in adding value to software, and therefore
the adoption of visual methods is expected to increase
further in the next years. Our examination of the trend of
number of annual publications already shows this trend
of increasing number of works utilizing visual techniques.
Second, the rapid pace of improvement in hardware and
processor architecture has made the efficiency and run time
of advanced visual techniques feasible in common devel-
opment environments, which we expect would cause an
increased adoption of visual approaches further down the
line.

Software Testing a Major Driver of Visual Approaches.
The majority of papers (around 75%) have focused on the
research area of software testing. Our intuition behind this
is two-fold. First, testing is one of the most active SE
research areas in general, so it is not surprising that most
of the collected papers fall within this category. Second,
testing is largely a tooling-based research area, in which tool
prototypes are developed and empirically evaluated. Many
different static and dynamic analysis tools are proposed
each year to facilitate test engineers’ activities. The results of
this survey show that the visual perspective of the software
has been recently used to complement static and dynamic
analysis because it provides a novel and complimentary
perspective of the software under test. The types of anal-
yses that are performed on the presentation-level of the
application would be likely very difficult to perform by
analyzing the source code only, especially with the increas-
ingly complex interfaces and the great emphasis placed

on user experience, of which the interface is a cornerstone
component.

Custom Solutions. The visual techniques used in the col-
lected papers are often ad-hoc solutions developed for tack-
ling a specific problem. All collected papers have discussed,
to some extent, the need of visual approaches for parameter
fine-tuning, such as optimal threshold selections. Authors
recognize that this requirement is unlikely to be solved
by a consolidated and broadly-accepted solution. In fact,
manipulating visual artifacts through a visual technique is
highly application-specific, both in the adopted approach
and in the considered domain [103].

For instance, this survey highlights a large body of work
in the area of cross-browser incompatibility. The authors of
these papers have adopted a large variety of solutions (or
incremental variations) to tackle the same problem. To men-
tion a few, Choudhary et al. [41] use an image comparison
measure based on Earth Mover’s Distance (EMD), whereas
Mahajan and Halfond [53] adopt perceptual differencing,
and He et al. [61] compare the colour histograms, among
other approaches. This trend can be partially explained
by the need of proposing and experimenting with novel
and potentially useful techniques. However, a researcher
approaching this topic for the first time could be somewhat
disoriented. In fact, given that the solutions for the same
problem are many, and they are often evaluated on different
benchmarks, it is not straightforward to find an agreement
on what the best technique could be. This led to a landscape
where each work would typically experiment with a custom
visual processing pipeline to address the specifics of the SE
task at hand.

Need for Visual Benchmarks in SE. We highlight the lack
of comparative visual benchmarks on which to evaluate
the plethora of visual approaches utilized in software engi-
neering research. A repository of standard, well-organized,
categorized, and labeled visual artifacts could be very useful
to support empirical experiments, and to guide the next gen-
eration of research utilizing visual approaches for software
engineering tasks. Such repositories exist in traditional (non-
visual) software engineering research, such as SIR [104],
Defects4J [105], SF100 [106], and BugsJS [107, 108]. This has
not been the case, however, for visual techniques in software
engineering. For instance, having analogous repositories for
visual bugs can foster further applications of visual methods
in software testing.

Similarly, object detection and classification tasks need
labeled images. In computer vision literature, there exist
some pre-validated and labeled visual benchmarks, such
as ImageNet [109], BSDS500 [110], or Caltech 101 [111]. In
software engineering, a benchmark of labeled visual arti-
facts might aid in developing visual techniques, or training
systems for machine learning and deep learning scenarios.
A notable step in this direction has been carried out in
the Rico [62] repository. The repository contains around
70k labeled UI screenshots, each of which are labeled with
visual, textual, structural, and interaction trace data. The
dataset facilitates software engineering tasks related to the
UI, such as UI design search, UI layout generation, and UI
code generation.

Maintainability of Visual Artifacts. The visual artifacts



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 19

created or extracted from the software are rarely static across
time, especially for rapidly evolving software such as in
agile environments. The artifacts would therefore have to
be frequently modified or updated to keep track of the
underlying evolving software. Alégroth et al. [2] indicate
that the maintainability of visual artifacts produced and
used by the visual testing tools as being a major challenge
of the visual-based testing approaches. Potential research di-
rections to mitigate this challenge include proposing strate-
gies for conducting cost-benefit analysis depending on the
expected degree of visual evolution of the software, and
devising automated techniques to help with or reduce the
maintainability effort for visual artifacts.

