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Abstract—In this paper, we first discuss the challenges of
adapting an already trained DNN-based anomaly detector with
knowledge mined during the execution of the main system. Then,
we present a framework for the continual learning of anomaly
detectors, which records in-field behavioural data to determine
what data are appropriate for adaptation. We evaluated our
framework to improve an anomaly detector taken from the
literature, in the context of misbehavior prediction for self-
driving cars. Our results show that our solution can reduce the
false positive rate by a large margin and adapt to nominal be-
haviour changes while maintaining the original anomaly detection
capability.

Index Terms—Al Testing, Anomaly Detection, Autonomous
Driving Systems, Continual Learning

I. INTRODUCTION

System-of-Systems are composed of independent and com-
plex heterogeneous systems which collaborate to create ca-
pabilities not achievable by an individual system. Nowadays,
an increasing number of such systems embed one or more
Deep Neural Networks (DNNs) to perform tasks that cannot
be expressed with traditional software logic [[L]. Such software
infrastructures perform advanced safety-critical tasks, such
as autonomous driving [2], medical diagnosis [3]], disease
prediction [4], and aircraft collision avoidance [5].

Despite the successful results, DNNs carry numerous draw-
backs when exposed to open world operational domains.
For example, DNNs are fragile to domain shifts [6] (i.e.,
test data that differ from the training distribution) and data
corruption [7] (e.g., adversarial examples) that may occur
when the system is in operation. To date, DNN models are
mostly tested relying on accuracy metrics on large test sets
that attempt to represent a meaningful subset of the targeted
operational domain. This is insufficient when the DNN is
deployed within a real-world system as the examples gathered
in the field may differ substantially from those of the test set.

In the machine learning literature, this problem is called out-
of-distribution detection [8|], whereas in the software testing
literature it is mostly referred to as input validation [9]. A
popular solution to address this problem is using unsupervised
anomaly detection techniques that need no a priori knowledge
of the anomalies, i.e., without a labelled dataset [[10]. Rather,
anomaly detectors identify the data that differ from the norm
and that do not belong to the nominal data distribution. How-
ever, their effectiveness is limited by the representativeness of
the data used to train them.

In this paper, we first discuss some of the challenges to
build an anomaly detector that learns continuously from data
gathered during the operation of the main system. Then,
we propose an anomaly detection framework that not only
monitors the main system, but also continually learns from
in-field data, and, when the input data stream drifts from the
available nominal data, re-trains the anomaly detector.

We instantiated our framework in the context of a real-
world application domain, i.e., misbehaviour prediction for
autonomous driving systems, to improve an autoencoder-based
anomaly detector from the literature. Such an anomaly detector
was used to anticipate misbehaviours of the main driving
component within a simulation environment, by recognizing
unexpected conditions such as weather changes.

In safety critical conditions, the true alarm rate (true pos-
itives) must be very close to 1, because unsafe executions
should be eliminated or reduced to a negligible probability.
However, such predictors can achieve a high true alarm rate
only at the price of accepting a high false alarm rate (false
positives) that can occur also in nominal or nearly-nominal
conditions, causing much driver’s discomfort and negatively
affecting the driving experience.

On the other hand, an invaluable opportunity for improving
this scenario is through the availability of unlabelled nominal
data collected from the field. While such data is useless
for retraining the main driving component, because it is
unlabelled, it can be still used to improve the misbehaviour
predictor, since no labels are required for its training.

The main challenge consists in carefully selecting the
frames that can be used for adaptation. Our framework au-
tomates this task by comparing the score of the misbehaviour
predictor with an in-field driving quality metric. If the misbe-
haviour predictor raises a false alarm (i.e., the driving scenario
is unseen, but the driving component is indeed confident), our
framework stores them in a buffer for adaptation, which is
then used for retraining.

The main contributions of our work are:

e A framework for continual learning of DNN-based

anomaly detectors that perform misbehaviour prediction.

« An instantiation and evaluation of our framework to

improve an existing anomaly detector [11] under a diverse
set of in- and out-of-distribution datasets. We show that
our approach can reduce the false alarm rate by a large
margin, without affecting the anomaly detection capabil-
ity, i.e., the true alarm rate.



