
Misbehaviour Prediction for Autonomous Driving Systems
Andrea Stocco

Università della Svizzera italiana, Lugano, Switzerland
andrea.stocco@usi.ch

Michael Weiss
Università della Svizzera italiana, Lugano, Switzerland

michael.weiss@usi.ch

Marco Calzana
Università della Svizzera italiana, Lugano, Switzerland

marco.calzana@usi.ch

Paolo Tonella
Università della Svizzera italiana, Lugano, Switzerland

paolo.tonella@usi.ch

ABSTRACT

Deep Neural Networks (DNNs) are the core component of modern
autonomous driving systems. To date, it is still unrealistic that a
DNNwill generalize correctly to all driving conditions. Current test-
ing techniques consist of offline solutions that identify adversarial
or corner cases for improving the training phase.

In this paper, we address the problem of estimating the confi-
dence of DNNs in response to unexpected execution contexts with
the purpose of predicting potential safety-critical misbehaviours
and enabling online healing of DNN-based vehicles. Our approach
SelfOracle is based on a novel concept of self-assessment oracle,
which monitors the DNN confidence at runtime, to predict unsup-
ported driving scenarios in advance. SelfOracle uses autoencoder-
and time series-based anomaly detection to reconstruct the driving
scenarios seen by the car, and to determine the confidence boundary
between normal and unsupported conditions.

In our empirical assessment, we evaluated the effectiveness of
different variants of SelfOracle at predicting injected anomalous
driving contexts, using DNN models and simulation environment
from Udacity. Results show that, overall, SelfOracle can predict
77% misbehaviours, up to six seconds in advance, outperforming
the online input validation approach of DeepRoad.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

misbehaviour prediction, testing, deep learning, anomaly detection

ACM Reference Format:

Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020.
Misbehaviour Prediction for Autonomous Driving Systems. In 42nd Interna-
tional Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3377811.3380353

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380353

1 INTRODUCTION

Self-driving cars are one of the emerging technologies nowadays,
and possibly the standard way of transportation in the future. Such
autonomous driving systems receive data from a multitude of sen-
sors, and analyze them in real time using Deep Neural Networks
(DNNs) to determine the driving parameters for the actuators.

To test such complex software systems, companies perform a
limited number of expensive in-field tests, driving a car on real
world streets, or within closed-course testing facilities [13]. This
provides detailed sensor data of the vehicle that are recorded, played
back, and recreated within a simulator to obtain comprehensive
test scenarios. Simulation-based test scenarios allow re-testing new
autopilot releases on a large numbers of nominal conditions, as well
as challenging (e.g., adverse weather) and dangerous circumstances
(e.g., a pedestrian suddenly crossing the road), at a low cost [13].

The potentially unlimited number of testable driving scenarios,
combined with the lack of human interpretability of the internal
functioning of DNNs [2], makes it difficult to predict the vehicle’s
(mis)behaviour with respect to unforeseen edge-case scenarios.
Misbehaviours span a wide range of situations, associated with
different degrees of severity, from cases where the car does not drive
smoothly (e.g., excessively high derivative of the steering angle over
time), up to safety-critical failures and casualties [17, 42, 43]. In
this respect, promptly detecting unexpected, untested execution
contexts is of paramount importance, so as tomake sure that human-
driven or self-healing corrective actions take place to ensure safety.

In this paper, we tackle the self-assessment oracle problem for
autonomous driving system, i.e., the problem of monitoring the con-
fidence level of a DNN-based autonomous driving system in order
to timely predict the occurrence of future misbehaviours. The prob-
lem is critical because a failure in detecting an unexpected condition
may have severe consequences (i.e., a fatal crash), whereas false
alarms, even if not dangerous, may cause driver’s discomfort and
negatively affect the driving experience. Creating a self-assessment
oracle that evaluates the confidence of a DNN at runtime, and pre-
dicts whether the system is within a low-confidence zone, is a
largely unexplored research problem.

Challenges arise because unexpected driving conditions are, by
definition, unknown at training time, otherwise they would be used
to train a better DNN [12]. As a consequence, the problem being
addressed belongs to the unsupervised class of data analysis, and we
have to infer the unexpected only by looking at the normal driving
scenarios. Moreover, the ensemble of possible misbehaviours for
a DNN-based system is vast and necessarily domain-dependent,
being associated with deviations from the functional requirements.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

In recent years, researchers have proposed solutions for testing
autonomous driving systems software [1, 6, 7, 18, 19, 19, 34, 44, 55].
A number of approaches propose input generation techniques that
produce adversarial or corner cases, used to improve the robustness
of self-driving car modules by re-training [26, 34, 44, 55]. Other
works target test case generation to expose faults for extreme condi-
tions, such as the vehicle colliding with a pedestrian [7], or driving
off the road [18]. All these approaches concern offline solutions
for improving the robustness and reliability of DNNs, achieved by
enhancing the training data and the autopilot module, which are
extended to include underrepresented critical scenarios.

In this paper, we propose a novel self-assessment oracle for au-
tonomous vehicles based on confidence estimation, probability distri-
bution fitting, and time series analysis. Our technique is implemented
in a tool called SelfOracle, which leverages reconstruction-based
techniques from the deep learning (DL) field to analyze spatiotem-
poral historical driving information. The reconstruction error is
used as a black-box confidence estimation for the DNN. During
probability distribution fitting, SelfOracle captures the behaviour
of the self-driving car under nominal conditions, and fits a Gamma
distribution to the observed data. Analytical knowledge of Gamma’s
parameters allows SelfOracle to estimate an optimal confidence
threshold, as a trade-off between prediction of all misbehaviours,
and false alarms. By observing a decreasing confidence trend over
time, SelfOracle can anticipate a misbehaviour by recognizing
unexpected conditions timely enough to enable healing actions
such as manual or automated disengagement.

We have evaluated the effectiveness of SelfOracle on the Udac-
ity simulator for self-driving cars [47], using DNNs available from
the literature. We have modified the simulator to being able to
inject unexpected driving conditions (i.e., day/night cycle, rain,
fog, or snow) in a controllable way. In our experiments on 72
simulations, SelfOracle is able to safely anticipate 77% out-of-
bound episodes/crashes, up to 6 seconds in advance. A compara-
tive experiment with the online input validation strategy of Deep-
Road [55] shows that SelfOracle achieves substantially superior
misbehaviour prediction on all the considered effectiveness metrics.

Our paper makes the following contributions:

Technique An unsupervised technique for misbehaviour predic-
tion based on confidence estimation, probability distribution
fitting and time series analysis, implemented in the tool Self-
Oracle, which is available [45].

Simulator An extension of the Udacity simulator to inject unex-
pected driving conditions dynamically during the simulation.

Evaluation An empirical study showing that the reconstruction
error used by SelfOracle for time series analysis is a promis-
ing confidence metric for misbehaviour prediction, outper-
forming the online input validation approach of DeepRoad.

Dataset A dataset of 765 labeled simulation-based collision and
out-of-bound episodes that can be used to evaluate the per-
formance of prediction systems for autonomous driving cars.

2 BACKGROUND

DNN-based Autonomous Vehicles. Self-driving cars (SDC, here-
after) have benefited from many technological advancements both

in hardware and in software. Data gathered by LIDAR sensors, cam-
eras, and GPS are analyzed in real time by advanced DNNs which
govern over the actual maneuvers of the car (i.e., steering, braking,
acceleration). In order to manage a wide variety of driving scenar-
ios, SDCs necessitate a large amount of driving data, combining
nominal and adversarial scenarios [8].

To date, it is still unlikely for a DNN to generalize correctly to
the plethora of driving situations met everyday by human drivers.
As such, a component monitoring the confidence of the DNN may
promptly detect when the SDC is entering a low-confidence zone,
and activate healing strategies that bring the vehicle to a safe state.

In self-driving cars, depending on the level of autonomy, the
self-healing procedure can either involve the human driver, or can
be delegated to an automated system.1 At both levels, early and
accurate misbehaviour prediction is an essential precondition to
enable safe healing, and an overall pleasant driving experience.
Confidence Measures in DNNs. The prediction must consider
DNN uncertainties originating from the measurements in response
to possible adverse environmental conditions in which the SDC
operates. The confidence level of a SDC can be measured through
white-box or black-box techniques. White-box metrics monitor the
internal behaviour of a DNN component. For simple classifiers,
measuring softmax probabilities, or information theoretic metrics
such as entropy, and mutual information [37] may suffice. For more
complex networks such as those than operate on a SDC, softmax
probabilities and entropy are known to be unreliable confidence
estimators [52]. Moreover, white-box metrics require a transparent
access to the network, and substantial domain-knowledge for the
creation of nontrivial probabilistic models that approximate the
network’s uncertainty.

