
Near-Duplicate Detection in Web App Model Inference
Rahulkrishna Yandrapally

University of British Columbia

Vancouver, BC, Canada

rahulky@ece.ubc.ca

Andrea Stocco

University of British Columbia

Vancouver, BC, Canada

astocco@ece.ubc.ca

Ali Mesbah

University of British Columbia

Vancouver, BC, Canada

amesbah@ece.ubc.ca

ABSTRACT
Automated web testing techniques infer models from a given web

app, which are used for test generation. From a testing viewpoint,

such an inferred model should contain the minimal set of states

that are distinct, yet, adequately cover the app’s main function-

alities. In practice, models inferred automatically are affected by

near-duplicates, i.e., replicas of the same functional webpage dif-

fering only by small insignificant changes. We present the first

study of near-duplicate detection algorithms used in within app

model inference. We first characterize functional near-duplicates

by classifying a random sample of state-pairs, from 493k pairs of

webpages obtained from over 6,000 websites, into three categories,

namely clone, near-duplicate, and distinct. We systematically com-

pute thresholds that define the boundaries of these categories for

each detection technique. We then use these thresholds to eval-

uate 10 near-duplicate detection techniques from three different

domains, namely, information retrieval, web testing, and computer

vision on nine open-source web apps. Our study highlights the

challenges posed in automatically inferring a model for any given

web app. Our findings show that even with the best thresholds, no

algorithm is able to accurately detect all functional near-duplicates

within apps, without sacrificing coverage.

ACM Reference Format:
Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-

Duplicate Detection in Web App Model Inference . In 42nd International
Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3377811.3380416

1 INTRODUCTION
Automated techniques such as web app crawlers are widely used

to reverse-engineer state-based models as a viable vehicle for vari-

ous analysis and testing tasks such as automated test generation.

The state in such models represents the dynamic webpage of the

app, as represented by the Document Object Model (DOM) in the

browser. Crawlers are capable of efficiently exploring a large state

space of any given web app. However, an adequate model should

contain only the minimal set of distinct states that represent the
web app functionalities, while discarding insignificant states that

do not contribute to exposing new functionality to the end user.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380416

Instances of such states are pages only differing by small cos-

metic changes, which are also referred to as near-duplicates in
the literature [23, 24, 29, 34]. To discard such near-duplicate web-

pages, crawlers have adopted state abstraction functions over the

DOM [26, 36, 37, 45] as a proxy for the similarity of webpages.

The downside of these abstractions is that minimal changes to the

DOM can result in duplicate states in the model, even if such DOM

changes are not reflected on the final UI visually, and therefore

might not be representative of a new webpage functionality. From

an end-to-end (E2E) testing perspective, clone and near-duplicate

states in web app models negatively impact their accuracy and

completeness, undermining the quality of the test suites generated

from such models in terms of size, runtime, and coverage.

Clone and near-duplicate detection across different web apps

has been an active research topic in many fields [23, 24, 29, 34].

In information retrieval, the content of a webpage has been the

primary focus, because the purpose ofweb search engines is to index

and retrieve information from webpages through search queries.

Computer vision techniques have been employed to detect visually

similar webpages, for instance in phishing detection [2, 21]. Other

approaches leverage state abstractions based on the similarity of

URLs, textual content and the DOM [17, 44, 53]. Detecting near-

duplicate pages is a challenging problem as there is no generally

accepted definition of near-duplicate states and there is no unified

standard against which a technique can be assessed [28, 29]. A

second challenge pertains to the selection of similarity thresholds
that such techniques need as input to determine when two pages

are similar. These thresholds are usually educated guesses, as no

systematic means have been proposed so far to estimate them

automatically.

In this work, we are interested in detecting distinct states in

web app models in the context of functional E2E web testing. Our

aim is to study the nature of duplicate states occurring within a

web app, and provide a systematic approach to selecting thresholds

for inferring an optimal model, i.e., having the lowest number of

(near-)duplicate states. To this end, we evaluate the capability of

10 near-duplicate detection algorithms in identifying clone, near-

duplicate, and distinct web app states. We adopt techniques from

three different domains—information retrieval, web testing, and

computer vision—where the textual content, the DOM tree, and the

visual screenshot of the page are used to measure the similarity

between states. Our goal is to assess whether textual, structural, or

visual features are related with semantic properties of webpages

and provide meaningful means to understanding their degree of

functional relatedness from an E2E testing perspective.

To select the similarity thresholds for fine-tuning such tech-

niques, we first crawled 6k websites randomly selected fromAlexa’s

top million URLs. We retrieved 493k pairs of states belonging to the

same application, and computed the similarity distance between

https://doi.org/10.1145/3377811.3380416
https://doi.org/10.1145/3377811.3380416
https://doi.org/10.1145/3377811.3380416

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

these pairs using each near-duplicate algorithm. We then manu-

ally classified 1k random state-pairs into three categories of clone,

near-duplicate, or distinct. We used our empirical data of distances

to choose thresholds for each algorithm through statistical and

optimization search methods. We evaluated their accuracy in auto-

matically classifying clones and near-duplicates in the remaining

unlabelled portion of the dataset. Further, we evaluated these con-

figured algorithms on a subject set of nine unseen web apps, for

which manual ground truth models were previously created.

Our work makes the following novel contributions:

• The first study of 10 different near-duplicate detection tech-

niques applied in the context of web app model inference.

• A classification of different categories of near-duplicates

occurring within a web app.

• Systematic ways of threshold selection for near-duplicate

detection as well as an empirical evaluation of their effec-

tiveness in test models.

• The toolset comprising the 10 near-duplicate detection algo-

rithms, which is available for download [5].

• A dataset of 99k manually classified pairs of webpages, of

which (1) 1,5k pairs are randomly sampled from 6k websites,

and (2) 97.5k from nine real-size web apps. Our dataset can

be used by others to conduct similar near-duplicate detection

studies and is also available for download publicly [5].

Our results show that evenwith the best thresholds, no algorithm

is able to accurately detect all functional near-duplicates within

apps. In practice, existing near-duplicate detection techniques are

not designed to find functional similarity in a way that human

testers regularly assess while testing web apps. For certain types

of near-duplicates, we observed that the model deteriorates over

time as the crawl progresses. For instance, although RTED was

able to achieve a high accuracy F1 score of 0.95 initially, the final
produced model had only an F1 of 0.45. This deterioration is due to

the accumulation of numerous near-duplicates to the model, which

decreases precision. Our results underline the need for further

research in devising techniques geared specifically toward web

test models, i.e., that can distinguish between different types of

near-duplicates such as those found in our study.

2 REDUNDANCIES IN WEB APP MODELS
In practice, web testing is often performed in an end-to-end (E2E)

fashion, by verifying the correctness of the web app state in re-

sponse to user events and interactions with the GUI (e.g., clicks,

and forms submissions). This task is performed either manually by

testers, or by writing test scripts with test automation tools such

as Selenium [46].

Automated techniques, on the other hand, generate web test

cases from models that are inferred through reverse-engineering

techniques. A popular method to model construction for modern

web apps is automated state exploration, also known as web app

crawling [35, 54]. Such techniques dynamically analyze the web app

under test by automatically firing events and checking the webpage

for changes. When new state changes are detected, the model is

updated to reflect the event causing the new state. Generatedmodels

can be represented in various formats such as UML state diagrams,

Finite State Machines (FSM), or State-Flow Graphs (SFG) [35, 42, 54].

Search:

Brand1 Phone with AI
Camera

Brand1 Phone Lite

Brand1 Phone has a super-powerful processor and Android 9.0
(Pie). With its AI-based camera, you’ll enjoy fantastic pictures!

Brand1 Phone with AI Camera

RAM Storage Camera CPU
4GB 128GB AI-based 8x 2.36 Ghz

Battery
4000 mAh

Brand1 Phone Lite
Brand1 Phone Lite has a great processor and Android 8.1
(Oreo). You’ll enjoy its great performance every day!

RAM Storage Camera CPU
2GB 64GB Dual 4x 2.36 Ghz

Battery
3400 mAh

Figure 1: Example of near-duplicate web pages.

To avoid redundancies in the model, states that are identical or

highly similar to previously encountered states should be discarded.