II. BACKGROUND
A. Anomaly Detection and Autoencoders

Anomaly detection techniques have been used within a
multitude of application domains such as intrusion detection
systems [12]], fraud detection [13], and IoT [14].

An anomaly can be defined as an observation that sig-
nificantly deviates from other observations so as to arouse
suspicion that it was generated by a different mechanism [[15]].
Anomalies can be caused by errors in data, but they can be also
indicative of new, previously unknown, underlying scenarios.

In many real world domains, such as autonomous driving,
abnormal data represent rare and unexpected events, for which
no prior knowledge, or label, is available (hence, the context
is unsupervised). Thus, research has moved to models that can
be trained using no supervision, including one class SVM [16],
clustering [17]] and self-organizing maps [18]. In the spectrum
of unsupervised anomaly detection solutions, architectures
based on autoencoders (AEs) have emerged as a popular and
very effective technique [10]. AEs are DNNs designed to
reconstruct the inputs they are given. When trained on nominal
data, AEs learn how to reconstruct normal data patterns,
whereas they worsen their reconstruction capability when
unknown inputs are given. Hence, nominal and anomalous
inputs are distinguished by selecting an appropriate threshold
based on the reconstruction errors obtained on a validation set.

B. Autoencoder-based Monitors

An accurate detection of hazardous situations is a necessary
prerequisite for the implementation of a fail-safe system
having a redundant component that analyzes the data fed
to the main system and, in the face of unsupported inputs,
warns it to trigger countermeasures, such as recovering to a
safe state. The main reason for having such redundancy is
that the monitor can be made substantially simpler than the
main component, and more focused for the task at hand (e.g.,
anomaly detection).

illustrates a simple DNN-based monitoring archi-
tecture. First, the monitor is trained on nominal data to learn a
model of normality. If the main system is also learning-based,
it is advised to use the same training set used to train the main
system. Then, by fitting a probability distribution of such data
and selecting the accepted false alarm rate, we can determine
a fixed initial threshold to be used in production [11]].

The monitor is then used in the field to warn the main
system if the inputs are regarded as unsupported. The monitor
in is an instance of a black-box environment monitor,
i.e., a monitor that analyzes the main system’s input space
(with no knowledge of its internal behaviour) and assigns an
unexpectedness score, which should be low and below the
threshold if such inputs are known/supported, or high and
above the threshold otherwise.

AEs are often used as black-box anomaly detectors because
they bring several advantages [[10]. First, they are independent
from the monitored architecture, requiring no modifications to
the main system, because they use information which is readily
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Fig. 1: Training and usage of a static DNN-based monitor

available for analysis. Second, their training process is quite
straightforward and efficient, even with large datasets. Third,
AEs are able to learn meaningful latent spaces even from a
few examples unsupervisedly. Last, they are extremely fast at
making predictions once trained, which makes them suitable
for runtime, in-field monitoring techniques [[L1].

However, the main prerequisite of this architecture is that
the main system and the monitor should have analogous
generalization capabilities. When used in production, the ob-
served data may differ from those used for training. There
could be cases in which the main system generalizes better
than the monitor, and then false alarms would be mistakenly
reported. Perhaps worse, if the monitor generalizes too much
to hazardous scenarios which are unsupported by the main
system, true alarms could be missed. However, training two
different DNN5 to have comparable generalization capabilities
is a challenging task. Thus, a more practical solution requires
adapting the anomaly detection capabilities of the monitor as
new knowledge becomes available.

III. CHALLENGES OF ADAPTATION
A. The Need for Adaptation

AEs are limited in efficiently incorporating new knowledge
after they have been trained. Moreover, the thresholds used
for anomaly detection are also determined offline before they
operate in the field which is clearly suboptimal if the anomaly
detector operates in a constantly changing environment. For
nontrivial operational domains, it is virtually impossible to
account for all possible nominal scenarios at training time.
Thus, it is necessary to establish accurate and efficient online
self-adaptation mechanisms, to integrate new types of knowl-
edge, both related to novel nominal classes of data, as well as
to anomalous ones.

