
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2019; 00:1–40
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

BUGSJS: A Benchmark and Taxonomy of JavaScript Bugs

Péter Gyimesi1*, Béla Vancsics1, Andrea Stocco2, Davood Mazinanian3,

Árpád Beszédes1, Rudolf Ferenc1, Ali Mesbah3

1Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Università della Svizzera italiana, Lugano, Switzerland

3 Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada

SUMMARY

JavaScript is a popular programming language that is also error-prone due to its asynchronous, dynamic,
and loosely-typed nature. In recent years, numerous techniques have been proposed for analyzing and
testing JavaScript applications. However, our survey of the literature in this area revealed that the proposed
techniques are often evaluated on different datasets of programs and bugs. The lack of a commonly
used benchmark limits the ability to perform fair and unbiased comparisons for assessing the efficacy
of new techniques. To fill this gap, we propose BUGSJS, a benchmark of 453 real, manually validated
JavaScript bugs from 10 popular JavaScript server-side programs, comprising 444k LOC in total. Each
bug is accompanied by its bug report, the test cases that expose it, as well as the patch that fixes it. We
extended BUGSJS with a rich web interface for visualizing and dissecting the bugs’ information, as well as
a programmable API to access the faulty and fixed versions of the programs and to execute the corresponding
test cases, which facilitates conducting highly-reproducible empirical studies and comparisons of JavaScript
analysis and testing tools. Moreover, following a rigorous procedure, we performed a classification of
the bugs according to their nature. Our internal validation shows that our taxonomy is adequate for
characterizing the bugs in BUGSJS. We discuss several ways in which the resulting taxonomy and the
benchmark can help direct researchers interested in automated testing of JavaScript applications.
Copyright © 2019 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: JavaScript, bug database, benchmark, reproducibility, bug taxonomy, BUGSJS

1. INTRODUCTION

JavaScript (JS) is the de-facto web programming language globally,† and the most adopted language
on GitHub.‡ JavaScript is massively used in the client-side of web applications to achieve high
responsiveness and user friendliness. In recent years, due to its flexibility and effectiveness,
it has been increasingly adopted also for server-side development, leading to full-stack web
applications [1]. Platforms such as Node.js§ allow developers to conveniently develop both the front-
and back-end of the applications entirely in JavaScript.

∗Correspondence to: Péter Gyimesi, Department of Software Engineering, University of Szeged, Szeged, Hungary.
Email: pgyimesi@inf.u-szeged.hu
†https://insights.stackoverflow.com/survey/2019
‡https://octoverse.github.com
§https://nodejs.org/en/

Copyright © 2019 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

https://insights.stackoverflow.com/survey/2019
https://octoverse.github.com
https://nodejs.org/en/

2 P. GYIMESI ET AL.

Despite its popularity, the intrinsic characteristics of JavaScript—such as weak typing, prototypal
inheritance, and run-time evaluation—make it one of the most error-prone programming languages.
As such, a large body of software engineering research has focused on the analysis and testing of
JavaScript web applications [2, 3, 4, 5, 6, 7, 8, 9].

Existing research techniques are typically evaluated through empirical methods (e.g., controlled
experiments), which need software-related artifacts, such as source code, test suites, and descriptive
bug reports. To date, however, most of the empirical works and tools for JavaScript have been
evaluated on different datasets of subjects. Additionally, subject programs or accompanying
experimental data are rarely made available in a detailed, descriptive, curated, and coherent manner.
This not only hampers the reproducibility of the studies themselves, but also makes it difficult for
researchers to assess the state-of-the-art of related research and to compare existing solutions.

Specifically, testing techniques are typically evaluated with respect to their effectiveness at
detecting faults in existing programs. However, real bugs are hard to isolate, reproduce and
characterize. Therefore, the common practice relies on manually-seeded faults, or mutation
testing [10]. Each of these solutions has limitations. Manually-injected faults can be biased toward
researchers’ expectations, undermining the representativeness of the studies that use them. Mutation
techniques, on the other hand, allow generating a large number of “artificial” faults. Although
research has shown that mutants are quite representative of real bugs [11, 12, 13], mutation testing is
computationally expensive to use in practice. For these reasons, benchmarks of manually validated
bugs are of paramount importance for devising novel debugging, fault localization, or program
repair approaches.

Several benchmarks of bugs have been proposed and largely utilized by researchers to
advance testing research. Notable instances are the Software-artifact Infrastructure Repository [14],
Defects4J [15], ManyBugs [16], and BugSwarm [17]. Purpose-specific test and bug datasets also
exist to support studies in program repair [18], test generation [19], and security [20]. However, to
date, a well-organized repository of labeled JavaScript bugs is still missing. The plethora of different
JavaScript implementations available (e.g., V8, JavaScriptCore, Rhino) further makes devising a
cohesive bugs benchmark nontrivial.

In our previous work [21], we presented BUGSJS, a benchmark of 453 JavaScript-related bugs
from 10 open-source JavaScript projects, based on Node.js and the Mocha testing framework.
BUGSJS features an infrastructure containing detailed reports about the bugs, the faulty versions
of programs, the test cases exposing them, as well as the patches that fix them.

This article is a revised and expanded version of our conference paper [21]. We provide details on
the differences between the prior paper and this article. From the technical standpoint, first we added
a port “dissection” to BUGSJS, i.e., a web interface to inspect/query information about the bugs.
Second, we enriched the API with the possibility of conducting more fine-grained analysis with an
optimized command that retrieves the coverage for each individual test (per-test coverage). We also
added more precomputed data from the source code, test cases and executions to better facilitate
related research. Concerning the intellectual contributions, we performed a classification of the
bugs in BUGSJS, which was missing in the initial conference paper. We constructed our taxonomy
using faceted classification [22], i.e., we created the categories/subcategories of our taxonomy in a
bottom-up fashion, by analyzing different sources of information about the bugs.

This article makes the following contributions:

Survey A survey of the previous work on analysis and testing of JavaScript applications, revealing
the lack of a comprehensive benchmark of JavaScript programs and bugs to support empirical
evaluation of the proposed techniques.

Dataset BUGSJS, a benchmark of 453 manually selected and validated JavaScript bugs from 10
JavaScript Node.js programs pertaining to the Mocha testing framework.

Framework A Docker-based infrastructure to download, analyze, and run test cases exposing
each bug in BUGSJS and the corresponding real fixes implemented by developers. The
infrastructure includes a web-based dashboard and a set of precomputed data from the subjects
and tests as well.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 3

Taxonomy A qualitative analysis of BUGSJS resulting in a bug taxonomy of server-side JavaScript
bugs, which, to our knowledge, is the first of this kind.

Evaluation A quantitative and qualitative analysis of the bug-fixes related to the BUGSJS bugs in
relation to existing classification schemes.

2. STUDIES ON JAVASCRIPT ANALYSIS AND TESTING

To motivate the need for a novel benchmark for JavaScript bugs, we surveyed the works related to
software analysis and testing in the JavaScript domain. Our review of the literature also allowed
us to gain insights about the most active research areas in which our benchmark should aim to be
useful.

In the JavaScript domain, the term benchmark commonly refers to collections of programs used to
measure and test the performance of web browsers with respect to the latest JavaScript features and
engines. Instances of such performance benchmarks are JetStream,¶ Kraken,|| Dromaeo,** Octane,††

and V8.‡‡ In this work, however, we refer to benchmark as a collection of JavaScript programs
and artifacts (e.g., test cases or bug reports) used to support empirical studies (e.g., controlled
experiments or user studies) related to one or more research areas in software analysis and testing.

We used the databases of scientific academic publishers and popular search engines to look for
papers related to different software analysis and testing topics for JavaScript. We adopted various
combinations of keywords: JavaScript, testing (including code coverage measurement,
mutation testing, test generation, unit testing, test automation, regression testing), bugs and
debugging (including fault localization, bug and error classification), and web. We also performed
a lightweight forward and backward snowballing [23] to mitigate the risk of omitting relevant
literature. Last, we examined the evaluation section of each paper. We retained only papers in which
real-world, open-source JavaScript projects were used, whose repositories and versions could be
clearly identified. This yielded 25 final papers. Nine of these studies are related to bugs, in which 670
subjects were used in total. The remaining 16 papers are related to other testing fields, comprising
494 subjects in total.

In presenting the results of our survey of the literature, we distinguish (1) studies containing
specific bug information and other artifacts (such as source code and test cases), and (2) studies
containing only JavaScript programs and other artifacts not necessarily related to bugs.

2.1. Bug-related Studies for JavaScript

We analyzed papers using JavaScript systems that include bug data in greater detail, because these
works can provide us important insights about the kind of analysis researchers used the subjects for,
and thus, the requirements that a new benchmark of bugs should adhere to.

We found nine studies in this category. Ocariza et al. [5] present an analysis and classification of
bug reports to understand the root causes of client-side JavaScript faults. This study includes 502
bugs from 19 projects with over 2M LOC. The results of the study highlight that the majority (68%)
of JavaScript faults are caused by faulty interactions of the JavaScript code with the Document
Object Model (DOM). Moreover, most JavaScript faults originate from programmer mistakes
committed in the JavaScript code itself, as opposed to other web application components.

Another bug classification presented by Gao et al. [24] focuses on type system-related issues in
JavaScript (which is a dynamically typed language). The study includes about 400 bug reports from
398 projects with over 7M LOC. The authors ran a static type checker such as Facebook’s Flow*

¶https://browserbench.org/JetStream
‖https://wiki.mozilla.org/Kraken
∗∗https://wiki.mozilla.org/Dromaeo
††https://developers.google.com/octane
‡‡https://github.com/hakobera/node-v8-benchmark-suite
∗https://flow.org/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://browserbench.org/JetStream
https://wiki.mozilla.org/Kraken
https://wiki.mozilla.org/Dromaeo
https://developers.google.com/octane
https://github.com/hakobera/node-v8-benchmark-suite
https://flow.org/

4 P. GYIMESI ET AL.

or Microsoft’s TypeScript† on the faulty versions of the programs. On average, 60 out of 400 bugs
were detected (15%), meaning they may have been avoided in the first place if a static type checker
were used to warn the developer about the type-related bug.

Hanam et al. [25] present a study of cross-project bug patterns in server-side JavaScript code,
using 134 Node.js projects of about 2.5M LOC. They propose a technique called BugAID for
discovering such bug patterns. BugAID builds on an unsupervised machine learning technique that
learns the most common code changes obtained through AST differencing. Their study revealed
219 bug fixing change types and 13 pervasive bug patterns that occur across multiple projects. In
our evaluation, we conduct a thorough comparison with Hanam et al.’s taxonomy.

Ocariza et al. [26] propose an inconsistency detection technique for MVC-based JavaScript
applications which is evaluated on 18 bugs from 12 web applications (7k LOC). A related work [27]
uses 15 bugs in 20 applications (nearly 1M LOC). They also present an automated technique
to localize JavaScript faults based on a combination of dynamic analysis, tracing, and backward
slicing, which is evaluated on 20 bugs from 15 projects (14k LOC) [28]. Also, their technique for
suggesting repairs for DOM-based JavaScript faults is evaluated on 22 bugs from 11 applications
(1M LOC) [29].

Wang et al. [4] present a study on 57 concurrency bugs in 53 Node.js applications (about
3.5M LOC). The paper proposes several different analyses pertaining to the retrieved bugs, such
as bug patterns, root causes, and repair strategies. Davis et al. [30] propose a fuzzing technique for
identifying concurrency bugs in server-side event-driven programs, and evaluate their technique on
12 real world programs (around 216k LOC) and 12 manually selected bugs.

2.2. Other Analysis and Testing Studies for JavaScript

Empirical studies in software analysis and testing benefit from a large variety of software artifacts
other than bugs, such as test cases, documentation, or code revision history. In this section, we
briefly describe the remaining papers of our survey.

Milani Fard and Mesbah [31] characterize JavaScript tests in 373 JavaScript projects according
to various metrics, e.g., code coverage, test commits ratio, and number of assertions.

Mirshokraie et al. propose several approaches to JavaScript automated testing. This includes
an automated regression testing based on dynamic analysis, which is evaluated on nine web
applications [32]. The authors also propose a mutation testing approach, which is evaluated on
seven subjects [33], and on eight applications in a related work [34]. They also propose a technique
to aid test generation based on program slicing [35], where unit-level assertions are automatically
generated for testing JavaScript functions. Seven open-source JavaScript applications are used to
evaluate their technique. The authors also present a related approach for JavaScript unit test case
generation, which is evaluated on 13 applications [36].

Adamsen et al. [37] present a hybrid static/dynamic program analysis method to check code
coverage-based properties of test suites from 27 programs. Dynamic symbolic execution is used by
Milani Fard et al. [38] to generate DOM-based test fixtures and inputs for unit testing JavaScript
functions, and four experimental subjects are used for evaluation. Ermuth and Pradel propose a GUI
test generation approach [6], and evaluate it on four programs.

Artzi et al. [39] present a framework for feedback-directed automated test generation for
JavaScript web applications. In their study, the authors use 10 subjects. Mesbah et al. [40] present
Atusa, a test generation technique for Ajax-based applications which they evaluate on six web
applications. A comprehensive survey of dynamic analysis and test generation for JavaScript is
presented by Andreasen et al. [41].

Billes et al. [2] present a black-box analysis technique for multi-client web applications to
detect concurrency errors on three real-world web applications. Hong et al. [42] present a testing
framework to detect concurrency errors in client-side web applications written in JavaScript, and
use five real-world web applications.

†http://www.typescriptlang.org/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://www.typescriptlang.org/

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 5

Table I. Subject distribution among surveyed papers

BUG-RELATED ALL STUDIES

Papers # Subjects # Papers # Subjects

1 607 1 910
2 17 2 91
3 7 3 17
4 2 4 4
5 0 5 1

Wang et al. [3] propose a modification to the delta debugging approach that reduces the event
trace, which is evaluated on 10 real-world JavaScript application failures. Dhok et al. [43] present a
concolic testing approach for JavaScript which is evaluated on 10 subjects.

2.3. Findings

In the surveyed papers, we observed that the proposed techniques were evaluated using different
sets of programs, with little to no overlap.

Table I shows the program distribution per paper. In bug-related studies, 633 subject programs
were adopted overall, with 607 of these programs (96%) were used in only one study, and no subject
was used in more than four papers (Table I, columns 1 and 2). Other studies exhibit the same trend
(Table I, columns 3 and 4): overall, 1,164 subjects were used in all the investigated papers, of which
1,023 were unique. From these, 910 (89%) were used in only one paper, and no subject was used in
more than five papers.

In conclusion, we observe that the investigated studies involve different sets of programs, since
no centralized benchmark is available to support reproducible experiments in analysis and testing
related to JavaScript bugs.

To devise a centralized benchmark for JavaScript bugs that enables reproducibility studies in
software analysis and testing, we considered the insights and guidelines provided by existing similar
datasets (e.g., Defects4J [15]), as well as the knowledge gained from our study of the literature on
empirical experiments using JavaScript programs and bugs.