Familiarity with Computer Vision. Perhaps the biggest
challenge hindering a wider adoption of visual approaches
in software engineering is the lack of familiarity with com-
puter vision techniques. For instance, Delamaro et al. [43]
describe how developers should have basic knowledge of
image processing in order to even use the proposed tool in
the paper. This is because the visual artifacts can structurally
vary with each use, and thus sometimes one or more manual
image processing adjustments need to be performed before
being able to process the visual artifacts.

5.1 Threats to Validity

The main threats to validity of this survey are the bias in the
papers’ selection and misclassification. We mitigate these
threats as follows.

Our paper selection was driven by the keywords re-
lated to visual approaches and software engineering (see
Section 3.4). We may have missed studies that use visual
methods in the software engineering activities that are not
captured by our terms list. To mitigate this threat, we per-
formed an issue-by-issue manual search of the major soft-
ware engineering conferences and journals, and followed
through with a snowballing process.

Concerning the papers’ classification, we manually clas-
sified all selected papers into different categories based on
the targeted SE area, as well as, more fine-grained sub-
categories based on their domains, tasks, and the utilized
visual methods (see Section 4). Identifying the rationale
from the papers that do not explicitly mentioned it involved
some subjectivity and may have resulted in suboptimal
mappings, which constitutes another threat. However, there
is no ground-truth labeling for such classification. To min-
imize classification errors, the first three authors carefully
analyzed the full text and performed the classifications
individually. Any disagreements were resolved by further
discussion.

6 CONCLUSIONS

A recent and growing trend in software engineering re-
search is to adopt a visual perspective of the software, which
entails extracting and processing visual artifacts relevant to
software using computer vision techniques. To gain a better
understanding of this trend, in this paper, we surveyed
the literature on the use of computer vision approaches in
software engineering. From more than 2,716 publications,
we systematically obtained 66 papers and analyzed them

according to a number of research dimensions. Our study
revealed that computer vision techniques have been utilized
in all areas of software engineering, albeit more prevalently
in the software testing field. We also discussed why com-
puter vision is utilized, how these techniques are evaluated,
and what limitations they bear. Our suggestions for future
work include the development of common frameworks and
visual benchmarks to collect and evaluate the state-of-the-
art techniques, to avoid relying on ad-hoc solutions. We
believe that the findings of this work illustrate the potential
of visual approaches in software engineering, and may help
newcomers to the field in better understanding the research
landscape.

REFERENCES

[1] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI Testing
Using Computer Vision,” in Proc. of CHI ’10, 2010, pp.
1535–1544.

[2] E. Alégroth, M. Nass, and H. H. Olsson, “JAutomate:
A Tool for System- and Acceptance-test Automation,”
in Proc. of ICST ’13, 2013, pp. 439–446.

[3] Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai,
“On the Accuracy, Efficiency, and Reusability of Auto-
mated Test Oracles for Android Devices,” TSE, vol. 40,
no. 10, pp. 957–970, 2014.

[4] N. Semenenko, M. Dumas, and T. Saar, “Browserbite:
Accurate Cross-Browser Testing via Machine Learning
over Image Features,” in Proc. of ICSM ’13, 2013, pp.
528–531.

[5] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-
PERT: Accurate Identification of Cross-browser Issues
in Web Applications,” in Proc. of ICSE ’13, 2013, pp.
702–711.

[6] E. Selay, Z. Q. Zhou, and J. Zou, “Adaptive Random
Testing for Image Comparison in Regression Web
Testing,” in Proc. of DICTA ’14, ser. DICTA ’14, 2014,
pp. 1–7.

[7] S. Mahajan and W. G. Halfond, “Finding HTML
Presentation Failures Using Image Comparison Tech-
niques,” in Proc. of ASE ’14, 2014, pp. 91–96.

[8] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web
test repair,” in Proceedings of the joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2018, p. 12 pages.

[9] Y. Li, X. Cao, K. Everitt, M. Dixon, and J. A. Landay,
“FrameWire: A Tool for Automatically Extracting In-
teraction Logic from Paper Prototyping Tests,” in Proc.
of CHI ’10, 2010, pp. 503–512.