In the context of DNNs, one way to tackle this problem is by
using continual learning (CL), that is the ability of a machine
learning model to continually learn from data. In the literature,
CL is a multi-faceted term and use cases vary tremendously.
For instance, in multi-task learning, a model learns to perform
first a task A from a batch of data, and then a second task
B from another batch of data that was not available during
the training of task A. The model is then evaluated for its
capability to correctly perform task B, without forgetting the
earlier task A (catastrophic forgetting). Another application
of CL deals with data that are discarded after training, due
to privacy reasons (e.g., data of patients in a hospital) or
unavailability (e.g., a weather forecasting systems processing
a continuous stream of data).
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In this paper, by CL we mean the ability of a model to
autonomously learn and self-adapt in production as new data
becomes available. For what concerns the adaptation of the
anomaly detector, several challenges need to be addressed:
(1) effectiveness, i.e., what data to consider for retraining.
(2) performance, i.e., when it is appropriate to retrain the
monitor. An adaptive anomaly detector should reactively adapt
to dataset changes. However, short-term changes to the data
distribution should not cause false alarms or frequent model
updates, while permanent context drifts should trigger model
updates as soon as possible. (3) dependability, i.e., how to
safely update the monitor. The monitor would need to be up-
dated as knowledge of anomalies and novel data accumulates,
without however affecting its main functionality of providing
a fail-safe redundancy mechanism (i.e., the update of the
old monitor with the new one should not cause any service
interruption). (4) revalidation, i.e., how to regression test the
new monitor. The new monitor should continue to meet its key
requirements, hence a regression testing mechanism should be
implemented to mitigate catastrophic forgetting.

In the context of unsupervised anomaly detection, the main
advantage of using CL is that no labeling is required for
the newly collected data. In this work, we propose and
evaluate metrics that can help automate the decision process
of determining what data to consider for retraining.

B. Classes of Unsupported Inputs

A major drawback of DNNs consists in their inability to dis-
tinguish supported (valid) from unsupported (invalid) inputs.
In fact, given a numeric input vector, a DNN will produce its
output even if such input is meaningless in the domain where
the DNN is supposed to operate [19]. Thus, anomaly detection
techniques are used to avoid DNNs processing unsupported
inputs, which may cause unpredictable predictions, potentially
causing severe system-level failures, if not handled properly.

To gain an understanding of the types of unsupported input
that can occur in real-world situations, categorizes
them into three classes based on their proximity to the training
set data distribution. The figure highlights the complexity and
the variety of scenarios that CL monitors should aim at.

Supported inputs pertain to the same data distribution of the
ones used for training (in-distribution inputs) and therefore
they should be handled correctly by the DNN (actually, the
proportion of correctly handled inputs—aka accuracy—is a

statistical property of a DNN, which depends on the quality
of the training data and of the training process, like data
representativeness, balancing, diversity, and a careful model’s
architecture and hyper-parameter tuning).

Unsupported inputs, on the other hand, pertain to a dif-
ferent data distribution than the one used for training (out-of-
distribution inputs). Underrepresented inputs is a first category
of inputs that can cause a failure of the monitor in learning
meaningful patterns for such data, due to their low frequency
of occurrence, as compared to other, more represented, classes.
A second category consists of novel data, i.e. data in the
domain of validity of what the DNN should support, but which
are not yet represented at all in the set used for training and
should therefore be added to it as representative of new classes
of data. This category is the main target for CL and adaptation
tasks. Finally, the third category of unsupported inputs that can
be found in real-world domains consists of anomalous data,
i.e., inputs that are not in the validity domain and, as such,
should be recognized and discarded.

IV. CONTINUAL LEARNING ANOMALY DETECTION

The goal of our approach is to extend an existing monitor M
that uses a static threshold for anomaly detection (see
by equipping it with online learning ability, which encom-
passes incremental model updating strategies, with a focus on
the unsupported input classes described in Our
idea revolves around an interplay between the main system and
the monitor. By establishing a perpetual information exchange
cycle, we collect in-field performance indicators of the main
system’s behaviour to drive the improvement of the monitor.