Black-box techniques, differently, model the SDC uncertainty by
monitoring the relation between the current input (images) and the
input data used during training. For instance, consider a SDC which
has been trained only with images representing highways. If images
representing a narrow city street are given to the DNN, the model
will still output steering angles, but ideally we would like to warn
the SDC of a drop in the confidence level. The main advantages of
black-box confidence metrics consist in being independent from
the specific SDC architecture, requiring no modifications to the
existing DNN model because they use information which is readily
available for analysis, and in being, therefore, highly generalizable.
In this paper, we focus on black-box confidence estimation. We next
describe autoencoders and time series analysis, which are the main
building blocks of our approach.
Autoencoders. An autoencoder (AE) is a DNN designed to re-
construct its own input. It consists of two sequentially connected
components (an encoder and a decoder) that are arranged symmet-
rically. The simplest form of autoencoder (SAE) is a three-layer
DNN: the input layer, the hidden layer, and the output layer. The
hidden layer encodes any given input x ∈ RD to its internal repre-
sentation (code) z ∈ RZ with a function f (x) = z. Usually Z ≪ D,
where Z is the dimension of encoded representation and D is the
dimension of the input. The output layer (decoder) decodes the
encoded input with a reconstruction function д(z) = x ′, where
x ′ is the reconstructed input x . The autoencoder minimises a loss

1https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

function L(x,д(f (x))), which measures the distance between the
original data and its low-dimensional reconstruction. A widely used
loss function in autoencoders is the Mean Squared Error (MSE).

The input and output layers of autoencoders have the same num-
ber of nodes. If multiple hidden layers are used, the architecture is
referred to as deep autoencoder (DAE). The surge of novel kinds
of DNNs has correspondingly produced variants of autoencoders
based on such architectures. For example, convolutional autoen-
coders [28] allow learning powerful spatial-preserving relationship
within images at a lower training time with respect to fully dense
layers. Another interesting proposal are variational autoencoders
(VAE) that are able to model the relationship between the latent
variable z and the input variable x by learning the underlying prob-
ability distribution of observations using variational inference [3].
Time Series Analysis. Traditional feedforward DNNs assume that
all inputs and outputs are independent of each other. However,
learning temporal dependencies between inputs or outputs is im-
portant in tasks involving continuous streams of data. Thus, a pre-
dictive model can take advantage of information from the previous
inputs/outputs, to enhance its predictive capability.

Time series analysis can be applied to the output sequence pro-
duced by a DNN to identify the trend and predict future values.
Among the numerous models available for time series analysis, the
most widely used ones are autoregressive (AR), integrated (I) and
moving average (MA) models, along with their combinations. An
AR model of order k predicts the next value xt as a linear combina-
tion of past values xt−1, . . . , xt−k :

xt = α0 +
k∑
i=1

αixt−i + ϵt (1)

where coefficients α0, . . . ,αk can be estimated by the least square
method and ϵt represents the error term.

Processing of a sequence of inputs can be achieved by recurrent
neural networks (RNN) equipped with long short-term memory
(LSTM) [22], which is capable of dealing with both short and long
range dependencies. In LSTM, outputs are influenced not only by
the current input but also by the state of the RNN, which encodes
the entire history of past inputs.

3 PROBLEM FORMULATION

We focus on SDCs that perform behavioural cloning, i.e., the DNN
learns the lane keeping [18] behaviour from a human driver. Mod-
els such as the ones by NVIDIA [9] or the Udacity self-driving
challenge [48] are trained with visual inputs (i.e., images) from
car-mounted cameras that record the driving scene, paired with
the steering angles from the human driver. The DNN then “learns
how to drive” by discovering underlying patterns within the train-
ing images representing the shape of the road, and predicting the
corresponding steering angle.

For classification problems (e.g., hand-written digit recognition),
misbehaviours can be defined as inputs that can be confidently
labeled by humans while they are misclassified by a DNN. Differ-
ently, for regression problems such a definition is more challenging,
because there is no expected outcome for an individual output of
the DNN, and it is only the overall behaviour resulting from the

DNN predictions that may or may not be acceptable, depending on
the specific application domain.

In steering angle prediction, it is challenging to decide if the
steering angle produced by a DNN is wrong, because the optimal
steering angle is generally unknown for a new test scenario and
even if it were known, the amount of difference between predicted
and expected steering angle that qualifies as an error is difficult to
decide a priori. It is instead more realistic to figure out whether a
chain of inaccurate predictions ultimately leads to a misbehaviour,
because of the cumulative prediction errors.

In fact, the very definition of misbehaviour should be decoupled
from the notion of correct/wrong DNN output, being instead linked
to the ability of a DNN of abstracting from the training examples
and learning how to drive in different ways/conditions. It is the
task of the DNN to generalize the training knowledge to make
the model robust with respect to slightly different conditions from
those observed in the training set, for example adapting the driving
style to different weather conditions.

3.1 Misbehaviour of Autonomous Vehicles

In the context of this paper, a DNN exhibits a misbehaviour in a
given test scenario if the overall system that contains the DNN does
not respect its requirements due to the outputs produced by the
DNN. In the autonomous driving domain, there are many possi-
ble misbehaviours, associated with the different requirements that
such systems are supposed to realize. Safety requirement violations
are by far the most critical requirements, as a misbehaviour in the
steering component may cause a crash of the vehicle with potential
casualties. However, in general, a SDC might violate also other
driving requirements, e.g., related to ride comfort [11], such as ex-
cessive derivative of the steering angle, unstable movement around
the centerline, or excessive deceleration.

In this paper, we focus on the prediction of two safety-critical
misbehaviours: (1) collisions and (2) out-of-bound episodes (OBEs).
The rationale for this choice are as follows. First, they represent
the vital requirement to be satisfied and thoroughly tested (i.e., the
car should stay in lane and avoid whatsoever collision), without
which autonomous driving vehicles would be hardly accepted in
production. Second, leveraging a simulation environment such as
Udacity’s [47] allows us to: (1) safely test such critical scenarios,
and (2) precisely define, observe and measure them, in order to
support crash analysis and reproduction.

To conclude, the problem we aim to address in this paper is
predicting when a self-driving car is within a low-confidence area
because of an unexpected execution context, timely enough to take
countermeasures before the vehicle crashes or drives off road.

4 APPROACH

The goal of our approach is to monitor the confidence level of a
SDC as it runs, and to promptly predict whether drops in confi-
dence correlate with potential future misbehaviours. Our approach
works in an end-to-end fashion, analyzing directly the input data
as retrieved by the car (an image from the center camera), mak-
ing the approach independent from the specific architecture of the
self-driving component, requiring no modifications to the existing
DNN model, and being therefore, highly generalizable.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

Figure 1: Confidence levels of Nvidia’s DAVE-2 [9] in response to changing driving scenarios. The picture shows frames cap-

tured during the execution of the SDC along one of our testing tracks, under different conditions: (Lap 1) sun, (Lap 2) light

rain, (Lap 3) sun, and (Lap 4) heavy rain. The picture juxtaposes the reconstruction error by the anomaly detector of SelfOr-

acle, which is used as a proxy for the DNN confidence. We can notice that the reconstruction error is low when the car drives

under sunny conditions (i.e., conditions similar to those observed during training), whereas the error increases moderately

with adverse conditions (the car does no longer follow the center of the road), and grows above a given threshold when facing

heavy rainy conditions at night time (which cause the SDC to drive off the road).

The main working assumption is that a prediction model trained
on normal data should learn the normal time series patterns. When
the model is used on a SDC in the field, it should worsen its perfor-
mance as the car approaches previously unseen regions as compared
to normal, known regions (Figure 1). Then, using a decision bound-
ary mechanism we can timely alert the human driver (NHTSA
Level 4) or the main self-driving component (NHTSA Level 5).

We now detail each step of our approach, which consists of two
main phases: (1) model training under nominal driving behaviour,
and (2) field usage of the trained model.

4.1 Training of SelfOracle under Nominal

Driving Behaviour

Figure 2 illustrates the training phase of our approach, which con-
sists of several steps.

4.1.1 Reconstructor. The first step consists in retrieving a model of
normality from the training driving scenarios. Thus, in the training
set, we capture the visual input stream of the SDC under nomi-
nal situations. Then, we train our driving scenario reconstructor
with such “normal” instances. The motivation for the use of re-
constructors is due to the results obtained in the field of anomaly
detection by reconstruction-based techniques. Particularly, autoen-
coders have proven effective as anomaly detectors because the
proximity in their latent space translates into low reconstruction
error [3, 31, 36, 54], and are computationally very efficient.

