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ABSTRACT

The growing application of deep neural networks in safety-critical
domains makes the analysis of faults that occur in such systems of
enormous importance. In this paper we introduce a large taxonomy
of faults in deep learning (DL) systems. We have manually analysed
1059 artefacts gathered from GitHub commits and issues of projects
that use the most popular DL frameworks (TensorFlow, Keras and
PyTorch) and from related Stack Overflow posts. Structured inter-
views with 20 researchers and practitioners describing the problems
they have encountered in their experience have enriched our tax-
onomy with a variety of additional faults that did not emerge from
the other two sources. Our final taxonomy was validated with a
survey involving an additional set of 21 developers, confirming that
almost all fault categories (13/15) were experienced by at least 50%
of the survey participants.

CCS CONCEPTS

- Software and its engineering — Software verification and
validation.
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1 INTRODUCTION

Deep Learning (DL) is finding its way into a growing number of
areas in science and industry. Its application ranges from supporting
daily activities such as converting voice to text, translating texts
from one language to another, to much more critical tasks such as
fraud detection in credit card companies, diagnosis and treatment
of diseases in medical field, autonomous driving of vehicles. The
increasing dependence of safety-critical systems on DL networks
makes the types of faults that can occur in such systems a crucial
topic. However, the notion of fault in DL systems is more complex
than in traditional software. In fact, the code that builds the DL
network might be bug free, but the network might still deviate from
the expected behaviour due to faults introduced in the training
phase, such as the misconfiguration of some learning parameters
or the use of an unbalanced/non-representative training set.

The goal of this paper is to build a taxonomy of real faults in
DL systems. An example of a subject DL system could be an object
detection subsystem in an autonomous car. Such a taxonomy can
be useful to aid developers avoiding common pitfalls or can serve
as a checklist for testers, motivating them to define test scenarios
that address specific fault types. We consider that a DL fault has
taken place when the behaviour of the DL component is inadequate
for the task at hand (i.e., it is “functionally insufficient”, in line with
ISO/PAS 21448:2019 [6]) and the root cause for such inadequacy is a
human mistake that occurred during DL development and training.

The taxonomy could also be used for fault seeding, as resemblance
with real faults is an important feature for artificially injected faults.
A taxonomy is mainly a classification mechanism [28]. Accord-
ing to Rowley and Farrow [22], there are two main approaches to
classification: enumerative and faceted. In enumerative classifica-
tion, the classes are predefined. However, it is difficult to enumerate
all classes in immature or evolving domains, which is the case of DL
systems. Therefore, using a vetted taxonomy of faults [13] would
not be appropriate for our purpose. In contrast, in faceted classifica-
tion the emerging traits of classes can be extended and combined.
For this reason we used faceted classification, i.e., we created the
categories/subcategories of our taxonomy in a bottom up way, by
analysing various sources of information about DL faults.

Our methodology is based on the manual analysis of unstruc-
tured sources and interviews. We started by manually analysing 477
Stack Overflow (SO) discussions, 271 issues and pull requests (PRs),
and 311 commits from GitHub repositories, in which developers
discuss/fix issues encountered while using three popular DL frame-
works. The goal of the manual analysis was to identify the root
cause behind the problem. The output of this step was the first hier-
archical taxonomy of faults related to the usage of DL frameworks.
Then, two of the authors interviewed 20 researchers and practi-
tioners to collect their experience on the usage of DL frameworks.
All the interviews were taped and transcribed, allowing an open
coding procedure among all authors, by which we identified the
categories of faults mentioned by the interviewees. This allowed
to complement our preliminary taxonomy and to produce its final
version.

To validate our final taxonomy we have conducted a survey to
which an additional set of 21 researchers/practitioners have re-
sponded. In the survey, we included the categories of the taxonomy
along with a description of the types of faults they represent, and
asked the participants to indicate whether these faults have been
encountered in their prior experience when developing DL systems.
Most faults (13/15) were experienced by 50% or more of the par-
ticipants and no fault category remained non-validated (the least
frequent category was confirmed by 24% participants).

The main contribution of this paper is the validated taxonomy
of real faults in DL systems. To our knowledge, this is the first work
that includes interviews with developers on the faults related to
the development of DL systems. Without such interviews, 2 inner
nodes and 27 leaf nodes of the taxonomy would be completely
missed. Several other nodes are highly represented in interviews,
but they appear quite rarely in the other analysed artefacts.

Structure of the paper. Section 2 gives an overview of related
work. Section 3 describes the methodology used to collect faults,
to build the taxonomy and to validate it. The final version of the
taxonomy, along with the description of its categories and the
results of the validation survey are presented in Section 4. Section 5
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contains a discussion of our findings, while Section 6 reviews our
threats to validity. Finally, Section 7 concludes the paper.

2 RELATED WORK

2.1 Repository Mining

One of the first papers considering faults specifically in Machine
Learning (ML) systems is the empirical study by Thung et al. [27].
The authors manually labeled 500 bug reports and fixes from the bug
repositories of three open source projects (Apache Mahout, Lucene,
and OpenNLP) to enable their classification into the categories
proposed by Seaman et al. [24]. Descriptive statistics were used to
address research questions such as how often the bugs appear, how
severe the bugs are and how much effort is put into their resolution.

A similar study was published in 2017 by Sun et al. [26]. The
authors examined bug patterns and their evolution over time. As a
subject of the study the authors considered three ML projects from
GitHub repositories (Scikit-learn, Caffe and Paddle). The collected
issues have been organised into 7 categories. Manual analysis of
329 successfully closed bug reports allowed the authors to assess
the fault category, fix pattern, and effort invested while dealing
with a bug.

The main difference between these two works and our study is
that they analysed bugs in the frameworks themselves while we
focus on the faults experienced when building DL systems that use
a specific framework.

Zhang et al. [30] studied a number of DL applications developed
using TensorFlow. They collected information about 175 Tensor-
Flow related bugs from SO and Github. Manual examination of
these bugs allowed the authors to determine the challenges devel-
opers face and the strategies they use to detect and localise faults.
The authors also provide some insight into the root causes of bugs
and into the consequences that bugs have on the application be-
haviour. The authors were able to classify their dataset into seven
general kinds of root causes and four types of symptoms.

In our study, we analyse DL applications that use the most pop-
ular DL frameworks [2], TensorFlow, PyTorch and Keras, not just
the former. The popularity of these three frameworks (in particular,
Keras) and their strong prevalence over other similar products al-
lows us to consider them as representative of the current situation
in the field. Another methodological difference lies in the mining
of the SO database. Zhang et al. considered SO questions under the
constraint that they had at least one answer, while we analysed
only questions with an accepted answer, to be sure that the fault
was investigated in depth and solved.