[10] A. Scharf and T. Amma, “Dynamic Injection of Sketch-
ing Features into GEF Based Diagram Editors,” in
Proc. of ICSE ’13, 2013, pp. 822–831.

[11] A. Kumar, “Computer-vision-based fabric defect de-
tection: A survey,” IEEE Transactions on Industrial Elec-
tronics, vol. 55, no. 1, pp. 348–363, 2008.

[12] C. Kanellakis and G. Nikolakopoulos, “Survey on
computer vision for uavs: Current developments and
trends,” Journal of Intelligent & Robotic Systems, vol. 87,
pp. 141–168, 2017.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 20

[13] Y. Liu and Q. Dai, “A survey of computer vision
applied in aerial robotic vehicles,” in 2010 International
Conference on Optics, Photonics and Energy Engineering
(OPEE), vol. 1, 2010, pp. 277–280.

[14] A. Al-Kaff, D. Martı́n, F. Garcı́a, A. de la
Escalera, and J. Marı́a Armingol, “Survey of
computer vision algorithms and applications
for unmanned aerial vehicles,” Expert Systems
with Applications, vol. 92, pp. 447–463, 2018.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0957417417306395

[15] T. Gandhi and M. M. Trivedi, “Pedestrian collision
avoidance systems: a survey of computer vision based
recent studies,” in 2006 IEEE Intelligent Transportation
Systems Conference, 2006, pp. 976–981.

[16] A. Brunetti, D. Buongiorno, G. F. Trotta, and
V. Bevilacqua, “Computer vision and deep learning
techniques for pedestrian detection and tracking: A
survey,” Neurocomputing, vol. 300, pp. 17–33, 2018.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S092523121830290X

[17] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer
vision for autonomous vehicles: Problems, datasets
and state-of-the-art,” CoRR, vol. abs/1704.05519, 2017.
[Online]. Available: http://arxiv.org/abs/1704.05519

[18] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine
learning testing: Survey, landscapes and horizons,”
IEEE Transactions on Software Engineering, pp. 1–1,
2020.

[19] Á. Beszédes, “Interdisciplinary survey of fault local-
ization techniques to aid software engineering,” Acta
Polytechnica Hungarica, vol. 16, pp. 207–226, 2019.

[20] D. van der Linden and I. Hadar, “A systematic
literature review of applications of the physics of
notations,” IEEE Transactions on Software Engineering,
vol. 45, no. 8, pp. 736–759, 2019.

[21] L. N. Sabaren, M. A. Mascheroni, C. L. Greiner, and
E. Irrazábal, “A systematic literature review in cross-
browser testing,” JCST, vol. 18, no. 01, Apr. 2018.

[22] M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind,
D. A. Keim, W. Aigner, R. Borgo, F. Ganovelli, and
I. Viola, “A survey of visualization systems for mal-
ware analysis.” in EuroVis (STARs), 2015, pp. 105–125.

[23] Y. Zhang, Y. Xiao, M. Chen, J. Zhang, and H. Deng, “A
survey of security visualization for computer network
logs,” Security and Communication Networks, vol. 5,
no. 4, pp. 404–421, 2012.

[24] P. Caserta and O. Zendra, “Visualization of the static
aspects of software: A survey,” IEEE transactions on
visualization and computer graphics, vol. 17, no. 7, pp.
913–933, 2010.

[25] M.-A. D. Storey, D. Čubranić, and D. M. German,
“On the use of visualization to support awareness of
human activities in software development: a survey
and a framework,” in Proceedings of the 2005 ACM
symposium on Software visualization. ACM, 2005, pp.
193–202.

[26] R. L. Novais, A. Torres, T. S. Mendes, M. Mendonça,
and N. Zazworka, “Software evolution visualization:
A systematic mapping study,” Information and Software
Technology, vol. 55, no. 11, pp. 1860–1883, 2013.

[27] R. Koschke, “Software visualization in software main-
tenance, reverse engineering, and re-engineering: a
research survey,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 15, no. 2, pp. 87–
109, 2003.