First, the considered subject systems should be real-world, publicly available open-source
JavaScript programs. To ensure representativeness of the benchmark, they should be diverse in
terms of the application domain, size, development, testing, and maintenance practices (e.g., the
use of continuous integration (CI), or code review process).

Second, the buggy versions of the programs must have one or more test cases available
demonstrating each bug. The bugs must be reproducible under reasonable constraints; this excludes
non-deterministic or flaky features.

Third, the versions of the programs in which the bugs were fixed by developers, i.e., the patches,
must be also available. Typically, when a bug is fixed, new unit tests are also added (often in the
same bug-fixing commit) to cover the buggy feature, allowing for better regression testing. This
allows extracting the bug-fixing changes, e.g., by diffing the buggy and fixed revisions.

Additionally, the benchmark should include the bug report information, including critical times
(e.g. when the bug was opened, closed, or reopened), the discussions about each bug, and link to the
commits where the bug was fixed.

To fill this gap, in Section 3 we overview BUGSJS [21], a benchmark of real JavaScript bugs, its
design and implementation.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 P. GYIMESI ET AL.

3. BUGSJS – THE PROPOSED BENCHMARK

To construct a benchmark of real JavaScript bugs, we identify existing bugs from the programs’
version control histories, and collect the real fixes provided by developers. Developers often
manually label the revisions of the programs in which reported bugs are fixed (bug-fixing commits,
or patches). As such, we refer to the revision preceding the bug-fixing commit as the buggy commit.
This allowed us to extract detailed bug reports and descriptions, along with the buggy and bug-fixing
commits they refer to. Particularly, each bug and fix should adhere to the following properties:

• Reproducibility. One or more test cases are available in a buggy commit to demonstrate
the bug. The bug must be reproducible under reasonable constraints. We excluded non-
deterministic features and flaky tests from our study, since replicating them in a controlled
environment would be excessively challenging.

• Isolation. The bug-fixing commit applies to JavaScript source code files only; changes to
other artifacts such as documentation or configuration files are not considered. The source
code of each commit must be cleaned from irrelevant changes (e.g., feature implementations,
refactorings, changes to non-JavaScript files). The isolation property is particularly important
in research areas where the presence of noise in the data has detrimental impacts on the
techniques (e.g., automated program repair, or fault localization approaches).

GitHub
50 subjects

542 bugs453 bugs

Dynamic Validation4 Manual Validation3
795 bugs
10 subjects

Bugs Collection2Subjects Selection1

Forks

Tags
Patches

Organization

Figure 1. Overview of the bug selection and inclusion process.

Figure 1 depicts the main steps of the process we performed to construct our benchmark. First,
we adopted a systematic procedure to select the JavaScript subjects to extract the bug information
from ¶. Then, we collected bug candidates from the selected projects ·, and manually validated
each bug for inclusion by means of multiple criteria ¸. Next, we performed a dynamic sanity check
to make sure that the tests introduced in a bug-fixing commit can detect the bug in the absence of its
fix ¹. Finally, the retained bugs were cleaned from irrelevant patches (e.g.,whitespaces).

3.1. Subject Systems Selection

To select relevant programs to include in BUGSJS, we focused on popular and trending JavaScript
projects on GitHub. Such projects often engage large communities of developers, and therefore, are
more likely to follow software development best practices, including bug reporting and tracking.
Moreover, GitHub’s issue IDs allow conveniently connecting bug reports to bug-fixing commits.

Popularity was measured using the projects’ Stargazers count (i.e., the number of stars owned
by the subject’s GitHub repository). We selected server-side Node.js applications which are
popular (Stargazers count ≥ 100) and mature (number of commits > 200), and have been actively
maintained (year of the latest commit≥ 2017). We currently focus on Node.js because it is emerging
as one of the most pervasive technologies to enable using JavaScript in the server side, leading to the
so-called full-stack web applications [1]. Limiting the subject systems to server-side applications
and specific testing frameworks is due to technological constraints, as running tests for browser-
based programs would require managing many complex and time-consuming configurations. We
discuss the potential implications of this constraint in Section 6.

We examined the GitHub repository of each retrieved subject system to ensure that bugs were
properly tracked and labeled. Particularly, we only selected projects in which bug reports had a

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 7

Table II. Subjects included in BUGSJS

STATS (#) TESTS (#) COVERAGE (%)

kL
O

C
(J

S)

St
ar

s

C
om

m
its

Fo
rk

s

A
ll

Pa
ss

in
g

Pe
nd

in
g

Fa
ili

ng

St
at

em
en

ts

B
ra

nc
he

s

Fu
nc

tio
ns

L
in

es

BOWER 16 15,290 2,706 1,995 455 103 19 36 81.11 66.91 80.62 81.11
ESLINT 240 12,434 6,615 2,141 18,528 18,474 0 54 99.21 98.19 99.72 99.21
EXPRESS 11 40,407 5,500 7,055 855 855 0 0 98.71 94.32 100 99.95
HESSIAN.JS 6 104 217 23 225 223 2 0 96.42 91.27 98.99 96.42
HEXO 17 23,748 2,545 3,277 875 868 7 0 96.20 90.51 98.54 97.27
KARMA 12 10,210 2,485 1,531 331 331 0 0 54.61 34.03 43.98 54.76
MONGOOSE 65 17,036 9,770 2,457 2,107 2,071 36 0 90.97 85.95 89.65 91.04
NODE-REDIS 11 10,349 1,242 1,245 966 965 0 1 99.06 98.19 97.99 99.06
PENCILBLUE 46 1,596 3,675 276 807 802 0 5 35.21 19.09 22.91 35.22
SHIELDS 20 6,319 2,036 1,432 482 469 13 0 75.98 65.60 83.26 75.97

dedicated issue label on GitHub’s Issues page, which allows filtering irrelevant issues (pertaining
to, e.g., feature requests, build problems, or documentation), so that only actual bugs are included.
Our initial list of subjects included 50 Node.js programs, from which we filtered out projects based
on the number of candidate bugs found and the adopted testing frameworks.

3.2. Bugs Collection

Collecting bugs and bug-fixing commits. For each subject system, we first queried GitHub for
closed issues assigned with a specific bug label using the official GitHub’s API.* For each closed
bug, we exploit the links existing between issues and commits to identify the corresponding bug-
fixing commit. GitHub automatically detects these links when there is a specific keyword (belonging
to a predefined list†), followed by an issue ID (e.g., Fixes #14).

Each issue can be linked to zero, one, or more source code commits. A closed bug without a bug-
fixing commit could mean that the bug was rejected (e.g., it cannot be replicated), or that developers
did not associate that issue with any commit. We discarded such bugs from our benchmark, as
we require each bug to be identifiable by its bug-fixing commit. At last, similarly to existing
benchmarks [15], we discarded bugs linked to more than one bug-fixing commit, as this might imply
that they were fixed in multiple steps, or that the first attempt for fixing them was unsuccessful.

Including corresponding tests. We require each fixed bug to have unit tests that demonstrate the
absence of the bug. To meet this requirement, we examined the bug-fixing patches to ensure they also
contain changes or additions in the test files. For this filtering, we manually examined each patch to
determine whether test files were involved. The result of this step is the list of bug candidates for
the benchmark. From the initial list of 50 subject systems, we considered the projects having at least
10 bug candidates.

Testing frameworks. There are several testing frameworks available for JavaScript applications.
We collected statistics about the testing frameworks used by the 50 considered JavaScript projects.
Our results show that there is no single predominant testing framework for JavaScript (as compared
to, for instance, JUnit which is used by most Java developers). We found that the majority of tests
in our pool were developed using Mocha‡ (52%), Jasmine§ (10%), and QUnit¶ (8%). Consequently,

∗https://developer.github.com/v3/
†https://help.github.com/articles/closing-issues-using-keywords/
‡https://mochajs.org/
§https://jasmine.github.io/
¶https://qunitjs.com/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://developer.github.com/v3/
https://help.github.com/articles/closing-issues-using-keywords/
https://mochajs.org/
https://jasmine.github.io/
https://qunitjs.com/

8 P. GYIMESI ET AL.

the initial version of BUGSJS only includes projects that use Mocha, whose prevalence as JavaScript
testing framework is also supported by a recent large-scale empirical study [31].
Final Selection. Table II reports the names and descriptive statistics of the 10 applications
we ultimately retained. Notice that all these applications have at least 1000 LOC (frameworks
excluded), thus being representative of modern web applications (Ocariza et al. [5] report an average
of 1,689 LOC for AngularJS web applications on GitHub with at least 50 stars).

The subjects represent a wide range of domains. Bower is a front-end package management tool
that exposes the package dependency model through an API. Express is a minimal and flexible
Node.js web application framework that provides a robust set of features for web and mobile
applications. Hessian.js is a JavaScript binary web service protocol that makes web services usable
without requiring a large framework, and without learning a new set of protocols. Hexo is a
blog framework powered by Node.js. Karma is a popular framework agnostic test runner tool for
JavaScript. Mongoose is a MongoDB object modeling tool for Node.js. Node-redis is a Node.js
client for Redis database. Pencilblue is a CMS and blogging platform, powered by Node.js. Shields
is a web service for badges in SVG and raster format.

3.3. Manual Patch Validation

We manually investigated each bug and the corresponding bug-fixing commit to ensure that only
bugs meeting certain criteria are included, as described below.

Table III. Bug-fixing commit inclusion criteria

Rule Name Description

Isolation The bug-fixing changes must fix only one (1) bug (i.e., must close exactly one (1) issue)
Complexity The bug-fixing changes should involve a limited number of files (≤ 3), lines of code (≤ 50)

and be understandable within a reasonable amount of time (max 5 minutes)
Dependency If a fix involves introducing a new dependency (e.g., a library), there must also exist

production code changes and new test cases added in the same commit
Relevant Changes The bug-fixing changes must involve only changes in the production code that aim at fixing

the bug (whitespace and comments are allowed)
Refactoring The bug-fixing changes must not involve refactoring of the production code

Methodology. Two authors of this paper manually investigated each bug and its corresponding bug-
fixing commit and labeled them according to a well-defined set of inclusion criteria (Table III). The
bugs that met all criteria were initially marked as “Candidate Bug” to be considered for inclusion.

In detail, for each bug, the authors investigated simultaneously the code of the commit to ensure
relatedness to the bug being fixed. During the investigation, however, several bug-fixing commits
were too complex to comprehend by the investigators, either because domain knowledge was
required, or because the number of files or lines of code being modified was large. We labeled
such complex bug-fixing commits as “Too complex”, and discarded them from the current version
of BUGSJS. The rationale is to keep the size of the patches within reasonable thresholds, so as
to select a high quality corpus of bugs which can be easily analyzable and processable by both
manual inspection and automated techniques. Particularly, we deemed a commit being too complex
if the production code changes involved more than three (3) files or more than 50 LOC, or if the fix
required more than 5 minutes to understand. In all such cases, a discussion was triggered among the
authors, and the case was ignored if the authors unanimously decided that the fix was too complex.

Another case for exclusion is due to refactoring operations in the analyzed code. First, our
intention was to keep the original code’s behaviour as written by developers. As such, we only
restored modifications that did not affect the program’s behavior (e.g., whitespaces). Indeed, in
many cases, in-depth domain knowledge is very much required to decouple refactoring and bug
fixation. JavaScript is a dynamic language, and code can be refactored in many ways. Thus, it is
more challenging to observe and account for side-effects only by looking at the code than, for
instance, in Java. In addition, refactoring may affect multiple parts of a project, it affects metrics
such as code coverage, and it makes restoring the original code changes more challenging.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 9

Table IV. Manual and dynamic validation statistics per application for all considered commits

B
O

W
E

R

E
S

L
IN

T

E
X

P
R

E
S

S

H
E

S
S

IA
N

.J
S

H
E

X
O

K
A

R
M

A

M
O

N
G

O
O

S
E

N
O

D
E

-R
E

D
IS

P
E

N
C

IL
B

L
U

E

S
H

IE
L

D
S

To
ta

l

Initial number of bugs 10 559 39 17 24 37 56 25 18 10 795

M
A

N
U

A
L

8 Fixes multiple issues 0 18 1 0 1 5 2 5 0 0 32
8 Too complex 0 94 0 4 8 4 8 7 9 2 136
8 Only dependency 1 9 0 0 1 0 2 0 0 0 13
8 No production code 0 20 4 0 1 1 2 0 0 1 29
8 No tests changed 1 0 1 0 0 0 0 1 1 0 4
8 Refactoring 0 36 0 0 0 1 1 1 0 0 39

After manual validation 8 382 33 13 13 26 41 11 8 7 542

D
Y

N
A

M
IC 8 Test does not fail at Vbug 1 11 6 4 1 2 8 3 1 3 40

8 Dependency missing 3 17 0 0 0 1 1 0 0 0 22
8 Error in tests 1 7 0 0 0 0 3 1 0 0 12
8 Not Mocha 0 14 0 0 0 1 0 0 0 0 15

4 Final Number of Bugs 3 333 27 9 12 22 29 7 7 4 453

Results. Overall, we manually validated 795 commits (i.e., bug candidates), of which 542 (68.18
%) fulfilled the criteria. Table IV (Manual) illustrates the result of this step for each application and
across all applications.

The most common reason for excluding a bug is that the fix was deemed as too complex (136).
Other frequent scenarios include cases where a bug-fixing commit addressed more than one
bug (32), or where the fix did not involve production code (29), or contained refactoring
operations (39). Also, we found four cases in which the patch did not involve the actual test’s source
code, but rather comments or configuration files.

3.4. Sanity Checking through Dynamic Validation

To ensure that the test cases introduced in a bug-fixing commit were actually intended to test the
buggy feature, we adopted a systematic and automatic approach described next.
Methodology. Let Vbug be the version of the source code that contains a bug b, and let Vfix be the
version in which b is fixed. The existing test cases in Vbug do not fail due to b. However, at least
one test of Vfix should fail when executed on Vbug. This allows us to identify the test in Vfix used
to demonstrate b (isolation) and to discard cases in which tests immaterial to the considered buggy
feature were introduced.

To run the tests, we obtained the dependencies and set up the environment for each specific
revision of the source code. Over time, however, developers made major changes to some of the
projects’ structure and environment, making tests replication infeasible. These cases occurred,
for instance, when older versions of required dependencies were no longer available, or when
developers migrated to a different testing framework (e.g., from QUnit to Mocha).

For the projects that used scripts (e.g., grunt, bash, Makefile) to run their tests, we extracted
them, so as to isolate each test’s execution and avoiding possible undesirable side effects caused by
running the complete test suite.
Results. After the dynamic analysis, 453 bug candidates were ultimately retained for inclusion in
BUGSJS (84% of the 542 bug candidates from the previous step).

Table IV (Dynamic) reports the results for the dynamic validation phase. In 22 cases, we were
unable to run the tests because dependencies were removed from the repositories. In 15 cases, the
project at revision Vbug did not use Mocha for testing b. In 12 cases, tests were failing during the
execution, whereas in 40 cases no tests failed when executed on Vbug. We excluded all such bug
candidates from the benchmark.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 P. GYIMESI ET AL.

BugsJS Organization

...