Our framework leverages two opportunities. First, it uses in-
field behavioural indicators to refine the definition of positive
and negative cases. Second, it collects and relies on data that
require no label as AEs are trained with no supervision.

More specifically, the detection of positives (i.e., samples
whose reconstruction errors are above the threshold) and
negatives (i.e., negative samples whose reconstruction errors
are below the threshold) is based on a black-box analysis of the
sole inputs and it is immaterial to how the system is actually
behaving in the field in response to such inputs. In the absence
of a ground truth, we hybridize the definition of positive and
negative cases for anomaly detection by taking into account the
main system’s behaviour. The observed samples are regarded
as empirically valid, since they have been collected during the
nominal execution of the system, as far as the feedback from
the system is correct (i.e., no safety oracle is violated).

It is important to highlight that our focus is on updating
and improving the monitor, and not the main system. If,
during the CL phase, there is evidence that the faced data
distribution shift is too large to be managed correctly by
the main system (i.e., safety oracles are repeatedly violated),
then in-field monitoring is no longer an option and the main
system has to be shut down for additional offline retraining
and testing. The collected data can be used for such retraining
(at the price of manual labeling operations), or to produce test
cases that mimic the novel conditions found in the field [19].
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Fig. 3: Our CL monitoring framework for anomaly and novelty detection with in-field behavioural metric guidance

A. Approach

illustrates the usage scenario of our framework. In
a nutshell, the monitor not only predicts the unexpectedness
scores, but it also receives runtime behaviour indicators data
as the main system executes. Once the monitor is initialized,
it is ready for online prediction. The main thread works
on real-time anomaly detection, whereas a secondary thread
(Distribution Drift Detector) collects behavioural in-field data
from the main system continuously.
Distribution Drift Detector. The distribution drift detector
determines what data to store for adaptation. It uses in-
field behavioural metrics to understand whether the samples
unsupported by M are also unsupported by the main system.

Upon the occurrence of alarms raised by the monitor or
when behavioural metrics indicate poor system performance,
anomalous data are stored into an anomaly buffer for later
evaluation. When no alarm is raised and behavioural metrics
indicate acceptable system performance, but data are classified
as novel, the collected data are added to the training set of the
monitor M, which is ready for retraining.
Triggering Adaptation and Model Update. During the on-
line processing, if the monitor detects that the model no longer
fits the current data, then model updating is triggered. At least
two options are possible. A first option consists in adding
the newly collected data to the training set and retraining
the monitor on the whole resulting set. Another option is
incremental training. After retraining, a new threshold is also
computed, by estimating the shape and scale parameters of
the fitted Gamma distribution of the reconstruction errors and
selecting the desired accepted false alarm rate [11]. Finally,
the new monitor M’ seamlessly substitutes the monitor M.

Several strategies are possible to decide when to trigger
model updating, such as setting a limit to the buffer’s size,
or a time limit, possibly combined with the former. Our
general guideline is that small distribution drifts can be rapidly
incorporated, hence a small buffer size would help achieve
fast adaptation. However, a drawback is that the retraining
operation is quite computationally and time demanding for
an online setting, thus if the buffer size is too small, there
is a chance that the monitor will be consuming too many
computational resources due to frequent retraining operations.
Selecting universal optimal values for such parameters, or an
efficient retraining strategy, is beyond the scope of this paper.

V. CASE STUDY AND PRELIMINARY EVALUATION

We performed a preliminary study to assess the effectiveness
of our framework to improve an anomaly detector from the
literature. Effectiveness is defined as the capability of the
anomaly detector at maintaining a high detection rate while
keeping the false alarms low in presence of distribution shifts.