[28] A. Issa, J. Sillito, and V. Garousi, “Visual testing
of graphical user interfaces: An exploratory study
towards systematic definitions and approaches,” in
2012 14th IEEE International Symposium on Web Systems
Evolution (WSE), Sep. 2012, pp. 11–15.

[29] E. Alégroth and R. Feldt, “On the long-term use of
visual gui testing in industrial practice: a case study,”
Empirical Software Engineering, vol. 22, no. 6, pp. 2937–
2971, 2017.

[30] E. Alégroth, Z. Gao, R. Oliveira, and A. Memon, “Con-
ceptualization and evaluation of component-based
testing unified with visual gui testing: an empiri-
cal study,” in 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST).
IEEE, 2015, pp. 1–10.

[31] E. Alégroth, A. Karlsson, and A. Radway, “Continu-
ous integration and visual gui testing: Benefits and
drawbacks in industrial practice,” in 2018 IEEE 11th
International Conference on Software Testing, Verification
and Validation (ICST), 2018, pp. 172–181.

[32] V. Garousi, W. Afzal, A. Çağlar, İ. B. Işık, B. Baydan,
S. Çaylak, A. Z. Boyraz, B. Yolaçan, and K. Herkiloğlu,
“Comparing automated visual gui testing tools: an
industrial case study,” in Proceedings of the 8th ACM
SIGSOFT International Workshop on Automated Software
Testing. ACM, 2017, pp. 21–28.

[33] B. Kitchenham and S. Charters, “Guidelines for per-
forming systematic literature reviews in software en-
gineering,” 2007.

[34] I. C. Society, P. Bourque, and R. E. Fairley, Guide to
the Software Engineering Body of Knowledge (SWEBOK),
3rd ed., 2014.

[35] C. Wohlin, “Guidelines for snowballing in systematic
literature studies and a replication in software engi-
neering,” in Proc. of EASE ’14, 2014, pp. 1–10.

[36] J. A. Landay and B. A. Myers, “Sketching interfaces:
Toward more human interface design,” Computer,
vol. 34, no. 3, pp. 56–64, 2001.

[37] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge,
“Javasketchit: Issues in sketching the look of user
interfaces,” in AAAI Spring Symposium on Sketch Un-
derstanding, 2002, pp. 9–14.

[38] J. Fails and D. Olsen, “A design tool for camera-based
interaction,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, 2003, pp. 449–456.

[39] A. Coyette, S. Kieffer, and J. Vanderdonckt, “Multi-
fidelity prototyping of user interfaces,” in IFIP Confer-
ence on Human-Computer Interaction. Springer, 2007,
pp. 150–164.

[40] X. S. Zheng, I. Chakraborty, J. J.-W. Lin, and
R. Rauschenberger, “Correlating low-level image
statistics with users-rapid aesthetic and affective judg-
ments of web pages,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2009, pp. 1–10.

[41] S. R. S. Choudhary, H. Versee, and A. Orso, “WEBD-

http://www.sciencedirect.com/science/article/pii/S0957417417306395
http://www.sciencedirect.com/science/article/pii/S0957417417306395
http://www.sciencedirect.com/science/article/pii/S092523121830290X
http://www.sciencedirect.com/science/article/pii/S092523121830290X
http://arxiv.org/abs/1704.05519


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 21

IFF: Automated Identification of Cross-browser Issues
in Web Applications,” in Proc. of ICSM ’10, 2010, pp.
1–10.

[42] M. Dixon and J. Fogarty, “Prefab: implementing ad-
vanced behaviors using pixel-based reverse engineer-
ing of interface structure,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2010, pp. 1525–1534.

[43] M. E. Delamaro, L. dos Santos Nunes Fátima, and
O. R. A. Paes, “Using concepts of content-based im-
age retrieval to implement graphical testing oracles,”
STVR, vol. 23, no. 3, pp. 171–198, 2011.

[44] M. Dixon, D. Leventhal, and J. Fogarty, “Content
and hierarchy in pixel-based methods for reverse
engineering interface structure,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 969–978.

[45] J. Seifert, B. Pfleging, E. del Carmen Valderrama Ba-
hamóndez, M. Hermes, E. Rukzio, and A. Schmidt,
“Mobidev: A tool for creating apps on mobile
phones,” in Proceedings of the 13th International Confer-
ence on Human Computer Interaction with Mobile Devices
and Services. ACM, 2011, pp. 109–112.