Forked

...

Forked

Subject#N
Fork

Source code
Tests
Cleaned patches
Tagged bug fixes

Subject#N
Original repository

Subject#1
Fork

Source code
Tests
Cleaned patches
Tagged bug fixes

Subject#1
Original repository

bug dataset
Repository

Utility framework
Bug statistics
Test commands
Bug report data

docker environment
Repository

Pre -built environment

Figure 2. Overview of BUGSJS architecture

3.5. Patch Creation

We performed manual cleaning on the bug-fixing patches, to make sure they only include changes
related to bug fixes. In particular, we removed irrelevant files (e.g., *.md, .gitignore, LICENSE),
and irrelevant changes (i.e., source code comments, when only comments changed, and comments
unrelated to bug-fixing code changes, as well as changes solely pertaining to whitespaces, tabs, or
newlines). Furthermore, for easier analysis, we separated the patches into two separate files, the first
one including the modifications to the tests, and the second one pertaining to the production code
fixes.

3.6. Final Benchmark Infrastructure and Implementation

Infrastructure. Figure 2 illustrates the overall architecture of BUGSJS, which supports common
activities related to the benchmark, such as running the tests at each revision, or checking out specific
commits. The framework’s command-line interface includes the following commands:

• info: Prints out information about a given bug.

• checkout: Checks-out the source code for a given bug.

• test: Runs all tests for a given bug and measures the test coverage.

• per-test: Runs each test individually and measures the per-test coverage for a given bug.

For the checkout, test, and per-test commands, the user can specify the desired code
revision: buggy, buggy with the test modifications applied, or the fixed version. BUGSJS is equipped
with a pre-built environment that includes the necessary configurations for each project to execute
correctly. This environment is available as a Docker image along with a detailed step-by-step
tutorial. The interested reader can find more information on BUGSJS and access the benchmark
on our website:

https://bugsjs.github.io/

Source code commits and tests. We used GitHub’s fork functionality to make a full copy of the git
history of the subject systems. The unique identifier of each commit (i.e., the commit SHA1 hashes)
remains intact when forking. In this way, we were able to synchronize the copied fork with the
original repository and keep it up-to-date. Importantly, our benchmark will not be lost if the original
repositories get deleted.

The fork is a separate git repository; therefore, we can push commits to it. Taking advantage of
this possibility, we have extended the repositories with additional commits, to separate the bug-
fixing commits and their corresponding tests. To make such commits easily identifiable, we tagged
them using the following notation (X denotes a sequential bug identifier):

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://bugsjs.github.io/

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 11

• Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the buggy
revision);

• Bug-X-original: A revision with the original bug-fixing changes (including the
production code and the newly added tests);

• Bug-X-test: A revision containing only the tests introduced in the bug-fixing commit,
applied to the buggy revision;

• Bug-X-fix: A revision containing only the production code changes introduced to fix the
bug, applied to the buggy revision;

• Bug-X-full: A revision containing both the cleaned fix and the newly added tests, applied
to the buggy revision.

Test runner commands. For each project, we have included the necessary test runner commands
in a CSV file. Each row of the file corresponds to a bug in the benchmark, and specifies:

1. A sequential bug identifier;

2. The test runner command required to run the tests;

3. The test runner command required to produce the test coverage results;

4. The Node.js version required for the project at the specific revision where the bug was fixed,
so that the tests can execute properly;

5. The preparatory test runner commands (e.g., to initialize the environment to run the tests,
which we call pre-commands);

6. The cleaning test runner commands (e.g., the tear down commands, which we call
post-commands) to restore the application’s state.

Bug report data. Forking repositories does not maintain the issue data associated with the original
repository. Thus, the links appearing in the commit messages of the forked repository still refer to
the original issues. In order to preserve the bug reports, we obtained them via the GitHub’s API and
stored them in the Google’s Protocol Buffers|| format. Particularly, for each bug report, we store the
original issue identifier paired with our sequential bug identifier, the text of the bug description, the
issue open and close dates, the SHA1 of the original bug-fixing commit along with the commit date
and commit author identifiers. Lastly, we save the comments from the issues’ discussions.

In the following, we list several artifacts that we added to BUGSJS in form of precomputed data.**

These can be reproduced by performing suitable static and dynamic analyzes on the benchmark,
however, we supply this information to better facilitate further bug-related research, including bug
prediction, fault localization, automatic repair, etc.
Test coverage data. As part of the technical extensions to the initial version of the framework [21],
we included in BUGSJS pre-computed information. We used the tool Istanbul†† to compute per-
test coverage data for Bug-X and Bug-X-test versions of each bug, and the results are available
in the JSON format. Particularly, for each project, we included information about the tests of the
Bug-X versions in a separate CSV file. Each row in such file contains the following information:

1. A sequential bug identifier;

2. Total LOC in the source code, as well as LOC covered by the tests;

‖https://developers.google.com/protocol-buffers/
∗∗https://github.com/BugsJS/bug-dataset
††https://istanbul.js.org/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://developers.google.com/protocol-buffers/
https://github.com/BugsJS/bug-dataset
https://istanbul.js.org/

12 P. GYIMESI ET AL.

Figure 3. BugsJS Dissection overview page

3. The number of functions in the source code, as well as the number of functions covered by
the tests;

4. The number of branches in the source code, as well as the number of branches covered by the
tests;

5. The total number of tests in the test suite, along with the the number of passing, failing and
pending tests (i.e., the tests which were skipped due to execution problems).

Static source code metrics. Furthermore, to support studies based on source code metrics, we run
static analysis on Bug-X-full and Bug-X versions of each bug. For the static analysis, we used
the tool SourceMeter‡‡ which calculates 41 static source code metrics for JavaScript. The results
are available in a zip file named metrics.

3.7. BugsJS Dissection

Sobreira et al. [44] implemented a web-based interface for the bugs in the Defects4J bug
benchmark [15]. It presents data to help researchers and practitioners to better understand this bug
dataset.* We also utilized this dashboard and ported Dissection to BUGSJS (Figure 3), which is
available on the BUGSJS website:

https://bugsjs.github.io/dissection

BUGSJS Dissection presents the information in the dataset to the user in an accessible and
browsable format, which is useful for inspecting the various information related to the bugs, their
fixes, their descriptions, and other artefacts such as the pre-computed metrics.

More precisely, information provided in BUGSJS Dissection include:

1. # Files: number of changed files.

2. # Lines: number of changed lines.

3. # Added: number of added lines.

‡‡https://www.sourcemeter.com/
∗https://github.com/program-repair/defects4j-dissection

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://bugsjs.github.io/dissection
https://www.sourcemeter.com/
https://github.com/program-repair/defects4j-dissection

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 13

Figure 4. BugsJS Dissection page for one bug

4. # Removed: number of removed lines.

5. # Modified: number of modified lines.

6. # Chunks: number of sections containing sequential line changes.

7. # Failing tests: number of failed test cases.

8. # Bug-fixing type: number of bug-fixing types based on the taxonomy by Pan et al. [45].

Inspection of the bugs is supported through different filtering mechanisms that are based on
the bug taxonomy and bug-fix types. By clicking on a bug, additional details appear (Figure 4),
including bug-fix types, the patch by the developers, taxonomy category and failed tests.

3.8. Extending BugsJS

BUGSJS was designed and implemented in a way that is easy to extend with new JavaScript projects,
however, there are some restrictions. The current version of the framework only supports projects
that are in a git repository and use the Mocha testing framework. If the project is hosted on GitHub, it
can be also forked under the BUGSJS’s GitHub Organization to preserve the state of the repository.

Mining an appropriate bug to add to BUGSJS takes four steps as described at the beginning
of Section 3. It is mainly manual work, but some of it could be done programmatically. In our case,
we used GitHub as the source of bug reports, which has a public API, thus we could automate the
bug collection step. Validating the bug-fixing patches requires manual work, but it can be partially
supported by automation, e.g., for filtering patches that modify both the production code and the
tests. However, in our experience during the development of BUGSJS, the location of test files
varies across different projects, and sometimes across versions as well. Thus, it is still challenging
to automatically determine it for an arbitrary set of JavaScript projects. Dynamic validation also
requires some manual effort. Despite we limited the support only to the most common testing
framework (Mocha), the command that runs the test suite is, in some cases, assembled at run-
time (e.g., with grunt or Makefile) and can change over time. Extracting it programmatically is
only possible for standard cases, e.g., when it is located in the default package.json file. Due to
the great variety of JavaScript projects, this process can hardly be automated, as compared to other
languages like Java, where project build systems are more homogeneous.

After a suitable bug is found, some preparatory steps are required before a bug can be added
to BUGSJS. If necessary, irrelevant white space and comment modifications can be removed from
the bug-fix patch, which is re-added to the repository as a new commit. Next, the production code

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 P. GYIMESI ET AL.

modifications should be separated from the test modifications by committing the changes separately
on top of the buggy version. Then, the commits should be tagged according to the notation described
in Section 3.6. Finally, the new bug can be submitted to BUGSJS using a GitHub pull request. The
pull request has to contain the modified or added CSV files that contain the repository URL, the test
runner command, and any additional commands (pre and post) if any. Adding precomputed data is
not mandatory, but beneficial.

4. TAXONOMY OF BUGS IN BUGSJS

In this section, we present a detailed overview of the root causes behind the bugs in our benchmark.
We adopted a systematic process to classify the nature of each bug, which we describe next.

4.1. Manual Labeling of Bugs

Each bug and associated information (i.e., bug report, and issue description) was manually analyzed
by four authors (referred to as “taggers” hereafter) following an open coding procedure [46]. Four
taggers specified a descriptive label to each bug assigned to them. The labeling task was performed
independently, and the disagreements were discussed and resolved through dedicated meetings.
Unclear cases were also discussed and resolved during such meetings.

First, we performed a pilot study, in which all taggers reviewed and labeled a sample of 10 bugs.
Bugs for the pilot were selected randomly from all projects in BUGSJS. The consensus on the
procedure and the final labels was high, therefore for the subsequent rounds the four taggers were
split into two pairs, which were shuffled after each round of tagging.

The labels were collected in separate spreadsheets; the agreement on the final labels was found
by discussion. During the tagging, the taggers could reuse existing labels previously created, should
an existing label apply to the bug under analysis. This choice was meant to limit introducing nearly-
similar labels for the same bug, and help taggers to use consistent naming conventions.

When inspecting the bugs, we looked at several sources of information, namely (1) the bug-fixing
commit on the GitHub’s web interface containing the commit title, the description as well as at the
code changes, and (2) the entire issue and pull-request discussions.

In order to achieve internal validation in the labeling task, we performed cross-validation.
Specifically, we created an initial version of the taxonomy labeling around 80% of the bugs (353).
Then, to validate the initial taxonomy, the remaining 20% (100) were simply assigned to the closest
category in the initial taxonomy, or a new category was created, when appropriate. Bugs for the
initial taxonomy were selected at random, but they were uniformly selected among all subjects,
to avoid over-fitting the taxonomy towards a specific project. Analogously, the validation set was
retained so as to make sure all projects were represented. Internal validation of the initial taxonomy
is achieved if few or no more categories (i.e., labels) were needed for categorizing the validation
bugs. The labeling process involved four rounds: first round (the pilot study) involved labeling 10
bugs, second round 43 bugs, and 150 bugs were analyzed in both third and fourth rounds.

4.2. Taxonomy Construction

After enumerating all causes of bugs in BUGSJS, we began the process of creating a taxonomy,
following a systematic process. During a physical meeting, for each bug instance, all taggers
reviewed the bugs and identified candidate equivalence classes to which descriptive labels were
assigned. By following a bottom-up approach, we first clustered tags that correspond to similar
notions into categories. Then, we created parent categories, in which that categories and their
subcategories follow specialization relationship.

4.3. Taxonomy Internal Validation

We performed the validation phase in a physical meeting. Each of the four tagger classified
independently one fourth of the validation set (25 bugs), assigning each of them to the most

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 15

appropriate category. After this task, all taggers reviewed and discussed the unclear cases to
reach full consensus. All 100 validation bugs were assigned to existing categories, and no further
categories were needed.

4.4. The Final Taxonomy

Figure 5. Taxonomy of bugs in the benchmark of JavaScript programs of BUGSJS.

Figure 5 presents a graphical view of our taxonomy of bugs in the JavaScript benchmark.
Nodes represent classes and subclasses of bugs, and edges represent specialization relationships.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 P. GYIMESI ET AL.

Specializations are not complete, disjoint relationships. Even though during labeling we tried
assigning the most specific category, we found out during taxonomy creation that we had to group
together many app-specific corner cases. Thus, some bugs pertaining to inner nodes were not further
specialized to avoid creating an excessive number of leaf nodes with only a few corner cases.

At the highest level, we identified four distinct categories of causes of bugs, as follows:

1. Causes related to an incomplete feature implementation. These bugs are related either
to an incomplete understanding of the main functionalities of the considered application,
or a refinement in the requirements. In these cases, the functionalities have already been
implemented by developers according to their best knowledge, but over time, users or other
developers found out that they do not consider all aspects of the corresponding requirements.
More precisely, given a requirement r, the developer implemented a program feature f ′ which
corresponds to only a subset r′ ⊂ r of the intended functionality. Thus, the developer has to
adapt the existing functionality f ′ ⊂ f to f , in order to satisfy the requirement in r. Typical
instances of this bug category are related to one or more specific corner-cases that were
unpredictable at the time in which that feature was initially created, or when the requirements
for the main functionalities are changed or extended to some extent.

2. Causes related to an incorrect feature implementation. These bugs are also related to the
mainstream functionalities of the application. Differently from the previous category, the bugs
in this category are related to wrong implementation by the developers, for instance, due to an
incorrect interpretation of the requirements. More precisely, suppose that given a requirement
r, the developer implemented a program feature f ′, to the best of her knowledge. Over time,
other developers found out by the usage of the program, that the behavior of f ′ does not reflect
the intended behavior described in r, and opened a dedicated issue in the GitHub repository
(and, eventually, a pull request with a first fix attempt).

3. Causes related to generic programming errors. Bugs belonging to this category are typically
not related to an incomplete/incorrect understanding of the requirements by developers, but
rather to common coding errors, which are also important from the point of view of a
taxonomy of bugs.

4. Causes related to perfective maintenance. Perfective maintenance involves making functional
enhancements to the program in addition to the activities to increase its performance even
when the changes have not been suggested by bugs. These can include completely new
requirements to the functionalities or improvements to other internal, or external quality
attributes not affecting existing functionalities. When composing BUGSJS, we aimed at
excluding such cases from the candidate bugs (see Section 3), however, the bugs that we
classified in the taxonomy with this category were labeled as bugs by the original developers,
so we decided to retain them in the benchmark.

We now discuss each of these categories in turn, in each case considering the subcategories
beneath them.

1 - Incomplete feature implementation

This category contains 45% of the bugs overall, and has five subcategories, which we describe in
the following subsection.

1.1 - Incomplete data processing

The bugs in this category are related to an incomplete implementation of a feature’s logic, i.e., the
way in which the input is consumed and transformed into output.