A. Case Study

We exemplify our framework on a self-driving car case
study: the Udacity simulator from the work by Stocco et
al. [[11]. The simulator consists of different closed-loop track
circuits and supports training and testing of an autonomous
driving system that performs behavioural cloning, i.e., the
DNN autopilot learns the lane keeping functionality from
a dataset of driving scenes collected from a human driver.
The simulator is equipped with features to inject controllable
operational conditions, such as weather changes, thus it can be
used to produce different test datasets having both supported
and unsupported inputs. For instance, in the work by Stocco
et al. [L1], the nominal condition was set to sunny weather,
whereas the unsupported conditions were set to either rain,
fog, snow, or day/night shift. The simulator was used to
test the effectiveness of different AEs as black-box runtime
misbehaviour predictors of the self-driving car confidence.
In particular, the variational autoencoder (VAE) yielded the
best detection results. However, the reported false alarms
rate in nominal conditions is non negligible. This suggests
that there is potential for adaptation by continually learning
the underrepresented inputs from the field. In this paper,
we use the trained DNN-based self-driving car model called
DAVE-2 [2] and we investigate whether our approach can
improve the trained VAE anomaly detector.

B. In-field Behavioural Metrics

As required by our framework, we need an automated way
to determine internal and behavioural metrics for the main
system. We implemented two in-field metrics concerning the
quality of driving, namely predictive uncertainty and lateral
deviation. shows how we use such internal and
behavioural metrics (respectively, Unc and CTE) to classify
the collected data as likely true/false positive/negative cases
(LTP, LFP, LTN, LFN), along with the thresholds used in our
study. Adaptation of the anomaly detector makes use of the



TABLE I: Classification of likely true/false positive and nega-
tive cases (LTP, LFP, LTN, LFN) for anomaly detection adap-
tation based on either context, uncertainty, or lateral deviation

Metric e Threshold Rule

Autoencoder Loss [11] @ ¢ = 0.0472

LTP — context = unexpected A loss > t
LTN — context = nominal A loss < t
LFP —context = nominal A loss >t
LFN — context = unexpected A loss < t

MC-Dropout e t; = 0.00328 [20]
LTP — Unc > t1 Nloss > t
LITN — Unc < t1 ANloss < t
LFP — Unc < t; Aloss > t
LFN — Unc > t1 ANloss < 't

CTE @ ty = 1.5 (mt)*
LTP — CTE > ty ANloss > t
LTN —- CTE < to Nloss < t
LFP — CTE < ta Aloss >t
LFN — CTE > ty ANloss < t

* considering the width of the vehicle in the Udacity simulator.

LFP data, i.e., those underrepresented or missing inputs that
cause the anomaly detector to trigger a false alarm.
Predictive Uncertainty. The first considered metric is a white-
box internal measure of the system’s confidence in its own
predictions. We use the predictive variance of dropout-based
DNNs called Monte Carlo (MC) dropout, which we will
refer hereafter simply to as MC-Dropout [21]. Essentially,
by collecting multiple predictions for a single input, each
with a different realization of weights due to dropout layers
(i.e., regularization layers which help prevent overfitting), it is
possible to account for model uncertainty in a DNN at testing
time. For a complete overview of MC-Dropout, we refer the
reader to the relevant literature [21]].

MC-Dropout has been proposed in the self-driving car
domain [20] as a measure to approximate uncertainty infor-
mation from DNNs that perform regression problems, such
as DAVE-2. For the implementation of MC-Dropout-based
DAVE-2 model we followed the guidelines provided in a
similar experiment [20].

The rationale for using MC-Dropout is that supported inputs
are expected to be characterized by low DNN uncertainties,
whereas unsupported inputs are expected to increase it.
Lateral Deviation. In our setting, the car is trained to follow
the center of the road. Thus, the second considered metric is
a black-box measure of the car’s distance from the center of
the road, which we refer to as lateral deviation. The tracks
in the Udacity simulator are equipped with waypoints, i.e.,
phantom objects that are used to mark distinct sectors. We
implemented a component within the Udacity simulator that
measures the cross track error (CTE), which is the distance
from the center of the car’s cruising position to the center
of the road on the ideal trajectory between the planned
route given by two consecutive waypoints. The rationale for
using lateral deviation is that unsupported inputs may cause
erroneous steering angle predictions, thus lowering the chances
of the self-driving car to follow the ideal trajectory.