As for GitHub, Zhang et al. used only 11 projects to collect the
faults. After a complex filtering and cleaning process, we were able
to use 564 projects. For further comparison, Zhang et al. found in
total 175 bugs, which include those that we discarded as generic (i.e.,
non DL specific), while our taxonomy bears 375 DL specific faults
in total. It is difficult to compare the overall number of analysed
artefacts as such statistics are not reported in Zhang et al.’s paper.
Last but not least, we decided not to limit our analysis to just SO and
Github: we included interviews with researchers and practitioners,
which revealed to be a key contribution to the taxonomy. A detailed
comparison between our and Zhang et al.’s taxonomy is reported
in Section 5.
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Another work worth mentioning is a DL bug characterisation
by Islam et al. [17]. The aim of the authors is to find what types
of bugs are observed more often and what are their causes and
impacts. They also investigated whether the collected issues follow
a common pattern and how this pattern evolved over time. The
authors studied a number of SO and GitHub bugs related to five
DL frameworks: Theano, Caffe, Keras, TensorFlow and PyTorch. To
perform their analysis, the authors labeled the dataset according to
a classification system adapted from the 1984 work by Beizer [13].
For the categorisation of the bug causes, the authors adopted the list
of root causes from Zhang et al. [30]. Differently from us, Islam et al.
did not have the aim of building a comprehensive fault taxonomy.
Instead, they performed an analysis of various fault patterns and
studied the correlation/distribution of bugs in different frameworks,
reusing existing taxonomies available in the literature.

2.2 Interviews with Practitioners

One of the studies that provides some insight into challenges indus-
trial practitioners face while developing and deploying ML-based
applications is by Lwakatare et al. [19]. Similarly to our approach,
the authors conducted semi-structured interviews to collect data of
interest. Based on 12 interviews and a workshop held with practi-
tioners from six projects, a taxonomy that represents the evolution
stages of the use of ML components in industrial practice was ob-
tained. The resulting taxonomy consists of five stages that include:
Experimentation and Prototyping, Non-critical Deployment, Critical
Deployment, Cascading Deployment, and Autonomous ML Compo-
nents. The challenges associated with these stages fall into four
broad categories: Assemble dataset, Create model, Train and evaluate
model, and Deploy model. For each of the categories, the authors
provide from 1 to 3 descriptions of possible challenges developers
may experience on a particular evolution stage. Although some
of the challenges cover the leaf nodes in our taxonomy (namely,
imbalanced training set and not enough data), the rest of the data
have completely different nature and structure.

In a work conducted in a similar way, Arpteg et al. [12] study
Software Engineering challenges associated with building DL ap-
plications. They took advantage of direct communications with
employees from seven real-world projects. The authors present a
list consisting of three main categories: development, production,
and organisational challenges. Each of the categories consists of
several subcategories (12 in total) that outline the problematic areas
and are mapped to the case studies, based on whether the associated
challenges were experienced or not.

From the provided information, Cultural Differences and Effort
estimation appear to be the most prevalent challenges among the
organisation related problems, while Testing and Dependency man-
agement are the most frequent for development and production
stages, respectively. The presented classification provides a high-
level overview of the problematic aspects of the development and
production process, while our study focuses on DL faults.
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3 METHODOLOGY
3.1 Manual Analysis of Software Artefacts

To derive our initial taxonomy we considered the three most popular
DL frameworks [2], TensorFlow, Keras and PyTorch. We manually
analysed four sources of information: commits, issues, pull requests
(PRs) from GitHub repositories using TensorFlow, Keras, or PyTorch,
and SO discussions related to the three frameworks.

3.1.1  Mining GitHub. We used the GitHub search API [5] to iden-
tify repositories using the three DL frameworks subject of our study.
The API takes as an input a search string and fetches source code
files from GitHub repositories that match the search query. For
example, in Python, TensorFlow can be imported by using the state-
ment import tensorflow as tf. Thus, we used the search string
“tensorflow” to identify all Python files using TensorFlow. Clearly,
this may result in a number of false positives, since the string “ten-
sorflow” may be present inside a source file for other reasons (e.g.,
as part of a String literal). However, the goal of this search is only
to identify candidate projects using the three frameworks, and false
positives are excluded in subsequent steps. The search strings we
defined are “tensorflow”, “keras”, and “torch”. We limited the search
to Python source files using the language: python argument.

While using the GitHub search API, a single request can return
1,000 results at most. To overcome this limitation, we generated
several requests, each having a specific size range. We used the
size:min..max argument to retrieve only files within a specific
size range. In this way, we increased the number of returned results
to up 1,000 X n, where n is the number of considered size ranges. For
each search string, we searched for files having a size ranging from
0 to 500,000 bytes, with a step of 250 bytes. Overall, we generated
6,000 search requests, 2,000 for each framework.

For each retrieved Python file we identified the corresponding
GitHub repository, and we extracted relevant attributes such as:
number of commits, number of contributors, number of issues/PRs,
number of stars [3], and number of forks [4]. Then, we excluded:
(i) personal repositories, classified as those having less than five
contributors; (ii) inactive repositories, i.e., having no open issues;
(iii) repositories with trivial history, i.e., having less than 100 com-
mits; and (iv) unpopular repositories, that we identified as those
with less than 10 stars and 10 forks.

Such a process resulted in the selection of 151 TensorFlow projects,
237 Keras projects, and 326 PyTorch projects. Then, one of the au-
thors checked the selected repositories with the goal of excluding
tutorials, books, or collections of code examples, not representing
real software systems used by developers in practice, and false
positives (i.e., projects containing the search strings in one of their
Python files but not actually using the related framework).

This process left us with 121 TensorFlow, 175 Keras, and 268
PyTorch projects. For each of the retained 564 projects, we collected
issues, PRs, and commits likely related to fixing problems/discussing
issues. For issues and PRs, we used the GitHub API to retrieve all
those labelled as either bug, defect, or error. For commits, we
mined the change log of the repositories to identify all those having
a message that contained the patterns [15]: (“fix” or “solve”) and
(“bug” or “issue” or “problem” or “defect” or “error”).
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Then, for each framework, we selected a sample of 100 projects
for manual analysis. Instead of applying a random selection, we
selected the ones having the highest number of issues and PRs.
For frameworks for which less than 100 projects had at least one
relevant issue/PR, we selected the remaining projects sorting them
by the number of relevant commits (i.e., commits matching the
pattern described above). The 100 selected projects account for a
total of 8,577 issues and PRs and 28,423 commits.