Let us consider a training set X = {x1, x2, . . . , xn } of n image
frames, where the index i ∈ [1 : n] of xi ∈ X represents the discrete
time t . Depending on the considered architecture, a reconstructor
can be singled-image or sequence-based. For singled-image recon-
structors, only one image frame is considered at a time. When
the discrete time is t = i , xi is the input and the reconstructor
recreates it into x ′i . For sequence-based reconstructors, assuming k
image frames preceding xi are used to reconstruct xi , the sequence
⟨xi−k , . . . , xi−1⟩ is the input used to output x ′i , a prediction of the
actual current frame xi . For instance, for k = 3 and i = 4, the

reconstructor considers the sequence ⟨x1, x2, x3⟩ in order to predict
the current frame x4.

At the end of this task, each reconstruction error ei = d(xi , x ′i)
can be computed, where d is a proper distance function, such as the
Euclidean distance. This results in the set of reconstruction errors
E = {e1, e2, . . . , en }, available for all elements in the training set X .

4.1.2 Probability Distribution Fitting. We build a model of normal-
ity for the reconstruction errors E = {e1, e2, . . . , en } collected in
nominal driving conditions and automatically determine a thresh-
old θ that brings the expected false alarm rate in nominal condi-
tions below some acceptable, configurable level ϵ (e.g., ϵ = 10−3
or ϵ = 10−4). To this end, we use probability distribution fitting to
obtain a statistical model of normality. Indeed, using the raw recon-
struction error distribution is unreliable, because high error values
are rare as such distribution is obtained from nominal data. There-
fore, any estimation above a reasonably high threshold becomes
inaccurate if done directly on the raw data, because the estimated
false alarm rate would be incorrectly assumed to be equal to zero
when only a few, or even no data points, are observed on the right
of the chosen threshold.

The reconstruction error e = d(x, x ′) can be computed by com-
paring the individual pixels of the images x and x ′ and taking the
mean pixel-wise squared error. Assuming images have widthW ,
height H andC channels (usually, RGB channels for colour images),
the reconstruction error is defined as follows:

d(x, x ′) =
1

WHC

W ,H ,C∑
i=1, j=1,c=1

(x[c][i, j] − x ′[c][i, j])2 (2)

We assume that the pixel-wise error e[c][i, j] = x[c][i, j]−x ′[c][i, j]
follows a normal distributionwith pixel-dependent variance: e[c][i, j] ∼
N(0,σc ,i , j). Correspondingly, the sum of the squares of pixel-wise
errors e[c][i, j] follows a Gamma distribution: e = d(x, x ′) ∼ Γ(α, β).
We get a Gamma distribution instead of a χ2 distribution because
pixel-wise errors have different channel/pixel dependent non-unitary
variances.

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 2: Model Training under nominal driving behaviour.

Definition ofGammaDistribution.Gamma is a probabilitymodel
for a continuous variable on [0,∞)which is widely used in engineer-
ing, science, and business, to model continuous variables that are
always positive and have skewed distributions [23]. The probability
density function of a random variable x ∼ Γ(α, β) is:

f (x) =
βα

Γ(α)
xα−1e−βx x > 0; α, β > 0 (3)

where α is the shape parameter (which affects the shape of the dis-
tribution), β is the rate parameter (or inverse scale, which stretch-
es/shrinks the distribution) and Γ is the Gamma function. When
α is large, the Gamma distribution closely approximates a normal
distribution with the advantage that the Gamma distribution has
non-zero density only for positive real numbers.

The Gamma function Γ can be seen as a solution to the interpo-
lation problem of finding a smooth curve that connects the points
(n,m) withm = (n − 1)! at any positive integer value for n. Such
a definition was extended to all complex numbers with a positive
real part by Bernoulli, as a solution to the following integral:

Γ(z) =

∫ ∞

0
xz−1e−xdx R(z) > 0; (4)

Fitting the Gamma Distribution. One effective method to esti-
mate the parameters of a distribution that best fit the data is by
maximum likelihood estimation (MLE) [14], which we briefly report
next. The likelihood function reverses the roles of the variables: in
Equation 3, the values of x are known, and are the fixed constants,

Figure 3: FittedGammadistribution of reconstruction errors

from a VAE on the DAVE-2 dataset.

whereas the unknown variables are the parameters α and β . MLE
involves calculating the values of these parameters so as to obtain
the highest likelihood of observing the values of x when the given
parameters are supplied to f .

Under the assumption of independence of the data, the likeli-
hood of the data given the parameters of the distribution is con-
veniently defined as the logarithm of the joint probability of the
data for a given choice of the parameters. In the case of a Gamma
distribution, with a dataset consisting of reconstruction errors
E = {e1, e2, . . . , en }, we get:

L(α, β ;E) =
1
n

n∑
i=1

log f (ei |α, β) = (5)

n(α − 1)log e − n log Γ(α) − nα log β − ne/β (6)

where e (log e) is the mean (log) reconstruction error over E. To find
the values of parameters α and β that maximize L we have to find
a solution to the equations: (1) ∂L/∂α = 0; (2) ∂L/∂β = 0. The
second equation can be easily solved analytically, resulting in β =
e/α . By substituting the value of β into the first equation, we get an
equation that unfortunately cannot be solved analytically. However,
the Newton method can iteratively converge to the solution quite
quickly. The output of such numerical estimation will be the pair
of parameters α and β of the Gamma distribution that best fit the
reconstruction errors.
Example of Threshold Estimation. Let us consider a set of re-
construction errors. Figure 3 shows the histogram of those produced
on the DAVE-2 dataset when the reconstructor is a VAE. On such
dataset, the MLE method estimates the following Gamma param-
eters: α = 15; β = 392. Figure 3 shows the Gamma distribution
obtained with such parameter values. Let us to set a false alarm
rate ϵ = 10−2. The threshold θ with a probability mass above the
threshold equal to 10−2 can be easily obtained as the inverse of the
cumulative Gamma distribution F (x): θ = F−1(1 − ϵ). This ensures
that the cumulative probability of values ≤ θ is 1 − ϵ , leaving only
a probability of ϵ to the tail following θ . We use the estimated θ
as threshold to distinguish anomalous conditions (reconstruction
error ≥ θ) from normal ones (reconstruction error < θ).

4.2 Usage Scenario

Figure 4 shows how SelfOracle is used online for misbehaviour
prediction after model training (i.e., after fitting the Gamma distri-
bution and estimating the threshold θ). Misbehaviour prediction is
executed online as the SDC drives. In this phase, the SDC generates
data continuously and the reconstructor recreates the incoming
stream of images. The sequence of reconstruction errors is passed

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

Figure 4: Usage Scenario of SelfOracle.

through the autoregressive model f and the resulting, filtered error
is compared against the threshold θ , which determines whether
an anomaly is detected or not. In the former case, self-healing is
triggered and the SDC is brought to a safe state.

4.2.1 Time-aware Anomaly Score Prediction. The reconstruction
error et at time t might be susceptible to single-frame outliers,
which are not expected to have a big impact on the driving of
the car, but would indeed make the misbehaviour predictor falsely
report an anomalous context. For this reason, we smooth such noisy
oscillations by applying an autoregressive filter: the sequence of
reconstruction errors is passed to a module that performs time
series analysis. In Figure 4, this corresponds to the AR filter f . The
output of this filter, instead of the raw reconstruction error et , is
compared with the threshold θ to recognize unexpected driving
conditions. In our experiments we used a simple AR model (see
Equation 1) with α0 = 0 and αi = 1/k for i = 1, . . . ,k , i.e., the
arithmetic mean of reconstruction errors over the last k frames.

5 EMPIRICAL EVALUATION

5.1 Research Questions

We consider the following research questions:
RQ1 (effectiveness): How effective is SelfOracle in predicting
anomalies for autonomous vehicles? What are the best reconstruc-
tors to use?
RQ2 (prediction):How does the misbehaviour predictions of Self-
Oracle change aswe increase the reaction period (i.e., we anticipate
the time of prediction)?
RQ3 (comparison): How does SelfOracle compare with Deep-
Road’s [55] online input validation?

5.2 Self Driving Car Models

We evaluate our framework on three existing DNN-based SDCs:
Nvidia’s DAVE-2 [9], Epoch [41], and Chauffeur [40]. We choose
these models because they are robust SDC models and they are
publicly available, thus they can be trained and evaluated on the
simulator. Moreover, they have been objects of study of other test-
ing works [34, 44]. DAVE-2 consists of three convolutional layers,
followed by five fully-connected layers. Chauffeur uses a CNN to
extract the features of input images, and a RNN to predict the steer-
ing angle from 100 previous consecutive extracted features. Epoch
is implemented as a simple CNN with three convolutional layers.