For instance, let us consider Figure 1, a web app in which the

homepage shows a list of phones. When the user clicks on any

of the phones in that list, she is redirected to another web page

displaying the detailed characteristics of the selected phone. From

a functional testing viewpoint, however, a page containing a list

of 20 phones is conceptually the same as one listing the same 20

phones plus one extra phone.

The problem of detecting already visited states can be cast as an

equivalence problem: given two web page states p1 and p2 explored
by the crawler, a state abstraction function determines whether

p1 ≃ p2. More formally:

Definition 1 (State Abstraction Function). A state abstraction
function (SAF)A is a pair (dist , t), where dist is a similarity function,
and t is a threshold defined over the values of dist . Given two web
pages, p1, p2, A determines whether the distance between p1 and p2
falls below t .

A(dist,p1,p2, t)

true : dist(p1,p2) < t

f alse : otherwise

In practice, A is defined based on the similarity of some ab-

stracted notion of the web pages such as their URLs, textual con-

tent, DOM structure, or screenshot image. However, the amount

and nature of changes occurring in a web page with respect to

the functionality of the app is not always directly proportional to

the amount of changes in the DOM tree, textual content, or visual

aspects of the page.

Let us consider using a crawler equipped with a SAF based on

DOM content similarity on our sample web app of Figure 1. This

SAF is less tolerant to content (textual) changes occurring in web

pages. Therefore, each page displaying a new phone’s character-

istics might be considered a different state and many functionally

similar occurrences of already modelled pages (i.e., near-duplicates)

would be included in the model. If we use this inflated model to
generate test cases, the overall functional coverage does not change

when the generated tests exercise the phone details page multiple

times, thus potentially wasting precious testing time and resources.

On the other hand, another “better” SAF, for instance based

on the DOM tree similarity with a proper threshold value, would

consider all such phone detail pages as the same, providing a more

concise model for the web application of our example. However, a

high threshold value might cause other relevant functionality to be

abstracted away as well, resulting in an incomplete model.

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Near-Duplicate detection algorithms included in our study.

Domain Algorithm Input Description Distance Output

Information Retrieval

Web Search simhash [20] DOM (content) 64 bit fingerprinting technique which uses features extracted from

the web page content

Hamming distance of two 64 bit digests

Malware detection TLSH [38] DOM (content) Locality-sensitive 256 bit hashing scheme that is robust to minor

variations of the input

Hamming distance of two 256 bit digests

Web Testing

RTED [37, 39] DOM (Tree) Minimum-cost sequence of node edit operations that transform one

DOM tree into another

Tree edit distance value normalized by the sum of

nodes in the two trees

Levenshtein [30, 36] DOM (String) Minimum number of single-character edits required to transform

one string into another

Edit distance value normalized by the sum of the

string lengths

String Equality (baseline) DOM (String) String equality comparison Boolean value

Computer Vision

Image Hashing PHash [59] Screenshot 128 bit perceptual hash that represent the lowest frequencies of

pixel brightness, to which discrete cosine transform (DCT) is ap-

plied to retrieve a brightness matrix

Hamming distance of two 128 bit digests

Block-mean [57] Screenshot 256 bit perceptual hash obtained by dividing the image into non-

overlapping blocks, which are encrypted with a secret key and nor-

malized median value is calculated

Hamming distance of two 256 bit digests

Whole Image Comparison Histogram [52] Screenshot Color distribution of a digital image χ2
distance between two color histograms

PDiff [58] Screenshot Adopts a human-like concept of similarity that uses spatial, lumi-

nance, and color sensitivity

Number of different pixels normalized by the max-

imum number of pixels in the two images

Structural Similarity SSIM [4] Screenshot Simulates the high sensitivity of human visual system to structural

distortions while compensating for non-structural distortions

Normalized structural distortion value

Feature Detection SIFT [32] Screenshot Computes local feature vectors and image descriptors which are

invariant to geometric affine transformations like scaling/ rotation

Number of different key-points normalized by the

maximum number of key-points in both images

Near-duplicate detection techniques have been studied for re-

ducing the occurrence of redundant similar pages across web apps,
e.g., in web search engines [20] or phishing detection [38]. An un-

derstanding of whether such techniques apply also in detecting

functional near-duplicates within the same web app is missing in

the literature. Despite its prevalence and importance, this problem

is understudied, because it is hard to define a notion of equivalence

for two arbitrary webpages. Moreover, in the general case, deciding

a priori which abstraction function and which threshold would

work best for a given web app is a challenging task, as it requires

substantial domain-specific knowledge of the web app under test.

3 NEAR-DUPLICATE ALGORITHMS
In this work, we study 10 near-duplicate detection algorithms from

three different domains, namely, information retrieval, web testing,

and computer vision. Table 1 presents the techniques, along with

the domain they belong to, the input types, a short description, and

their distance output.

3.1 Information Retrieval
Near-duplicate detection has been applied to index the massive

volume of web pages continuously retrieved by web crawlers for

search engines. The overall goal is to select only a relevant set

of pages based on the provided user search string. In this setting,

performance is the most important factor, therefore hashing mech-

anisms have been adopted due to their design simplicity and speed

of comparison. As an input, the web page content is typically the

primary focus when designing algorithms used in this domain.

We chose two content hashing algorithms from this domain:

(1) simhash [20], a popular and effective web page fingerprinting

technique adopted by Google to index web pages [29], and (2) Trend

Locality Sensitive Hash (TLSH) [38], a hashing technique for finger-

printing source code, employed for malware detection [55].

3.2 Web Testing
In the web testing domain, researchers have studied DOM-based

abstractions to compare webpages during the crawling of the appli-

cation under test. The assumption is that two web pages sharing

similarities among their DOMs are likely to represent pages having

analogous functionalities, hence it is worthwhile to consider them

the same. The DOM can be treated either as a tree-like structure,

or as a simple string of characters.

We chose three different similarity algorithms over the DOM

that have been employed as state abstraction functions in prior

web testing research [36, 37, 49]: (1) tree edit distance with the

RTED algorithm [39], (2) Levenshtein distance [30] over the string

represented by the DOM, and (3) string equality between two DOM

strings, which we use as baseline.

3.3 Computer Vision
Image similarity is one of the main topics in computer vision. Many

techniques have been proposed and studied, at different levels of

granularity, ranging from low-level pixel matching up to high-level

feature-based matching. These techniques are applied in indexing

and searching, summarization, object detection and tracking, fa-

cial recognition, and also copyright image detection. We consider

different classes of image-based algorithms.

Image hashing techniques map visually identical or

nearly-identical images to the same (or similar) digest called image

hash. We chose two image hashing algorithms: (1) block-mean

hash [57] and (2) perceptual hash (PHash) [59], which have been

used in multimedia security for image retrieval, authentication,

indexing and copy detection. Whole image matching techniques

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

focus instead on individual pixels composing the image.

Color-Histogram [43] and Perceptual Diff (PDiff) [58] have been

successfully applied in previous web testing work for detecting

cross-browser incompatibilities [33]. A downside of those

techniques is that they are affected by changes in coordinates of

web elements common in responsive web layouts. Structural
similarity techniques quantify image quality degradation. For

instance, Structural Similarity Index (SSIM) [4] has been shown to

be effective due to the highly structured nature of web apps’

GUIs [21]. Lastly, feature detection techniques have been widely

employed for near-duplicate image detection. For instance, Scale

Invariant Feature Transform (SIFT) [32] has been applied to aid

web test repair [51] and phishing detection [2].

To the best of our knowledge, this work is the first to consider

and evaluate visual image similarity as a near-duplicate detection

technique for web application crawling.

4 EMPIRICAL STUDY DESIGN
The goal of our study is to determine how existing near-duplicate

detection techniques can be employed to obtain an optimal model

of a web application that can be used for E2E testing.

RQ1: What type of functional near-duplicates exist within apps?
RQ2: How well can functional near-duplicates be detected?
RQ3:What is the impact of near-duplicates and detection techniques

in inferring a web-app model?

First, in Section 5, we randomly sample 1,000 within-app state-

pairs from a dataset created by crawling 6k randomly selected URLs.

We characterize the changes occurring between states within an

app and identify how they lead to different classes of functional

near-duplicates (RQ1). We label these 1,000 pairs as either clones,

near-duplicates or distinct states, and compute the distance between

them for all the ten near duplicate techniques described in Section 3.