Before including these artefacts in our study, we manually in-
spected a random sample of 100 elements and found many (97)
false positives, i.e., issues/PRs/commits that, while dealing with
fault-fixing activities, were unrelated to issues relevant to the usage
of the underlying DL framework (i.e., were about generic program-
ming bugs). Thus, we decided to perform a further cleaning step to
increase the chance of including relevant documents in the man-
ual analysis. We defined a vocabulary of relevant words related to
DL (e.g., “epoch”, “layer”), and excluded all artefacts that did not
contain any of these words. Specifically, we extracted the complete
list of 11,986 stemmed words (i.e., “train”, “trained”, and “training”
were counted only once as “train”) composing the vocabulary of
the mined issues, PRs and commits. For commits, we searched for
the relevant words in their commit note, whereas for issues and
PRs we considered title, description, and all comments posted in
the discussion. We sorted the resulting words by frequency (i.e.,
number of artefacts in which they appear), and we removed the
long tail of words appearing in less than 10 artefacts. This was done
to reduce the manual effort needed to select the words relevant for
DL from the resulting list of words. Indeed, even assuming that
one of the automatically discarded rare words were relevant for DL,
this would have resulted in missing at most nine documents in our
dataset. The remaining 3,076 words have been manually analysed:
we split this list into five batches of equal size, and each batch was
assigned to one author for inspection, with the goal of flagging
the DL relevant words. All flagged words were then discussed in a
meeting among all authors in which the final list of 105 relevant
words was defined. The list is available in our replication package
[8], and includes words such as layer, train, tensor. After excluding
all artefacts not containing at least one of the 105 relevant words, we
obtained the final list of commits (1,981), and of issues/PRs (1,392).

3.1.2  Mining Stack Overflow. We used StackExchange Data Ex-
plorer [9] to get the list of SO posts related to TensorFlow, Keras
and PyTorch. StackExchange Data Explorer is a web interface that
allows the execution of SQL queries on data from Q&A sites, in-
cluding SO. For each framework, we created a query to get the
list of relevant posts. We first checked if the name of a framework
is indicated in the post’s tags. Then, we filtered out posts which
contained the word "how”, "install” or "build” in their title, to avoid
general how-to questions and requests for installation instructions.
We also excluded posts that did not have an accepted answer, to
ensure that we consider only questions with a confirmed solution.
As a result, we obtained 9,935 posts for Tensorflow, 3,116 for Keras,
and 653 for PyTorch. We ordered the results of each query by the
number of times the post has been viewed. Then, to select the posts
that may be addressing the most relevant faults, we selected the
top 1,000 most viewed posts (overall, 2,653 posts).
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3.1.3  Manual Labelling. The data collected from GitHub and SO
was manually analysed by all authors following an open coding
procedure [23]. The labelling process was supported by a web
application that we developed to classify the documents (i.e., to
describe the reason behind the issue) and to solve conflicts between
the authors. Each author independently labelled the documents
assigned to her by defining a descriptive label of the fault. During
the tagging, the web application shows the list of labels already
created, which can be used by an evaluator should an existing label
apply to the fault under analysis. Although, in principle, this is
against the notion of open coding, little is still known on DL faults,
and the number of possible labels may grow excessively. Thus, such
a choice was meant to help coders use consistent naming without
introducing substantial bias.

The authors followed a rigorous procedure for handling special
and corner cases. Specifically, (i) We marked as a false positive any
analysed artefact that either was not related to any issue-fixing
activity or happened to be an issue in the framework itself rather
than in a DL system. (ii) If the analysed artefact concerned a fix,
but the fault itself was not specific to DL systems, being rather a
common programming error (e.g., wrong stopping condition in a
for loop), we marked it as generic. (iii) If the artefact was related
to issue-fixing activities and it was specific of DL systems, but the
evaluator was not able to trace back the root cause of the issue, the
unclear label was assigned.

When inspecting the documents, we did not limit our analysis
by reading only specific parts of the document. Instead, we looked
at the entire SO discussions, as well as the entire discussions and
related code changes in issues and PRs. For commits, we looked at
the commit note as well as at the code diff.

In cases where there was no agreement between the two evalua-
tors, the document was automatically assigned by the web platform
to an additional evaluator. In case of further disagreement between
the three evaluators, conflicts were discussed and solved within
dedicated meetings among all authors.

Table 1: Manual Labelling Process

Analysed Relevant New Inner New Leaf
Round Artefacts  Conflicts to DL Categories Categories
(1st 1vl./2nd Ivl./3d Ivl.)
1 29 3 5 -/-/- 5
2 110 11 16 /-~ 11
3 134 8 14 /-1~ 5
4 126 11 20 51717 10
5 345 31 46 0/2/1 21
6 315 47 48 0/0/0 13
Sub Total 1059 111 149 5/9/8 65
Interviews 297 6 226 0/2/0 27
Total 1356 117 375 5/11/8 92

The labelling process involved six rounds, each followed by a
meeting among all authors to discuss the process and solve conflicts.
Table 1 reports statistics for each of the six rounds of labelling, in-
cluding: (i) the number of artefacts analysed by at least two authors;
(ii) the number of artefacts for which conflicts were solved in the
following meeting; (iii) the number of artefacts that received a label
identifying faults relevant for DL systems; and (iv) the number of
new top/inner/leaf categories in the taxonomy of faults.

In the first three rounds we defined a total of 21 (5+11+5) leaf
categories grouping the 35 DL-relevant artefacts. With the growing
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number of categories in round four, we started creating a hierar-
chical taxonomy (see Figure 1), with inner nodes grouping similar
“leaf categories”.

Table 1 shows the number of inner categories created in the
fourth, fifth, and sixth round organised by level (1st level categories
are the most general). We kept track of the number of inner cate-
gories produced during our labelling process and decided to stop
the process when we reached saturation for such inner categories,
i.e., when a new labelling round did not result in the creation of
any new inner categories in the taxonomy.

In the last two rounds, we increased the number of labels as-
signed to each author. We opted for a longer labelling period be-
cause the process was well-tuned and there was no need for regular
meetings. Overall, we labelled 1,059 documents, and 111 (10.48%) of
them required conflict resolution in the open discussion meetings.

3.2 Developer Interviews

Unlike traditional systems, DL systems have unique characteristics,
as their decision logic is not solely implemented in the source code,
but also determined by the training phase and the structure of the
DL model (e.g., number of layers). While SO posts and GitHub arte-
facts are valuable sources of information for our study, the nature
of these platforms limits the issues reported to mostly code-level
problems, hence possibly excluding issues encountered e.g., during
model definition or training. To get a more complete picture, we
have interviewed 20 researchers/practitioners with various back-
grounds and levels of expertise, focusing on the types of faults
encountered during the development of DL-based systems.

3.2.1 Participant Recruitment. To acquire a balanced and wide view
on the problems occurring in the development of real DL systems,
we involved two groups of developers: researchers and practition-
ers. In the former group, we considered PhD students, Post-Docs
and Professors engaged in frequent usage of DL as a part of their
research. The second group of interviewees included developers
working in industry or freelancers, for whom the development of
DL applications was the main domain of expertise.