Overall, 27 bugs were found to be of this type. An example is Bug#7 of Hexo,* in which an
HTML anchor was undefined, unless correct escaping of markdown characters is used.

∗https://github.com/BugsJS/hexo/releases/tag/Bug-7-original

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/BugsJS/hexo/releases/tag/Bug-7-original

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 17

– var text = $(this).html();
+ var text = _.escape($(this).text());

1.2 - Missing input validation

The bugs in this category are related to an incomplete input validation, i.e., the way in which the
program checks whether a given input is valid, and can be processed further.

Overall, 16% of the bugs were found to be of this type, and a further 16% in more specialized
instances. This prevalence was mostly due to the nature of some of our programs. For instance,
ESLint provides linting utilities for JavaScript code, and it is the most represented project in
BUGSJS (73%). Therefore, being its main scope to actually validate code, we found many cases
related to invalid inputs being unmanaged by the library, even though we found instances of these
bugs also in other projects. For instance, in Bug#4 of Karma,† a file parsing operation should not
be triggered on URLs having no line number. As such, in the bug-fixing commit, the proposed fix
adds one more condition.
– if (file && file.sourceMap) {
+ if (file && file.sourceMap && line) {

Another prevalent category is due to missing type check on inputs (11%), whereas less frequent
categories were missing check of null inputs, empty parameters, and missing handling of spaces or
other special characters (e.g., in URLs).

1.3 - Error handling

The bugs in this category are related to an incomplete handling of errors, i.e., the way in which the
program manages erroneous cases, i.e., exception handling.

Overall, 3% of the bugs were found to be of this type. For instance, in Bug#14 of Karma,‡ the
program does not throw an error when using a plugin for a browser that is not installed, which is
a corner-case missed in the initial implementation. Additionally, we found two cases specific to
callbacks.

1.4 - Incomplete configuration processing

The bugs in this category are related to an incomplete configuration, i.e., the values of parameters
accepted by the program.

Overall, 2% of the bugs were found to be of this type. For instance, in Bug#10 of ESLint,§ an
invalid configuration is used when applying extensions to the default configuration object. The bug
fix updates the default configuration object’s constructor to use the correct context, and to make sure
the config cache exists when the default configuration is evaluated.

1.5 - Incomplete output message

The last sub-category pertains to bugs related to incomplete output messages by the program.
Only three bugs were found to be of this type. For instance, in Bug#8 of Hessian.js,¶ the program

casts the values exceeding Number.MAX SAFE INTEGER as string, to allow safe readings of large
floating point values.

2 - Incorrect feature implementation

This category contains 48% of the bugs overall, and has seven subcategories, which we describe in
the following subsections.

†https://github.com/BugsJS/karma/releases/tag/Bug-4-original
‡https://github.com/BugsJS/karma/releases/tag/Bug-14-original
§https://github.com/BugsJS/eslint/releases/tag/Bug-10-original
¶https://github.com/BugsJS/hessian.js/releases/tag/Bug-8-original

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/BugsJS/karma/releases/tag/Bug-4-original
https://github.com/BugsJS/karma/releases/tag/Bug-14-original
https://github.com/BugsJS/eslint/releases/tag/Bug-10-original
https://github.com/BugsJS/hessian.js/releases/tag/Bug-8-original

18 P. GYIMESI ET AL.

2.1 - Incorrect data processing

The bugs in this category are related to a wrong implementation of a feature’s logic, i.e., the way in
which the input is consumed and transformed into output.

Overall, 75 bugs were found to be of this type, with two subcategories due to a wrong type
comparison (1 bug), or an incorrect initialization (10 bugs). An example of this latter category is
Bug#238 of ESLint,|| in which developers remove the default parser from CLIEngine options to fix
a parsing error.
– parser: DEFAULT_PARSER
+ parser: ""

2.2 - Incorrect input validation

The bugs in this category are related to a wrong input validation, i.e., the way in which the program
checks whether a given input is valid, and can be processed further.

Overall, 19% of the bugs were found to be of this type, with three subcategories due to
unnecessary type checks (7 bugs), incorrect handling of special characters (16 bugs), or empty input
parameters given to the program (2 bugs). As an example of this latter category, in Bug#171 of
ESLint,** the arrow-spacing rule did not check for all spaces between the arrow character (=>)
within a given code. Therefore, it is updated as follows:
– while (t.type !== "Punctuator" || t.value !== "=>") {
+ while (arrow.value !== "=>") {

2.3 - Incorrect filepath

The bugs in this category are related to wrong paths to external resources necessary to the program,
such as files. For instance, in Bug#6 of ESLint,†† developers failed to check for configuration files
within sub-directories. Therefore, the code was updated as follows:
– if (!directory)
+ if (directory) directory = path.resolve(this.cwd, directory);

2.4 - Incorrect output

The bugs in this category are related to incorrect output by the program. For instance, in Bug#7
of Karma,* the exit code is wrongly replaced by null characters (\0x00), which results in squares
(������) being displayed in the standard output.
– return exitCode
+ return {exitCode: exitCode, buffer: buffer.slice(0, tailPos)}

2.5 - Incorrect configuration processing

The bugs in this category are related to an incorrect configuration of the program, i.e., the values of
parameters accepted.

Nine bugs were found to be of this type. For instance, in Bug#145 of ESLint,† a regression
was accidentally introduced where parsers would get passed additional unwanted default options
even when the user did not specify them. The fix updates the default parser options to prevent any
unexpected options from getting passed to parsers.
– let parserOptions = Object.assign({}, defaultConfig.parserOptions);
+ let parserOptions = {};

‖https://github.com/BugsJS/eslint/releases/tag/Bug-238-original
∗∗https://github.com/BugsJS/eslint/releases/tag/Bug-171-original
††https://github.com/BugsJS/eslint/releases/tag/Bug-6-original
∗https://github.com/BugsJS/karma/releases/tag/Bug-7-original
†https://github.com/BugsJS/eslint/releases/tag/Bug-145-original

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/BugsJS/eslint/releases/tag/Bug-238-original
https://github.com/BugsJS/eslint/releases/tag/Bug-171-original
https://github.com/BugsJS/eslint/releases/tag/Bug-6-original
https://github.com/BugsJS/karma/releases/tag/Bug-7-original
https://github.com/BugsJS/eslint/releases/tag/Bug-145-original

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 19

2.6 - Incorrect handling of regex expressions

The bugs in this category are related to an incorrect use of regular expressions.
Seven bugs were found to be of this type. For instance, in Bug#244 of ESLint,‡ a regular

expression is wrongly used to check that the function name starts with setTimeout.

2.7 - Performance

The bugs in this category caused the program to use an excessive amount of resources (e.g.,
memory). Only four bugs were found to be of this type. For instance, in Bug#85 of ESLint,§ a
regular expression susceptible to catastrophic backtracking was used. The match takes quadratic
time in the length of the last line of the file, causing Node.js to hang when the last line of the file
contains more than 30,000 characters. Another representative example is Bug#1 of Node-Redis,¶ in
which parsing big JSON files takes substantial time due to an inefficient caching mechanism which
makes the parsing time grow exponentially with the size of file.

3 - Generic

This category contains 6% of the bugs overall, and has six subcategories, which we describe next.

3.1 - Typo This category refers to typographical errors by the developers.
We found three such bugs in our benchmark. For instance, in Bug#321 of ESLint,|| a rule is

intended to compare the start line of a statement with the end line of the previous token. Due to
a typo, it was comparing the end line of the statement instead, which caused false positives for
multiline statements.

3.2 - Return statement The bugs in this category are related to either missing return statements
(3 bugs), or incorrect usage of return statements (1 bug). For instance, in Bug#8 of Mongoose,**

the fix involves adding an explicit return statement.

– this.constructor.update.apply(this.constructor, args);
+ return this.constructor.update.apply(this.constructor, args);

3.3 - Variable inizialization The bugs in this category are related to either missing initialization of
variables statements (8 bugs), or to an incorrect initialization of variables (4 bugs). For instance, in
Bug#9 of Express,* the fix involves correcting a wrongly initialized variable.

– mount_app.mountpath = path;
+ mount_app.mountpath = mount_path;

3.4 - Data processing The bugs in this category are related to incorrect processing of information.
Six bugs were found to be of this type. For instance, in Bug#184 of ESLint,† developers fixed

the possibility of passing negative values to the string.slice function.

– currentText.slice(node.range[0] - (beforeCount || 0)
+ currentText.slice(Math.max(node.range[0] - (beforeCount || 0), 0)

‡https://github.com/BugsJS/eslint/releases/tag/Bug-244-original
§https://github.com/BugsJS/eslint/releases/tag/Bug-85-original
¶https://github.com/BugsJS/node_redis/releases/tag/Bug-1-original
‖https://github.com/BugsJS/eslint/releases/tag/Bug-321-original
∗∗https://github.com/BugsJS/mongoose/releases/tag/Bug-8-original
∗https://github.com/BugsJS/express/releases/tag/Bug-9-original
†https://github.com/BugsJS/eslint/releases/tag/Bug-184-original

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/BugsJS/eslint/releases/tag/Bug-244-original
https://github.com/BugsJS/eslint/releases/tag/Bug-85-original
https://github.com/BugsJS/node_redis/releases/tag/Bug-1-original
https://github.com/BugsJS/eslint/releases/tag/Bug-321-original
https://github.com/BugsJS/mongoose/releases/tag/Bug-8-original
https://github.com/BugsJS/express/releases/tag/Bug-9-original
https://github.com/BugsJS/eslint/releases/tag/Bug-184-original

20 P. GYIMESI ET AL.

3.5 - Missing type conversion The bugs in this category are related to missing type conversions.
Three bugs were found to be of this type. For instance, in Bug#4 of Shields,‡ developers forgot

to convert labels to string prior to apply the uppercase transformation.
– data.text[0] = data.text[0].toUpperCase();
+ data.text[0] = (’’ + data.text[0]).toUpperCase();

3.6 - Loop statement We found only one bug of this type—Bug#304 of Shields,§—related to an
incorrect usage of loop statements.
– while ((currentAncestor = currentAncestor.parent))
– if (isConditionalTestExpression(currentAncestor)) {
– return currentAncestor.parent;
– }
– }

+ do {
+ if (isConditionalTestExpression(currentAncestor)) {
+ return currentAncestor.parent;
+ }
+ } while ((currentAncestor = currentAncestor.parent));

4 - Perfective maintenance

This category contains only 1% of the bugs. For instance, in Bug#209 of ESLint,¶ developers fix
JUnit parsing errors which treat no test cases having empty output message as a failure.

5. ANALYSIS OF BUG-FIXES

To gain a better understanding about the characteristics of bug-fixes of bugs included in BUGSJS,
we have performed two analyses to quantitatively and qualitatively assess the representativeness
of our benchmark. This serves as an addition to the taxonomy presented in Section 4.4 which, by
connecting the bug types to the bug-fix types, can support applications such as automated fault
localization and automated bug repair.

5.1. Code Churn

Code churn is a measure that approximates the rate at which code evolves. It is defined as the sum
of the number of lines added and removed in a source code change. The churn is an important
measure with several uses in software engineering studies, e.g., as a direct or indirect predictor in
bug prediction models [47, 48].

We utilize the distribution of code churn to describe the overall data distribution in the benchmark,
and understand to what extent it can be used to support software testing techniques (e.g., fault
localization, program repair) that are directly affected by the size of the source code changes.

Figure 6 illustrates the distribution of code churn in each bug-fixing commit in BUGSJS, before
cleaning the patches (Figure 6a), after removing changes unrelated to the fix, while retaining related
comments added or removed during the bug fix (Figure 6b), and after cleaning the fixes and also
removing all the comments and whitespaces (Figure 6c). The box and whisker plots show the
quartiles of the data, enhanced by the underlying violin plots to better depict the data distribution.

The median value for the code churn required to fix a bug is 5 and 17 for production and test code,
respectively (excluding irrelevant changes, comments, and whitespaces). This essentially means that
for each line of bug-fixing change in the production code, more than three lines of test code were
changed on average.

‡https://github.com/BugsJS/shields/releases/tag/Bug-4-original
§https://github.com/BugsJS/eslint/releases/tag/Bug-304-original
¶https://github.com/BugsJS/eslint/releases/tag/Bug-209-original

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/BugsJS/shields/releases/tag/Bug-4-original
https://github.com/BugsJS/eslint/releases/tag/Bug-304-original
https://github.com/BugsJS/eslint/releases/tag/Bug-209-original

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 21

11

48

3,685

8

20

Production Test

(a) Before cleaning

11

44

3,685

7

20

Production Test

(b) Cleaned

11

41

3,632

5

17

Production Test

(c) Cleaned+No Comments

Figure 6. Distribution of the churn in bug-fixing commits.

We can also observe that nearly half of the changes done to the production code involve more
than five lines of code, suggesting that existing fault localization and repair techniques will fall
short in being applicable on real JavaScript bugs, as they currently deal with one-liner changes only.
Previous work showed that the same conclusion holds for Java projects [49].

In addition, comparing the median values in Figure 6 suggests that developers, on average,
add/remove one line of unrelated code changes (i.e., 8− 7) and two lines of comments/whitespace
(i.e., 7− 5) when fixing a bug. This essentially shows the importance of the manual isolation and
cleaning performed on the bugs included in BUGSJS.

The largest value for churn in test code is 3,632 lines (Figure 6c), occurring in a bug-fixing
commit in the ESLint project. This commit corresponds to generated test data committed along
with the production code bug-fixing changes. A closer look at the data revealed that there are five
other such commits in this project, all changing more than 1,000 lines of test code. Such commits
in which the number of changes is exceptionally high (i.e., outliers) should be carefully handled or
discarded when conducting empirical studies.

5.2. Patterns in Bug Fixes

We further analyzed the bugs in BUGSJS to observe occurrence of low-level bug fixes for recurring
patterns. Previous work [45, 49, 50] have studied patterns in bug-fixing changes within Java
programs. They suggest that the existence of patterns in fixes reveals that specific kinds of code
constructs (e.g., if conditionals) could signal weak points in the source code where developers are
consistently more prone to introduce bugs [45].

Methodology. Four authors of this paper manually investigated all 453 bug-fixing commits in
BUGSJS and attempted to assign the bug-fixing changes to one of the predefined categories
suggested in previous studies. In particular, we used the categories proposed by Pan et al. [45].
These categories, however, are related to Java bug fixes. Our aim is to assess whether they generalize
to JavaScript, or whether, in contrast, JavaScript-specific bug fix patterns would emerge.

Following the original category definitions [45], we assigned each individual bug-fix to exactly
one category. Disagreements concerning classification or potential new categories were resolved by
further discussion between the authors. To identify the occurrences of such patterns, we opted for
a manual analysis to ensure covering potential new patterns, and to add an extra layer of validation
against potential misclassifications (e.g., false positives).

Table V shows the number of bug fix occurrences followed the categories by Pan et al. [45]. (For
fixes spanning multiple lines, we possibly assigned more than one category to a single bug-fixing
commit, hence, the overall number of occurrences is greater than the number of bugs.)