In Section 6, using these labelled pairs, we compute statistical

and optimal thresholds to fine-tune each near duplicate technique.

Through this, we aim to determine whether such randomly sampled

distances from a large dataset can be used to automatically classify

state-pairs in unseen web apps and detect near-duplicates (RQ2).

In Section 7, we determine the best near-duplicate detection tech-

niques and application-specific thresholds to infer web app models

for nine open-source web apps covering the different near-duplicate

categories. Finally, we analyze these models to determine how dif-

ferent kinds of near-duplicates impact model inference (RQ3).

5 RQ1: NEAR-DUPLICATES IN WEB APPS
In order to determine what kinds of functional near-duplicates

occur within apps, we first create a dataset of within app state-pairs
and their calculated distances for each near-duplicate detection

algorithm. Then, we manually characterize the nature of differences

between pairs of pages and classify them in a random sample.

5.1 Dataset Creation
First, we crawl randomly selected website URLs from the top one

million as provided by Alexa,
1
a popular website that ranks sites

based on their global popularity for a week using Crawljax [36],

1
http://www.alexa.com

an event-driven crawler for exploring highly dynamic web apps.

We configured Crawljax to run using the Chrome browser, with

its default simple state abstraction function, namely string equality

(see Table 1), and a runtime limit of five minutes for each crawl.

To account for network communication errors and the tool’s

exploration limitations, e.g., on sites that require login credentials,

we filtered out sites for which the crawl models obtained contained

less than 10 states. After this filtering stage, we retained 1,064 dif-

ferent sites accounting for 30,202 states from the original 6,359 web

crawls. We then created all possible 677,415 pair-wise combinations

of states within each crawl, which we call state-pairs.

5.1.1 Computing Distances. We computed the distance for each

state-pair using each of the 10 algorithms presented in Table 1. We

discarded the state-pairs for which the distance could not be com-

puted correctly, such as the case of DOM-based tree edit distance

of malformed HTML trees. The final dataset, called DS, contained

1,031 sites and 29,704 states, from which 493,088 state-pairs with

properly computed distances were obtained.

5.1.2 Distance Normalization. The raw distances which quantify

the difference between two given pages have different output spaces

based on the page characteristic used by the technique. As an ex-

ample, given a state-pair of web pages, PDiff outputs the number

of perceptually different pixels between their screenshots, whereas

BlockHash returns the hamming distance between image hashes.

For the sake of comprehensibility, we normalized all distances com-

puted by each algorithm, as described in theDistance Output column

of Table 1, but we never compare outputs of different techniques.

5.2 Classification of Changes
To gain a better understanding of what changes within web pages

characterize near-duplicates, we classify the differences of the state-

pairs in our dataset from the point of view of a human tester who

is interested in functionality coverage.

5.2.1 Procedure. Manually examining state-pairs is a time con-

suming task requiring familiarity with the functionality of the

application. Therefore, we randomly sampled a set, called RS,

of 1,000 state-pairs from our final dataset of 493,088 state-pairs,

which allows us to have a confidence level of 99% with a 4% margin

of error in deriving a representative statistic. For each state-pair

(pi ,pj) ∈ S, the authors of the paper visually analyzed, in isolation,

the screenshot images (and the original web pages where necessary)

of the two web app states from a functional testing perspective, to

obtain a set D of differences. Each difference in D is defined as

∆(pi ,pj) = {δ (ei , ej)} where δ (ei , ej) is a pair of non-identical web
elements in which ei ∈ pi and ej ∈ pj . Finally, each author assigned

a descriptive label to each detected difference.

5.2.2 Difference Categorization. After enumerating all differences

across the 1,000 state-pairs in RS, the authors reviewed them to-

gether to resolve conflicts and reached consensus on equivalence

classes of differences. Our study revealed the following categories.

Definition 2 (Unrelated (U)). Given a difference δ (ei , ej), neither
of ei or ej are related to any functionality offered by the web app.

http://www.alexa.com

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Examples of these differences include changes in background

images, or GUI widgets related to advertisement (see red ovals

in Figure 2a).

Definition 3 (Duplicated (D)). Given a difference δ (ei , ej), ei and
ej replace each other in the original pages pi and pj without adding
any new functionality to either page.

Two distinct subcategories of duplicated differences emerged:

• Replacement (D1): D1 : ei ≡ ej meaning the difference rep-

resents a functionality or content that is equivalent. For

instance, in Figure 2b, the red ovals highlight equivalent

content.

• Addition (D2):D2 : ei = ∅∧∃e ′i ∈ pi : e
′
i = ej∨δ (e

′
i , ej) |= D1

meaning the non-empty ex in δ has a duplicate ey in the

same page, and therefore its addition does not affect the

overall functionality of the page. For example, in Figure 2c,

the oval identifies a duplication of an existing functionality.

Definition 4 (New (N)). Given a difference δ (ei , ej), δ represents

a new functionality or a semantically different content, i.e.:

δ (ei , ej) |= N : (ei = ∅) ∧ (�e ′i ∈ p1s .te
′
i = ej ∨ δ (e ′i , ej) |= D).

For example, the search box in Figure 1 is absent in phone de-

scription pages and is an example of new functionality.

5.2.3 State-Pair Classification. Following the classification of dif-

ferences described above, we classified state-pairs from a functional

point of view, in three distinct categories defined as follows.

Definition 5 (Functional Clone (Cl)). Given two web pages p1
and p2, the state-pair (p1,p2) is a functional clone (Cl) if there are
no semantic, functional or perceptible differences between them,

defined as Cl : ∆(p1,p2) = ∅.

Definition 6 (Functional Distinct (Di)). Given twoweb pagesp1
and p2, p1 is functionally distinct from p2 if there is any semantic or

functional difference between the two pages, Di : ∃δ (ei , e2) |= N .

Definition 7 (Functional Near-Duplicate (Nd)). Given twoweb
pagesp1 andp2,p1 is a functional near-duplicate ofp2 if the changes
between the states do not change the overall functionality being

exposed: Nd : ∆ ̸ |= Cl ∧ �(δ (e1, e2) |= N) ∈ ∆.

We further observed three fine-grained subclasses of

near-duplicates in our dataset.

Cosmetic (Nd1) when changes related to the aesthetics of the

webpage such as advertisements or background images occur,

which leave the functionalities unaltered (see Figure 2a):

Nd1 : ∆(p1,p2) ∋ δ (e1, e2) |= U
Dynamic data (Nd2) when both states of the pair are generated

from the same template and populated with dynamic data, ac-

cording to a user query or app business logic (see Figure 2b):

Nd2 : ∆(p1,p2) ∋ δ (e1, e2) |= D1 ∨U
Duplication (Nd3) when there are additional web elements in a

page the functionality and semantics of content of which is

entirely represented within the other page (see Figure 2c):

Nd3 : ∃δ (e1, e2) |= D2 ∈ ∆(p1,p2)

Following these definitions, we manually labelled the 1,000 state-

pairs in RS, and found 441 clones, 275 near-duplicates (45 Nd1, 219
Nd2, 11 Nd3), and 284 distinct pairs.

(a) Near-Duplicate (Nd1): Background Image Changes

Carlos Esteban Betty Davis

(b) Near-Duplicate (Nd2): Dynamic Data

(c) Near-Duplicate (Nd3): Duplicated Functionality

Figure 2: Different subclasses of near-duplicate state-pairs.

6 RQ2: CLASSIFICATION OF STATE-PAIRS
6.1 Subject Systems
To address RQ2 (and later RQ3), we need to infer models with dif-

ferent algorithms and thresholds numerous times, which requires

web apps with deterministic behaviours. To this aim, we selected

nine open-source web apps (Table 2) used in previous research

of web testing [15, 16, 49, 50], as subjects: Claroline (v. 1.11.5) [7],
Addressbook (v. 8.2.5) [40], PPMA (v. 0.6.0) [11], MRBS (v. 1.4.9) [12]
and MantisBT (v. 1.1.8) [13] are open-source PHP-based applica-

tions while Dimeshift (commit 261166d) [8], Pagekit (v. 1.0.16) [9],
Phoenix (v. 1.1.0) [10] and PetClinic (commit 6010d5) [6] are web
apps that cover popular JavaScript frameworks Backbone.js, Vue.js,
Phoenix/React and AngularJS, respectively.