We exploited three different sources to attract participants. First,
we selected candidates from personal contacts. This resulted in a list
of 39 developers, 20 of whom were contacted via e-mail. We received
12 positive responses from 9 researchers and 3 practitioners. To
balance the ratio between researchers and practitioners, we referred
to other two sources of candidates. One of them was SO, whose top
answerers are experienced DL developers with proven capability
to help other developers solve recurring DL problems. To access
the top answerers we referred to statistics associated with the tag
that represents each of the three frameworks we study. We used
the ‘Last 30 Days’ and ‘All Time’ categories of top answerers and
extracted the top 10 answerers from both categories for each tag
(DL framework), resulting in 60 candidates in total.

As there is no built-in contact form on SO, it was not possible
to get in touch with all of the 60 shortlisted users. We managed to
locate email addresses for 17 of them from links to personal pages
that users left on their SO profiles. From 17 of the contacted users,
we received 6 responses, of which 4 were positive (divided into 3
practitioners and 1 researcher).
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The other source was Upwork [10], a large freelancing platform.
We created a job posting with the description of the interview pro-
cess on the Upwork website. The post was restricted to invited
public. The invited candidates were selected according to the fol-
lowing criteria: (i) a candidate profile should represent an individual
and not a company, (ii) the candidate’s job title should be DL-related,
(iii) the candidate’s recently completed projects should mostly be
DL-related, (iv) Upwork success rate of the candidate should be
higher than 90% and (v) the candidate should have earned more
than 10,000 USD on the Upwork platform. From 23 invitations sent,
5 candidates accepted the offer, but one of them was later excluded,
being a manager of a team of developers, and not a developer her-
self.

Overall, the participant recruitment procedure left us with 20 suc-
cessfully conducted interviews, equally divided among researchers
and practitioners (10 per group). Detailed information on the par-
ticipants’ DL experience is available in our replication package [8].
For what concerns the ‘overall coding experience’, among the inter-
viewed candidates the lowest value is 2.5 years and the highest is
20 years (median=5.4). As for the DL-specific ‘relevant experience’,
the range is from 3 months to 9 years (median=3).

The interviewees reported to use Python as a main programming
language to develop DL applications, with a few mentions to Matlab,
R, Java, Scala, C++ and C#. Concerning the usage of DL frameworks,
TensorFlow was mentioned 12 times, Keras 11, and PyTorch 8 times.
The domains of expertise of the interviewees cover a wide spectrum,
from Finance and Robotics to Forensics and Medical Imaging.

3.2.2 Interview Process. Since we are creating a taxonomy from
scratch, rather than classifying issues and problems into some
known structure, the interview questions had to be as generic and
open-ended as possible. We opted for a semi-structured interview
[23], which combines open-ended questions (to elicit unexpected
types of information) with specific questions (to keep the interview
within its scope and to aid interviewees with specific questions).

In semi-structured interviews the interviewer needs to improvise
new questions based on the interviewee’s answer, which might be a
challenging task. Therefore, it might be useful to have an additional
interviewer who can ask follow-up questions and support the pri-
mary interviewer in case of need. For this reason our interviews
were conducted by two authors simultaneously, but with different
roles: one led the interview, while the other asked additional ques-
tions only when appropriate. Each role was performed by the same
author in all the interviews. The work by Hove et al. [16] shows
that half of the participants in their study talked much more when
the interviews were conducted by two interviewers instead of one.
This was the case also in our experience, as in all the interviews
the second interviewer asked at least two additional questions.

After collecting information about the interviewees’ general
and DL-specific programming experience, we proceeded with the
questions from our interview guide [8].

Our first question was very general and was phrased as “What
types of problems and bugs have you faced when developing ML/DL
systems?”. Our aim with this question was to initiate the topic as
open-ended as possible, allowing the interviewees to talk about
their experience without directing them to any specific kind of
faults. Then, we proceeded with more specific questions, spanning
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among very broad DL topics, such as training data, model structure,
hyperparameters, loss function and hardware used. We asked the
interviewees if they ever experienced issues and problems related
to these topics and then, if the answer was positive, we proceeded
with more detailed questions to understand the related fault.

All of our interviews were conducted remotely (using Skype
video calls), except one which was conducted in person. The length
of the interviews varied between 26 and 52 minutes, with an average
of 37 minutes. For each interview one of the two interviewers was
also the transcriber. For the transcription, we used Descript [1],
an automated speech recognition tool that converts audio/video
files into text. After the automated transcription was produced, the
transcriber checked it and did manual corrections in case of need.

3.2.3 Open Coding. To proceed with open coding of the tran-
scribed interviews, one moderator and two evaluators were as-
signed to each interview. The moderator was always one of the
interviewers. The first evaluator was the other interviewer, while
the second evaluator was one of the authors who did not participate
in the interview. The role of each evaluator was to perform the
open coding task. In contrast, the moderator’s role was to identify
and resolve inconsistently-labelled fragments of text between the
evaluators (e.g., different tags attached to the same fragment of
text). We decided to involve the interviewers in this task in two
roles (evaluator and moderator) because they were more informed
of the content and context of the interview, having been exposed
to the informal and meta aspects of the communication with the
interviewees. The second evaluator who was not involved in the
interview ensured the presence of a different point of view.

Twenty interviews were equally divided among the authors who
did not participate in the interview process. Each interviewer was
the evaluator of 10 interviews and the moderator for the remain-
ing 10. The open coding was performed manually in the Google
Docs online tool. Overall, 297 pieces of text were tagged by the
evaluators. Among them, there were only 6 cases of conflict, where
the evaluators attached different tags to the same fragment of text.
Moreover, there were 196 cases when one evaluator put a tag on a
fragment of text, while the other did not. Among these cases, 146
were kept by the moderators, while the rest were discarded. As a
result of this process, 245 final tags were extracted. The number of
tags per interview ranged between 5 and 22, with an average of 12
tags.

Once the open coding of all interviews was completed, a final
meeting with all the authors took place. At this meeting, authors
went through the final list of tags, focusing in particular on the tags
that were deemed not related to issues and problems in DL systems,
but rather had a more general nature. After this discussion, 19 tags
were removed, leaving the final 226 tags available for the taxonomy.

3.3 Taxonomy Construction and Validation

To build the taxonomy we used a bottom-up approach [29], where
we first grouped tags that correspond to similar notions into cate-
gories. Then, we created parent categories, ensuring that categories
and their subcategories follow an “is a” relationship. Each version
of the taxonomy was discussed and updated by all authors in the
physical meetings associated with the tagging rounds. At the end
of the construction process, in a physical meeting the authors went
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together through all the categories, subcategories and leaves of the
final taxonomy for the final (minor) adjustments.