[46] S. R. Choudhary, M. R. Prasad, and A. Orso, “Cross-
Check: Combining Crawling and Differencing to Bet-
ter Detect Cross-browser Incompatibilities in Web Ap-
plications,” in Proc. of ICST ’12, 2012, pp. 171–180.

[47] P. Givens, A. Chakarov, S. Sankaranarayanan, and
T. Yeh, “Exploring the internal state of user interfaces
by combining computer vision techniques with gram-
matical inference,” in 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 1165–
1168.

[48] H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C.
Lin, and M. Y. Chen, “Seess: seeing what i broke–
visualizing change impact of cascading style sheets
(css),” in Proceedings of the 26th annual ACM symposium
on User interface software and technology, 2013, pp. 353–
356.

[49] D. Amalfitano, A. R. Fasolino, S. Scala, and P. Tramon-
tana, “Towards Automatic Model-in-the-loop Testing
of Electronic Vehicle Information Centers,” in Proc. of
WISE ’14, 2014, pp. 9–12.

[50] L. Bao, J. Li, Z. Xing, X. Wang, and B. Zhou, “scvrip-
per: video scraping tool for modeling developers’ be-
havior using interaction data,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
vol. 2. IEEE, 2015, pp. 673–676.

[51] T. A. Nguyen and C. Csallner, “Reverse Engineering
Mobile Application User Interfaces with REMAUI,” in
Proc. of ASE ’15, 2015, pp. 248–259.

[52] B. Burg, A. J. Ko, and M. D. Ernst, “Explaining Visual
Changes in Web Interfaces,” in Proc. of UIST ’15, 2015,
pp. 259–268.

[53] S. Mahajan and W. G. J. Halfond, “Detection and
Localization of HTML Presentation Failures Using
Computer Vision-Based Techniques,” in Proc. of ICST
’15, 2015, pp. 1–10.

[54] A. Hori, S. Takada, H. Tanno, and M. Oinuma, “An
Oracle based on Image Comparison for Regression
Testing of Web Applications,” in Proc. of SEKE ’15, ser.

SEKE ’15, 2015, pp. 639–645.
[55] K. Reinecke, D. R. Flatla, and C. Brooks, “Enabling

designers to foresee which colors users cannot see,” in
Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, 2016, pp. 2693–2704.

[56] B. Deka, Z. Huang, and R. Kumar, “ERICA: Interac-
tion Mining Mobile Apps,” in Proc. of UIST ’16, 2016,
pp. 767–776.

[57] L. Ponzanelli, G. Bavota, A. Mocci, M. D. Penta,
R. Oliveto, M. Hasan, B. Russo, S. Haiduc, and
M. Lanza, “Too Long; Didn’t Watch! Extracting Rel-
evant Fragments from Software Development Video
Tutorials,” in Proc. of ICSE ’16, 2016, pp. 261–272.

[58] S. Mahajan, B. Li, P. Behnamghader, and W. G. J.
Halfond, “Using Visual Symptoms for Debugging
Presentation Failures in Web Applications,” in Proc.
of ICST ’16, ser. ICST ’16, 2016, pp. 191–201.

[59] Y. Feng, J. A. Jones, Z. Chen, and C. Fang, “Multi-
objective Test Report Prioritization Using Image Un-
derstanding,” in Proc. of ASE ’16, 2016, pp. 202–213.

[60] M. Patrick, M. D. Castle, R. O. J. H. Stutt, and C. A.
Gilligan, “Automatic Test Image Generation Using
Procedural Noise,” in Proc. of ASE ’16, 2016, pp. 654–
659.

[61] M. He, G. Wu, H. Tang, W. Chen, J. Wei, H. Zhong, and
T. Huang, “X-Check: A Novel Cross-Browser Testing
Service Based on Record/Replay,” in Proc. of ICWS
’16, 2016, pp. 123–130.

[62] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afer-
gan, Y. Li, J. Nichols, and R. Kumar, “Rico: A Mobile
App Dataset for Building Data-Driven Design Appli-
cations,” in Proc. of UIST ’17, 2017, pp. 845–854.

[63] M. Wan, Y. Jin, D. Jin, J. Gui, S. Mahajan, and W. G. J.
Halfond, “Detecting display energy hotspots in an-
droid apps,” vol. 27, no. 6, 2017.