6.2 Manual Classification (Ground Truth)
We ought to create manually labelledmodels for each subject, which

we can use as ground truths for comparison of techniques.

First, we use Crawljax to create a master crawl model with

default depth-first exploration strategy, default state abstraction

function based onDOM string equality, and amaximum time budget

of one hour, which allow us to capture a large portion of each app’s

state space.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

Table 2: Subject Set with Manual Classification

B
in
s

St
at
es

Pa
ir
s

C
lo
ne

s Near-Duplicates

D
is
ti
nc

t

Nd2 Nd3 Total

Addressbook 25 131 8,515 26 52 2,295 2,347 6,142

PetClinic 14 149 11,175 2 1,433 180 1,613 9,411

Claroline 36 189 17,766 2,707 71 0 71 14,988

Dimeshift 21 153 11,628 375 570 0 570 10,683

PageKit 20 140 9,730 0 904 3,044 3,948 5,782

Phoenix 10 150 11,175 1 25 4,580 4,605 6,569

PPMA 23 99 4851 64 467 0 467 4,320

MRBS 14 151 11,325 27 4,044 0 4,044 7,254

MantisBT 53 151 11,325 2 1,117 0 1,17 10,206

Total 216 1,313 97,490 3,204 8,683 10,099 18,782 75,355

Table 3: Average webpage characteristics
state (DOM and Screenshot) across the two datasets

DOM Image

Tree Source Content Pixels
(# nodes) (length) (length) (#)

Dataset (DS) 810 105,445 45,575 3,575,837

Subjects (SS) 290 17,655 6,216 1,190,230

Next, we created state-pairs from the states in each model, as

follows. The authors of this paper manually classified each state-

pair into a clone, near-duplicate (with subcategories) or distinct

category, following the same procedure described in Section 5.2. In

addition, we also assigned each state to a bin that represents a part

of the application’s state space devoted to a certain functionality. As

such, each bin is a logical container for all dynamically generated

concrete webpages upon crawling (e.g., all webpages related to

login). We consider the first concrete instance of a bin B to be a

coverage of B by that crawl model. Additional concrete instances of

a bin are considered clones or near-duplicates of the bin B.
Table 2 shows the master crawl characteristics for each web

app as well as our classification outcome. In the rest of the paper,

we refer to the nine master crawls with manually classified 97.5k
state-pairs of the nine apps as subject set (SS), and to our manual

classification and identified bins as ground truth. Our classifica-
tion of the subject-set did not find any near-duplicates of category

Nd1 in SS as the subjects did not feature unrelated changes (U)

such as advertisements, commonly found in other kind of websites.

MantisBT has the most bins (53), representing a state-space five

times bigger than that of Phoenix, which is the smallest number of

bins (10). Addressbook, PageKit and Phoenix have a high number

of near-duplicates of category Nd3, differently from the other six.

To study how different near-duplicate categories impact web-app

model inference, we group these three subjects referring to them

as Nd3-Apps and the other six as Nd2-Apps.
Table 3 compares the subjects webpage characteristics in terms

of DOM size, complexity, and image size to DS . For example, the

content of a web page in DS on an average is almost eight times

that of the web pages in SS.

6.3 Threshold-Based Classification
We aim to evaluate the effectiveness of the near-duplicate detection

algorithms in classifying a given pair as either clone, near-duplicate,

or distinct. Essentially, this is a multi-class classification problem,

which we propose to solve using a classification function Γ. Func-
tion Γ takes as inputs a near-duplicate detection algorithm f and

computes the distance between two given states in a state-pair

(p1,p2), classifying the pair to a category according to a threshold-

pair (tc , tn), as follows:

Γ(p1,p2, f , tc , tn)

Cl : f (p1,p2) < tc

D : f (p1,p2) > tn

Nd : otherwise

To evaluate Γ, we need to find appropriate threshold values for

each algorithm that maximize the classification scores.

6.3.1 Threshold Determination. We employ two different

approaches, namely, statistical and optimization, to find a suitable

threshold-pair (tc , tn) for each algorithm. In the statistical

approach, we follow a data-based approach in which we use the

distance distributions of different classes (Figure 3). In the

optimization approach, instead, we determine the thresholds that

maximize the classification score on a given labelled set, a

commonly adopted strategy in machine learning for

hyper-parameters selection of predictive models [47].

Definition 8 (Statistical Threshold Pair (Stc , Stn)). Threshold

Stc is the 3rd quartile (Q3) of the distances calculated by a technique

on a given set of clone state-pairs, whereas, threshold Stn is the

median distance on a given set of near-duplicate state-pairs.

Definition 9 (Optimal Threshold Pair (Oc ,On)). Given a la-

belled set of clones, near-duplicates and distinct state-pairs, the

optimal thresholdsOc andOn are retrieved by a Bayesian optimiza-

tion search that maximizes the average F1 classification score for Γ
over all three classes.

Figure 3 shows the distribution of distance values among the

three classes, for each considered algorithm. As the box-plots show,

a clear separation between distance values among classes emerged

upon statistical analysis (despite some overlaps caused by outliers),

which motivates using this data to determine statistical thresholds

on RS. For instance, clones (left-most plot for all techniques) have

low distances, whereas distinct pairs have high distance scores.

Near-duplicates, as expected, lie in between those two categories

for all 10 techniques considered in our study. We use quartile data

for choosing thresholds since prior work [31] has shown that the

median value is a better estimator of the central tendency than

mean in such cases.

We refer to the four thresholds {Stc_DS , Stn_DS ,Oc_DS ,On_DS }

as universal thresholds, as the state-pairs in DS represent a large

set of randomly selected real-world webpages (see Section 5.1).

6.3.2 Classification Accuracy. To address RQ2, we evaluate the

algorithms by comparing the effectiveness of Γ (Section 6.3.1) with

corresponding state-pair inputs. We evaluate the effectiveness of

Γ using the F1 measure, which is the harmonic mean of precision

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: Normalized Distance distribution of labelled pairs in the dataset DS. Within each box-plot, from left to right: clone,
near-duplicate and distinct pairs.

Table 4: Estimated statistical (St) and optimal (O) thresholds
for clone (c) and near-duplicate (n) bounds, in dataset DS

Stc_DS Stn_DS Oc_DS On_DS

TLSH 0.00794 0.00794 0.01742 0.07052

Levenshtein 0.00638 0.01089 0.00704 0.07029

RTED 0.00000 0.00000 0.00007 0.04099

SimHash 0.00000 0.00000 0.00044 0.00108

BlockHash 0.00000 0.04082 0.00301 0.13371

HYST 6.52E-11 1.29E-09 1.15E-09 1.49E-08

PDIFF 0.00160 0.03800 0.00120 0.20080

PHASH 0.01754 0.17544 0.04018 0.32232

SIFT 0.16691 0.27993 0.10192 0.61876

SSIM 0.01000 0.08000 0.02020 0.15560

Pr (ratio of correctly classified pairs to total number of classified

pairs in each class), and recall Re (ratio of correctly classified pairs

to the actual number of pairs that belong to the class).

Since we have more than two classes, we treat it as a multi-class

classification problem, and obtain the average F1 over the scores of
all three classes (Cl,Nd,D). However, the datasets are unbalanced,
i.e., the ratio of state-pairs of the classes are not equal; hence, we

employ macro-averaging, to avoid favouring classes with higher

representation [48]. We calculate the F1 score of each algorithm

using Γ with the universal thresholds (see Table 4) on two disjoint

inputs: 1) a manually labelled random sample of 500 state-pairs,

TS, from the dataset DS, and 2) the 97.5k labelled pairs from SS.

While the scores on TS can validate these thresholds, scores

on SS assess the viability of discovering universal thresholds for a

near-duplicate detection algorithm for unseen web apps.

6.3.3 Findings (RQ2). Table 5 shows the F1 classification scores for

all techniques on the two labelled sets, TS and SS. As a baseline

to compare the techniques, we use a stratified-random-classifier [1]
that classifies each state-pair randomly based on proportions of

classes in the labelled set.

All evaluated techniques perform better on TS than SS when

universal thresholds are used (+15% on average). This result is not

surprising as TS is sampled from DS, as well as RS from which

we derived these thresholds. SS, on the other hand, is completely

disjoint and different from DS (Table 3).

