
Quality Metrics and Oracles for Autonomous
Vehicles Testing

Gunel Jahangirova, Andrea Stocco, Paolo Tonella
{gunel.jahangirova, andrea.stocco, paolo.tonella}@usi.ch

Software Institute - Università della Svizzera italiana, Lugano, Switzerland

Abstract—The race for deploying AI-enabled autonomous
vehicles (AVs) on public roads is based on the promise that such
self-driving cars will be as safe as or safer than human drivers.
Numerous techniques have been proposed to test AVs, which
however lack oracle definitions that account for the quality of
driving, due to the lack of a commonly used set of metrics.

Towards filling this gap, we first performed a systematic
analysis of the literature concerning the assessment of the quality
of driving of human drivers and extracted 126 metrics. Then, we
measured the correlation between such metrics and the human
perception of driving quality when AVs are driving. Lastly, we
performed a study based on mutation analysis to assess whether
the 26 metrics that best capture the quality of AV driving
according to the human study can be used as functional oracles.
Our results, targeting the Udacity platform, indicate that our
automated oracles can kill a high proportion of mutants at a
zero or very low false alarm rate, and therefore can be used as
effective functional oracles for the quality of driving of AVs.

Index Terms—autonomous vehicles testing, test oracles, muta-
tion testing, self-driving cars

I. INTRODUCTION

The competition for large scale deployment of autonomous
vehicles (AVs) to consumers is premised on their potential to
be as safe as or even safer than conventional vehicles driven
by humans. As of today, AVs operate only in limited driving
situations, and there is no consensus on how to evaluate the
performance of existing in-development AVs. Proposals of
guidelines to evaluate AVs exist [1], [2], [3], even though a
consolidated regulatory framework for assessing the driving
quality of AVs is still under investigation by government agen-
cies, foundations, and private sector, not without obstacles.

The metrics that are most used by AV developers—miles
driven and frequency of human intervention—are insufficient
to demonstrate the safety of an AV. Such metrics are mis-
leading and ubiquitously criticised because they do not give a
fine-grained picture of the quality of driving. While for some
sub-components of an AV, such as the traffic sign recognition
system, we can use standard accuracy metrics, for the main
driving functionalities, such as steering angle prediction from
camera images, no fine-grained oracle exists and existing
metrics (e.g., mean squared error) are only indirectly related
to the quality of driving [4].

The research on the creation of accurate oracles for AVs
is still in its infancy. Researchers have proposed solutions
for testing AVs by means of test generation techniques [5],
[6], [7], [8], [9], [10], [11], [12]. A number of papers use
offline context-unaware thresholds as test oracles [5], [7], [8],

[9] (e.g., the predicted steering angle should deviate from the
ground truth angle by less than 50), which are immaterial to
the specific driving task and therefore poorly indicative of the
driving performance. Other works study DNN-enabled AVs
within simulation platforms, but only considering violations
to the safety requirements, i.e., collisions with other vehicles,
pedestrians, or other objects, or episodes of off-road driving
behaviours [6], [13], [14]. While being indeed vital require-
ments that must be satisfied, they represent only a coarse-
grained proxy for the quality of driving.

In this paper, we propose a set of fine-grained driving
quality metrics that are informed by a survey of the literature,
are validated by means of a human study and are used to create
oracles evaluated in online driving simulations. More specifi-
cally, we first performed an extensive study of the literature to
determine what driving quality metrics have been used within
experiments with human drivers related to different driving
tasks. Second, we filtered the metrics that apply to the AV
domain and measured their correlation with the quality of
driving of AVs as assessed by the 63 participants involved
in a human study. Finally, we have created driving quality
oracles by jointly minimising the expected number of false
alarms in good driving conditions and of missed alarms when
the quality of driving drops. Such an optimisation problem
was formulated in a form suitable for SMT solving [15].

We have evaluated the effectiveness of our oracles on the
Udacity simulator for self-driving cars [16]. We have modified
the simulator to log the proposed driving quality metrics
(e.g., lateral deviation) automatically. Then, we created several
different AV models by means of mutation testing. The results
show that driving performance degradation of mutated models
can be detected with small-sized oracles (as low as two to
seven metrics combined). Particularly, mutant detection ranges
between 73% and 100% when accepting a false alarm rate
between 0% and 7%.