C. Procedure

For this initial evaluation of our framework, we performed
two studies, concerning class imbalance (i.e., underrepresented
inputs), and novelty detection (i.e., novel inputs), respectively.
To this aim, we executed several two-lap simulations on the
first circuit provided by the Udacity simulator (Lake Track).

For evaluating class imbalance, we performed one sim-
ulation in the same nominal conditions as the training set,
using the VAE anomaly detector. This allowed us to precisely
collect the number of false alarms (false positives) in nominal
conditions, as well as the in-field behavioural metrics MC-
Dropout and CTE. Then, we used our framework to detect
the occurrences of underrepresented samples to be used for
adaptation, i.e., the likely false positives (LFP) according to
the ruleset in [Table 1l

For evaluating novelty detection, we performed one simula-
tion activating a single unexpected condition, namely rain. We
kept the rain particles emission rate low (i.e., between 100 and
1,000 particles per second, which represent respectively 1/100
and 1/10 of the settings used by Stocco et al. [11] for the same
condition) so as to execute the car in a slightly novel condition
that would not be however too extreme, hence causing too
many system-level failures (i.e., true positives: crashes or car
going out of track).

As suggested for a similar experiment [20], for the MC-
Dropout predictions we used a batch size of 128 and the car’s
maximum speed was reduced to 15 mph (it was 30 mph during
data generation), which provides a good trade-off between
processing time and accuracy.

After collecting new samples for the likely false positives,
we retrained the VAE offline. We added copies of instances
from the underrepresented class by oversampling them (i.e.,
by sampling with replacement multiple times). Finally, we
executed further simulations to determine the number of false
positives after adaptation of the anomaly detector.

To assess effectiveness, we measured the number of false
positives detected in each configuration of our framework,
using the threshold prior to the adaptation phase.

D. Results

[Table TI] presents the effectiveness results for the two studies.
The table shows the number of likely false positives detected
by MC-Dropout or CTE before and after adaptation, both nu-
merically (Columns 2 and 6) and percentage-wise (Columns 3
and 7). The other columns show the false positive rate when
the confidence threshold is set to ¢ = 0.05 (i.e., at TPR =
95%), along with the false negative rate.

In the class imbalance study, we experienced 64 likely false
alarms. Our framework detected nearly all of them (98%)
when equipped with MC-Dropout, and about half of them
(46%) when using CTE. This essentially means that, for such
frames, the self-driving car was driving quite confidently.
The results after adaptation (VAE retraining) confirm our
hypothesis, as almost no likely false positives are observed.
It is quite important to highlight that TPR/FNR values are
not reported for this experiment as no system-level failures



TABLE II: Evaluation results: likely false positives and false positive / true negative rates before and after adaptation, by

distribution drift detector (either MC-Dropout or CTE)

CLASS IMBALANCE in-field collection

after adaptation

LFP (#) detect rate (%) FPR at TPR 95% TNR LFP (#) detect rate (%) FPR at TPR 95% TNR
VAE 65 - 5.12 94.88 1 - 0.09 99.91
VAE & MC-Dropout 64 98 0.08 99.92 1 100 0.09 99.91
VAE & CTE 30 46 2.76 97.24 1 100 0.09 99.91
NOVELTY DETECTION in-field collection after adaptation

LFP (#) detect rate (%) FPR at TPR 95% TNR LFP (#) detect rate (%) FPR at TPR 95% TNR
VAE 143 - 13.48 86.52 13 - 1.05 98.95
VAE & MC-Dropout 134 94 0.85 99.15 12 92 0.08 99.92
VAE & CTE 65 45 7.35 92.65 11 85 0.16 99.84

occurred when driving in nominal conditions (this means that
all likely false alarms are false alarms, in this experiment).

In the novelty detection study, we experienced more likely
false alarms (143), which was expected, as the car was driving
in relatively novel conditions. Also in this case, our framework
detected a large number of likely false positives (94%) when
equipped with MC-Dropout. The detection rate of CTE (45%)
is inline with the previous study. Results after retraining also
confirm that most likely false alarms are eliminated thanks to
adaptation. Two system-level failures occurred when driving in
the novel conditions of the second study. Both were correctly
detected (i.e, TPR=1 and FNR=0; these results are not reported
in the table for conciseness and presentational clarity).