5.3 Simulation Platform

As common industrial practices require [13], for our empirical
study we used a simulation environment of the whole system in
operation. The motivation for this choice is twofold. First, unlike

previous works [34, 44, 55], we cannot rely on existing driving
image datasets such as the ones released by Udacity [49], because
they lack any episode of crash, or cars driving off road whatsoever.
Indeed, a major problem in anomaly detection research is the lack
of labeled benchmark datasets [12], and the self-driving car domain
is no exception. Second, for online testing, our definition of misbe-
haviour (Section 3) requires the creation of a set of “controllable”
unexpected conditions that may potentially cause them, along with
a way to precisely record them. The use of a simulation platform
is viable according to a recent paper by Haq et al. [20], showing
that simulator-generated data yield similar prediction errors as
those obtained on real-world datasets, and that offline testing is
less viable in exposing safety violations that occur during in-field
testing. Thus, we investigated the effectiveness of our approach
in predicting safety-critical misbehaviours in the Udacity simu-
lator [47]. The Udacity simulator is developed with Unity [51], a
popular cross-platform game engine. The simulator provides two
default tracks for testing DNNs models. The simulator executes in
two modes: (1) training mode, in which the user manually controls
the car while the simulator records her actions, and (2) autonomous
mode, in which the car is controlled by an external agent, such as
a DNN-based autonomous driving system. Moreover, we added a
third track [46] to the existing set, and we implemented two addi-
tional components, namely, an unexpected context generator, and a
collision/OBE detection system.

5.3.1 Unexpected Context Generator. First, we developed a method
to gradually inject unseen conditions during autonomous mode
(i.e., conditions diverse from the training mode’s defaults). The first
condition deals with illumination. Our extension of the simulator
can gradually change the lightning condition of the track, simu-
lating the passage between day and night (day/night cycle). The
component that controls illumination can produce changes in a
gradual way, is applicable to all tracks, and is customizable in order
to increase or decrease the brightness (or darkness), as well as con-
trol the duration of a simulated day/night cycle. The sun and the
moon objects are rotated around the zero point vector according to
the current time of the day by extracting how many degrees the
celestial bodies should rotate after each update interval. This effect
produces realistic changes in the shadows of all objects in the scene,
night sky, and illumination brightening and dimming. We fixed the
retro illumination when the sun is positioned below the scene by
deactivating it when the Y axis component becomes negative. The
sun is switched off at sunset and switched on at sunrise accordingly,
and intensities during the simulations are varied by applying linear
interpolation from the minimum to the maximum intensity along
the chosen day length (60 s in our experiments).

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 5: (top) Day/night cycle (sunrise, day, night) and (bot-

tom) weather effects (snowy Lake Track, foggy Jungle Track,

and rainy Mountain Track).

The second kind of unseen environmental condition relates to
weather effects. We implemented rain, snow and fog effects with a
variable intensity during the simulation. For the implementation,
we used a specific Unity component called Particle System [32]
which can simulate the physics of a cluster of particles with high
performance. The particle system spawns particles according to
a predefined and optimized algorithm (such as per point, area,
volume), and the particles can be updated only through fixed values
according to fixed events (update particles color, size, direction,
speed, or acceleration when a timer ends, a collision occurs, or
randomly). After creating the rain, snow and mist effects, we wrote
a script to localize the particles around the car in motion, handling
the movement of the effects in response to that of the car, and to
control the intensity of the effect. It applies linear interpolation to
decrease or increase the number of particles produced over time,
visually changing the impact of the effect. Specifically, the rain
particles emission rate ranges between a minimum of 100 (light
rain) to a maximum of 10,000 particles/s (heavy rain); fog between
[100;2,000] particles/s, and snow between [100;800] particles/s. The
simulation platform is also in charge of changing the sun intensity,
the sun color and the sky box according to the selected effect.
Figure 5 shows a few examples.

5.3.2 Collision/OBE Detection System. Following our definition of
safety-critical misbehaviours, we implemented an automated colli-
sion/OBE detection system (ACODS) that records any unwanted
interaction of the SDC with the environment, allowing us to experi-
ment the effectiveness of SelfOracle at anticipating such episodes
during the occurrence of unexpected scenarios (Section 5.3.1).

We implemented ACODS based on colliders, which are consol-
idated building blocks of modern game engines to simulate the
physical interaction between objects. We approximate the car body
with a geometry mesh, and implemented a collider callback that
informs the simulator of any physical interaction of the car with
scene objects. When the car “hits” the road, it means the car is ac-
tually on track. Differently, when the car “collides” with any other
object, the callback registers whether it is a crash against some
object (Figure 6 (left)), or whether it is an OBE (Figure 6 (right)).

We also implemented an automatic restart mechanism that re-
stores the SDC to a safe position after a crash/OBE, allowing us to
record multiple simulations without the need for manual restart.
This was implemented leveraging track waypoints, i.e., phantom
objects that are used to mark certain positions and directions in a
3D scene. Essentially, each consecutive pair of waypointswn,wn+1

Figure 6: Simulator crash/OBE detection.

defines a track sector (which also gives us a way to monitor and con-
trol the length of the simulations). Automated restart is performed
as follows. If the car crashes at some sector wn,wn+1, we tag the
sector as not complete, and the system automatically moves the car
to the waypoint wn+1, adjusting position and angle according to
the waypoint orientation.

5.4 Procedure

5.4.1 Data Generation (Training Set). Training data were collected
by the authors in training mode by performing 10 laps on each
track, following two different track orientations (normal, reverse).
Overall, we obtained a dataset of 124,638 training images (at 10-13
fps), divided as follows: 32,243 for Track 1 (Lake), 51,422 for Track 2
(Jungle), and 40,973 for Track 3 (Mountain). Differences depend on
the track lengths. To allow a smooth driving and a correct behaviour
capture (i.e., lane keeping), the maximum driving speed was set to
30 mph, the default in the Udacity simulator.

5.4.2 SDC Model Setup & Training. All SDCs models were trained
on 124,638 images from the three cameras. We used data augmen-
tation as a consolidated practice for building more reliable and
generalizable SDCs, limiting the lack of image diversity in the train-
ing data. Specifically, 60% of the data was augmented through dif-
ferent image transformation techniques (e.g., flipping, translation,
shadowing, brightness). We cropped the images to 66 x 200, and
converted them from RGB to YUV colour space. All SDC models
were trained for 500 epochs with batch size of 256 on a machine
featuring an i9 processor, 32 GB of memory, and an Nvidia GPU
GeForce RTX 2080 Ti with 11GB of memory. Basically, the training
was meant to create solid models for testing, i.e., able to drive mul-
tiple laps on each track under nominal conditions without showing
any misbehaviour in terms of crash/OBE.

5.4.3 Evaluation Set. To collect the evaluation data, we executed
72 simulations (3 SDC x 8 conditions x 3 tracks in autonomous
mode), each consisting of two laps. As in the data generation phase,
the maximum speed was set to 30 mph. Specifically, for each SDC
and for each track, we performed one simulation in the same nor-
mal conditions as the training set. This allowed us to estimate the
number of false alarms (false positives) in nominal conditions. Sec-
ond, we performed four simulations activating in turn a single
unexpected condition: day/night cycle, rain, snow, fog. Third, we
performed three simulations activating in turn a combined con-
dition: day/night cycle + rain, day/night cycle + snow, day/night
cycle + fog.2

2All such conditions may actually occur in nominal runs as well. There is no special
reason for this specific choice of normal/anomalous conditions and different permu-
tations would be of course allowed (e.g., normal = day/night + rainy; anomalous =
snowy). The only important prerequisite is that the chosen anomalous condition is
unseen at training time.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

Figure 7: Labelling of anomalous and normal windows in driving image stream.

In our experiments, we used a value of 60 s both for the day/night
cycle and for the loop between the minimum and maximum in-
tensity of the effects. This value was chosen empirically given
the relatively short speed of the SDC, and the small length of the
tracks, allowing us to test the behaviour of the SDC on each of the
tracks’ subsets under all possible conditions. For example, the bridge
part of Track1 (Lake) has been driven on under both dawn/day/-
sunset/night conditions (day/night cycle) and minimal/maximal
intensity of rain/fog/snow.

Overall, we obtained a dataset of 778,592 images, divided as
follows: 188,032 for Track 1 (Lake), 260,064 for Track 2 (Jungle),
and 208,064 for Track 3 (Mountain) with unknown conditions and
33,088 for Track 1, 46,272 for Track 2 and 43,072 for Track 3 in
known conditions.