To ensure that the final taxonomy is comprehensive and represen-
tative of real DL faults, we validated it through a survey involving
a new set of practitioners/researchers, different from those who
participated in the interviews.

To recruit candidates for the survey, we adopted the same strat-
egy and selection criteria as the one we used for the interview
process (Section 3.2.1). The first group of candidates we contacted
was derived from authors’ personal contacts. We contacted 23 indi-
viduals remaining from our initial list and 13 of them actually filled
the survey. The second and the third group of candidates came from
SO and Upwork, respectively. From the SO platform we selected the
top 20 answerers from the ‘Last 30 Days’ and ‘All time’ categories
for each of the three considered frameworks. By the time we were
performing the survey, these two categories had partly changed
in terms of the featured users, so there were new users also in the
top 10 lists. From the set of 120 users we discarded those who had
been already contacted for the interviews. Among the remaining
candidates, we were able to access contact details of only 20 users.
We contacted all of them and 4 have completed the survey. For the
Upwork group, we created a new job posting with a fixed payment
of 10 USD per job completion and sent an offer to 26 users. Four
of them completed the survey. Overall, 21 participants took part in
our survey (10 researchers and 11 practitioners), with a minimum
overall coding experience of 1 year and a maximum of 20 years
(median=4). Concerning the relevant DL experience, the minimum
was 1 year and the maximum 7 years (median=3).

To create our survey form we used Qualtrics [7], a web-based
tool to conduct survey research, evaluations and other data collec-
tion activities. We started the survey with the same background
questions as in our interviews. Then, we proceeded with the ques-
tions related to our final taxonomy. Putting the whole taxonomy
structure in a single figure of the survey would make it overly com-
plicated to read and understand. Therefore, we partitioned it by
inner categories, choosing either the topmost inner category, when
it was not too large, or its descendants, when it was a large one.

For each inner category that partitioned the taxonomy, we cre-
ated a textual description including examples of its leaf tags. In
the survey form, we presented the name of the category, its textual
description, and then three questions associated with it. The first
question was a “yes” or “no” question on whether the participant
had ever encountered this problem. In case of positive answer, we
had two more Likert-scale questions on the severity of the issue
and the amount of effort required to identify and fix it. In this way
we evaluated not only the mere occurrence of a taxonomy fault,
but also its severity as perceived by developers.

In the final part of our survey, in the form of a free-text answer,
we asked the participants to list problems related to DL that they
have encountered but which had not been mentioned in the survey.
By doing this we could check whether our taxonomy covered all
the faults in the developer’s experience, and if it did not, we could
find out what is missing.
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4 RESULTS

The material used to conduct our study and the (anonymised) col-
lected data are publicly available for replication purposes [8].

4.1 The Final Taxonomy

The taxonomy is organised into 5 top level categories, 3 of which
are further divided into inner subcategories. The full taxonomy is
shown in Figure 1. The two numbers separated by a plus sign after
each category name represent the number of posts assigned to such
a category during manual labelling and the number of occurrences
of such a tag in the interviews after open coding, respectively.

Model. This category of the taxonomy covers faults related to
the structure and properties of a DL model.

Model Type & Properties. This category considers faults affecting
the model as a whole, rather than its individual aspects/components.
One such fault is a wrong selection of the model type, for example,
when a recurrent network was used instead of a convolutional
network for a task that required the latter. In addition, there are
several cases of incorrect initialisation of a model, which result in
the instability of the gradients. Another common pitfall from this
category is using too few or too many layers, causing suboptimal
network structure, which in turn leads to poor performance of the
model. An example was provided by one of our interviewees: "when
we started, we were thinking that we needed at least four layers in
the encoder and the decoder and then we ended up having half of
them, like actually very shallow model and it was even better than
the bigger deeper model".

Layers. Faults in this category affect a particular layer of a neural
network. This is a large taxonomy category that was further divided
into the three inner subcategories described below:

e Missing/Redundant/Wrong Layer. These faults represent cases
where adding, removing or changing the type of a specific layer
was needed to remedy the low accuracy of a network. This is
different from the suboptimal network structure of Model Type &
Properties category, as here the solution is local to a specific layer,
rather than affecting the whole model. An interviewee described
such a fault, which was related "not to the wrong architecture as
whole, but more usually to the wrong type of layer, because usually
in our field people have applied type of layers which were not suited
for the type of input which they are processing".

e Layer Properties. This category represents faults due to some

layer’s incorrect inner properties, such as its input/output shape,

input sample size, number of neurons in it. As per interviewee’s
description, "we set too large number of neurons and we had like
very slow training and validation".

Activation Function. Another important aspect of a neural net-

work is the activation function of neurons. If not selected prop-

erly, it can dramatically ruin the model’s performance. One inter-
viewee noted that "when I changed sigmoid activations into linear
activations in the speech recognition, it gave me a gain".

Tensors & Inputs. This category deals with problems related
to the wrong shape, type or format of the data. We encountered
two different classes of faults in this category:

Wrong Tensor Shape. A faulty behaviour manifests during some
operation on tensors with incompatible shapes or on a single tensor
with incorrectly defined shape. As shown in Figure 1, there is a
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number of possible causes for a wrong tensor shape, e.g., missing
output padding, missing indexing, or, as it was provided in one of
the interviews, a case when a developer "was using a transposed
version of the tensor instead of the normal one".

Wrong Input. A faulty behaviour is due to data with incompatible
format, type or shape being used as an input to a layer or a method.
A wrong input to a method is a problem frequently observed in
traditional software, as well as in DL programming. However, in
DL, these faults happen to be of a specific nature, ranging from the
input having unexpected datatype (e.g., string instead of float) or
shape (a tensor of size 5x5 instead of 5x10) to cases when the input
has a completely wrong format (e.g., a wrong data structure). One
interesting example of a wrong input format was provided by our
interviewee: "my data was being loaded in with channel access first
instead of last. So that actually was a silent bug and it was running
and I actually don’t understand how it even ran but it did".

Training. This is the largest category in the taxonomy and it
includes a wide range of issues related to all facets of the training
process, such as the quality and preprocessing of training data,
tuning of hyperparameters, the choice of appropriate loss/opti-
misation function. It also accounts for the faults occurring when
testing/validating a previously trained model.

Hyperparameters. Developers face a large number of problems
when tuning the hyperparameters of a DL model. The most reported
incorrect hyperparameters are learning rate, databatch size, and
number of epochs. While suboptimal values for these parameters
do not necessarily lead to a crash or an error, they can affect the
training time and the overall performance achieved by the model.
An example from the interviews is "when changing learning rate
from 1 or 2 orders of magnitude, we have found that it impacts the
performance of about up to 10% to 15% in terms of accuracy".