Table 5: F1 Measure for Statistical andOptimal threshold sets

Algorithm
statistical optimal All

(Stc_DS ,Stn_DS) (Oc_DS ,On_DS)

TS SS Avg TS SS Avg TS SS Avg

TLSH 0.50 0.40 0.45 0.56 0.44 0.50 0.53 0.42 0.48
Levenshtein 0.54 0.46 0.50 0.59 0.48 0.54 0.57 0.47 0.52
RTED 0.50 0.45 0.47 0.57 0.50 0.54 0.53 0.48 0.50
SIMHash 0.48 0.17 0.33 0.48 0.17 0.33 0.48 0.17 0.33
BlockHash 0.62 0.54 0.58 0.66 0.50 0.58 0.64 0.52 0.58
HYST 0.52 0.37 0.44 0.57 0.31 0.44 0.55 0.34 0.44
PDIFF 0.63 0.57 0.60 0.67 0.53 0.60 0.65 0.55 0.60
PHASH 0.59 0.43 0.51 0.63 0.40 0.52 0.61 0.41 0.51
SIFT 0.59 0.44 0.52 0.61 0.47 0.54 0.60 0.45 0.53
SSIM 0.62 0.53 0.57 0.65 0.48 0.56 0.64 0.50 0.57

Average 0.56 0.44 0.50 0.60 0.43 0.51 0.58 0.43 0.51
Random 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

Although statistical and optimal thresholds have similar overall

average F1 scores (0.50, 0.51), it is important to notice that opti-

mal thresholds perform worse than statistical thresholds on SS,

contrary to expectation.

These two findings essentially indicate that universal thresholds
may not necessarily be feasible, and that the characteristics of web

apps cannot be ignored while tuning thresholds.

Amongst the techniques, SimHash has the lowest average F1
score (0.17) on SS, almost 90% worse than the random baseline.

The results concur with findings of a previous study [29], which

points to the fact that the algorithm is poor at distinguishing states

that belong to the same app.

On average, five out of top six techniques belong to the computer

vision domain. PDIFF is the best with a classification F1 score of
0.60, >85% better than the baseline and >13%, >20% better than

Levenshtein and TLSH, the best techniques in DOM and IR cate-

gories, respectively. On average, most visual techniques outperform

DOM and IR techniques (with the exception of PHash and color-
histogram). On SS, PDIFF again outperforms all techniques while

BlockHash and SSIM, both visual, are the only other techniques that

have an F1 score of more than 0.50.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

7 RQ3: IMPACT ON INFERRED MODELS
With RQ3, we evaluate the impact of the near-duplicate detection

algorithms in automated web app model inference.

Specifically, we evaluate the quality of crawl models inferred

using each of the near-duplicate detection algorithms as state ab-
stract function (SAF) (see Definition 1) along with the determined

thresholds. Crawljax already includes all DOM-based algorithms

described in Section 3.2; we added the computer vision and informa-

tion retrieval near-duplicate algorithms within Crawljax as SAFs.

More specifically, we integrated the implementations of PDiff, SIFT,

and SSIM from the open-source computer-vision library OpenCV,

and the publicly available versions of TLSH
2
and simhash.3

Since we need to run and analyze many crawl sessions (i.e., nine

apps, 10 algorithms, different threshold sets), we limit the crawl

session with a maximum runtime of five minutes.

Model Quality. We measure the quality of a generated model

through its F1 score, the harmonic mean of Pr and Re . Lower pre-
cision (Pr) denotes a greater redundancy in the model and is com-

puted as the ratio of unique states (bins) covered by the model to

the total number of states in the model. Recall (Re) quantifies the
application state coverage achieved in the model and is computed

as the number of bins covered by the model to the total number of

bins identified by humans, for the corresponding app, in the ground
truth (see Section 6.2).

The recall Re of a crawl model is highly dependent on the ability

of the SAF to reliably distinguish the distinct state-pairs and its

precision Pr on its ability to exclude near-duplicates and clones of

states already present from the model. Crawlers, however, typically

expect one single similarity threshold for deciding if a state is new

to be added to the model; i.e., they do not distinguish between

clone/near-duplicate. Therefore, we frame the problem of finding

optimal thresholds for a SAF as maximizing the F1 score of its

distinct-pair detection. Therefore, from the thresholds we derived

in Section 6.3.1, we use the near-duplicate thresholds, which are

designed to distinguish distinct pairs from near-duplicates. As the

clone thresholds are lower than the near-duplicate thresholds, a

near-duplicate threshold should be able to distinguish distinct pairs

from clones as well.

Performing multiple crawls using the near-duplicate techniques

as SAFs, and evaluating the generated models is a manually expen-

sive process. Thus, we first assess the techniques and the universal
thresholds automatically, based on the F1 score of the distinct-pair
detection, which indicates their applicability as SAFs.

Findings (RQ3): Distinct-pair Detection. In the distinct state-

pair detection scores from RQ2 shown in Table 6, scores on TS

allow us to assess the ability of a technique to distinguish distinct

state-pairs in the wild, while SS lets us simulate each technique

as a SAF on generated models captured in our subject-set. In con-

trast to the RQ2 results, where both the threshold sets had better

average classification F1 on TS compared to SS, Table 6 shows

that statistical threshold had better distinct state-pair detection F1
of 0.78 on SS than 0.73 in TS. Optimal threshold On_DS , which

is higher/stricter than Stn_DS , in terms of actual threshold value,

as shown in Table 4, has a poor recall on SS (53%) compared to

2
https://github.com/idealista/tlsh

3
https://github.com/albertjuhe/charikars_algorithm

Table 6: Distinct pair (Pr , Re, F1) on existing datasets

TS SS Average

Pr Re F1 Pr Re F1 Pr Re F1

On_DS 0.81 0.81 0.80 0.89 0.53 0.64 0.85 0.67 0.72

Stn_DS 0.63 0.90 0.73 0.87 0.76 0.78 0.75 0.83 0.76

TS (81%). Also in TS statistical threshold has the highest recall,

but by sacrificing precision; the optimal threshold emerges with a

better overall F1 score through a 25% better precision on TS. The

same threshold, however, could not improve precision in SS but

has 50% lower recall.

As we optimized our threshold to be stricter to fit the distribu-

tion in DS, we ended up misclassifying distinct pairs to be near-

duplicates in SS because of the differences in the distributions

between the two data-sets. As we pointed out in RQ2, these results
shows the infeasibility of finding universal thresholds as the distances
for state-pairs are highly influenced by the intrinsic characteristics of
the web app they belong to.
Application Knowledge for Obtaining Thresholds. These re-
sults for universal thresholds prompted us to investigate whether

having knowledge of the web app characteristics helps in selecting

better thresholds to improve the detection rates of the techniques.

We use the manually labelled models (see Section 6.2) in the

subject-set (SS) for each app to represent application knowledge.

In order to use this application knowledge, we apply the near-

duplicate threshold definitions in Definition 8 and Definition 9

to each subject in SS to derive Stn_SS and On_SS respectively.

In addition to these two thresholds, through initial experiments,

we have observed that category Nd3 near-duplicates overlaps with
distinct (Di) pairs and it is not possible to design a threshold that can
distinguish them. We therefore created a new threshold definition

that sacrifices the precision of distinct pair detection by allowing

misclassification of Nd3 near-duplicates as Di for better recall (Re).

Definition 10. Stn3 is defined as themedian of the data distribu-

tion of manually labelled near-duplicates {Nd1 ∨ Nd2}. In other

words, Stn3 is Stn computed after excluding Nd3 near-duplicates.

We refer to these thresholds obtained by applying application

knowledge in SS for each algorithm as app-specific thresholds. We

crawled each of our subjects with two universal and three app-

specific thresholds with each technique as a SAF, separately, and

assess the quality of the generated models.