Note that, since the categories proposed by Pan et al. have been derived from Java programs, we
had to make sure to match them correctly on JavaScript code. In particular, until ECMAScript 2015,
JavaScript did not include syntactical support for classes. Classes were emulated using functions
as constructors, and methods/fields are added to their prototype [51, 52, 53]. In addition, object

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 P. GYIMESI ET AL.

Table V. Bug-fixing change types by Pan et al. [45], and new JavaScript-related patterns found by our study.

Category Example #

E
X

IS
T

IN
G

if-related Changing if conditions 291
Assignments Modifying the RHS of an assignment 166
Function calls Adding or modifying an argument 151
Class fields Adding/removing class fields 151
Function declarations Modifying a function’s signature 94
Sequences Adding a function call to a sequence of

calls, all with the same receiver
42

Loops Changing a loop’s predicate 7
switch blocks Adding/removing a switch branch 6
try blocks Introducing a new try-catch block 1

N
E

W

return statements Changing a return statement 40
Variable declaration Declaring an existing variable 2
Initialization Initializing a variable with empty object

literal/array
3

literals could represent imaginary classes: comma-separated list of name-value pairs enclosed in
curly braces, where the name-value pairs declare the class fields/methods. We have taken all these
aspects into account during the assignment task, to avoid misclassifications.

Our analysis revealed that, in 88% of bugs in BUGSJS, the fix includes changes falling into one
of the proposed categories. The most prevalent bug fix patterns involve changing an if statement
(i.e., modifying the if condition or adding a precondition), changing assignment statements, and
modifying function call arguments (Table V). The same three categories have been also found to
be most recurring in Java code, but with a different ordering: Pan et al. [45] report that the most
prevalent fix patterns are changes done on method calls, if conditions, and assignment expressions.
In addition, we found that changes to class fields are also prevalent. This can be explained by the
fact that in JavaScript, object literals are frequently created without the need for defining a class or
function constructor, and, as far as fixing bugs is concerned, updating their attributes (i.e., fields) is
a common practice.

5.2.1. JavaScript-related Bug-Fixing Patterns We found three new recurring patterns in our
benchmark, which we describe next.

Changes to the return statement’s expression. We found a recurring bug-fixing pattern involving
changing the return statement’s expression of a function, i.e.:

– return node.type !== "A";
+ return !(node.type === "A" && lastI.type === "R");

Variable declaration. In JavaScript, it is possible to use a variable without declaring it. However,
this has implications which might lead to subtle silent bugs. For example, when a variable is
used inside a function without being declared, it is “hoisted” to the top of the global scope. As
a consequence, it is visible to all functions, outside its original lexical scope, which can lead to
name clashes. This fix pattern essentially includes declaring a variable which has already been in
use.

Initialization of empty variables. This bug-fixing pattern category corresponds to Hanam et
al.’s [25] first bug pattern, i.e., Dereferenced non-values. To avoid this type of bug, developers
can add additional if statements, comparing values against “falsey” values (“undefined” type,
or “null”). This bug fix pattern provides a shortcut to using an if statement, by using a logical
“or” operator, e.g., a = a || {}, which means that the value of a will remain intact if it already
has a “non-falsey” value, or it will be initialized with an empty object otherwise.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 23

5.3. Bug Taxonomy and Bug-Fixing Types

We compared the taxonomy with the bug-fixing patterns used to fix the bugs. Figure 7, Figure 8
and Figure 9 present Sankey diagrams showing the relationship of the assigned bug categories with
the bug-fixing patterns of Pan et al. [45] and the JavaScript-related bug-fixing patterns described
in Section 5.3. We focused our analysis on the first three main bug categories of our taxonomy.
For presentational clarity, each figure shows a diagram for one of such main categories. The left
side of the diagrams shows one of the main bug categories, unfolded into its sub-categories. The
right side depicts the associated bug-fixing patterns. The None node indicates that no patterns were
applicable. In the middle, each bug category is connected to each bug-fixing patterns that are used
to fix the bugs belonging to the bug category. The thickness of the curved lines between the nodes
indicates the cardinality of the association.

For example, in Figure 7, the node incomplete feature implementation is connected to the sub-
category missing input validation with a thick line, due to the majority of the bugs in this main
category belonging to that sub-category. Then, the node of that sub-category is connected to the
node of the IF-CC bug-fixing pattern with a relatively thick line, because a considerable amount
of bugs fixes are classified into that category. The nodes of the bug categories can be wider than
the total width of the lines connected from the right side, because bug fixes can be assigned with
multiple bug patterns, whereas each bug is assigned with exactly one bug category. Also, there
are bugs that are only assigned to a main category, e.g., Missing input validation, but not to any
sub-category, which resulted in the direct lines between pattern and main category nodes.

Table VI gives a description about the bug-fixing pattern abbreviations. We now discuss each of
the bug categories in detail.

5.3.1. Incomplete feature implementation Figure 7 illustrates the connection between the bugs
under the Incomplete feature implementation category and the related bug-fixing patterns.

Missing input validation. Table VII shows that the majority of the bugs assigned with this category
are fixed by if-related (53), assignment related (29) and method declaration related (22) changes.
The most common are changing a condition in an if statement (IF-CC), changing an assignment
expression (AS-CE) or by adding a method declaration (MD-ADD). The most numerous sub-
category is the Missing type check and the related bugs are mainly fixed by if-related changes
(39), the top two are IF-CC and IF-APCJ and by changing an assignment expression (18 AS-CE).
The fixes of bugs in the Missing handling of special characters sub-category often contain changes
in an assignment expression (6 AS-CE) and in an if statement (5), mainly adding post-condition
checks (IF-APTC). Bugs belonging to the Missing null check and the Empty input parameters sub-
categories are mainly fixed by changing an if condition (5). The Missing handling of spaces sub-
category is connected to various bug-fixing patterns and none of them is dominant.

Incomplete configuration processing. The majority of the bug fixes of this category contain if-
related patterns (9), mainly IF-APC, adding a precondition check. The Missing type check sub-
category of Incomplete configuration processing is too small to draw meaningful conclusions.

Error handling. Bugs of this category are typically fixed with if-related fixes (12), namely IF-
APCJ, IF-APC and IF-CC. The second most common fix patterns are MC-DNP, changing the
number of parameters (3) and MD-ADD, adding a method declaration (4). The Callbacks sub-
category of Error handling is related to a variety of bug-fixing patterns (4 if-related, 1 assignment
related, 1 method call related and 1 sequence related).

Incomplete output message. Bugs assigned with this category are usually fixed by changing the
parameters of function calls (2 MC-DAP, 1 MC-DNP).

Incomplete data processing. Bugs belonging to this category were fixed in a variety of ways. The
most common pattern are method call related (11), but there is no dominant bug-fixing pattern.

5.3.2. Incorrect feature implementation Figure 8 illustrates the connection between the bugs under
the Incorrect feature implementation category and the related bug-fixing patterns.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 P. GYIMESI ET AL.

Table VI. Bug-fixing patterns

Category Pattern name

Pan [45]
Assignment (AS) Change of assignment expression (AS-CE)

Class Field (CF) Addition of a class field (CF-ADD)
Change of class field declaration (CF-CHG)
Removal of a class field (CF-RMV)

If-related (IF) Addition of an else branch (IF-ABR)
Addition of precondition check (IF-APC)
Addition of precondition check with jump (IF-APCJ)
Addition of post-condition check (IF-APTC)
Change of if condition expression (IF-CC)
Removal of an else branch (IF-RBR)
Removal of an if predicate (IF-RMV)

Loop (LP) Change of loop condition (LP-CC)
Change of the expression that modifies the loop variable (LP-CE)

Method Call (MC) Method call with different actual parameter values (MC-DAP)
Different method call to a class instance (MC-DM)
Method call with different number or types of parameters (MC-DNP)

Method Declaration (MD) Change of method declaration (MD-CHG)
Addition of a method declaration (MD-ADD)
Removal of a method declaration (MD-RMV)

Sequence (SQ) Addition of operations in an operation sequence of
field settings (SQ-AFO)
Addition of operations in an operation sequence of
method calls to an object (SQ-AMO)
Addition or removal method call operations in a short
construct body (SQ-AROB)
Removal of operations from an operation sequence of
field settings (SQ-RFO)
Removal of operations from an operation sequence of
method calls to an object (SQ-RMO)

Switch (SW) Addition/removal of switch branch (SW-ARSB)

Try (TY) Addition/removal of a catch block (TY-ARCB)
Addition/removal of a try statement (TY-ARTC)

BugsJS
JavaScript (JS) Changing a return statement (JS-Return)

Initializing a variable with empty object literal/array (JS-Initialization)
Declaring an existing variable (JS-Declaration)

Incorrect input validation. The most dominant bug-fixing patterns of this category are if-related
(56), method call related (27) and assignment related (25). The most numerous if-related pattern
is IF-CC and the most numerous method call related pattern is MC-DAP. Furthermore, return
statement related (12 JS-Return) and method declaration related (10 MD-ADD and 5 MD-CHG)
patterns are also quite common. In the Unnecessary type check sub-category the most common
pattern is if-related (6 IF-CC and 1 IF-RMV) and the second most common pattern is the
assignment related pattern (5 AS-CE). Bugs belonging to the biggest input validation related sub-
category, the Incorrect handling of special characters, are usually fixed with method call related
changes (10 MC-DAP and 2 MC-DM), with assignment related changes (9 AS-CE) and with
method declaration related changes (9 MD-ADD and 1 MD-RMV). The Empty input parameters
sub-category of Incorrect input validation is too small to draw meaningful conclusions.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 25

configuration processing: 17

callbacks: 8

error handling: 28

incomplete output message: 4

missing null check: 7

incomplete data processing: 39

incomplete feature implementation: 202

empty input parameters: 6

missing input validation: 205

AS: 64AS-CE: 64

missing type check: 86

missing handling of spaces: 8

TY-ARTC: 1

missing type checking: 2

TY: 1

SQ-AMO: 5
SQ: 8

SQ-AFO: 2

SQ-AROB: 1

CF-CHG: 10

CF-ADD: 2

CF: 12

MD-CHG: 9

MD-DNP: 1

MD-ADD: 32

MD: 46

MD-RMV: 4

None: 11

MC-ADD: 1

MC-DNP: 17

MC-DM: 6

MC-DAP: 22

MC: 46

SW-ARSB: 4 SW: 4

LP-CC: 2 LP: 2

JS-Declaration: 1
JS-Initialization: 1

JS-Return: 11
JS: 13

IF-CHG: 1
IF-RBR: 1
IF-RMV: 2
IF-ACPJ: 1

IF-APC: 26

IF-ABR: 7

IF-APCJ: 29

missing handling of special characters: 13

IF-CC: 69

IF-APTC: 6

IF: 142

Figure 7. Bug-fixing patterns used in the Incomplete feature implementation category

Incorrect data processing. Similarly to the Incomplete data processing category, bugs belonging
to this category were fixed in a variety of ways. There is no dominant bug-fixing pattern. The most
numerous patterns are if-related (39), method call related (27) and assignment related (24). The
Incorrect initialization sub-category is interestingly not connected to if-related patterns at all.
The bug fixes of this category are connected to only assignment related (5), sequence related (5)
and method call related (4) patterns. The Incorrect type comparison sub-category of Incorrect data
processing is too small to draw meaningful conclusions.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 P. GYIMESI ET AL.

performance: 14

incorrect input validation: 168

incorrect data processing: 135

incorrect handling of special characters: 42

incorrect feature implementation: 215

unnecessary type check: 14

incorrect handling of regex expressions: 26

LP: 3

incorrect output: 27

CF: 5

configuration processing: 16

incorrect filepath: 17

AS: 94AS-CE: 94

MC: 98

MC-DAP: 68

MC-DM: 20

MC-DNP: 10

IF: 135

IF-CC: 74

IF-APTC: 2
IF-RBR: 4

IF-APCJ: 25

IF-APC: 17

MD: 46

IF-ABR: 6

IF-RMV: 7

MD-ADD: 35

MD-RMV: 1
MD-CHG: 8
MD-DNP: 1
MD-DAP: 1

JS: 24
JS-Return: 24

None: 17

SW: 2

SW-ARSB: 2

SQ: 30

SQ-AMO: 6

SQ-AROB: 6

SQ-RMO: 3

SQ-AFO: 15

CF-CHG: 4

CF-ADD: 1

LP-CC: 3

incorrect output message: 28

empty input parameters: 2

incorrect initialization: 17

incorrect type comparison: 1

Figure 8. Bug-fixing patterns used in the Incorrect feature implementation category

Incorrect handling of regex expressions. Bugs assigned to this category are mostly fixed with
assignment related (13 AS-CE) and method call related (6 MC-DAP) changes.

Incorrect filepath. Here, the the most dominant bug-fixing patterns are assignment related (4),
method call related (4) and if-related (4). The variety of connected patterns is large.

Incorrect output. Bugs of this category are usually fixed by changing method calls (3MC-DM and
2 MC-DAP) and by changing return statements (3 JS-Return). The Incorrect output message sub-
category contains bugs with fixes that mostly involve changes to the parameters of method calls

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 27

(9 MC-DAP and 1 MC-DNP) and changes to condition expressions in if statements (5 IF-CC, 2
IF-RMV and 1 IF-APCJ).

Incorrect configuration processing. The most dominant bug-fixing pattern for this category is
assignment related (5 AS-CE), but a variety of other patterns occur as well (3 if-related, 2 method
call related, 1 JavaScript related, 1 loop related and 1 method declaration related).

Performance. The majority of the bug-fixing patterns used for fixing bugs of this category is SQ-
AFO, adding operations in an operation sequence of field settings (7). The second most common
patterns are if-related (5 IF-APC and 1 IF-APCJ).

generic: 29

JS: 7

missing type conversion: 4

incorrect loop statement: 1

typo: 6

SQ: 4

CF: 5

data processing: 8

return statement: 4

incorrect variable initialization: 4

missing variable initialization: 13

variable initialization: 12

JS-Initialization: 2

JS-Declaration: 1

JS-Return: 4

CF-CHG: 3

CF-ADD: 2

SQ-AFO: 1

SQ-AMO: 1

SQ-RMO: 2

MC-DAP: 3

MC: 7

None: 4

MC-DNP: 4

AS: 7

loop statement: 1

missing return statement: 3

incorrect return statement: 1

IF: 5

AS-CE: 7

MD: 1

MD-ADD: 1

IF-APCJ: 1

IF-CC: 2

IF-RMV: 1

IF-APC: 1

Figure 9. Bug-fixing patterns used in the Generic category

5.3.3. Generic Figure 9 illustrates the connection between the bugs under the Generic category and
the related bug-fixing patterns.

Variable initialization. The bug fixes of the Missing variable initialization sub-category contain
five types of bug-fixing patterns. The most dominants are the JavaScript related patterns (2 JS-
Return, 2 JS-Initialization and 1 JS-Declaration) and the class field related patterns (2 CF-CHG
and 2 CF-ADD). In the other sub-category, Incorrect variable initialization, changing an assignment
expression (3 AS-CE) is the most dominant.