[64] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou,
“Extracting and Analyzing Time-series HCI Data from
Screen-captured Task Videos,” ESEM, vol. 22, no. 1,
pp. 134–174, 2017.

[65] C. Zhang, H. Cheng, E. Tang, X. Chen, L. Bu, and
X. Li, “Sketch-guided GUI Test Generation for Mobile
Applications,” in Proc. of ASE ’17, 2017, pp. 38–43.

[66] C.-F. R. Chen, M. Pistoia, C. Shi, P. Girolami, J. W.
Ligman, and Y. Wang, “UI X-Ray: Interactive Mobile
UI Testing Based on Computer Vision,” in Proc. of IUI
’17, 2017, pp. 245–255.

[67] S. Wu, J. Wieland, O. Farivar, and J. Schiller, “Au-
tomatic alt-text: Computer-generated image descrip-
tions for blind users on a social network service,” in
Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing, 2017,
pp. 1180–1192.

[68] S. P. Reiss and Q. Miao, Yun Xin, “Seeking the user
interface,” ASE, vol. 25, no. 1, pp. 157–193, 2018.

[69] M. F. Kıraç, B. Aktemur, and H. Sözer, “VISOR: A fast
image processing pipeline with scaling and transla-
tion invariance for test oracle automation of visual
output systems,” JSS, vol. 136, pp. 266–277, 2018.

[70] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “PESTO:
Automated migration of DOM-based web tests to-
wards the visual approach,” STVR, vol. 28, no. 4, 2018.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 22

[71] M. Bajammal and A. Mesbah, “Web canvas testing
through visual inference,” in Proc. of ICST ’18, 2018.

[72] Z. Xu and J. Miller, “Cross-Browser Differences Detec-
tion Based on an Empirical Metric for Web Page Visual
Similarity,” TOIT, vol. 18, no. 3, pp. 1–23, 2018.

[73] T. Kuchta, T. Lutellier, E. Wong, L. Tan, and C. Cadar,
“On the correctness of electronic documents: study-
ing, finding, and localizing inconsistency bugs in pdf
readers and files,” EMSE, 2018.

[74] L. Bao, Z. Xing, X. Xia, and D. Lo, “Vt-revolution:
Interactive programming video tutorial authoring and
watching system,” IEEE Transactions on Software Engi-
neering, 2018.

[75] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and
D. Poshyvanyk, “Automated reporting of gui design
violations for mobile apps,” in Proceedings of the 40th
International Conference on Software Engineering, 2018,
pp. 165–175.

[76] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From
ui design image to gui skeleton: a neural machine
translator to bootstrap mobile gui implementation,”
in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 665–676.

[77] S.-H. Sun, H. Noh, S. Somasundaram, and J. Lim,
“Neural program synthesis from diverse demonstra-
tion videos,” in International Conference on Machine
Learning, 2018, pp. 4790–4799.

[78] S. Lim, J. Hibschman, H. Zhang, and E. O’Rourke,
“Ply: A visual web inspector for learning from pro-
fessional webpages,” in Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technol-
ogy, 2018, pp. 991–1002.

[79] K. P. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett,
and D. Poshyvanyk, “Machine learning-based proto-
typing of graphical user interfaces for mobile apps,”
IEEE Transactions on Software Engineering, 2018.

[80] H. Tanno and Y. Adachi, “Support for finding presen-
tation failures by using computer vision techniques,”
in 2018 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW),
2018, pp. 356–363.

[81] M. Bajammal, D. Mazinanian, and A. Mesbah, “Gen-
erating reusable web components from mockups,” in
Proceedings of the 33rd IEEE/ACM International Confer-
ence on Automated Software Engineering, 2018.

[82] K. Moran, C. Watson, J. Hoskins, G. Purnell, and
D. Poshyvanyk, “Detecting and summarizing gui
changes in evolving mobile apps,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 543–553.

[83] S. Natarajan and C. Csallner, “P2a: A tool for convert-
ing pixels to animated mobile application user inter-
faces,” in Proceedings of the 5th International Conference
on Mobile Software Engineering and Systems. ACM,
2018, pp. 224–235.