5.4.4 SelfOracle’s Configurations. We used four autoencoders
taken from existing guidelines [24]: (1) SAE (simple autoencoder
with a single hidden layer), (2)DAE (deep five layers fully-connected
autoencoder), (3) CAE (convolutional autoencoder alternating con-
volutional and max-pooling layers), and (4) VAE (variational au-
toencoder). All autoencoders take as input a single image. We added
images taken by the side cameras of the car (left, right) to allow bet-
ter generalization. Lastly, we performed further data augmentation
on 60% of the inputs, as described in Section 5.4.2.

As an additional sequence-based reconstructor, we also imple-
mented an LSTM consisting of two LSTM-layers and one convo-
lutional layer. All our code is publicly available in the replication
package accompanying this paper [45].

5.4.5 Baseline. We use the input validation technique of Deep-
Road [55] as baseline for SelfOracle. Due to the unavailability
of an open-source version of such technique, we implemented of
our own version based on the authors’ description, which is pub-
licly available in our replication package [45]. For input validation,
DeepRoad uses the pre-trained VGG19 ImageNet classifier [38]
to extract style and feature vectors from a given image. Principal
Component Analysis (PCA) is then used to reduce all style and
feature vectors, concatenated into a matrix, to three dimensional
representations, which support distance/similarity estimation. To
allow a fair comparison, we integrated it within SelfOracle as
reconstructor. However, unlike autoencoders, DeepRoad is compu-
tationally very expensive and memory demanding (due to the size
of the matrix supplied to PCA). In the paper, authors reduced their
training set to 600 images, which were resized to 120x90. During
input validation, the three dimensional representation of an online
input image is compared to the nominal images by measuring the
average of the top-100 minimum distances from the training set.

Our own implementation relaxed the restrictions above by con-
sidering a training set consisting of 3,000 randomly sampled images
(i.e., 5× improvement with respect to the original implementation

described in the paper), resized to 224x224, which is the default
input size for VGG19 [25]. Keeping the fraction of the training set
constant (16), we compute similarity based on the average of the
top-500 minimal distances.

5.5 Evaluation of Simulation Results

We evaluated all approaches offline, by splitting the evaluation set
of recorded images in windows of consecutive frames, which we
labelled as either anomalous or normal (Figure 7). In anomalous
windows, SelfOracle is expected to predict the shortly-following
misbehavior.

5.5.1 Labelling of Anomaly and Normal Windows in Evaluation

Data. Let X = {x1, x2, . . . , xn } be the sequence of considered im-
ages (frames). Misbehaviors are represented asmj ∈ {0, 1}, where
mj = 1 iff a misbehavior is recorded at x j ∈ X . We define a healing
period as a sequence of h misbehaviour-free frames following a
misbehaviour at time t . We define a reaction period as a sequence
of r misbehaviour-free frames preceding a misbehaviour at time t ′
and not intersecting any healing period. We define an anomalous
window as a consecutive misbehaviour-free frames followed by
a reaction period that does not intersect any healing period. We
define a normal window as b consecutive misbehaviour-free frames
followed by an anomalous window, or a normal window that does
not intersect any healing period. This is illustrated graphically in
Figure 7. Formally, assuming any misbehavior recorded at time
t ∈ [1:n], i.e.,mt = 1:

• window xt+1 to xt+h is labelled as healing period ifmt = 1
andmj = 0 ∀j ∈ [t + 1:t + h];

• furthermore, the window xt+1 to xk−1 is also labelled as
healing period ifmk = 1 with k > t and k − t − 1 < h, and
mj = 0 ∀j ∈ [t + 1:k − 1];

• window xt−r to xt−1 is labelled as reaction period iffmt = 1,
mj = 0 ∀j ∈ [t − r :t − 1] and no healing period contains any
frame from xt−r to xt−1;

• window xi to xi+a−1 is labelled as anomaly window iff a
reaction period starts at xi+a ,mj = 0 ∀j ∈ [i:i + a − 1] and
no healing period contains any frame from xi to xi+a−1;

• window xi to xi+b−1 is labelled as normal window iff an
anomaly or a normal window starts at xi+b , mj = 0 ∀j ∈
[i:i + b − 1] and no healing period contains any frame from
xi to xi+b−1.

Moreover, ifmj = 0 for all j ∈ [k :n], all consecutive windows
of size b starting within xk to xn−r−a−1 which do not intersect
any healing period are labelled as normal. The labelling described
above ensures that after the last misbehavior in a sequence, h heal-
ing images are ignored (i.e., not labeled) before another anomaly
or normal window is defined. The value of h must be fine-tuned
appropriately so that the car is ensured back safely on the road

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Evaluation results for all variants of SelfOracle across all SDCs.

ϵ = 0.05, 1 − ϵ = 0.95 ϵ = 0.01, 1 − ϵ = 0.99

Unexpected Nominal Unexpected Nominal

AUC-PRC↑ AUC-ROC↑ TP FP TN FN TPR↑ FPR↓ F1 Prec. FPR↓ TP FP TN FN TPR↑ FPR↓ F1 Prec. FPR↓

DAVE-2
VAE 0.354 0.902 149 304 1,970 47 0.760 0.134 0.459 0.329 0.042 107 183 2,959 89 0.546 0.058 0.440 0.369 0.003
DAE 0.330 0.891 104 210 2,679 92 0.531 0.073 0.408 0.331 0.041 21 55 4,063 175 0.107 0.013 0.154 0.276 0.010
SAE 0.336 0.891 138 260 1,877 58 0.704 0.122 0.465 0.347 0.050 108 183 2,665 88 0.551 0.064 0.444 0.371 0.002
CAE 0.290 0.821 6 22 4,208 190 0.031 0.005 0.054 0.214 0.024 0 0 4,282 196 0 0 n.a. n.a. 0
LSTM 0.357 0.903 16 34 3,990 177 0.083 0.008 0.132 0.320 0 7 12 4,119 186 0.036 0.003 0.066 0.368 0
DeepRoad 0.198 0.780 65 344 3,170 131 0.332 0.098 0.215 0.159 0.054 44 250 3,651 152 0.225 0.064 0.180 0.150 0.037

Epoch
VAE 0.391 0.904 158 331 1,952 51 0.756 0.145 0.453 0.323 0.049 106 169 2,858 103 0.507 0.056 0.438 0.386 0.001
DAE 0.399 0.895 112 188 2,720 97 0.536 0.065 0.440 0.373 0.042 24 34 3,653 185 0.115 0.009 0.180 0.414 0.010
SAE 0.386 0.883 147 284 2,026 62 0.703 0.123 0.459 0.341 0.050 120 175 2,838 89 0.574 0.058 0.476 0.407 0.002
CAE 0.310 0.822 6 23 3,661 203 0.029 0.006 0.050 0.207 0.020 0 0 3,731 209 0 0 n.a. n.a. 0
LSTM 0.385 0.879 23 34 3,503 175 0.116 0.010 0.180 0.404 0.001 7 13 3,592 191 0.035 0.004 0.064 0.350 0
DeepRoad 0.213 0.807 70 308 2,917 139 0.335 0.096 0.239 0.185 0.053 43 201 3,240 166 0.206 0.058 0.190 0.176 0.040

Chauffeur
VAE 0.242 0.951 98 392 3,700 23 0.810 0.096 0.321 0.200 0.049 81 267 5,391 40 0.669 0.047 0.345 0.233 0.002
DAE 0.203 0.944 78 281 5,045 43 0.645 0.053 0.325 0.217 0.051 13 95 7,730 108 0.107 0.012 0.114 0.120 0.009
SAE 0.241 0.931 96 354 3,650 25 0.793 0.088 0.336 0.213 0.056 86 240 5,177 35 0.711 0.044 0.385 0.264 0.003
CAE 0.172 0.909 7 34 8,127 114 0.058 0.004 0.086 0.171 0.023 0 0 8,229 121 0 0 n.a. n.a. 0
LSTM 0.240 0.945 11 41 7,879 111 0.090 0.005 0.126 0.212 0 4 12 8,035 118 0.033 0.002 0.058 0.250 0
DeepRoad 0.098 0.797 37 594 5,564 84 0.306 0.097 0.098 0.059 0.055 23 458 6,551 98 0.190 0.065 0.076 0.048 0.042