Data processing. Similarly to the other two cases of data processing bugs, the associated bug fixes
contain a variety of patterns (2 JavaScript related, 2 method call related, 1 if-related, 1 assignment
related and 1 sequence related) and there is no dominant bug-fixing pattern.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 P. GYIMESI ET AL.

Missing type conversion. The bug fixes of this category mostly involve changes in an assignment
expression (2 AS-CE), but adding a precondition check to an if statement (1 IF-APC) and removing
an operation from an operation sequence of method calls (1 SQ-RMO) also appears.
Typo. For this category, there is no dominant bug-fixing pattern (2 if-related, 2 method call related,
1 assignment related, and 1 method declaration related) which essentially means typos can occur at
any place in the code.
Return statement. This category contains too few bug-fixing patterns to draw meaningful
conclusions. Surprisingly, the bug fixes do not fall into the JS-Return category.
Loop statement. There is only one bug in this category and its fix does not contain any bug-fixing
patterns, therefore we cannot draw meaningful conclusions here.

5.3.4. Highlights Table VII provides statistics about the occurrences of each bug-fix type
corresponding to the bug types. The table can serve to analyze the emergence of correlations
between bug-fix types and bug types. Overall, the most common bug-fixes types are if-related
(291), the second most common are assignment related (166), and the third most common are
method call related (152) bug-fixes. These bug-fixes types are mostly related to the most prominent
bug categories, namely missing input validation, incorrect input validation, and incorrect data
processing. Another correlation is that assignment related fixes are also the preferred way to fix
regexes. These are perhaps the only correlations between bug-fix types and bug types that are
observable in our benchmark.

6. DISCUSSION

Our results might drive devising novel software analysis and repair techniques for JavaScript,
with BUGSJS being a suitable real-world bug benchmark for their evaluation, as well as inform
developers of the most error-prone constructs.

In the rest of this section, we discuss some of the potential uses of our taxonomy, together with
possible use cases of our benchmark in supporting empirical studies in software analysis and testing,
as well as its limitations and threats to validity of our study.

6.1. Directing Research Efforts

Our taxonomy and associated data can be useful in several contexts related to JavaScript analysis
and testing contexts. Our study reveals that the majority of bugs are related to mistakes by the
developers. This finding is in line with those of the previous study by Ocariza et al. [5] on client-side
JavaScript programs. Overall the bug fixes included in BUGSJS cover a diverse range of categories,
some of which being specific only to JavaScript (Section 5.3). For instance, Incorrect/missing input
validation and Incorrect/incomplete data processing caused the majority of bugs we observed, 50%||

and 23%,** respectively. It has to be said that this prevalence is due to the ESLint project, which is a
linting tool, essentially a code validator. While ESLint may be not representative of the majority
of JavaScript web services, it is a very popular JavaScript linting tool, being recommended by
multiple comparative studies above other tools like JSLint, JSHint and JSCS.††‡‡ Moreover, ESLint
is supported by JetBrains in the WebStorm IDE and by Vue.js to validate their templates, and by
Facebook’s React to help enforce their coding rules. This adoption suggests that major companies
recognize input validation/data processing tasks as vital throughout the software development.

Another relevant source of bugs is due to missing type checks, a construct which is particularly
problematic due to the dynamically-typed nature of JavaScript, which makes it easier for developers

‖(72+51+2+7+4+7+61+7+16+2)/453%
∗∗(27+64+1+10)/453%
††https://www.sitepoint.com/comparison-javascript-linting-tools/
‡‡https://codekitapp.com/help/jslint/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://www.sitepoint.com/comparison-javascript-linting-tools/
https://codekitapp.com/help/jslint/

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 29

Table VII. Taxonomy and bug fixing types

AS CF IF JS LP MC MD None SQ SW TY

INCOMPLETE FEATURE IMPLEMENTATION
configuration processing 1 0 9 1 0 2 1 1 1 0 0

missing type check 1 0 0 0 0 1 0 0 0 0 0
error handling 1 0 12 1 0 3 4 3 1 0 1

callbacks 1 0 4 0 0 2 0 0 1 0 0
incomplete data processing 4 2 9 1 0 11 7 3 1 1 0
incomplete output message 0 0 1 0 0 3 0 0 0 0 0
missing input validation 29 8 53 4 1 11 22 2 2 2 0

empty input parameters 1 0 3 0 0 1 0 0 1 0 0
missing handling of spaces 2 0 2 1 0 1 2 0 0 0 0
missing handling of special characters 6 0 5 1 0 1 0 0 0 0 0
missing null check 0 0 5 2 0 0 0 0 0 0 0
missing type check 18 2 39 2 1 10 10 2 1 1 0

INCORRECT FEATURE IMPLEMENTATION
configuration processing 5 0 3 1 1 2 1 3 0 0 0
incorrect data processing 24 2 39 5 1 27 13 3 9 1 0

incorrect initialization 5 0 0 0 0 4 0 3 5 0 0
incorrect type comparison 0 0 1 0 0 0 0 0 0 0 0

incorrect filepath 4 0 4 2 0 4 1 0 2 0 0
incorrect handling of regex expressions 13 0 4 0 0 6 3 0 0 0 0
incorrect input validation 25 1 56 12 0 27 15 2 4 1 0

empty input parameters 0 0 1 0 0 0 0 1 0 0 0
incorrect handling of special characters 9 0 7 0 1 12 9 1 3 0 0
unnecessary type check 5 0 7 0 0 0 2 0 0 0 0

incorrect output 1 0 0 3 0 5 0 1 0 0 0
incorrect output message 2 2 8 1 0 10 2 3 0 0 0

performance 1 0 5 0 0 1 0 0 7 0 0

GENERIC
data processing 1 0 1 2 0 2 0 1 1 0 0
loop statement

incorrect loop statement 0 0 0 0 0 0 0 1 0 0 0
missing type conversion 2 0 1 0 0 0 0 0 1 0 0
return statement

incorrect return statement 0 0 0 0 0 1 0 0 0 0 0
missing return statement 0 0 1 0 0 0 0 2 0 0 0

typo 1 0 2 0 0 2 1 0 0 0 0
variable initialization

incorrect variable initialization 3 1 0 0 0 0 0 0 0 0 0
missing variable initialization 0 4 0 5 0 2 0 0 2 0 0

PERFECTIVE MAINTENANCE 1 0 9 1 0 1 1 0 0 0 0

to introduce bugs if they are, for instance, more familiar or used to strongly typed languages [5, 25].
Researchers have proposed approaches for addressing this class of errors and finding ways to prevent
them [1, 9, 54, 55, 56, 57], which suggests that this class of errors deserves considerable attention.

6.1.1. Benchmark for Testing Techniques Various fields of testing research can benefit from
BUGSJS. First, our benchmark includes more than 25k JavaScript test cases, which makes it a rather
large dataset for different regression testing studies (e.g., test prioritization, test minimization, or test
selection). Second, BUGSJS can play a role to support research in software oracles (e.g., automated
generation of semantically-meaningful assertions), as it contains all test suites’ evolution as well
as examples of real fixes made by developers. Additionally, these can be used to drive the design
of automated test repair techniques [58, 59]. Finally, test generation or mutation techniques for
JavaScript can be evaluated on BUGSJS at a low cost, since pre-computed coverage information are
available for use.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 P. GYIMESI ET AL.

6.1.2. Bug prediction using static source code analysis To construct reliable bug prediction models,
training feature sets are extracted from the source code, comprising instances of buggy and healthy
code, and static metrics. BUGSJS can support these studies since it streamlines the hardest part of
constructing the training and testing datasets, that is, determining whether a given code element is
affected by a bug. As such, the cleaned fixes included in BUGSJS make this task much easier. Also,
the availability of both uncleaned and cleaned bug-fixing patches in the dataset can allow assessing
the sensitivity of the proposed models to the noise. In addition, some of the most important static
code metrics are readily available as precomputed data.

6.1.3. Bug localization BUGSJS can support devising novel bug localization techniques for
JavaScript. Approaches that use NLP can take advantage of our benchmark since bugs are readily
available to be processed. Indeed, text retrieval techniques are used to formulate a natural language
query that describes the observed bug. To this aim, BUGSJS contains pointers to the natural language
bug description and discussions for several hundreds of real world bugs. Similarly, BUGSJS
will be of great benefit for other popular bug localization approaches, e.g., the spectrum-based
techniques [60, 61, 62, 63] because all the necessary data—test case outcomes, code coverage and
bug information—are readily available.

6.1.4. Automated program repair Automated program repair techniques aim at automatically fixing
bugs in programs, by generating a large pool of candidate fixes, to be later validated. The manually
cleaned patches available in BUGSJS can be used as learning examples for patch generation in
novel automated program repair for JavaScript. Also, BUGSJS provides an out-of-the-box solution
for automatic dynamic patch validation. Detailed classification of the bugs according to our bug-
taxonomy and the bug-fix types provides to this kind of research additional useful information.

6.2. Directing Developer Efforts

6.2.1. Improving Manual Repair Processes In the absence of automated program repair techniques,
knowledge about the causes of bugs could help developers manually fix programs, both by
increasing their awareness to bugs causes, and helping them prioritize the inspection of possible
causes based on the relative importance of such causes in our taxonomy.

6.2.2. Avoiding Bugs Bugs avoidance pertain to cases in which programmers are provided with
information to assist them in avoiding bugs, and it is up to them to choose what information to utilize
and how. One way to promote bugs avoidance involves educating developers and maintainers of
JavaScript applications as to the causes and probabilities of bugs. Such education could be supported
by information present in our taxonomy and the data that underlie it. First, consider code changes
activities. We observed that many of the bugs involving missing type checks resulted from simple
code changes, i.e., missing an IF-condition in a statement. Second, consider code creation tasks.
When creating new code, programmers can enforce the practice of adding input validation as a
must-do of their daily activities. Finally, consider test case creation. Testers can use our taxonomy
to focus their test case creation to avoid the most bug-prone categories.

6.2.3. Preventing Bugs Bugs prevention, in contrast to bugs avoidance, involves the use of
automated approaches for ensuring that bugs do not occur, even though humans might be included
in the feedback loop. For example, programmers may take advantage of tools like checkers and
linting tools that enable static and dynamic analysis automatically [64], and our taxonomy could
help improve on certain constructs that are particularly challenging for developers.

6.2.4. IDE Enhancements Another class of bugs prevention approaches involves improvements in
web programming and testing IDEs. Analysis techniques that operate concurrently with program
development and maintenance may be quite effective, and such techniques could also be guided
by our taxonomy. Modern IDEs for code development typically employ such approaches: as
programmers edit, they point out problems or provide useful information based on the programmers’

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 31

actions. JavaScript application development IDEs employ such approaches also, but to our
knowledge, no such IDEs also build in assistance related to testing efforts. Such IDEs could aid
in bugs avoidance by alerting developers to possible effects or bad practices and letting them choose
whether or not to act on them. They could aid in prevention by prohibiting certain actions or by
recommending the creation of constructs. Let us take as example the return statement related issues.
Our taxonomy highlighted that developers often fix bugs by changing the return statement. Thus,
IDEs can be improved with new data flow testing techniques that check that JavaScript objects’
states are preserved during the execution before they are returned, or that inform a change-impact
analysis technique to show how the change to an object affects the final output.

6.3. Limitations

BUGSJS includes only server-side JavaScript applications developed with the Node.js framework.
As such, experiments evaluating the client-side (e.g., the DOM) are not currently supported. While
our survey revealed a large number of subjects being used for evaluating such techniques, the
majority of these programs could not be directly included in our proposed benchmark.

Indeed, in the JavaScript realm, the availability of many implementations, standards, and testing
frameworks poses major technical challenges with respect to devising a uniform and cohesive bugs
infrastructure. Similar reasoning holds for selecting Mocha as a reference testing framework.

Running tests for browser-based programs may require complex and time-consuming
configurations. When dealing with a large and diverse set of applications, achieving isolation
would require automating each single configuration for all possible JavaScript development and
testing frameworks, which is a cumbersome task. Clearly, this is a potential limitation and bias for
experiments that use BUGSJS, and we are considering for a future revision of the benchmark to
support other environments as well. We must note, however, that due to the mentioned specialities
of the JavaScript ecosystem, we do not expect to be able to fully cover the plethora of the different
execution environments. Nevertheless, all the subjects included in BUGSJS have been previously
used by at least one work in our literature survey (e.g., BOWER, SHIELDS, KARMA, NODE-REDIS,
and MONGOOSE are all used in bug-related studies).

6.4. Threats to Validity

The main threat to the internal validity of this work is the possibility of introducing bias when
selecting and classifying the surveyed papers and the bugs included in the benchmark.

Our paper selection was driven by the keywords related to software analysis and testing for
JavaScript (Section 2). We may have missed relevant studies that are not captured by our list of
terms. We mitigate this threat by performing an issue-by-issue, manual search in the major software
engineering conference proceedings and journals, followed by a snowballing process. We, however,
cannot claim that our survey captures all relevant literature; yet, we are confident that the included
papers cover the major related studies.

Concerning the bugs, we manually classified all candidate bugs into different categories
(Section 3.3), and the retained bugs into categories pertaining to existing bug and fix taxonomies
(Section 5.2). To minimize classification errors, multiple authors simultaneously analyzed the source
code and performed the classifications individually, and disagreements were resolved by further
discussions among the authors. Concerning the bug’s classification for taxonomy construction, the
first four authors classified the bugs manually. This task, however, requires reasoning that cannot
be automated, so it is difficult to envision less threat-prone approaches. To reduce the subjectivity
involved in the task, the authors followed a systematic and structured procedure, with multiple
interactions.

Threats to the external validity concern the generalization of our findings. We, by no means, claim
that our benchmark represents all relevant web apps. We selected only 10 applications and our bugs
may not generalize to different projects. Also, other relevant classes of bugs might be unrepresented
or underrepresented within our benchmark, which is to date quite overfitted towards ESLint, i.e.,
the most represented project. Nevertheless, we tried to mitigate this threat by selecting applications
with different sizes and pertaining to different domains. We hope that our framework will provide

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

32 P. GYIMESI ET AL.

an entry point and a reference for future improvements as other subject systems are necessary to
fully confirm the generalizability of our results, and corroborate our findings.

Another generalization threat concerns our taxonomy. Taxonomies are conceptual maps derived
from empirical observations; as such they typically evolve as additional observations of the world
are made. We expect the same to be true of our taxonomy, and thus, it is not necessarily the case that
any attempt to apply the taxonomy to subsequent programs will allow every type of bug in those
applications to be categorized. In such cases the taxonomy will require adjustments. This work
attempts to reduce this threat by applying a validation phase to our initial taxonomy.

With respect to reproducibility of our results, all classifications, subjects, and experimental data
are available online, making the analysis reproducible.

7. RELATED WORK

7.1. Benchmarks

7.1.1. C, C++, and C# Benchmarks The Siemens benchmark suite [65] was one of the first datasets
of bugs used in testing research. It consists of seven C programs, containing manually seeded faults.
The first widely used benchmark of real bugs and fixes is the SIR (Software-artifact Infrastructure
Repository) [14], which includes the Siemens benchmark, and extends it with nine additional large
C programs and seven Java programs. SIR also features test suites, bug data, and automation scripts.
The benchmark contains both real and seeded faults, the latter being more frequent.