Loss Function. This category contains faults associated with the
loss function, specifically its selection and calculation. Wrong se-
lection of the loss function or usage of a predefined loss function
may not adequately represent the optimisation goals that a model
is expected to achieve. In its turn, a wrong calculation of a loss
function occurs when a custom loss function is implemented and
some error in the implementation leads to the suboptimal or faulty
behaviour. As one interviewee noted, they needed "to get a more
balanced loss function than just something that can predict one class
very well and then screws up the other ones".

Validation/Testing. It includes problems related to testing and
validating a trained model, such as the bad choice of performance
metrics or faulty split of data into training and testing datasets.

Preprocessing of Training Data. Preprocessing of a training dataset
is a labour-intensive process that significantly affects the perfor-
mance of a DL system. This is reflected in the large number of
elements in this category and in the high variety and number of
its leaves. At the high-level we have separated the faults in this
category into two groups: missing preprocessing and wrong prepro-
cessing. The former refers to cases when a preprocessing step that
would lead to a better performance has not been applied at all. In
the latter case, the preprocessing step has actually been applied, but
either it was of an unsuitable type or was applied in an incorrect
way. Examples of the most frequent issues are missing normalisa-
tion step, missing input scaling or subsampling, and wrong pixel
encoding. It is important to remark that preprocessing steps for
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training data are heavily dependent on an area of application. This
explains the large variety of leaf tags in this category. We had to
omit some of them from the taxonomy figure, due to the lack of
space.

Optimiser. This category is related to the selection of an unsuit-
able optimisation function for model training. Wrong selection of
the optimiser (e.g., Adam optimiser instead of stochastic gradient
descent) or suboptimal tuning of its parameters (too low epsilon for
Adam optimiser) can ruin the performance of a model.

Training Data Quality. In this group fall all the aspects relevant
to the quality of training data. In general, issues occur due to the
complexity of the data and the need for manual effort to ensure
a high quality of training data (e.g., to label and clean the data, to
remove the outliers). More specific cases of data collection chal-
lenges include privacy issues in the medical field and constantly
changing user interfaces of web pages, from which the data is gath-
ered automatically. All of this leads to the most frequent issue in
this category, which is not enough training data. A variant of this
problem is unbalanced training data, where one or more classes
in a dataset are underrepresented. Moreover, to get a good classi-
fication model, it is important to ensure the provision of correct
labels for training data. However, in the interviewees’ experience
getting wrong labels for training data is a common and an annoying
issue. The set of other issues related to the quality of training data,
such as the lack of a standard format, missing pieces of data or the
presence of unrelated data (e.g., images from other domains) are
gathered together under a rather general tag low quality of training
data, because specific issues depend on the area of application.

Training Process. This category represents the faults developers
face during the process of model training, such as wrong manage-
ment of memory resources or missing data augmentation. It also
contains leaves representing the exploitation of models that are too
big to be fitted into available memory or reference to non-existing
checkpoints during model restoration. Regarding the data augmen-
tation, one of the interviewees noted that it helped "to make the
data more realistic to work better in low light environments", while
the other said that sometimes "you add more pictures to data set"
and as a result you can face "the overfitting of the network problem,
so sometimes data augmentation can help, sometimes it can damage".

GPU Usage. This top-level category gathers all kinds of faults
related to the usage of GPU devices while working with DL. There
is no further division in this case as all the examples we found
represent very specific issues.

Some highlights from this category are: wrong reference to GPU
device, failed parallelism, incorrect state sharing between subprocesses,
faulty transfer of data to a GPU device.

APL. This part of the taxonomy represents a broad category of
problems arising from framework’s API usage. The most frequent
is wrong API usage, which means that a developer is using an API
in a way that does not conform to the logic set out by developers
of the framework. Another illustrating example could be a missing
or wrongly positioned API call.

For each of the inner nodes of the resulting taxonomy we have
calculated the percentage of contributing SO/GIT faults that are de-
tectable at runtime (i.e., led to a crash or error). We did not consider
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interviews in this calculation as in many cases there was no knowl-
edge on whether the fault led to a crash/error or not. As expected,
the Tensors & Inputs branch of the taxonomy contained nodes with
the highest percentage of such faults, specifically, Wrong Input with
100%, 86%, and 80% for its inner nodes and Wrong Tensor Shape
with 76%. Another category with a high number of crashes/errors
caused by the associated faults is the Layer Properties node of the
Model branch (85%) as well as the API branch (80%).

4.2 Contributions to the Taxonomy

The final taxonomy was built using tags extracted from two different
sources of information: SO & GitHub artefacts and researcher/prac-
titioner interviews. The top 5 tags obtained from SO & GitHub with
their respective number of occurrences (shown as NN + MM, where
NN refers to SO & GitHub; MM to interviews) are wrong tensor
shape (21+5), wrong shape of input data for a layer (16+2), missing
preprocessing (11+22), wrong API usage (10+0) and wrong shape of
input data for a method (6+0).

For the interviews, the top 5 tags are missing preprocessing (11+22),
suboptimal network structure (1+15), wrong preprocessing (2+15), not
enough training data (0+14) and wrong labels for training data (1+12).
These lists have an intersection of only one tag (missing prepro-
cessing). The top 5 SO & GitHub list contains two tags that did not
occur in the other source (wrong API usage, wrong shape of input
data for a method). The top 5 interview list contains one such tag
(not enough training data). Moreover, the number of occurrences is
unbalanced between the two sources: for the top 5 SO & GitHub
tags, there are 64+29 occurrences, while for the top 5 interview
tags the number becomes 15+78. This shows that the two selected
sources are quite complementary.

Indeed, the complementarity between these sources of informa-
tion is reflected in the overall taxonomy structure. If we consider
the five top level categories in the taxonomy (i.e., the five direct
children of the root node in the taxonomy), we can find one cate-
gory to which interview tags have not contributed at all, namely,
the API category. This might be due to the fact that API-related
problems are specific and therefore, they did not come up during
interviews, where interviewees tended to talk about more general
problems. Similarly, in the GPU Usage category there is only one in-
terview tag. Tensors & Inputs is another category dominated by SO
& GitHub tags, the number of which is twice the number of inter-
view tags. In contrast, the main contributors to the Model category
are interviews.