Totals
VAE 0.320 0.924 405 1027 7,622 121 0.770 0.119 0.414 0.283 0.046 294 619 11,208 232 0.559 0.052 0.409 0.322 0.002
DAE 0.301 0.911 294 679 10,444 232 0.559 0.061 0.392 0.302 0.045 58 184 15,446 468 0.110 0.012 0.151 0.240 0.009
SAE 0.312 0.907 381 898 7,553 145 0.724 0.106 0.422 0.298 0.052 314 598 10,680 212 0.597 0.053 0.437 0.344 0.002
CAE 0.255 0.864 19 79 15,996 507 0.036 0.005 0.061 0.194 0.022 0 0 16,242 526 0 0 n.a. n.a. 0
LSTM 0.329 0.915 50 109 15,372 463 0.098 0.007 0.149 0.315 0 18 37 15,746 495 0.035 0.002 0.063 0.327 0
DeepRoad 0.159 0.799 172 1246 11,651 354 0.327 0.097 0.177 0.121 0.054 110 909 13,442 416 0.209 0.063 0.142 0.108 0.040

when the next windows are labelled. Furthermore, r images occur
in between an anomaly window in which the system is supposed
to predict the upcoming misbehavior, and the actual misbehavior.
This period would, in practice, be used by the self-healing system to
execute countermeasures against the predicted future misbehavior.
Intuitively, misbehavior prediction is expected to be much harder
as the value of r increases. In our experiments, we set the value
of n = b = 30 frames (i.e., normal/anomalous windows), which
is ≈3s.3 The size of the healing window was set to h = 60 (> 5s)
frames, and the size of the reaction window to r = 50 (> 4s) frames.

5.5.2 Metrics used for Analysis. If the loss score for an image is
higher than the automatically estimated threshold θ (Section 4.2),
SelfOracle triggers an alarm. Consequently, a true positive is
defined when SelfOracle triggers an alarm during an anomalous
window, early enough to predict a misbehavior. Conversely, a false
negative occurs when SelfOracle does not trigger an alarm during
an anomalous window, thus failing at predicting a misbehaviour in
time for triggering self-healing. A false positive represents a false
alarm by SelfOracle, whereas true negative cases occur when
SelfOracle detects correct detection of normality.

We assume that a single alarm immediately starts the self healing
system, such that multiple consecutive alarms within the healing
time are ignored. Correspondingly, once a FP occurs and the self
healing system is running, additional consecutive FP windows have
no effect in practice, and are thus excluded from our analysis.

3In our setting, Udacity frame rate was approximately 10/13 fps.

Our goal is to achieve high recall, or true positive rate (TPR, de-
fined as TP/TP+FN), i.e., true alarms, while minimizing the comple-
ment of specificity, or false positive rate (FPR, defined as FP/TN+FP),
i.e., labelling safe situations as unsafe. We are also interested in
the F1-score (F1 = 2 · Precision×Recall

Precision+Recall) because, in practice, it is
informative to have a high F1-score at a given threshold.

We also consider two threshold-independent metrics for evaluat-
ing classifiers at various thresholds such as AUC-ROC (area under
the curve of the Receiver Operating Characteristics), and AUC-PRC
(area under the Precision-Recall curve). We included AUC-PRC
because AUC-ROC may be not indicative when data are heavily
unbalanced, which is our case, since anomalies are rare [16, 35].

5.6 Results

Effectiveness (RQ1). Table 1 presents the effectiveness results on a
per-SDCmodel basis. Columns 2 and 3 show threshold-independent
measures of AUC-PRC and AUC-ROC. The remaining of the table
shows the effectiveness metrics across two confidence thresholds
that we found interesting for analysis and correspond to ϵ = 0.05
and ϵ = 0.01 (at lower values of ϵ , both FPR and TPR get close to
zero, making the misbehaviour predictor useless).

Overall, LSTM and VAE are the best performing reconstructors
on the AUC-PRC and AUC-ROCmetrics. Columns 12 and 21 (Nomi-
nal/FPR) show FPR under conditions similar to those of the training
set. Values are almost always near to zero and occasionally even
equal to zero (this is indicated by omitting the decimals) across
the variants of SelfOracle. This is an empirical validation of the
accuracy of the Gamma distribution as a statistical model for the

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

reconstruction errors. In fact, at ϵ = 0.05, most FPR reported in
column 12 are very close to the theoretical value (see, e.g., rows
under Totals). At ϵ = 0.01, some values drop to zero. This means
that in those configurations SelfOracle will raise no false alarm
when the SDC drives in nominal conditions. For instance, with
both thresholds, LSTM never raised false alarms within the 23,728
normal windows.

In terms of TPR (to be maximized) and FPR (to be minimized),
the best reconstructors are VAE and SAE, with comparable overall
performance: 77/11% (TPR/FPR of VAE) and 72/10% (SAE) at ϵ =
0.05; 55%/5% (VAE) and 59/5% (SAE) at ϵ = 0.01. It can be noticed
that FPR is higher than ϵ (10% vs 5% and 5% vs 1%) with both
reconstructors. This was expected, since we are measuring FPR in
trackswith injected anomalies. These tracksmay differ substantially
from the nominal tracks when anomalies are injected with low
intensities. These conditions are often not so extreme to cause
a misbehaviour, which explains why the FPR under anomalous
conditions is over-approximated. However, it is important to notice
that even in such non nominal conditions, in most cases the FPR
remains low and not too far from the theoretical prediction ϵ .

To answer RQ1, reconstructors VAE and SAE achieve a FPR in
nominal conditions close to the theoretical expectations (respec-
tively 5% and 1%, in the two considered configurations), that in
anomalous conditions FPR increases by a moderate amount (re-
spectively, +5% and +4%). The achieved TPR is quite high (with
VAE, SAE, respectively 77/72% and 55/59%). The relation between
area difference d and precision/recall delta is quadratic, thus pre-
cision/recall improvements are expected to be the order of

√
(d).

For instance, in Table 1 (SAE vs DAE, DAVE-2), we have d = 0.006;
for the specific threshold that ensures ϵ = 0.05, the corresponding
improvements for TPR and FPR are 0.17 and 0.13, respectively.
Prediction (RQ2). Figure 8 shows the AUC-PRC of the various
configurations of SelfOracle over different reaction periods. The
general trend is that predictions get harder when the SDC is far from
a critical scenario, having a longer reaction period to prevent the
misbehavior, but quite surprisingly there is no drop in performance
as we move away from the misbehaviour. Our explanation of this
unexpected finding is that the tracks used for the evaluation of the
approach contain always a relatively high degree of anomalous
features, which might trigger a self-healing reaction. Occasionally,
the level of detected anomalies surpasses the threshold and the
misbehaviour predictor raises an alarm. Correspondingly, although
slightly reduced, the signals of an upcoming misbehaviour exist in
images quite far (even 60 frames, around 6 s) from the misbehaviour.

To answer RQ2, the performance of SelfOracle degrades smoothly
as we anticipate the prediction (AUC-PRC remains quite high up
to 6 s before the misbehaviour). In our experiments, SelfOracle
is not sensitive to the choice of k if chosen in the range [4..W/2]
(W=normal window size). We remark that this result must be taken
with care and may be partially due to the characteristics of the
considered tracks, which contain a continuously and smoothly
increasing degree of injected anomalies by design.

Figure 8: Misbehavior prediction capability over time.

Comparison (RQ3). In our experiments, SelfOracle is constantly
superior to DeepRoad at predicting misbehaviours. Results of AUC-
PRC andAUC-ROC show significant improvements across all thresh-
olds, regardless of the technique being used and the reaction pe-
riod considered (in Figure 8, DeepRoad is the lowest curve). With
ϵ = 0.05 (resp. ϵ = 0.01), VAE and SAE (see Table 1) predict cor-
rectly more than twice the misbehaviours exposed by DeepRoad,
with a TPR = 77/72% vs 32% (respectively, 55/59% vs 20%), at com-
parable false positive rate FPR = 11/10% vs 9% (respectively, 5% vs
6%).

Concerning the runtime, in our experiments, the autoencoders
took ≈3 ms per prediction whereas DeepRoad took ≈45 ms per
prediction (+1400% increment). While such runtime measures seem
acceptable in practical scenarios, it is worth remembering that
DeepRoad required us to dramatically sub-sample the training set
available for our experiments. SDC manufacturers use much larger
training datasets than the one used for our empirical study and
DeepRoad’s runtime is quite sensitive to the size of the training set,
which makes it quite unsuitable for online misbehaviour prediction
because both computationally very expensive. On the contrary,
autoencoders are a promising option, given their relatively simple
architecture. In particular, SAE is very efficient, yet it has compara-
ble performance as the more sophisticated VAE.

To answer RQ3, SelfOracle outperforms DeepRoad in all re-
spects: computational cost, accuracy of misbehaviour prediction
(see TPR), and minimization of false alarms (see FPR and AUC-PRC).