[84] M. H. Osman, T. Ho-Quang, and M. Chaudron,
“An automated approach for classifying reverse-
engineered and forward-engineered uml class dia-
grams,” in 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE,
2018, pp. 396–399.

[85] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, “Au-
tomatic identification of sensitive ui widgets based on
icon classification for android apps,” in Proceedings of
the 41st ACM/IEEE International Conference on Software
Engineering, ser. ICSE 2019, 2019.

[86] F. Huang, J. F. Canny, and J. Nichols, “Swire: Sketch-
based user interface retrieval,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing
Systems. ACM, 2019, p. 104.

[87] D. Zhao, Z. Xing, C. Chen, X. Xia, and G. Li, “Action-
net: vision-based workflow action recognition from
programming screencasts,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE).
IEEE, 2019, pp. 350–361.

[88] S. Yu, C. Fang, Y. Feng, W. Zhao, and Z. Chen, “Lirat:
layout and image recognition driving automated mo-
bile testing of cross-platform,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE). IEEE, 2019, pp. 1066–1069.

[89] A. Swearngin and Y. Li, “Modeling mobile interface
tappability using crowdsourcing and deep learning,”
in Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, 2019, pp. 1–11.

[90] A. Yuan and Y. Li, “Modeling human visual search
performance on realistic webpages using analytical
and deep learning methods,” in Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–12.

[91] Z. Wu, Y. Jiang, Y. Liu, and X. Ma, “Predicting and di-
agnosing user engagement with mobile ui animation
via a data-driven approach,” in Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–13.

[92] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “ROB-
ULA+: An algorithm for generating robust XPath
locators for web testing,” JSEP, vol. 28, no. 3, pp. 177–
204, 2016.

[93] ——, “Using multi-locators to increase the robustness
of web test cases,” in Proceedings of 8th IEEE Inter-
national Conference on Software Testing, Verification and
Validation, ser. ICST ’15. IEEE, 2015, pp. 1–10.

[94] ——, “ROBULA+: An algorithm for generating robust
XPath locators for web testing,” Journal of Software:
Evolution and Process, pp. 28:177–204, 2016.

[95] M. Hammoudi, G. Rothermel, and A. Stocco, “WA-
TERFALL: An incremental approach for repairing
record-replay tests of web applications,” in Proceed-
ings of 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE ’16. ACM,
2016, pp. 751–762.

[96] M. Hammoudi, G. Rothermel, and P. Tonella, “Why
do record/replay tests of web applications break?” in
Proc. of ICST ’16, 2016, pp. 180–190.

[97] H. Yee, S. Pattanaik, and D. P. Greenberg, “Spatiotem-
poral sensitivity and visual attention for efficient ren-
dering of dynamic environments,” ACM Transactions
on Graphics (TOG), vol. 20, no. 1, pp. 39–65, 2001.

[98] B. Yang, F. Gu, and X. Niu, “Block mean value based
image perceptual hashing,” in 2006 International Con-
ference on Intelligent Information Hiding and Multimedia.
IEEE, 2006, pp. 167–172.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 23

[99] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli
et al., “Image quality assessment: from error visibility
to structural similarity,” IEEE transactions on image
processing, vol. 13, no. 4, pp. 600–612, 2004.

[100] C. L. Novak and S. A. Shafer, “Anatomy of a color
histogram,” in Proceedings 1992 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
Jun. 1992, pp. 599–605.

[101] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded
up robust features,” in European conference on computer
vision. Springer, 2006, pp. 404–417.

[102] I. Daubechies, “The wavelet transform, time-
frequency localization and signal analysis,” IEEE
transactions on information theory, vol. 36, no. 5, pp.
961–1005, 1990.

[103] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-
duplicate detection in web app model inference,” in
Proceedings of 42nd International Conference on Software
Engineering, ser. ICSE ’20. ACM, 2020, p. 12 pages.

[104] H. Do, S. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact,” EMSE,
vol. 10, no. 4, pp. 405–435, 2005.

[105] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A
Database of Existing Faults to Enable Controlled Test-
ing Studies for Java Programs,” in Proc. of the ISSTA
’14, 2014, pp. 437–440.

[106] G. Fraser and A. Arcuri, “Sound empirical evidence in

software testing,” in Proc. of ICSE ’12, 2012, pp. 178–
188.