Our paper makes the following contributions:

Driving Quality Metrics A set of driving quality metrics that
can be used to evaluate the performance of AVs.

Simulator An extension of the Udacity simulator to compute
our metrics automatically during a simulation.

Evaluation An empirical validation of the metrics by means
of a human study and of their usage as AV oracles.

Oracles A technique to automatically generate oracles that
minimise false alarm and missed alarm rates.

II. METRIC EXTRACTION

A. Methodology

1) Database Search: While driving quality metrics for
AVs is a relatively unexplored area, several studies assess
the quality of human driving, possibly under the effect of
some controlled treatment (e.g., when distracted by phone
calls). Hence, we conducted a systematic search of such
literature with the goal of identifying papers that assess the
quality of human driving quantitatively, through metrics that
can be potentially used to evaluate the autonomous driving
capabilities of AVs.

We performed the literature search using Scopus, which
is a comprehensive abstract and citation database hosting
papers published in various peer-reviewed venues by multi-
ple publishers (e.g., Elsevier, IEEE, ACM, Springer, Wiley).
Scopus provides advanced search functionality and is one of
the recommended scientific databases to conduct systematic
studies in Software Engineering [17], [18].

Our search string combines terms related to the quality of
driving with terms related to core objects involved in driving.
We refined the search string in an iterative way to ensure that
the maximum number of synonyms expressing both notions
was covered. The final search query used with Scopus is:

((’driving quality’) OR (’driving performance’) OR
(’driving assessment’) OR (’driving evaluation’))
AND
((’car’) OR (’vehicle’) OR (’road’) OR (’automobile’))

Application of this search string to the title, abstract, and
keywords fields resulted in a list of 4,582 papers. We further
filtered out the results by requiring that the list contains only
conference or journal papers, and publications in the field
of computer science or engineering. By applying this filter,
our pool of papers was reduced to 2,277. After removing 7
duplicates, the final number of retained papers was 2,270.

2) Abstract Analysis: For each obtained paper, we had to
ensure that it was related to the evaluation of driving quality.
Since this task is difficult to automate, one of the authors
conducted a manual analysis of all the 2,270 abstracts. Our
inclusion criterion required that the abstract mentions that
driving quality was quantified in some way. We excluded
papers in which the vehicle used in the study is not a
car, being, for example, agricultural machinery, two-wheeled
inverted pendulum, or train. Moreover, we excluded papers if
the adopted metrics pertain to the human perception system,
such as driver’s heart rate, eye tracking, comfort, arm stiffness,
posture information, or brain activity, or if the adopted metrics
are related only to a very specific component of a car, such
as the toe-in or the camber of the wheel. As a result of the
manual evaluation of the abstracts, we identified 452 papers
out of 2,270 (20%) relevant to our study.

Our goal was to extract a list of driving quality metrics
from each of these papers. For 43 papers out of 452 (9%),
the list was available directly from the abstract. For example,

in the paper by Bartrim et al. [19], the abstract mentions:
“driving performance was assessed using a 30 min simulated
driving task, with lateral (standard deviation of lane position
[SDLP]; total number of line crossings [LC]) and longitudinal
(standard deviation of speed [SDSP]) measures of vehicle
control as outcome variables”. In 257 papers (57%), the
abstract did not provide a precise description of the metrics, yet
it suggested that the paper could contain references to the use
of some metrics. For example, in the paper by Caponecchia et
al. [20], the abstract reports: “results showed that participants
reported feeling more drowsy in the afternoon, and perfor-
mance impairments (increased lane deviations) were most
evident in the morning”. Finally, the remaining 152 papers
(34%) did not contain any reference to the used metrics. Both
of these last two cases would require manual analysis of the
paper’s full text, which is an expensive task. To keep our study
feasible, we focused on the group of 257 papers whose abstract
included some hook to quality metrics. Although the mentions
of metrics in them were ambiguous, the chance of finding a
precise definition in the full text was higher than for the group
of 152 papers with no references whatsoever.