5.7 Threats to Validity

Internal validity. We compared all variants of SelfOracle and
DeepRoad under identical parameter settings, and on the same
evaluation set. The main threat to internal validity concerns our
custom implementation of unexpected conditions within the sim-
ulator. However, this was a mandatory choice, since we are not
aware of open-source driving simulators that can inject unexpected
execution contexts in a controllable way. Another possible threat
may be the choice and the training of our own SDCs, which may
exhibit a large number of misbehaviours if trained inadequately. We

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

mitigated this threat by training and fine-tuning the best publicly
available driving models. Our own implementation of DeepRoad
may be another threat to internal validity, that we mitigated by
developing an implementation which improves the original one by
processing 5× more information.
External validity.We used a limited number of self-driving sys-
tems in our evaluation, as well as tracks, which pose a threat in
terms of generalizability of our results. We tried to mitigate this
threat by choosing popular real-world SDC models which achieved
competitive scores in the Udacity challenge.
Reproducibility. All our results, the source code of SelfOracle,
the simulator, and all subjects are available [45].

6 RELATEDWORK

Autoencoder-based Anomaly Detection. A major testing issue
with machine-learning based systems is finding a confidence/uncer-
tainty metric of the machine-learning component, and being able
to distinguish the nominal vs abnormal behaviours of the system
in operation. To this extent, the machine learning literature has
seen a proliferation of autoencoder-based anomaly detection tech-
niques applied to different domains, among which time series [27],
surveillance videos [15], robot-assisted feeding [31], or web appli-
cations [54]. All such papers propose and evaluate their techniques
mostly for classification problems, on which the concept of mis-
behaviour is more easily tractable. Differently, we target online
misbehaviour prediction for autonomous driving systems, i.e., com-
plex DNNs that predict the car’s actuators values. Our work aims to
improve the dependability of a whole autonomous driving system,
and prevent the occurrence of future failures, rather than focusing
on individual DNN’s model-level inaccuracies.

Concerning the very definition of unseen situation, Bolte et
al. [10] provide a definition ofmisbehaviour based on non-predictable
relevant objects in a relevant location around the car. Such a defini-
tion can be used in our framework by replacing our reconstruction
error component with an object recognition component. Several
works leverage anomaly detection techniques to identify unex-
pected execution contexts during the system’s operation [4, 10, 21,
33, 53, 55], whereas a few papers are related to online risk assess-
ment and failure probability estimation for MLS [39, 50]. In the
context of autonomous driving systems, Henriksson et al. [21] use
the negative of the log likelihood of the images generated by a VAE
as an anomaly score for driving images. However, their evaluation
is performed on unrealistic scenarios because the data distribution
of the images in the test set (urban scenes) is by far quite different
from that of the training set (highway scenes). In our experiment,
we create the anomalous set by gradually injecting anomalous con-
ditions starting from the training set tracks, which allows a more
realistic transition from nominal to unexpected scenarios.
Adversarial Input Generation. Adversarial input generation ap-
proaches aim at generating inputs that trigger inconsistencies be-
tween multiple autonomous driving systems [34], or between the
original and transformed driving scenarios [30, 44, 55]. These works
exploit the well-known fragility of DNNs to adversarial examples.
Therefore, their main use case concerns the identification of un-
derrepresented scenarios in the training data (e.g., snowy weather
condition) to support re-training and better generalization after

re-training. The only comparable technique is the online input
validation of DeepRoad [55], for which we carried out an explicit
comparison in our empirical study, finding poor performance when
used for online misbehaviour prediction.

Despite the different goal (test generation vs misbehaviour pre-
diction), we share with these works the problem of how to empiri-
cally validate the proposed technique in the absence of a precise
oracle that defines the expected behaviour of a self-driving car. The
prevalent choice in test generators [30, 34, 44, 55] is to address
the oracle problem by differential testing, i.e., by comparing the
behaviours of multiple DNNs, or by metamorphic testing, i.e., by
comparing the behaviour before and after applying a metamorphic
transformation to the input. Approaches based on verification are
also being under investigation [19]. In this paper, we adopt a precise
definition of DNN misbehaviour, which gives us a very accurate
functional oracle, with no need for differential testing, metamorphic
testing, or verification.
Search-based Test Generation. Abdessalem et al. [1, 6, 7] com-
bine genetic algorithms and machine learning to test a pedestrian
detection system. Mullins et al. [29] use Gaussian processes to
drive the search towards yet unexplored regions of the input space,
whereas Gambi et al. [18] propose AsFault, a search-based test
generator for autonomous vehicles based on procedural content
generation. AsFault uses search operators which mutate and re-
combine road segments to construct road networks for testing the
lane keeping functionality of self-driving cars. Their goal is to gen-
erate extreme and challenging roads, maximizing the number of
observed OBEs, while our goal is to predict OBEs.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we studied the problem of estimating the confidence
of the DNN-based autonomous in response to unexpected execution
contexts. Our tool SelfOracle was able to anticipate by several
seconds many potentially safety-critical misbehaviours, such as
out-of-bound episodes or collisions, with a low false alarm rate,
outperforming the input validator of DeepRoad.

Future work concerns experimenting with other white-box DNN
confidence metrics, as well as other types of reconstructors, among
which denoising autoencoders [36], and adversarial autoencoders [5].
On the same line, more elaborate LSTM-based solutions other than
the simple architecture proposed in this paper will be investigated.
It would be also interesting to characterize and predict other kinds
of misbehaviours (e.g., derivative of steering angle) in order to allow
confidence-guided self-healing within the simulator, and leverage
more sensor information sources (e.g., LIDAR) to improve SelfOr-
acle’s prediction accuracy.

We believe that our promising results in online misbehaviour
detection, united with the availability of a labeled dataset of crashes
and a simulation environment, can foster novel approaches for
online prediction and self-healing of autonomous driving systems.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project PRECRIME,
funded under the ERC Advanced Grant 2017 Program (ERC Grant
Agreement n. 787703).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Stocco et al.

REFERENCES

[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018). ACM, New York, NY,
USA, 143–154. https://doi.org/10.1145/3238147.3238192

[2] David Alvarez-Melis and Tommi S. Jaakkola. 2018. Towards Robust Interpretabil-
ity with Self-Explaining Neural Networks. In Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS). 7786–7795.

[3] Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly
Detection using Reconstruction Probability.

[4] Adina Aniculaesei, Jörg Grieser, Andreas Rausch, Karina Rehfeldt, and Tim
Warnecke. 2018. Towards a holistic software systems engineering approach for
dependable autonomous systems. In Proceedings of the 1st International Workshop
on Software Engineering for AI in Autonomous Systems - SEFAIS. ACM Press.
https://doi.org/10.1145/3194085.3194091

[5] Laura Beggel, Michael Pfeiffer, and Bernd Bischl. 2019. Robust Anomaly Detec-
tion in Images using Adversarial Autoencoders. CoRR abs/1901.06355 (2019).
arXiv:1901.06355 http://arxiv.org/abs/1901.06355

[6] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2016. Testing advanced
driver assistance systems using multi-objective search and neural networks. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). 63–74.

[7] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing Vision-
Based Control Systems Using Learnable Evolutionary Algorithms. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 1016–
1026. https://doi.org/10.1145/3180155.3180160

[8] BGR Media, LLC. 2018. Waymo’s self-driving cars hit 10 million miles. https://
techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles. On-
line; accessed 18 August 2019.

[9] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR abs/1604.07316 (2016). http://arxiv.org/abs/1604.07316

[10] J. Bolte, A. Bar, D. Lipinski, and T. Fingscheidt. 2019. Towards Corner Case
Detection for Autonomous Driving. In 2019 IEEE Intelligent Vehicles Symposium
(IV). 438–445. https://doi.org/10.1109/IVS.2019.8813817

[11] Georg Burkhard, S. Vos, N. Munzinger, E. Enders, and D. Schramm. 2018. Require-
ments on driving dynamics in autonomous driving with regard to motion and
comfort. In 18. Internationales Stuttgarter Symposium, Michael Bargende, Hans-
Christian Reuss, and JochenWiedemann (Eds.). Springer Fachmedien Wiesbaden,
Wiesbaden, 683–697.