VI. DISCUSSION

Analysis of the Results. Our preliminary evaluation revealed
that the VAE anomaly detector is not able to learn meaningful
nominal patterns if class imbalance affects the training set.
To this aim, our CL framework provides promising results
concerning minimization of false alarms, improving an exist-
ing state-of-the-art autoencoder-based anomaly detector within
a real-world context. In this work we consider black-box
environment monitors, specifically VAEs, even though our
adaptation framework is quite generic, and the notions and
ideas proposed in this paper are applicable to other kinds of
monitors and architectures.

We found that the DAVE-2 model generalizes better (or
differently) than the VAE-based anomaly detector in case of
class imbalance. Our results show that it is possible to use
MC-Dropout to obtain reliable uncertainty scores, confirming
previous studies [20]. This might suggest that it would be
possible to build an anomaly detector relying solely on white-
box metrics. However, such results should be taken with care
as there are significant drawbacks that must be addressed
before they can be used in production. Despite the accuracy
of the MC-Dropout predictions, we observed that it is indeed
quite computationally demanding for an online setting. Even
if we do not report extensive performance results, in summary
we have observed that the performance of the main system and
the overall driving quality were affected to a non negligible
extent when increasing the speed of the car (> 15 mph and

< 30 mph) or the batch size. Thus, MC-Dropout might not
be the best choice for online runtime drift detection, unless
accelerator-specific hardware is available within the deployed
system (e.g., tensor processing units).

Even if CTE is commonly used in other domains, such as
aircraft landing systems [22], in the self-driving car domain it
is not a standard metric as it may not always be available, since
it requires the capability to compare the ideal with the actual
trajectory. Current industrial self-driving cars can accurately
approximate metrics such as CTE by means of advanced
computer vision algorithms. In the future, CTE may become
more standard and utilized, perhaps with the advent of smart
cities and dedicated infrastructures for self-driving vehicles,
which could provide online information about the car’s driven
lane position.

Our studies confirmed that VAE alone experiences many
false alarms on novel conditions. The best configuration from
our experiments is to use the VAE anomaly detector, paired
with MC-Dropout as drift detector. This allowed us to remove
most false positives, mistakenly reported when the car was
driving safely. With around half drift detection rate, CTE is
suboptimal as a drift detector in comparison to MC-Dropout.
Still, it contributed to a competitive reduction of the likely false
positive rate. Hence, CTE might be a good trade-off between
drift detection rate and false positive reduction, especially in
resource constrained settings, where the available hardware is
not compatible with the expensive online uncertainty compu-
tation performed by MC-Dropout.

Applications. The data mined from the field can be also
used for retraining of the main system. However, such data
lack labels, which in practice are costly to get as labeling
requires human effort. In the case of a self-driving car, this
problem is even more difficult. Indeed, it is quite challenging
if not impossible to manually assign a meaningful label (i.e., a
steering angle) only by looking at individual images. A more
accurate but expensive option would require a human driver
to drive in a simulated environment as close as possible to
the parts of the track in which the likely false positives were
detected. The control actions (e.g., steering angles) performed
by the human would then serve as ground truth labels. Au-



tomated test generation techniques could be used to produce
a simulation environment that mimics the underrepresented
conditions found in the field. Another, cheaper option could
be to search the training set for samples that are close to the
ones collected in the field (e.g., the k-nearest neighbours based
on some image similarity metric such as the SSIM [23]]). Data
augmentation could be used to artificially add slightly modified
instances of such conditions to the training set.