Le Goues et al. [16] proposed two benchmarks for C programs called ManyBugs and IntroClass,*
which include 1,183 bugs in total. The benchmarks are designed to support the comparative
evaluation of automatic repair, targeting large-scale production (ManyBugs) as well as smaller
(IntroClass) programs. ManyBugs is based on nine open-source programs (5.9M LOC and over
10k test cases) and it contains 185 bugs. IntroClass includes 6 small programs and 998 bugs.

Rahman et al. [66] examined the OpenCV project mining 40 bugs from seven out of 52 C++
modules into the benchmark Pairika. The seven modules analyzed contain more than 490k LOC,
about 11k test cases and each bug is accompanied by at least one failing test.

Lu et al. [67] propose BugBench, a collection of 17 open-source C/C++ programs containing 19
bugs pertaining to memory and concurrency issues.

Codeflaws [68] contains nearly 4k bugs in C programs, for which annotated ASTs with annotated
syntactic differences between buggy and patch code are provided.

7.1.2. Java Benchmarks Just et al. [15] presented Defects4J, a bug database and extensible
framework containing 357 validated bugs from five real-world Java programs. BUGSJS shares with
Defects4J the idea of mining bugs from the version control history. However, BUGSJS has some
additional features: subject systems are accessible in the form of git forks on a central GitHub
repository, which maintains the whole project history. Further, all programs are equipped with pre-
built environments in form of Docker containers. Moreover, in this paper we also provide a more
detailed analysis of subjects, tests, and bugs.

Bugs.jar [69] is a large-scale dataset intended for research in automated debugging, patching, and
testing of Java programs. Bugs.jar consists of 1,158 bugs and patches, collected from eight large,
popular open-source Java projects.

iBugs [70] is another benchmark containing real Java bugs from bug-tracking systems originally
proposed for bug localization research. It is composed of 390 bugs and 197k LOC coming from
three open source projects.

7.1.3. Multi-language Benchmarks QuixBugs [18] is a benchmark suite of 40 confirmed bugs used
in program repair experiments targeting Python and Java with passing and failing test cases.

∗http://repairbenchmarks.cs.umass.edu/

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://repairbenchmarks.cs.umass.edu/

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 33

Table VIII. Properties of the benchmarks

Benchmark Language(s) Fault Type # Bugs Isolation Quantitative An. Qualitative An.

Siemens/SIR [14] C/Java Real/seeded 662 4 8 8

ManyBugs [16] C Real 185 4 4 4

IntroClass [16] C Real 998† 4 4 4

Pairika [66] C++ Real 40 4 4 8

BugBench [67] C/C++ Real 19 8 8 4

Defects4J [15] Java Real 357‡ 4 4 4 §

Bugs.jar [69] Java Real 1,158 4 8 8

iBugs [70] Java Real 390 8 4 8

QuixBugs [18] Java/Python Seeded 40 4 4 4

Codeflaws [68] C Real 3,902 4 8 4

BugSwarm [17] Java/Python Real 3,165 8 4 8

Code4Bench [71] Multiple Real N/A∗ 8 4 8

BugsJS JavaScript Real 453 4 4 4

† the total number of bugs is 1,623, of which 998 are those in common between two test suites.
‡ this is reported in the original publication; the newer versions of the benchmark include additional bugs.
§ created by independent authors [44]. ∗ only the number of faulty program versions is reported.

BugSwarm [17] is a recent dataset of real software bugs and bug fixes to support various testing
empirical experiments such as test generation, mutation testing, and fault localization.

Code4Bench [71] is another cross-language benchmark comprising C/C++, Java, Python, and
Kotlin programs among others. Code4Bench also features a coarse-grained bug classification based
on an automatic fault localization process for which faults were classified only in three groups,
namely addition, modifications, and deletion. In contrast, BUGSJS focuses on JavaScript bugs, for
which we provide a fine-grained analysis based on a rigorous manual process.

7.1.4. Benchmarks Comparison We summarize the related benchmarks and compare their main
features to BUGSJS in Table VIII. The table includes the language(s) in which the programs were
written and the kind of bugs the benchmarks contain. Further, the table indicates whether the
modified versions have been cleaned from irrelevant changes, e.g., achieving the isolation property,
whether the benchmark includes quantitative or qualitative analyses of the faults. These information
were retrieved in the papers in which the benchmarks were proposed first.

The table highlights that BUGSJS is the only benchmark that contains JavaScript programs.
This paper also provides both a quantitative analysis of the benchmark, and a qualitative analysis
of the bugs (from which a taxonomy was derived) and the bug fixes (by comparing them with
existing taxonomies). For instance, in the case of Defect4J, the original paper proposed only the
benchmark [15], whereas a quantitative analysis was added in a subsequent paper by Sobreira et
al. [44]. More qualitative analyses were also made by Sobreira et al. [44] and Motwani et al. [72],
who independently propose two orthogonal classification of repairs.

To summarize, BUGSJS is the first benchmark of bugs and related artifacts (e.g., source code
and test cases) that targets the JavaScript domain. In addition, BUGSJS differentiates from the
previously-mentioned benchmarks in the following aspects: (1) the subjects are provided as git forks
with complete histories, (2) a framework is provided with several features enabling convenient usage
of the benchmark, (3) the subjects and the framework itself are available as GitHub repositories,
(4) Docker container images are provided for easier usage, (5) the bug descriptions are accompanied
by their natural language discussions, as well as (6) a manually-derived bug taxonomy and a
comparison with an existing bug-fixes taxonomy.

7.2. Bug Taxonomies

There are several industry standards for categorizing software bugs, such as the IEEE Standard
Classification for Software Anomalies [73], or IBM’s Orthogonal Defect Classification [74].
However, these are either too generic or more process-related, and are not suitable for categorizing

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

34 P. GYIMESI ET AL.

bugs in BUGSJS. Also, there are countless categorization schemes proposed by various testing and
defect management tool and service vendors, which are also less relevant for our research.

Hanam et al. [25] discuss 13 cross-project bug patterns occurring in JavaScript pertaining to
six categories, which are the following: Dereferenced non-values (e.g., Uninitialized variables),
Incorrect API config (e.g., Missing API call configuration values), Incorrect comparison (e.g., ===
and == used interchangeably), Unhanded exceptions (e.g., Missing try-catch block), Missing
arguments (e.g., Function call with missing arguments), and Incorrect this bounding (e.g.,
Accessing a wrong this reference).

Since this is probably the closest related work to our taxonomy presented in Section 4.4, we
tried to assign all 453 bugs of BUGSJS to one of these categories as well. Our analysis found
42 occurrences of the categories proposed by Hanam et al., most of them (35) belonging to
Dereferenced non-values. This shows that these patterns do exist in the bugs that we have in
BUGSJS, but they only cover a small subset of them. The majority of the rest of the bugs are indeed
logical errors made by developers during the implementation which do not necessarily fall into
recurring patterns. This shows that the bugs included in BUGSJS are rather diverse in nature, making
it ideal for evaluating a wide range of analysis and testing techniques. Our taxonomy seemed more
appropriate for the categorization of such logical errors in BUGSJS, with the price that our categories
are more high level and independent of the language and the domain of the subject systems.

The most common pattern according to the Hanam et al. scheme, Dereferenced non-values, can
also be identified in other related work. Previous work showed that this pattern occurs frequently
also in client-side JavaScript applications [5]. Developers could avoid these syntax-related bugs by
adopting appropriate coding standards. Moreover, IDEs can be enhanced to alert programmers to
possible effects or bad practices. They could also aid in prevention by prohibiting certain actions or
by recommending the creation of stable constructs.

Catolino et al. [75] analyzed 1,280 bug reports of 119 popular projects with the aim of
building a taxonomy of the types of reported bugs. They devised and evaluated the automated
classification model which is able to classify the reported bugs according to the defined taxonomy.
The authors defined a three-step manual method to build the taxonomy, which was similar to
our approach. The final taxonomy defined in this work contains nine main common bug types
over the considered systems: configuration, network, database-related, GUI-related, performance,
permission/deprecation, security, program anomaly and test code-related issues. This classification
is less suitable to apply to BUGSJS because it is a very high level one, and is not related to JavaScript
but to web applications in general.

Li et al. [76] used natural language text classification techniques to automatically analyze 29,000
bugs from the Bugzilla databases of Mozilla and Apache HTTP Server. The authors classified the
bugs in three dimensions: root cause (RC), impact (I) and software component (SC). According
to RC, bugs can be classified into three disjoint groups (and subgroups): semantic, memory and
concurrency. Some of the root cause subcategories are similar to the categories in our taxonomy.

Tan et al. [77] proposed a work that is related to the previous study. They examined more than
2,000 randomly sampled real world bugs in three large projects (Linux kernel, Mozilla, and Apache)
and manually analyzed them according to the three dimensions defined by Li et al. [76]. They
created a bug type classification model, which used machine learning techniques to automatically
classify the bug types.

Zhang et al. [78] investigated the symptoms and root causes of TensorFlow-bugs. They identified
the bugs from the GitHub issue tracker using commit and pull request messages. The authors
collected the common root causes (which were based on structure, model tensor and API operation)
and symptoms (based on error, effectiveness and efficiency) into categories and classified each bug
accordingly.

Thung et al. [79] presented a semi-supervised defect prediction approach (LeDEx - Learning
with Diverse and Extreme Examples) to minimize the manual bug labeling. The researchers used a
benchmark that contains 500 defects from three projects that have been manually labeled based on
ODC. In their approach, hand-labeled samples were used to learn and build the model, which uses
non-labeled elements to refine the model.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 35

In another study, Thung et al. [80] proposed a classification-based approach used to categorize
the bugs into control and data flow, structural or non-functional groups. They performed NLP pre-
processing and feature extraction operations on the text mined from JIRA. The resulting data was
used to build the model based on Support Vector Machine (SVM).

Nagwani et al. [81] used the bug tracking system to collect textual information and several
attributes on bugs. They presented a methodology to bug classification, which are based on a
generative statistical model (LDA - Latent Dirichlet allocation) in natural language processing.

8. CONCLUSIONS

The increasing interest of developers and industry around JavaScript has fostered a huge amount of
software engineering research around this language. Novel analysis and testing techniques are being
proposed every year, however, without a centralized benchmark of subjects and bugs, it is difficult
to fairly evaluate, compare, and reproduce research results.

To fill this gap, in this paper we presented BUGSJS, a benchmark of 453 real, manually validated
JavaScript bugs from 10 popular JavaScript programs. Our quantitative and qualitative analyses,
including a categorization of bugs in a dedicated taxonomy, show the diversity of the bugs included
in BUGSJS that can be used for conducting highly-reproducible empirical studies in software
analysis and testing research related to, among others, regression testing, bug prediction, and fault
localization for JavaScript. Using BUGSJS in future studies is further facilitated by a flexible
framework implemented to automate checking out specific revisions of the programs’ source code,
running each of the test cases demonstrating the bugs, and reporting test coverage.

As part of our ongoing and future work, we plan to include more subjects (and corresponding
bugs) to the benchmark. Our long-term goal is to also include client-side JavaScript web applications
in BUGSJS. Furthermore, we are planning to develop an abstraction layer to allow easier
extensibility of our infrastructure to other JavaScript testing frameworks.

9. ACKNOWLEDGEMENTS

Gyimesi and Vancsics were supported by project EFOP-3.6.3-VEKOP-16-2017-0002, co-funded
by the European Social Fund. Beszédes was supported by the EU-funded Hungarian national
grant GINOP-2.3.2-15-2016-00037 titled “Internet of Living Things”. Ferenc was supported by
grant 2018-1.2.1-NKP-2018-00004 “Security Enhancing Technologies for the IoT” funded by the
Hungarian National Research, Development and Innovation Office. This research was supported
by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.
Mesbah, Stocco and Mazinanian were supported in part by NSERC Discovery and DAS grants.

REFERENCES

[1] Alimadadi S, Mesbah A, Pattabiraman K. Understanding asynchronous interactions in full-
stack JavaScript. Proc. of 38th International Conference on Software Engineering (ICSE),
2016, doi:10.1145/2884781.2884864.

[2] Billes M, Møller A, Pradel M. Systematic black-box analysis of collaborative web
applications. Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2017.

[3] Wang J, Dou W, Gao C, Gao Y, Wei J. Context-based event trace reduction in client-side
JavaScript applications. Proc. of International Conference on Software Testing, Verification
and Validation (ICST), 2018, doi:10.1109/ICST.2018.00022.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

36 P. GYIMESI ET AL.

[4] Wang J, Dou W, Gao Y, Gao C, Qin F, Yin K, Wei J. A comprehensive study on real
world concurrency bugs in Node.js. Proc. of International Conference on Automated Software
Engineering, 2017, doi:10.1109/ASE.2017.8115663.

[5] Ocariza FS, Bajaj K, Pattabiraman K, Mesbah A. A Study of Causes and Consequences
of Client-Side JavaScript Bugs. IEEE Transactions on Software Engineering Feb 2017;
43(2):128–144, doi:10.1109/TSE.2016.2586066.

[6] Ermuth M, Pradel M. Monkey see, monkey do: Effective generation of GUI tests with inferred
macro events. Proc. of 25th International Symposium on Software Testing and Analysis
(ISSTA), 2016, doi:10.1145/2931037.2931053.

[7] Adamsen CQ, Møller A, Karim R, Sridharan M, Tip F, Sen K. Repairing event race errors by
controlling nondeterminism. Proc. of 39th International Conference on Software Engineering
(ICSE), 2017, doi:10.1109/ICSE.2017.34.

[8] Madsen M, Tip F, Andreasen E, Sen K, Møller A. Feedback-directed instrumentation
for deployed JavaScript applications. Proc. of 38th International Conference on Software
Engineering (ICSE), 2016, doi:10.1145/2884781.2884846.

[9] Alimadadi S, Mesbah A, Pattabiraman K. Hybrid DOM-sensitive change impact analysis for
JavaScript. Proc. of European Conference on Object-Oriented Programming (ECOOP), 2015.

[10] Jia Y, Harman M. An analysis and survey of the development of mutation testing. Transactions
on Software Engineering 2011; 37(5), doi:10.1109/TSE.2010.62.

[11] Gopinath R, Jensen C, Groce A. Mutations: How close are they to real faults? Proc. of
International Symposium on Software Reliability Engineering, 2014, doi:10.1109/ISSRE.
2014.40.

[12] Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G. Are mutants a valid substitute
for real faults in software testing? Proc. of ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2014.

[13] Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments?
Proc. of International Conference on Software Engineering, 2005.

[14] Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical Softw. Engg. Oct 2005; 10(4):405–435,
doi:10.1007/s10664-005-3861-2.

[15] Just R, Jalali D, Ernst MD. Defects4J: A database of existing faults to enable controlled testing
studies for Java programs. Proc. of 2014 International Symposium on Software Testing and
Analysis, 2014, doi:10.1145/2610384.2628055.