3) Full-Text Analysis: The authors then proceeded with
downloading the full text of the 257 papers retained for the
analysis. Scopus provides a plugin for one-click access to the
corresponding PDF file. Unfortunately, for 31 papers the full
text was not available through this functionality. We were able
to collect the full text by contacting the authors for 12 of such
papers; the remaining 19 papers were excluded from our study.

For each of the resulting 238 papers, the authors analysed
the full text, identified the part that enumerates and defines the
adopted quality metrics, extracted these metrics into a shared
document, and provided precise definitions for custom, non-
standard metrics. To ensure that all the authors understand the
task and perform it consistently, we conducted a pilot study
with 15 papers randomly chosen from the pool of 238 papers.
In the pilot study, each of the three authors was assigned
randomly to 10 papers, while ensuring that each paper has
two assessors. For 10 papers out of 15 (66%), the authors had
a full agreement on the list of extracted metrics. For 5 papers,
the number of extracted metrics varied between the evaluators.
All inconsistencies and conflicts were discussed and resolved
during a consensus meeting. Moreover, the authors shared
a document with the abbreviations and definitions of each
extracted metric, to be used as a basis for the analysis of the
remaining papers and avoid inserting duplicates.

For the final stage of the study, each author analysed 75
more papers. As the extraction process had been consolidated
in the consensus meeting, each paper was assigned to only
one evaluator. The shared file was updated during the task
and all authors had access to it so that they could reuse the
list of already extracted metrics, definitions, and abbreviations.
Once all of the authors completed their task, another consensus
meeting was conducted, to examine the final list of metrics,
discuss all definitions and refine them to ensure a uniform and
consistent use of abbreviations and operators.

2

TABLE I: List of Driving Quality Metrics, Events, and Operators

Type Abbr. Metric Name Uses Operators

Generic
m D Distance 4
m T Time 1
e CR Crash - Count(14), TimeE(1)

Speed
m SP Speed 91 Mean(52), SD(42), DevT(7), Min(5), Var(5), TimeC(4), CountC(3),

CountC(DevT)(2), Max(2), AbsDev(1), Diff(1), Mean(DevT)(1),
SD(DevT)(1), Skew(1), TimeC(DevT)(1)

m ACC Acceleration 29 Mean(6), Min(4), Max(5), SD(4), Count(1), CountC(1), Ent(1),
Med(1), SoS(1), Var(1)

m AS Acceleration Speed 0 Mean(1)
m TPP Throttle Pedal Position 4 Mean(4), SD(3), CountC(2), Min(2), CountC(Max)(1), Ent(1),

Max(1), Med(1), Mode(1), Var(1)
m TPS Throttle Pedal Speed 1 PowF(1)

Lateral Position
m LP Lateral Position 61 SD(90), Mean(27), DevT(7), CountC(6), TimeC(4), RMSE(4), Var(3),

Min(2), Max(2), AbsDev(1), CountC(DevT)(1), CV(1), SER(1),
TimeC(DevT)(1)

m LS Lateral Speed 3 Mean(1), SD(1)
m LA Lateral Acceleration 4 Var(1)
m TO Trajectory Offset 1 -
e LC Lane Change - Count(12), TimeC(4), RA(2), TimeE(2), RT(1)
e LCR Line Crossing - TimeE(4), Count(1)

Headway Position
m HP Headway Position 18 SD(6), Mean(3), Mean(DevT)(2), CV(1), Max(DevT)(1),

SD(DevT)(1), SER(1)
m HT Headway Time 7 Mean(3), SD(2), Min(1), TimeC(1)
m HS Headway Speed 1 Min(1)
m DTP Distance to Pedestrian 3 Min(1)
m DTV Distance to Vehicle 2 -
e COL Collision - Count(24), TimeC(5), TimeE(5), RT(1)

Steering
e ST Steering - RT(4)
m SA Steering Angle 17 SD(19), Ent(8), Mean(6), Var(4), DevT(3), Max(3), CountC(2),