[107] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian,
A. Beszedes, R. Ferenc, and A. Mesbah, “BugsJS:
a benchmark of JavaScript bugs,” in Proceedings
of the International Conference on Software Testing,
Verification, and Validation (ICST). IEEE Computer
Society, 2019, p. 12 pages. [Online]. Available:
/publications/docs/icst19.pdf

[108] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian,
Árpád Beszédes, R. Ferenc, and A. Mesbah, “BugJS:
A benchmark and taxonomy of javascript bugs,” Soft-
ware Testing, Verification And Reliability, 2020.

[109] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bern-
stein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale
visual recognition challenge,” Int. J. Comput. Vision,
vol. 115, no. 3, pp. 211–252, 2015.

[110] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A
database of human segmented natural images and
its application to evaluating segmentation algorithms
and measuring ecological statistics,” in Proc. of ICCV
’01, 2001, pp. 416–423.

[111] L. Fei-Fei, R. Fergus, and P. Perona, “One-
shot learning of object categories,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 4, pp.
594–611, Apr. 2006. [Online]. Available: https:
//doi.org/10.1109/TPAMI.2006.79

/publications/docs/icst19.pdf
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 24

Mohammad Bajammal is currently pursuing
his doctoral study at the University of British
Columbia (UBC), where he obtained his mas-
ters. His research interests include computer
vision-oriented techniques for software testing,
UI development, and program analysis for web
applications. He won the Distinguished Paper
Award at the 2018 International Conference
on Software Testing, Verification and Validation
(ICST).

Andrea Stocco is a postdoctoral fellow at the
Software Institute (USI), Switzerland. His re-
search interests include web testing and empiri-
cal software engineering, with particular empha-
sis on test breakage detection and automatic re-
pair, robustness and maintainability of test suites
for web applications. He is the recipient of the
Best Student Paper Award at the 16th Interna-
tional Conference on Web Engineering (ICWE
2016). He serves on the program committees of
top-tier software engineering conferences such

as FSE and ICST, and reviews for numerous software engineering
journals including TSE, EMSE, TOSEM, JSS, and IST.

Davood Mazinanian is postdoctoral fellow at
the University of British Columbia (UBC). Prior
to that, he was a research assistant at the
Gina Cody School of Engineering and Com-
puter Science, Concordia University, where he
received his PhD in Software Engineering. His
research interests include software maintenance
and refactoring, program analysis, and empirical
studies, with emphasis on web applications. He
has served as a program committee member or
reviewer for multiple software engineering con-

ferences and journals, including TSE, EMSE, JSS, FSE, ICSME, and
SANER.

Ali Mesbah is an associate professor at the
University of British Columbia (UBC) where he
leads the Software Analysis and Testing (SALT)
research lab. His main area of research is in
software engineering and his research inter-
ests include software analysis and testing, web
and mobile-based applications, software main-
tenance and evolution, debugging and fault lo-
calization, and automated program repair. He
has published over 60 peer-reviewed papers and
received numerous best paper awards, including

two ACM Distinguished Paper Awards at the International Conference
on Software Engineering (ICSE 2009 and ICSE 2014). He was awarded
the NSERC Discovery Accelerator Supplement (DAS) award in 2016. He
is currently on the Editorial Board of the IEEE Transactions on Software
Engineering (TSE) and regularly serves on the program committees of
numerous software engineering conferences such as ICSE, FSE, ASE,
ISSTA, and ICST.


	Introduction
	Prior Work
	Methodology
	Definitions
	Scope
	Research Questions
	Paper Collection
	Inclusion and Exclusion Criteria
	Snowballing
	Extracted Information


	Findings
	Trends and Landscape
	Areas, Tasks, and Platforms (RQ1)
	Software Engineering Areas and Tasks
	Platforms
	Summary

	Rationale (RQ2)
	Context-driven
	Ease of Use
	Robustness
	Summary

	Computer Vision Techniques (RQ3)
	Artifact Categories
	Visual Techniques Taxonomy
	Computer Vision Algorithms
	Libraries and Tools
	Summary

	Evaluation and Challenges (RQ4)
	Evaluation Methods
	Challenges and Limitations


	Discussion
	Threats to Validity

	Conclusions
	Biographies
	Mohammad Bajammal
	Andrea Stocco
	Davood Mazinanian
	Ali Mesbah