Findings (RQ3): Impact on Generated Models. Table 7 shows
the average F1 of crawls for all algorithms for each threshold. Over-

all, as expected, the universal optimal near-duplicate threshold

On_DS has the worst score of 0.24; only half of the 0.42 scored by

the best thresholdOn_SS , the optimal threshold derived with appli-

cation knowledge. On average, app-specific thresholds improve the

model quality by 34% compared to universal thresholds underlining

the need to consider app characteristics to choose thresholds. For
Nd3-Apps, it can be seen that Stn3_SS derived using the statistical

Definition 10 significantly (90%) improves the F1 score over the

Stn_SS , showing that threshold design needs to consider fine-grained
near-duplicate categories prevalent in the app under test. Overall,
app-specific thresholds produce better models.

https://github.com/idealista/tlsh
https://github.com/albertjuhe/charikars_algorithm

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 7: Inferred model F1 score

Universal App-Specific

St
n
_
D
S

O
n
_
D
S

A
v
g

St
n
_
S
S

St
n
3
_
S
S

O
n
_
S
S

A
v
g

AddressBook 0.33 0.27 0.30 0.17 0.46 0.41 0.34

PetClinic 0.36 0.25 0.31 0.50 0.50 0.52 0.51

Claroline 0.30 0.18 0.24 0.42 0.42 0.44 0.43

DimeShift 0.31 0.22 0.26 0.33 0.33 0.38 0.34

PageKit 0.30 0.27 0.29 0.27 0.39 0.37 0.34

Phoenix 0.44 0.29 0.37 0.24 0.47 0.42 0.38

PPMA 0.31 0.19 0.25 0.49 0.49 0.51 0.49

MRBS 0.37 0.35 0.36 0.43 0.43 0.46 0.44

MantisBT 0.24 0.18 0.21 0.26 0.26 0.27 0.26

Average 0.33 0.24 0.29 0.34 0.41 0.42 0.39

Nd2-Apps 0.32 0.23 0.27 0.40 0.40 0.43 0.41

Nd3-Apps 0.36 0.28 0.32 0.23 0.44 0.40 0.35

Table 8: Inferred model F1 for each algorithm
for selected thresholds

T
hr

es
ho

ld
s

A
pp

s

T
LS

H

SI
M
H
as
h

Le
ve

ns
ht
ei
n

R
T
ED

B
lo
ck

H
as
h

PH
A
SH

H
YS

T

PD
IF
F

SI
FT

SS
IM

A
ve

ra
ge

A
ll
Fi
ve All 0.10 0.05 0.47 0.62 0.46 0.39 0.41 0.34 0.34 0.35 0.35

Nd2 0.10 0.04 0.48 0.62 0.47 0.39 0.41 0.36 0.31 0.39 0.36

Nd3 0.10 0.06 0.43 0.62 0.43 0.40 0.41 0.29 0.39 0.28 0.34

O
n
_S
S All 0.15 0.08 0.48 0.55 0.54 0.49 0.54 0.45 0.42 0.51 0.42

Nd2 0.17 0.08 0.53 0.61 0.52 0.49 0.58 0.46 0.37 0.52 0.43
Nd3 0.10 0.10 0.37 0.43 0.58 0.49 0.45 0.42 0.52 0.51 0.40

St
n
3
_S
S All 0.09 0.03 0.46 0.67 0.57 0.50 0.55 0.43 0.36 0.48 0.41

Nd2 0.08 0.02 0.47 0.62 0.55 0.50 0.53 0.44 0.35 0.46 0.40

Nd3 0.10 0.07 0.44 0.76 0.60 0.51 0.60 0.42 0.37 0.51 0.44

Table 8 shows the average F1 scores for each algorithm for five

minute crawls on our subjects. RTED consistently outperforms other

techniques with an F1 score of 0.62 averaged over all five thresholds.
it is 29% better than Levenshtein, the next best algorithm.

The results for visual techniques in Table 8 contradict our ex-

pectations given that, in RQ2, they convincingly outperformed the

DOM and IR techniques in state-pair classification using Γ.
An analysis of visited states per minute or speed of the algo-

rithms, shown in Table 9, seems to suggest that faster algorithms

such as RTED (25 states per minute) could explore more states in

a given crawl time and improve its Re . On the other hand, slower

algorithms such as PDiff, which could only explore four states per
minute on average, are at a clear disadvantage. Also, visual tech-

niques, unlike DOM based algorithms such as RTED, do not rely on

characteristics that can directly capture differences corresponding
to web elements (e.g., SIFT keypoints), essential to be able to classify

states similar to a human tester.

In IR techniques, SimHash is not able to distinguish even two

completely different states in our subject-set as already seen in

RQ2. TLSH on the other hand, fails to calculate digests for app

states of our subjects due to lack of enough complexity as shown

in Table 3—the content in our subjects is 1/9th of the content size

Table 9: Techniques Speed and Inferred model (Re, Pr , F1)
for best 5-minute crawls

Le
ve

ns
ht
ei
n

R
T
ED

B
lo
ck

H
as
h

PH
A
SH

H
YS

T

PD
IF
F

SI
FT

SS
IM

Speed 11 25 17 16 16 4 5 8

Recall 0.42 0.61 0.49 0.49 0.55 0.30 0.28 0.39

Precision 0.84 0.79 0.75 0.79 0.72 0.91 0.71 0.85
F1 0.54 0.66 0.54 0.52 0.58 0.44 0.39 0.51

Table 10: Inferred model F1 for 30-Minute crawls

Apps B
lo
ck

H
as
h

H
ys
t

Le
ve

ns
ht
ei
n

PD
iff

R
T
ED

SS
IM

All 0.51 0.57 0.53 0.52 0.62 0.56

Nd2 0.57 0.62 0.59 0.51 0.66 0.52

Nd3 0.39 0.47 0.42 0.56 0.52 0.64

in the wild. Therefore, we exclude SimHash and TLSH from further

analysis.

Comparison of Optimally Configured Techniques. Table 8

shows that for all remaining eight techniques with the exception

of SIFT, On_SS for Nd2-Apps and Stn3_SS for Nd3-Apps is the best

threshold configuration.

Table 9 shows the statistics of the 5-min crawls for each tech-

nique with their best threshold configuration. Coverage (Re) data
suggests that 5 minutes was not enough to cover all of the app state-

space. In our next experiment, therefore, we use longer crawl time

of 30 minutes. Given the exponential nature of increase in manual

effort to analyze larger crawl models, we limit this experiment to

the best performing techniques tuned with thresholds from best

5-minute crawls presented in Table 9. We select the top four tech-

niques based on F1 scores, however, as discussed before, since the

slower algorithms were placed at a disadvantage in the 5-minute

crawls, we also include PDiff and SSIM that produced models with

the best precision (Pr) scores 0.91 and 0.85 (respectively 12% and

6% better than RTED which has the best F1 score of 0.66).
Findings (RQ3): Technique Comparison in 30-min crawls.
Average F1 scores shown in Table 10 for 30 minute crawls indicate

that, when tuned correctly and given enough time, Histogram,

BlockHash, RTED and Levenshtein can all perform well on

Nd2-Apps, i.e., they managed to discard near-duplicates of type

Nd2 reasonably well. However, it is surprising to see that PDiff

and SSIM score higher than all of them on Nd3-Apps. Thus, we

decided to analyze how F1 has changed over the 30 minutes for

Nd3-Apps as opposed to the Nd2-Apps.

A plot of F1 of the model over its states percentage for RTED

crawls is shown in Figure 4. The figure highlights that for Nd3-Apps,
model deteriorates as states being added are near-duplicates, mostly
of type Nd3, while, the models of Nd2-Apps seem to stabilize as Nd2
near-duplicates are being detected and discarded. During the man-

ual analyses of models, we observed that the Nd3 near-duplicates

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

Figure 4: Normalized F1 over %(states in model)
during 30-minute crawls of RTED

are dynamically created, typically through user-interactions that

result in addition/removal of web elements whose functionality

already exists in the state (e.g., addition/deletion of new rows in

a table). Not only is this newly created state a near-duplicate that

will waster into precious testing time, but each time the crawler

back-tracks to reach this state, it may invoke the same creation

path adding even more duplicates resulting in a never-ending loop.

Given that RTED is the best algorithm and was fine-tuned to

produce best model for each application, this surprising revelation

points to the limitation of existing crawlers and threshold based

SAFs and shows that threshold based crawling may never produce an
accurate and complete model of modern web apps with dynamic Nd3
near-duplicates. We therefore think that future SAFs should incorpo-

rate characteristics that represent functionality and crawlers should

be designed to utilize near-duplicate detection to establish the na-

ture of duplication instead of quantifying the computed differences

to actively guide the exploration to discover newer functionality.