The largest difference is for the Training category, where in-
terviews contributed 4 times more tags, which led to addition of
two more subcategories. The presence of training related faults
only in the interviews is expected, as these types of problems can
not usually be solved by asking a question on SO or opening an
issue on GitHub. Out of 18 pre-leaf categories, one consists of tags
provided only by SO & GitHub (API) and another one only by inter-
views (Training Process). Another pre-leaf category (Training Data
Quality) was abstracted from the few existing leaves only after
collecting more data from the interviews. The remaining 16 consist
of different proportions of the two sources, with 6 having higher
number of SO & GitHub tags, 8 higher number of interview tags
and 2 the same amount of tags from the two sources.
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Overall, the distribution of the tags shows that SO & GitHub
artefacts and researcher/practitioner interviews are two very dif-
ferent and complementary sources of information. Ignoring one of
them would provide an incomplete taxonomy, which would not be
representative of the full spectrum of real DL faults.

4.3 Validation Results

The results of the validation survey are summarised in Table 2. For
each category, we report the percentage of “yes” and “no” answers
to the question asking whether participants ever encountered the
related issues. We also show the perceived severity of each fault
category and the perceived effort required to identify and fix faults
in such a category. There is no category of faults that the survey
participants have never encountered in their experience, which con-
firms that all the categories in the taxonomy are relevant. The most
approved category is Training Data, with 95% of “yes” answers. Ac-
cording to the respondents, this category has “Critical” severity and
requires “High” effort for 61% and 78% of participants, respectively.
The least approved category is Missing/Redundant/Wrong Layer,
which has been experienced by 24% of the survey participants (a
non negligible fraction of all the participants). Across all the cate-
gories, the average rate of “yes” answers is 66%, showing that the
final taxonomy contains categories that match the experience of a
large majority of the participants (only two categories are below
50%). Participants confirmed, on average, 9.7 categories (out of 15)
across all the surveys.

Table 2: Validation Survey Results

Category Response Severity Effort Required
Yes No |Minor Major Critical | Low Medium High
Hyperparameters 86% 14% | 44%  44% 11% | 22% 33% 44%
Loss Function 65% 35% | 15%  54% 31% | 23% 46% 31%
Validation & Testing 60% 40% | 33%  42% 25% | 50%  17% 33%
Preprocessing of Training Data | 86% 14% | 56%  17% 28% | 28%  39% 33%
Optimiser 57% 43% | 75% 25% 0% 58% 33% 8%
Training Data 95% 5% 6% 33% 61% 6% 17% 78%
Training Process 68% 32% | 31%  23% 46% | 31% 15% 54%
Model Type & Properties 81% 19% | 44%  44% 13% | 38%  44% 19%
Missing/Redundant/Wrong Layer | 24% 76% | 60%  40% 0% 60%  40% 0%
Layer Properties 76% 24% | 44%  44% 13% | 63%  31% 6%
Activation Function 43% 57% | 33%  67% 0% 67%  22% 11%
Wrong Input 62% 38% | 62%  31% 8% 69%  31% 0%
Wrong Tensor Shape 67% 32% | 57%  21% 21% | 71%  29% 0%
GPU Usage 52% 48% | 55% 18% 27% 55% 18% 27%
API 67% 33% | 43% 29% 29% 36% 43% 21%

Some participants provided examples of faults they thought were
not part of the presented taxonomy. Three of them were generic
coding problems, while one participant described the effect of the
fault, rather than its cause.

The remaining three could actually be placed in our taxonomy
under "missing API call", "wrong management of memory resources”
and "wrong selection of features". We think the participants were not
able to locate the appropriate category in the taxonomy because
the descriptions in the survey did not include enough exemplar
cases, matching their specific experience.

5 DISCUSSION

Final Taxonomy vs. Related Work. To elaborate on the compar-
ison with existing literature, we analysed the differences between
our taxonomy and the taxonomy from the only work where authors
compiled their own classification of faults, rather than reusing an
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existing one, which is by Zhang et al. [30]. To ease the comprehen-
sion, we list the categories with the exact naming and excerpts of
descriptions from the corresponding publication [30]:

1. Incorrect Model Parameter or Structure (IPS) - “bugs related
to modelling mistakes arose from either an inappropriate model
parameter like learning rate or an incorrect model structure like
missing nodes or layers”. In our taxonomy we distinguish the se-
lection of an appropriate model structure from the tuning of the
hyperparameters. So, in our taxonomy, class IPS corresponds to
two leaves: suboptimal network structure and suboptimal hyperpa-
rameters tuning, each belonging to a different top-level category —
Model and Training, respectively.

2. Unaligned Tensor (UT) - “a bug spotted in computation graph
construction phase when the shape of the input tensor does not
match what it is expected”. Class UT can be mapped to the Wrong
Tensor Shape and partly to the Wrong Shape of Input Data (as far as
it concerns tensors) categories of our taxonomy.

3. Confusion with TensorFlow Computation Model (CCM) - “bugs
arise when TF users are not familiar with the underlaying computa-
tion model assumed by TensorFlow”. CCM deals with the data flow
semantics of tensors, which might be unintuitive to novices. This is
a difficulty that developers face when starting to work with tensors
in general. We did not gather evidence for this fault because we
excluded examples, toy programs, and tutorials from our analysis.

Zhang et al. did not observe this fault in GitHub (only in SO). As
they remark: “they can be common mistakes made by TF users and
discussed at Stack Overflow seeking advice”.

4. Tensor Flow API Change (APIC) - “anomalies can be exhibited by
a TF program upon a new release of TensorFlow libraries”. As these
bugs are related to the evolution of the framework, they are similar
to those that affect any code using third party libraries. Hence, we
regarded them as generic programming bugs, not DL-specific faults.

5. TensorFlow API Misuse (APIM) - “bugs were introduced by TF
users who did not fully understand the assumptions made by the
APIs”. This class can be directly linked to the wrong API usage leaf
in the API category, with the only difference that in our case the
leaf includes APIs from three, not just one, DL frameworks.

6. Structure Inefficiency (SI) - “a major difference between SI
and IPS is that the SI leads to performance inefficiency while the
IPS leads to functional incorrectness”. This class of bugs is similar
to class IPS, differing only in the observable effects (functional
vs efficiency problems), which are not taken into account in our
taxonomy (we looked at the root cause of a fault, not at its effects).
So, the mapping is the same as for IPS.

7. Others (O) - “other bugs that cannot be classified are included
in this type. These bugs are usually programming mistakes unre-
lated to TensorFlow, such as Python programming errors or data
preprocessing”. Generic programming errors are excluded from
our taxonomy, which is focused on DL-specific faults. Data prepro-
cessing errors instead correspond to the category Preprocessing of
Training Data.