[16] Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W.
The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE
Transactions on Software Engineering (TSE) Dec 2015; 41(12):1236–1256, doi:10.1109/TSE.
2015.2454513.

[17] Dmeiri N, Tomassi DA, Wang Y, Bhowmick A, Liu YC, Devanbu P, Vasilescu B, Rubio-
Gonzalez C. BugSwarm: Mining and Continuously Growing a Dataset of Reproducible
Failures and Fixes. Proc. of 41st International Conference on Software Engineering (ICSE),
2019.

[18] Lin D, Koppel J, Chen A, Solar-Lezama A. QuixBugs: A multi-lingual program repair
benchmark set based on the Quixey Challenge. Proc. of International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity: Companion, doi:10.
1145/3135932.3135941.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 37

[19] Fraser G, Arcuri A. Sound empirical evidence in software testing. Proc. of 34th International
Conference on Software Engineering (ICSE), 2012, doi:10.1109/ICSE.2012.6227195.

[20] Gkortzis A, Mitropoulos D, Spinellis D. VulinOSS: A dataset of security vulnerabilities in
open-source systems. Proc. of 15th International Conference on Mining Software Repositories,
2018, doi:10.1145/3196398.3196454.

[21] Gyimesi P, Vancsics B, Stocco A, Mazinanian D, Árpád Beszédes, Ferenc R, Mesbah A.
BugJS: A benchmark of javascript bugs. Proceedings of 12th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2019, IEEE, 2019; 12 pages.

[22] Svenonius E. The Intellectual Foundation of Information Organization. MIT Press:
Cambridge, MA, USA, 2000.

[23] Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. Proc. of EASE ’14, 2014; 1–10.

[24] Gao Z, Bird C, Barr ET. To type or not to type: quantifying detectable bugs in JavaScript. Proc.
39th International Conference on Software Engineering, 2017.

[25] Hanam Q, Brito FSdM, Mesbah A. Discovering bug patterns in JavaScript. Proc. of 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE), 2016.

[26] Ocariza Jr FS, Pattabiraman K, Mesbah A. Detecting unknown inconsistencies in web
applications. Proc. of 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017.

[27] Ocariza FS Jr, Pattabiraman K, Mesbah A. Detecting inconsistencies in JavaScript MVC
applications. Proc. of 37th International Conference on Software Engineering (ICSE), 2015.

[28] Ocariza FS, Li G, Pattabiraman K, Mesbah A. Automatic fault localization for client-side
JavaScript. Softw. Test. Verif. Reliab. Jan 2016; 26(1), doi:10.1002/stvr.1576.

[29] Ocariza FS Jr, Pattabiraman K, Mesbah A. Vejovis: Suggesting fixes for JavaScript faults.
Proc. of 36th International Conference on Software Engineering, doi:10.1145/2568225.
2568257.

[30] Davis J, Thekumparampil A, Lee D. Node.fz: Fuzzing the server-side event-driven
architecture. Proc. of 12nd European Conference on Computer Systems (EuroSys), 2017, doi:
10.1145/3064176.3064188.

[31] Fard AM, Mesbah A. JavaScript: The (un)covered parts. Proc. of IEEE International
Conference on Software Testing, Verification and Validation (ICST), 2017, doi:10.1109/ICST.
2017.28.

[32] Mirshokraie S, Mesbah A. JSART: JavaScript assertion-based regression testing. Web
Engineering (ICWE), 2012; 238–252.

[33] Mirshokraie S, Mesbah A, Pattabiraman K. Efficient JavaScript mutation testing. Proc. of 6th
International Conference on Software Testing, Verification and Validation (ICST), 2013, doi:
10.1109/ICST.2013.23.

[34] Mirshokraie S, Mesbah A, Pattabiraman K. Guided mutation testing for JavaScript web
applications. IEEE Transactions on Software Engineering May 2015; 41(5):429–444, doi:
10.1109/TSE.2014.2371458.

[35] Mirshokraie S, Mesbah A, Pattabiraman K. Atrina: Inferring unit oracles from GUI test cases.
Proc. of International Conference on Software Testing, Verification and Validation (ICST),
2016, doi:10.1109/ICST.2016.32.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

38 P. GYIMESI ET AL.

[36] Mirshokraie S, Mesbah A, Pattabiraman K. JSEFT: Automated JavaScript unit test generation.
Proc. of 8th International Conference on Software Testing, Verification and Validation (ICST),
2015, doi:10.1109/ICST.2015.7102595.

[37] Quist C, Mezzetti G, Møller A. Analyzing test completeness for dynamic languages. Proc. of
International Symposium on Software Testing and Analysis.

[38] Fard AM, Mesbah A, Wohlstadter E. Generating fixtures for JavaScript unit testing. Proc. of
30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015.

[39] Artzi S, Dolby J, Jensen SH, Moller A, Tip F. A framework for automated testing of JavaScript
web applications. 33rd International Conference on Software Engineering (ICSE), 2011.

[40] Mesbah A, van Deursen A, Roest D. Invariant-based automatic testing of modern web
applications. IEEE Transactions on Software Engineering 2012; .

[41] Andreasen E, Gong L, Møller A, Pradel M, Selakovic M, Sen K, Staicu CA. A survey
of dynamic analysis and test generation for JavaScript. ACM Comput. Surv. Sep 2017;
50(5):66:1–66:36, doi:10.1145/3106739.

[42] Hong S, Park Y, Kim M. Detecting concurrency errors in client-side JavaScript web
applications. Proc. of IEEE 7th International Conference on Software Testing, Verification
and Validation, 2014, doi:10.1109/ICST.2014.17.

[43] Dhok M, Ramanathan MK, Sinha N. Type-aware concolic testing of JavaScript programs.
Proc. of 38th International Conference on Software Engineering, 2016, doi:10.1145/2884781.
2884859.

[44] Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA. Dissection of a Bug Dataset:
Anatomy of 395 Patches from Defects4J. Proceedings of SANER, 2018.

[45] Pan K, Kim S, Whitehead EJ. Toward an understanding of bug fix patterns. Empirical Software
Engineering Jun 2009; 14(3):286–315, doi:10.1007/s10664-008-9077-5.

[46] Seaman CB. Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. Jul 1999; 25(4):557–572, doi:10.1109/32.799955. URL http://dx.doi.
org/10.1109/32.799955.

[47] Nagappan N, Ball T. Use of relative code churn measures to predict system defect density.
Proc. of 27th International Conference on Software Engineering.

[48] Giger E, Pinzger M, Gall HC. Comparing fine-grained source code changes and code churn
for bug prediction. Proc. of 8th Working Conference on Mining Software Repositories (MSR),
2011; 83–92, doi:10.1145/1985441.1985456.

[49] Campos EC, d A Maia M. Common bug-fix patterns: A large-scale observational study. Proc.
of ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), 2017, doi:10.1109/ESEM.2017.55.

[50] Zhong H, Su Z. An empirical study on real bug fixes. Proc. of 37th International Conference
on Software Engineering (ICSE), 2015; 913–923.

[51] Silva LH, Valente MT, Bergel A. Refactoring legacy JavaScript code to use classes: The good,
the bad and the ugly. Mastering Scale and Complexity in Software Reuse, 2017.

[52] Rostami S, Eshkevari L, Mazinanian D, Tsantalis N. Detecting function constructors in
JavaScript. Proc. of IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2016.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/32.799955

BUGSJS: A BENCHMARK AND TAXONOMY OF JAVASCRIPT BUGS 39

[53] Eshkevari L, Mazinanian D, Rostami S, Tsantalis N. JSDeodorant: Class-awareness for
JavaScript Programs. Proceedings of the 39th International Conference on Software
Engineering Companion, 2017.

[54] Anderson C, Giannini P, Drossopoulou S. Towards type inference for javascript. ECOOP
2005 - Object-Oriented Programming, Black AP (ed.), Springer Berlin Heidelberg: Berlin,
Heidelberg, 2005; 428–452.

[55] Thiemann P. Towards a type system for analyzing javascript programs. Programming
Languages and Systems, Sagiv M (ed.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2005;
408–422.

[56] Malik RS, Patra J, Pradel M. Nl2type: Inferring javascript function types from natural language
information. Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, IEEE Press: Piscataway, NJ, USA, 2019; 304–315, doi:10.1109/ICSE.2019.00045. URL
https://doi.org/10.1109/ICSE.2019.00045.

[57] Pradel M, Schuh P, Sen K. Typedevil: Dynamic type inconsistency analysis for javascript.
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, 2015;
314–324, doi:10.1109/ICSE.2015.51.

[58] Stocco A, Yandrapally R, Mesbah A. Visual web test repair. Proc. of 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018.

[59] Hammoudi M, Rothermel G, Stocco A. WATERFALL: An incremental approach for repairing
record-replay tests of web applications. Proc. of 24th International Symposium on Foundations
of Software Engineering (FSE), 2016.

[60] Wong WE, Gao R, Li Y, Abreu R, Wotawa F. A survey on software fault localization. IEEE
Transactions on Software Engineering 2016; 42(8).

[61] Perez A, Abreu R, van Deursen A. A test-suite diagnosability metric for spectrum-based
fault localization approaches. Proc. of 39th International Conference on Software Engineering
(ICSE), 2017.

[62] Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B. Evaluating and
improving fault localization. Proc. of 39th International Conference on Software Engineering
(ICSE), 2017.

[63] Perez A, Abreu R, D’Amorim M. Prevalence of single-fault fixes and its impact on fault
localization. Proc. of IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2017.

[64] Krishna Murthy DR, Pradel M. Change-aware dynamic program analysis for javascript. 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018; 127–
137, doi:10.1109/ICSME.2018.00023.

[65] Hutchins M, Foster H, Goradia T, Ostrand T. Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. Proc. of 16th International Conference on Software
Engineering, 1994, doi:10.1109/ICSE.1994.296778.

[66] Rahman MR, Golagha M, Pretschner A. Pairika: A failure diagnosis benchmark for C++
programs. Proc. of 40th International Conference on Software Engineering: Companion, 2018,
doi:10.1145/3183440.3195097.

[67] Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y. Bugbench: Benchmarks for evaluating bug detection
tools. Workshop on the Evaluation of Software Defect Detection Tools, 2005.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.1109/ICSE.2019.00045

40 P. GYIMESI ET AL.

[68] Shin Hwei Tan, Jooyong Yi, Yulis, Mechtaev S, Roychoudhury A. Codeflaws: a programming
competition benchmark for evaluating automated program repair tools. 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C), 2017; 180–182.

[69] Saha RK, Lyu Y, Lam W, Yoshida H, Prasad MR. Bugs.Jar: A large-scale, diverse dataset of
real-world Java bugs. Proc. of 15th International Conference on Mining Software Repositories
(MSR), 2018, doi:10.1145/3196398.3196473.

[70] Dallmeier V, Zimmermann T. Extraction of bug localization benchmarks from history. Proc.
of International Conference on Automated Software Engineering.

[71] Majd A, Vahidi-Asl M, Khalilian A, Baraani-Dastjerdi A, Zamani B. Code4bench: A
multidimensional benchmark of codeforces data for different program analysis techniques.
Journal of Computer Languages 2019; 53:38–52, doi:https://doi.org/10.1016/j.cola.2019.03.
006.

[72] Motwani M, Sankaranarayanan S, Just R, Brun Y. Do automated program repair techniques
repair hard and important bugs? Empirical Softw. Engg. Oct 2018; 23(5):2901–2947, doi:10.
1007/s10664-017-9550-0. URL https://doi.org/10.1007/s10664-017-9550-
0.

[73] IEEE standard classification for software anomalies. IEEE Std 1044-2009 2009.

[74] Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong M. Orthogonal
defect classification - A concept for in-process measurements. IEEE Trans. Software Eng.
1992; 18(11):943–956.

[75] Catolino G, Palomba F, Zaidman A, Ferrucci F. Not all bugs are the same: Understanding,
characterizing, and classifying bug types. Journal of Systems and Software 2019; 152:165–
181, doi:https://doi.org/10.1016/j.jss.2019.03.002.

[76] Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C. Have things changed now?: an empirical study
of bug characteristics in modern open source software. Proceedings of the 1st workshop on
Architectural and system support for improving software dependability, ACM, 2006; 25–33.

[77] Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C. Bug characteristics in open source software.
Empirical Software Engineering 2014; 19(6):1665–1705.

[78] Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L. An empirical study on tensorflow program
bugs. Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ACM, 2018; 129–140.

[79] Thung F, Le XBD, Lo D. Active semi-supervised defect categorization. Proceedings of the
2015 IEEE 23rd International Conference on Program Comprehension, IEEE Press, 2015;
60–70.

[80] Thung F, Lo D, Jiang L. Automatic defect categorization. 2012 19th Working Conference on
Reverse Engineering, IEEE, 2012; 205–214.

[81] Nagwani NK, Verma S, Mehta KK. Generating taxonomic terms for software bug classification
by utilizing topic models based on latent dirichlet allocation. 2013 Eleventh International
Conference on ICT and Knowledge Engineering, 2013; 1–5.

Copyright © 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.1007/s10664-017-9550-0
https://doi.org/10.1007/s10664-017-9550-0

	1 Introduction
	2 Studies on JavaScript analysis and testing
	2.1 Bug-related Studies for JavaScript
	2.2 Other Analysis and Testing Studies for JavaScript
	2.3 Findings

	3 BugsJS – the Proposed Benchmark
	3.1 Subject Systems Selection
	3.2 Bugs Collection
	3.3 Manual Patch Validation
	3.4 Sanity Checking through Dynamic Validation
	3.5 Patch Creation
	3.6 Final Benchmark Infrastructure and Implementation
	3.7 BugsJS Dissection
	3.8 Extending BugsJS

	4 Taxonomy of Bugs in BugsJS
	4.1 Manual Labeling of Bugs
	4.2 Taxonomy Construction
	4.3 Taxonomy Internal Validation
	4.4 The Final Taxonomy

	5 Analysis of Bug-Fixes
	5.1 Code Churn
	5.2 Patterns in Bug Fixes
	5.2.1 JavaScript-related Bug-Fixing Patterns

	5.3 Bug Taxonomy and Bug-Fixing Types
	5.3.1 Incomplete feature implementation
	5.3.2 Incorrect feature implementation
	5.3.3 Generic
	5.3.4 Highlights

	6 Discussion
	6.1 Directing Research Efforts
	6.1.1 Benchmark for Testing Techniques
	6.1.2 Bug prediction using static source code analysis
	6.1.3 Bug localization
	6.1.4 Automated program repair

	6.2 Directing Developer Efforts
	6.2.1 Improving Manual Repair Processes
	6.2.2 Avoiding Bugs
	6.2.3 Preventing Bugs
	6.2.4 IDE Enhancements

	6.3 Limitations
	6.4 Threats to Validity

	7 Related work
	7.1 Benchmarks
	7.1.1 C, C++, and C# Benchmarks
	7.1.2 Java Benchmarks
	7.1.3 Multi-language Benchmarks
	7.1.4 Benchmarks Comparison

	7.2 Bug Taxonomies

	8 Conclusions
	9 Acknowledgements