8 THREATS TO VALIDITY
External validity threats concern the generalization of our findings.

We considered only nine web apps and experiments with other

subject systems are necessary to fully confirm the generalizability

of our results, and corroborate our findings. We tried to mitigate

this threat selecting real-world web apps with different sizes, per-

taining to different domains, and adopted in previous web testing

work [15, 16, 49]. Another threat concerns the selection of thresh-

olds for near-duplicate detection techniques, whose results may not

generalize to other algorithms. Wemitigated this threat by selecting

10 techniques from three different domains: web testing, computer

vision and information retrieval. Internal validity threats concern

uncontrolled factors that may have affected our results. A possible

threat is represented by the manually created ground truth, which

was unavoidable because no automated method could provide us

with the ideal classification of web pages. To minimize this threat,

the authors of this paper created, in isolation, a ground truth. Then,

the two established a discussion to produce a single ground truth

for each web app.

For reproducibility of the results, we made our tool, datasets and

used subject systems available [5], along with required instructions.

9 RELATEDWORK
A large body of research has addressed the analysis of web sites

structure via clustering for clone detection and duplicate removal

of web pages [18, 19, 22–25, 29, 34, 41, 56].

Henzinger [29] performed an evaluation of two near-duplicate

detection algorithms based on shingling on a large dataset of 1.6B

web pages. Their results show that neither algorithm works well in

finding near-duplicate pairs within the same site, while both achieve

high precision for near-duplicate pairs from different sites. Manku

et al. [34] followed up on the work using simhash to detect near-
duplicates for web information retrieval, data extraction, plagiarism

and spam detection with promising results. Fetterly et al. [23] study

the evolution of near-duplicate web pages over time. Their results

show that near-duplicates have little variability over time, as two

pages that have been found to be near-duplicates of one another

will continue to be so for the foreseeable future.

Our study is different from the above work as we aim to de-

tect near-duplicates within web apps and not across different web

apps. Regarding detection of within app near-duplicates, Calefato

et al. [19] propose a method to identify near-duplicates as well as

functional clone web pages based on a manual visual inspection

of the GUI. Crescenzi et al. [22] propose a structural abstraction

for web pages as well as a clustering algorithm that groups web

pages based on this abstraction. Di Lucca et al. [24, 25] evaluate the

Levenshtein distance and the tag frequency methods for detecting

near-duplicate web pages. Eyk et al. apply simhash and broders

near-duplicate detection within Crawljax [27].

In the broader research on GUI similarity detection,

researchers [3, 14] have attempted to use GUI widget hierarchies

specific to mobile applications in order to design optimal state

abstractions. Our study did not consider such techniques as they

are not directly applicable for web applications.

To the best of our knowledge, our work is the first one to study

different near-duplication detection algorithms (from different

fields) as SAFs in a web crawler. This paper is the first to propose a

systematic categorization of near-duplicates in web apps, from a

functional E2E testing perspective and to study the impact of

near-duplicate detection on generated web application models and

web testing. Moreover, our paper is the first to discuss selection of

thresholds for near-duplicate detection, an important first step.

10 CONCLUSIONS AND FUTUREWORK
Automatically asserting the equality of two complex web pages is a

difficult problem which the state abstraction function of a crawler

needs to solve at runtime during the exploration. The problem is

further complicated by the presence of near-duplicates which need

to be detected and mapped to the logical pages in order to produce

meaningful crawl models.

We study ten existing near-duplicate detection techniques from

three different domains for the purpose and compare their effective-

ness as SAFs in a crawler. Our results show that near-duplicates of

Nd2 kind are detectable by most techniques when configured with

optimal thresholds found by using application knowledge. How-

ever, no technique is able to detect Nd3 near-duplicates leading to

poor inferred models.

Future work includes devising novel types of SAFs, incorporating

both DOM and visual characteristics in a single hybrid solution

to detect different kinds of near-duplicates while the crawler also

needs to be improved to utilize the knowledge of duplication seen

in detected near-duplicates to guide the exploration.

Near-Duplicate Detection in Web App Model Inference ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

REFERENCES
[1] [n.d.]. Stratified Random Classifier. https://scikit-learn.org/stable/modules/

generated/sklearn.dummy.DummyClassifier.html. Package: scikit-learn.

[2] S. Afroz and R. Greenstadt. 2011. PhishZoo: Detecting PhishingWebsites by Look-

ing at Them. In 2011 IEEE Fifth International Conference on Semantic Computing.
368–375. https://doi.org/10.1109/ICSC.2011.52

[3] D. Amalfitano, A. R. Fasolino, and P. Tramontana. 2011. A GUI Crawling-Based

Technique for Android Mobile Application Testing. In 2011 IEEE Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops.
252–261. https://doi.org/10.1109/ICSTW.2011.77

[4] and A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment:

from error visibility to structural similarity. IEEE Transactions on Image Processing
13, 4 (April 2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

[5] anon. 2019. Near-Duplicate Study Tools and DataSet For Replication. https:

//github.com/NDStudyICSE2019/NDStudy. GitHub Repository.

[6] app1 2018. Angular version of the Spring PetClinic web application. https:

//github.com/spring-petclinic/spring-petclinic-angular.

[7] app3 2015. Claroline. Open Source Learning Management System. https://

sourceforge.net/projects/claroline/.

[8] app4 2018. DimeShift: easiest way to track your expenses. https://github.com/

jeka-kiselyov/dimeshift.

[9] app5 2018. Pagekit: modular and lightweight CMS. . https://github.com/pagekit/

pagekit.

[10] app6 2018. Phoenix: Trello tribute done in Elixir, Phoenix Framework, React and

Redux. https://github.com/bigardone/phoenix-trello.

[11] app7 2018. PHP Password Manager. https://github.com/pklink/ppma.

[12] app8 2018. Meeting Room Booking System. https://mrbs.sourceforge.io/.

[13] app9 2018. Mantis Bug Tracker. https://github.com/mantisbt/mantisbt.

[14] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-Based Android

GUI Testing Using Multi-Level GUI Comparison Criteria. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). Association for ComputingMachinery, New York, NY, USA, 238?249. https:

//doi.org/10.1145/2970276.2970313

[15] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.

2019. Web Test Dependency Detection. In Proceedings of 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 12 pages.

[16] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-

based Web Test Generation. In Proceedings of 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2019). ACM, 12 pages.

[17] Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. 2011. Highly Effi-

cient Algorithms for Structural Clustering of Large Websites. In Proceedings of
the 20th International Conference on World Wide Web (WWW ’11). ACM, 437–446.

[18] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

1997. Syntactic Clustering of the Web. Comput. Netw. ISDN Syst. 29, 8-13 (Sept.
1997), 1157–1166.

[19] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. 2004. Function Clone

Detection in Web Applications: A Semiautomated Approach. J. Web Eng. 3, 1
(May 2004), 3–21.

[20] Moses S. Charikar. 2002. Similarity Estimation Techniques from Rounding Al-

gorithms. In Proceedings of the Thiry-fourth Annual ACM Symposium on The-
ory of Computing (STOC ’02). ACM, New York, NY, USA, 380–388. https:

//doi.org/10.1145/509907.509965

[21] Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting Visually Similar

Web Pages: Application to Phishing Detection. ACM Trans. Internet Technol. 10,
2, Article 5 (June 2010), 38 pages. https://doi.org/10.1145/1754393.1754394

[22] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. 2005. Clustering Web Pages

Based on Their Structure. Data Knowledge Engineering 54, 3 (Sept. 2005), 279–299.
[23] Marc Najork Dennis Fetterly, Mark Manasse. 2004. On the Evolution of Clusters

of Near-Duplicate Web Pages, In Journal of Web Engineering. Journal of Web
Engineering 2, 228–246.

[24] Giuseppe A. Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino, and Pasquale

Granato. 2001. Clone Analysis in the Web Era: an Approach to Identify Cloned

Web Pages. In Proceedings of the International Workshop of Empirical Studies on
Software Maintenance - November 2001 - Florence - Italy. 107–113.

[25] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, and Anna Rita Fasolino.

2002. An Approach to Identify Duplicated Web Pages. 2013 IEEE 37th Annual
Computer Software and Applications Conference 00, undefined (2002), 481.