In summary, Zhang et al’s classes IPS, SI and APIM map to
3 leaf nodes of our taxonomy; classes UT and O map to 3 inner
nodes (although for 2 out of 3 the mapping is partial). In total (see
Table 1), our taxonomy has 24 inner nodes and 92 leaf nodes. So,
our taxonomy contains 21 inner nodes (out of 24) that represent
new fault categories with respect to Zhang et al.’s (19 out of 24 if
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we do not count descendants of mapped nodes). For what concerns
the leaves, the computation is more difficult when the mapping
is partial, because it is not always easy to decide which subset
of leaves is covered by classes UT and O. If we conservatively
overestimate that all leaves that descend from a partially mapped
node are transitively covered, Zhang et al.’s classes would cover
13 leaf nodes, out of 92, in our taxonomy. This means that 79 leaf
categories have been discovered uniquely and only in our study.
On the other hand, the two unmapped classes by Zhang et al. (CCM
and APIC) correspond to generic programming bugs or bugs faced
by novices who seek advice about tensor computation in SO. We
deliberately excluded such classes from our analysis.

Overall, a large proportion of inner fault categories and of leaf
fault categories in our taxonomy are new and unique to our study,
which hence represents a substantial advancement of the knowl-
edge of real DL faults over the previous work by Zhang et al.

Final Taxonomy vs. Mutation Operators. Mutants are artifi-
cial faults that are seeded into a program to test under the assump-
tion that fault revelation will translate from mutants to real faults.
The works by Ma et al. [20] and Shen et al. [25] have made initial at-
tempts to define mutation operators for DL systems. The combined
list of mutation operators from these works can be classified into
two categories: (1) Pre-Training Mutations, applied to the training
data or to the model structure before training is performed; (2) Post-
Training Mutations that change the weights, biases or structure of a
model that has already been trained. For each pre-training mutant,
after mutation the model must be retrained, while for post-training
mutants no retraining is needed.

Whether mutants are a valid substitute for real faults has been
an ongoing debate for traditional software [11, 14, 18]. To obtain an
insight on the correspondence between the proposed DL mutants
and real faults in DL systems, we matched the mutation operators
from the literature to the faults in our taxonomy. Table 3 lists each
pre-training mutation operator and provides the corresponding
taxonomy category when such a match exists. This is the case for
all pre-training mutation operators except “Data Shuffle”.

Table 3: Taxonomy Tags for Mutation Operators from [20]

Mutation Operator
Data Repetition
Label Error

Data Missing

Data Shuffle

Noise Perturbation

Taxonomy Category
Unbalanced training data
Wrong labels for training data
Not enough training data

Low quality of training data
Layer Removal Missing/redundant/wrong layer
Layer Addition Missing/redundant/wrong layer
Activation Function Removal | Missing activation function

For what concerns the post-training mutants, there is no single
fault in the taxonomy related to the change of model parameters
after the model has already been trained. Indeed, these mutation
operators are very artificial and we assume they have been pro-
posed as they do not require retraining, i.e., are cheaper to generate.
However, their effectiveness is still to be demonstrated.

Overall, we can notice that the existing mutation operators do
not capture the whole variety of real faults present in our taxonomy,
as out of 92 unique real faults (leaf nodes) from the taxonomy, only
6 have a corresponding mutation operator. While some taxonomy
categories may not be suitable to be turned into mutation operators,
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we think that there is ample room for the design of novel mutation
operators for DL systems based on the outcome of our study.

Stack Overflow vs. Real World. The study by Meldrum et al.
[21], which analyses 226 papers that use SO, demonstrates the
growing impact of SO on software engineering research. However,
the authors note that this raises quality-related concerns, as the
utility and reliability of SO is not validated in any way. Indeed,
we collected feedback on this issue when interviewing the top SO
answerers. All SO interviewees agreed that the questions asked
on SO are not entirely representative of the problems developers
encounter when working on a DL project. One interviewee noted
that these questions are “somehow different from the questions my
colleagues will ask me”, while the other called them “two worlds,
completely different worlds". Interviewees further elaborated on
why they think this difference exists. One reasoning was that “most
engineers in the industry have more experience in implementing, in
tracing the code”, so their problems are not like “how should I stack
these layers to make a valid model, but most questions on SO are like
model building or why does it diverge kind of questions”. Another
argument was that the questions on SO are mostly “sort of beginner
questions of people that don’t really understand the documentation”
and that they are asked by people who “are extremely new to linear
algebra and to neural networks”.

We addressed this issue by excluding examples, toy programs and
tutorials from the set of analysed artefacts and by complementing
our taxonomy with developer interviews.

Common Problems. Our interviews with developers were con-
ducted to get information on DL faults. However, due to the semi-
structured nature of these interviews, we ended up collecting in-
formation on more topics than that. The version incompatibility
between different libraries and frameworks was one of intervie-
wees’ main concerns. They also expressed their dissatisfaction with
the quality of documentation available, with one developer noting
that this problem is even bigger for non computer vision problems.
Another family of problems mentioned very often was the limited
support of DL frameworks for a number of tasks, such as implemen-
tation of custom loss functions and of custom layers, serialisation of
models, and optimisation of model structure for complex networks.
The lack of tools to support activities such as performance evalu-
ation, combining outputs of multiple models, converting models
from one framework to another was yet another challenging factor
according to our interviewees.

6 THREATS TO VALIDITY

Internal. A threat to the internal validity of the study could be
the biased tagging of the artefacts from SO & GitHub, and of the
interviews. To mitigate this threat, each artefact and interview was
labelled by at least two evaluators. Also, it is possible that questions
asked during the developer interviews might have been affected
by the initial taxonomy based on SO & GitHub tags or that they
have directed the interviewees towards specific types of faults. To
prevent this from happening, we kept the questions as generic and
disjoint from the initial taxonomy as possible. Another threat might
be related to the procedure of building the taxonomy structure from
a set of tags. As there is no unique and correct way to perform this
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task, the final structure might have been affected by the authors’
point of view. For this reason it was validated via survey.

External. The main threat to the external validity is general-
isation beyond the three considered frameworks, the dataset of
artefacts used and the interviews conducted. We selected the frame-
works based on their popularity. Our selection was further con-
firmed by the list of frameworks that developers from both the
interviews and survey had used in their experience. To make the
final taxonomy as comprehensive as possible, we labeled a large
number of artefacts from SO & GitHub until we reached saturation
of the inner categories. To get diverse perspectives from the inter-
views, we recruited developers with different levels of expertise
and background, across a wide range of domains.

7 CONCLUSION

We have constructed a taxonomy of real DL faults, based on man-
ual analysis of 1,059 GitHub & SO artefacts and interviews with
20 developers. The taxonomy is composed of 5 main categories
containing 375 instances of 92 unique types of faults. To validate
the taxonomy, we conducted a survey with a different set of 21
developers who confirmed the relevance and completeness of the
identified categories. In our future work we plan to use the pre-
sented taxonomy as a guidance to improve DL systems testing and
as a source for the definition of novel mutation operators.
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