Another interesting direction would be to exploit the knowl-

edge of true anomalies (i.e., true system failures) for retraining
a better monitor. With the current setup (i.e., autoencoders)
negative examples cannot be used, as the AE can only learn
patterns of nominal data, not anomalous ones. However, re-
searchers have proposed more sophisticated AE architectures
in which, as new knowledge of anomalies become available,
such information can be leveraged to build better anomaly
detectors. For instance, one way to do so could be by combin-
ing AEs with a triplet loss function [24]. Triplet loss is used
to minimize the distance (maximize the similarity) between
in-distribution and positive samples, while maximizing the
distance (minimizing the similarity) between in-distribution
and negative samples.
Open Challenges. One major challenge is how to deploy
new models obtained after adaptation of the anomaly detector
without negatively affecting the main system’s behaviour.
Moreover, it is important to strike a balance between old
and new knowledge by maintaining also some samples of
older data distribution within an archive, to avoid overfitting
towards only the most fresh data that is collected during
runtime adaptation. Techniques should be devised to maintain
the training set size limited only to the most representative
examples, as the retraining time scales up with the size of
the training set. Training set minimization techniques could
be used, for instance based on more sophisticated sampling
techniques, such as stratified sampling or Synthetic Minority
Oversampling Technique (SMOTE) [25].

Another open challenge concerns the coupling between the
main system and the monitor. Relying on in-field behavioural
metrics may diminish the anomaly detector’s effectiveness
in cases whereby the main system produces reasonable in-
field behaviour also for inputs that should be regarded as
anomalies. Thus, including such inputs in the anomaly de-
tector’s training set might introduce a drift in the monitor’s
knowledge, which may become less sensitive to behaviours
similar to the undetected anomaly. In our experiments, this
situation did not occur, as the two system-level failures were
correctly detected by the monitor both pre and post adaptation.
However, the coupling between the main system and the safety
monitor may have far-reaching consequences that require
further investigation.

VII. RELATED WORK

Online/Adaptive Anomaly Detection. Yuan et al. [26] present
an online anomaly crowd detection method for pedestrian
detection, using a context model called structural context
descriptor (SCD). Anomalies are detected by temporal and

spatial analysis of the SCD variation over time. Sun et al. [27]
study how to adaptively adjust the detection threshold of
Intrusion Detection Systems (IDSs) in the context of cellular
mobile networks. In particular, they use Shannon’s entropy
measure to identify the uncertainty of the up-to-date normal
profile. Cretu-Ciocarlie et al. [12]] propose to improve anomaly
detection of intrusion detection systems by enhancing the
training of anomaly detector sensors with a self-calibration
phase, leading to the automatic computation of the optimal
parameters. Liao et al. [28] present an adaptive anomaly de-
tection framework based on the use of unsupervised evolving
connectionist systems. Huang et al. [29] adapts an anomaly
detector based on Recurrent Neural Network (RNN) with a
Reinforcement Learning (RL) method to achieve the self-
learning process.

While our approach falls in the category of unsupervised

anomaly detection, in contrast to the existing works, we study
specifically how to adapt an AE-based anomaly detector in
the self-driving car domain, using in-field quality metrics
(predictive uncertainty and lateral position) as drift detectors.
Our architecture and its instantiation for the self-driving car
domain, represents a unique and novel contribution to the state
of the art.
Online/Adaptive Autoencoders. Kim et al. [30] aim at fine-
tuning the performance of an already-trained denoising au-
toencoder (DAE) in the context of semi-supervised audio
source separation. Doshi et al. [31] propose an online anomaly
detection method for surveillance videos using transfer learn-
ing and continual learning. Wiewel et al. [32] study how to
mitigate catastrophic forgetting within VAEs when trained on
a continually growing set of nominal data. In another paper,
Wiewel et al. [33] target novel class detection with one-class
classification.

To the best of our knowledge, our study is the first that com-
bines CL with in-field metrics, such as predictive uncertainty,
to detect distribution drifts of the input data and to drive the
retraining of a better VAE.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework for continual learning
of a runtime monitoring system, which keeps evolving an
anomaly detector as additional experience of nominal and
anomalous instances become available. When the observed
instances deviate from the nominal distribution of the data used
for training the anomaly detector, new samples are collected
and used for adaptive retraining. Our experimental results
show that uncertainty and behavioural metrics can be used
as drift detectors, and that the resulting reduction of the false
alarm rate is substantial.

In our future work we plan to address the remaining
challenges, which include the safe deployment of adapted
monitors, the trade-off between frequent adaptations and in-
troduction of regressions, and the exploitation of knowledge
about true anomalies observed in the field.
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