[26] Cristian Duda, Gianni Frey, Donald Kossmann, Reto Matter, and Chong Zhou.

2009. AJAX Crawl: Making AJAX Applications Searchable. In Proceedings of the
2009 IEEE International Conference on Data Engineering (ICDE ’09). IEEE, 78–89.

[27] E.D.C. Van Eyk and W. J. Van Leeuwen. 2014. Performance of near-duplicate
detection algorithms for Crawljax. B.S. Thesis.

[28] Taher H. Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk. 2002. Eval-

uating Strategies for Similarity Search on the Web. In Proceedings of the 11th
International Conference on World Wide Web (WWW ’02). ACM, New York, NY,

USA, 432–442. https://doi.org/10.1145/511446.511502

[29] Monika Henzinger. 2006. Finding Near-duplicate Web Pages: A Large-scale

Evaluation of Algorithms. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’06). ACM, 284–291.

[30] VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady 10 (1966), 707.

[31] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent

Licata. 2013. Detecting outliers: Do not use standard deviation around the

mean, use absolute deviation around the median. Journal of Experimental Social
Psychology 49, 4 (2013), 764 – 766. https://doi.org/10.1016/j.jesp.2013.03.013

[32] D. G. Lowe. 1999. Object recognition from local scale-invariant features. In

Proceedings of Seventh IEEE International Conference on Computer Vision, Vol. 2.
1150–1157.

[33] Sonal Mahajan and William G.J. Halfond. 2014. Finding HTML Presentation

Failures Using Image Comparison Techniques. In Proc. of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE ’14). ACM,

91–96.

[34] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting Near-

duplicates for Web Crawling. In Proceedings of the 16th International Conference
on World Wide Web (WWW ’07). ACM, 141–150.

[35] Ali Mesbah. 2015. Advances in Testing JavaScript-based Web Applications. Ad-
vances in Computers, Vol. 97. Elsevier, Chapter 5, 201–235.

[36] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-based

Web Applications through Dynamic Analysis of User Interface State Changes.

ACM Transactions on the Web 6, 1 (2012), 3:1–3:30.
[37] Amin Milani Fard and Ali Mesbah. 2013. Feedback-directed Exploration of Web

Applications to Derive Test Models. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 278–287.

[38] J. Oliver, C. Cheng, and Y. Chen. 2013. TLSH – A Locality Sensitive Hash. In 2013
Fourth Cybercrime and Trustworthy Computing Workshop. 7–13.

[39] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the Tree

Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3 (March 2015), 40 pages.

[40] PHP AddressBook. 2015. Simple, web-based address & phone book. http://

sourceforge.net/projects/php-addressbook. Accessed: 2018-10-01.

[41] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and Fred Douglis. 2004. Auto-

matic Detection of Fragments in Dynamically Generated Web Pages. In Proceed-
ings of the 13th International Conference on World Wide Web (WWW ’04). ACM,

443–454.

[42] Filippo Ricca and Paolo Tonella. 2001. Analysis and testing of Web applications.

In Proceedings of the 23rd International Conference on Software Engineering (ICSE
’01). IEEE, 25–34.

[43] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT:

Accurate Identification of Cross-browser Issues in Web Applications. In Proc. of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,

702–711.

[44] Sreedevi Sampath. 2012. Advances in User-Session-Based Testing of Web Appli-

cations. Advances in Computers 86 (2012), 87–108.
[45] M. Schur, A. Roth, and A. Zeller. 2015. Mining Workflow Models from Web

Applications. IEEE Transactions on Software Engineering 41, 12 (Dec 2015), 1184–

1201. https://doi.org/10.1109/TSE.2015.2461542

[46] Selenium 2018. SeleniumHQ Web Browser Automation. http://www.seleniumhq.

org/. Accessed: 2017-08-01.

[47] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian

Optimization of Machine Learning Algorithms. InAdvances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger

(Eds.). Curran Associates, Inc., 2951–2959. http://papers.nips.cc/paper/4522-

practical-bayesian-optimization-of-machine-learning-algorithms.pdf

[48] Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance

measures for classification tasks. Information Processing Management 45, 4 (2009),
427 – 437. https://doi.org/10.1016/j.ipm.2009.03.002

[49] Andrea Stocco,Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2016. Clustering-

Aided Page Object Generation forWeb Testing. In Proceedings of 16th International
Conference on Web Engineering (ICWE 2016). Springer, 132–151.

[50] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017. APOGEN:

Automatic Page Object Generator for Web Testing. Software Quality Journal 25,
3 (Sept. 2017), 1007–1039.

[51] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual Web Test

Repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). ACM, New York, NY, USA, 503–514. https://doi.org/10.1145/

3236024.3236063

[52] Michael J. Swain and Dana H. Ballard. 1992. Indexing via Color Histograms.

In Active Perception and Robot Vision, Arun K. Sood and Harry Wechsler (Eds.).

Springer Berlin Heidelberg, 261–273.

[53] Anastasios Tombros and Zeeshan Ali. 2005. Factors Affecting Web Page Similar-

ity. In Proceedings of the 27th European Conference on Advances in Information
Retrieval Research (ECIR 2005). Springer-Verlag, 487–501.

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://doi.org/10.1109/ICSC.2011.52
https://doi.org/10.1109/ICSTW.2011.77
https://doi.org/10.1109/TIP.2003.819861
https://github.com/NDStudyICSE2019/NDStudy
https://github.com/NDStudyICSE2019/NDStudy
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/spring-petclinic/spring-petclinic-angular
https://sourceforge.net/projects/claroline/
https://sourceforge.net/projects/claroline/
https://github.com/jeka-kiselyov/dimeshift
https://github.com/jeka-kiselyov/dimeshift
https://github.com/pagekit/ pagekit
https://github.com/pagekit/ pagekit
 https://github.com/bigardone/phoenix-trello
https://github.com/pklink/ppma
https://mrbs.sourceforge.io/
https://github.com/mantisbt/mantisbt
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/1754393.1754394
https://doi.org/10.1145/511446.511502
https://doi.org/10.1016/j.jesp.2013.03.013
http://sourceforge.net/projects/php-addressbook
http://sourceforge.net/projects/php-addressbook
https://doi.org/10.1109/TSE.2015.2461542
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1145/3236024.3236063
https://doi.org/10.1145/3236024.3236063

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah

[54] Paolo Tonella, Filippo Ricca, and Alessandro Marchetto. 2014. Recent Advances

in Web Testing. Advances in Computers 93 (2014), 1–51.
[55] J. Upchurch and X. Zhou. 2016. Malware provenance: code reuse detection in

malicious software at scale. In 2016 11th International Conference on Malicious
and Unwanted Software (MALWARE). 1–9. https://doi.org/10.1109/MALWARE.

2016.7888735

[56] Yitong Wang and Masaru Kitsuregawa. 2001. Link Based Clustering of Web Search
Results. Springer Berlin Heidelberg, 225–236.

[57] B. Yang, F. Gu, and X. Niu. 2006. Block Mean Value Based Image Perceptual

Hashing. In 2006 International Conference on Intelligent Information Hiding and
Multimedia. 167–172.

[58] Hector Yee, Sumanita Pattanaik, and Donald P. Greenberg. 2001. Spatiotemporal

Sensitivity and Visual Attention for Efficient Rendering of Dynamic Environ-

ments. ACM Trans. Graph. 20, 1 (Jan. 2001), 39–65.
[59] Christoph Zauner. 2010. Implementation and benchmarking of perceptual image

hash functions. Ph.D. Dissertation.

https://doi.org/10.1109/MALWARE.2016.7888735
https://doi.org/10.1109/MALWARE.2016.7888735

	Abstract
	1 Introduction
	2 Redundancies in Web App Models
	3 Near-Duplicate Algorithms
	3.1 Information Retrieval
	3.2 Web Testing
	3.3 Computer Vision

	4 Empirical Study Design
	5 RQ1: Near-Duplicates in Web Apps
	5.1 Dataset Creation
	5.2 Classification of Changes

	6 RQ2: Classification of state-pairs
	6.1 Subject Systems
	6.2 Manual Classification (Ground Truth)
	6.3 Threshold-Based Classification

	7 RQ3: Impact on Inferred Models
	8 Threats to Validity
	9 Related Work
	10 Conclusions and Future Work
	References