[12] Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. Campello, Barbora
Micenková, Erich Schubert, Ira Assent, and Michael E. Houle. 2016. On the
Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Em-
pirical Study. Data Min. Knowl. Discov. 30, 4 (July 2016), 891–927. https:
//doi.org/10.1007/s10618-015-0444-8

[13] Vinton G. Cerf. 2018. A Comprehensive Self-driving Car Test. Commun. ACM
61, 2 (Jan. 2018), 7–7. https://doi.org/10.1145/3177753

[14] S. C. Choi and R. Wette. 1969. Maximum Likelihood Estimation of the Parameters
of the Gamma Distribution and Their Bias. Technometrics 11, 4 (1969), 683–690.
https://doi.org/10.1080/00401706.1969.10490731

[15] Yong Shean Chong and YongHaur Tay. 2017. Abnormal Event Detection in Videos
Using Spatiotemporal Autoencoder. In Advances in Neural Networks - ISNN 2017,
Fengyu Cong, Andrew Leung, and Qinglai Wei (Eds.). Springer International
Publishing, Cham, 189–196.

[16] Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-Recall
and ROC curves. In Proceedings of the 23rd international conference on Machine
learning - ICML06. ACM Press. https://doi.org/10.1145/1143844.1143874

[17] Electrek. 2016. Tesla Model S driver crashes into a van while on Autopilot.
https://electrek.co/2016/05/26/tesla-model-s-crash-autopilot-video/. Online;
accessed 18 August 2019.

[18] Alessio Gambi, MarcMueller, andGordon Fraser. 2019. Automatically Testing Self-
driving Cars with Search-based Procedural Content Generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2019). ACM,NewYork, NY, USA, 318–328. https://doi.org/10.1145/3293882.
3330566

[19] Divya Gopinath, Guy Katz, Corina S. Păsăreanu, and Clark Barrett. 2018. Deep-
Safe: A Data-Driven Approach for Assessing Robustness of Neural Networks.
In Automated Technology for Verification and Analysis, Shuvendu K. Lahiri and
Chao Wang (Eds.). Springer International Publishing, Cham, 3–19.

[20] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. 2020. Comparing
Offline and Online Testing of Deep Neural Networks: An Autonomous Car Case
Study. In Proceedings of 13th IEEE International Conference on Software Testing,
Verification and Validation (ICST ’20). IEEE.

[21] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer En-
glund, Sankar Raman Sathyamoorthy, and Stig Ursing. 2019. Towards Struc-
tured Evaluation of Deep Neural Network Supervisors. In 2019 IEEE Inter-
national Conference On Artificial Intelligence Testing (AITest). IEEE. https:

//doi.org/10.1109/aitest.2019.00-12
[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[23] Paul Hoel. 1984. Introduction to Mathematical Statistics. John Wiley.
[24] keras. [n. d.]. Building Autoencoders in Keras. https://blog.keras.io/

building-autoencoders-in-keras.html. Online; accessed 21 August 2019.
[25] Keras. [n. d.]. VGG19. https://keras.io/applications/#vgg19/. Online; accessed 21

August 2019.
[26] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-

ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1039–1049.
https://doi.org/10.1109/ICSE.2019.00108

[27] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet
Agarwal, and Gautam Shroff. 2016. LSTM-based Encoder-Decoder for Multi-
sensor Anomaly Detection. CoRR abs/1607.00148 (2016). arXiv:1607.00148 http:
//arxiv.org/abs/1607.00148

[28] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked
Convolutional Auto-Encoders for Hierarchical Feature Extraction. In Artificial
Neural Networks and Machine Learning – ICANN 2011, Timo Honkela, Włodzisław
Duch, Mark Girolami, and Samuel Kaski (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 52–59.

[29] Galen E. Mullins, Paul G. Stankiewicz, R. Chad Hawthorne, and Satyandra K.
Gupta. 2018. Adaptive generation of challenging scenarios for testing and evalua-
tion of autonomous vehicles. Journal of Systems and Software 137 (2018), 197–215.
https://doi.org/10.1016/j.jss.2017.10.031

[30] S. Müller, D. Hospach, O. Bringmann, J. Gerlach, and W. Rosenstiel. 2015. Robust-
ness Evaluation and Improvement for Vision-Based Advanced Driver Assistance
Systems. In 2015 IEEE 18th International Conference on Intelligent Transportation
Systems. 2659–2664. https://doi.org/10.1109/ITSC.2015.427

[31] D. Park, Y. Hoshi, and C. C. Kemp. 2018. A Multimodal Anomaly Detector for
Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder. IEEE
Robotics and Automation Letters 3, 3 (July 2018), 1544–1551.

[32] particle-system 2019. Unity3d Particle System. https://docs.unity3d.com/
ScriptReference/ParticleSystem.html.

[33] Naman Patel, Apoorva Nandini Saridena, Anna Choromanska, Prashanth Krish-
namurthy, and Farshad Khorrami. 2018. Adversarial Learning-Based On-Line
Anomaly Monitoring for Assured Autonomy. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October 1-5,
2018. 6149–6154. https://doi.org/10.1109/IROS.2018.8593375

[34] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
1–18. https://doi.org/10.1145/3132747.3132785

[35] Takaya Saito and Marc Rehmsmeier. 2015. The Precision-Recall Plot Is More
Informative than the ROC PlotWhen Evaluating Binary Classifiers on Imbalanced
Datasets. PLOS ONE 10, 3 (March 2015), e0118432. https://doi.org/10.1371/journal.
pone.0118432

[36] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders
with Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis (MLSDA’14). Association
for Computing Machinery, New York, NY, USA, 4–11. https://doi.org/10.1145/
2689746.2689747

[37] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication. The
Bell System Technical Journal 27, 3 (7 1948), 379–423. https://doi.org/10.1002/j.
1538-7305.1948.tb01338.x

[38] Karen Simonyan and Andrew Zisserman. [n. d.]. Very Deep Convolutional
Networks for Large-Scale Image Recognition. ([n. d.]). arXiv:cs.CV/1409.1556v6
VGGNet, https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3.

[39] Mark Strickland, Georgios Fainekos, and Hani Ben Amor. 2018. Deep predictive
models for collision risk assessment in autonomous driving. In 2018 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2018 (Proceedings - IEEE Inter-
national Conference on Robotics and Automation). Institute of Electrical and Elec-
tronics Engineers Inc., 4685–4692. https://doi.org/10.1109/ICRA.2018.8461160

[40] Team Chauffeur. 2016. Steering angle model: Chauffeur. https:
//github.com/udacity/self-driving-car/tree/master/steering-models/
community-models/chauffeur. Online; accessed 18 August 2019.

[41] Team Epoch. 2016. Steering angle model: Epoch. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/cg23. Online;
accessed 18 August 2019.

[42] The Verge. 2016. A Google self-driving car caused a crash for the first time. https://
www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report.
Online; accessed 18 August 2019.

[43] The Verge. 2019. Tesla hit with another lawsuit over a fatal
Autopilot crash. https://www.theverge.com/2019/8/1/20750715/
tesla-autopilot-crash-lawsuit-wrongful-death. Online; accessed 18 Au-
gust 2019.

Misbehaviour Prediction for Autonomous Driving Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[44] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering (ICSE ’18). ACM, New York,
NY, USA, 303–314. https://doi.org/10.1145/3180155.3180220

[45] SelfOracle 2020. Misbehaviour Prediction for Autonomous Driving Systems.
https://github.com/testingautomated-usi/selforacle/.

[46] track3 2019. Unity3D Snow Mountain Track. https://assetstore.unity.com/
packages/3d/environments/roadways/mountain-race-track-53775.

[47] Udacity. 2017. A self-driving car simulator built with Unity. https://github.com/
udacity/self-driving-car-sim. Online; accessed 18 August 2019.

[48] Udacity. 2017. Udacity self-driving car’s challenge. https://github.com/udacity/
self-driving-car/. Online; accessed 18 August 2019.

[49] Udacity. 2017. Udacity self-driving car’s datasets. https://github.com/udacity/
self-driving-car/tree/master/datasets. Online; accessed 18 August 2019.

[50] Jonathan Uesato, Ananya Kumar, Csaba Szepesvári, Tom Erez, Avraham Ru-
derman, Keith Anderson, Krishnamurthy (Dj) Dvijotham, Nicolas Heess, and
Pushmeet Kohli. 2019. Rigorous Agent Evaluation: An Adversarial Approach
to Uncover Catastrophic Failures. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[51] unity 2019. Unity3D. https://unity.com.
[52] V. T. Vasudevan, A. Sethy, and A. R. Ghias. 2019. Towards Better Confidence

Estimation for Neural Models. In ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 7335–7339. https://doi.org/
10.1109/ICASSP.2019.8683359

[53] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial Sample Detection for Deep Neural Network ThroughModel Mutation
Testing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1245–1256. https://doi.org/10.1109/
ICSE.2019.00126

[54] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 World Wide Web Conference. 187–196.

[55] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018). ACM,
New York, NY, USA, 132–142. https://doi.org/10.1145/3238147.3238187