RMSE(2), Med(1), Min(1), Mode(1), TimeC(1), PowF(1)
m SARR SA Reversal Rate 17 -
m SAS SA Speed 6 CountC(6), Max(1), Mean(1), Mode(1), SD(1), TimeC(1)

Braking
e BR Braking - RT(26), Count(4), TimeC(2)
m BPP Brake Pedal Position 4 Mean(1), Max(1)
m BD Braking Distance 3 -

Traffic Signs
e TSO Traffic Sign Occurrence - RT(3), RA(4)

B. List of Metrics

The authors of the analysed studies used either primitive
metrics, typically visualised over time, or they applied some
aggregate functions such as min, max, or mean in a time frame.
During the metric extraction process, we both noted down the
primitive metrics, along with the aggregation operators that
were applied to them, if any. Across the surveyed 281 papers,
784 metric occurrences were found overall, from which we
derived a list of 126 individual metrics. We also collected
information about events, defined as either actions taken by the
driver or the vehicle (e.g., braking), the consequences of these
actions (e.g., collision), or changes in the driving environment
(e.g., traffic sign occurrence). Some metrics are defined based
on the occurrence of such events (e.g., counting them).

Table I provides information about all the extracted driving
quality metrics. We found seven main categories: (1) generic
metrics, (2) speed related metrics, (3) lateral position related
metrics, (4) headway position related metrics, (5) steering
related metrics, (6) braking related metrics, and (7) traffic
sign-related metrics. For each driving quality indicator, the

table reports whether it is a metric (m) or an event (e), its
abbreviation, its name, the number of surveyed papers in
which it was used as a primitive metric, and the operators
with which it was combined, along with the number of
papers mentioning each operator-metric combination (within
brackets). For events, we do not report the number of primitive
uses, as an event in isolation is not a performance indicator
but rather it becomes one only when paired with an operator.

1) Operators: The list of operators that were applied to the
metrics in the surveyed papers span from common arithmetic
and statistical operators such as minimum (Min), maximum
(Max), mean (Mean), median (Med), mode(Mode), sum (Sum),
count (Count), standard deviation (SD), variance (Var), co-
efficient of variation (CV), root mean square error (RMSE),
entropy (Ent), absolute mean deviation (AbsDev), sum of the
squares (SoS), Pearson’s first skewness coefficient (Skew),
spectral power at a frequency band (PowF) and standard
error of regression line (SER). Deviation from target (DevT)
measures the absolute value of the difference between the
target value of a metric and its actual value. Diff measures

3

the difference between the maximum and minimum value of
a metric, i.e., it characterises its range of values.

We also considered conditional operators, i.e., operators that
aggregate only metric values that satisfy a given condition.
TimeC denotes “time in condition”, i.e., the period of time in
which a given condition holds for a metric. Similarly, CountC
stands for the number of times the condition holds for a
metric. Both TimeC and CountC require a parameter in form
of a condition. For example, CountC(Braking) will report how
many braking actions were taken during the drive. Similarly,
TimeC(Speed > 60) will compute the duration for which the
value of speed was higher than 60. TimeE is used to express
the time to an event, for example, time-to-collision, with an
event being a required parameter of the operator. Reaction
Time (RT) is calculated as t′ − t, where t is the time of an
event requiring an action, while t′ is the time of the start of the
action. Reaction Accuracy (RA) measures whether the correct
reaction to an event has taken place. For example, if a driver
has complied with 4 out of 5 traffic sign occurrence events
during his trip road, the reaction accuracy will be 0.8. All
these three operators are applicable only to events.

2) Metrics: For the majority of metrics, such as speed
or lateral position, there exist universal definitions that we
have adopted. For paper-specific metrics that appeared in the
analysed literature only once (e.g., trajectory offset), we used
the definition in the corresponding paper. When the definitions
for specific metrics varied across papers, or when the same
definition was used for differently named metrics, we unified
the variants and provide a precisely formulated definition.
Each of the next paragraphs describes a family of metrics and
provides the definitions that we have adopted for them.
Generic. The first block in Table I lists generic metrics such
as the distance traveled by the vehicle, the time spent on the
travel, and the number of crashes that took place.
Speed & Acceleration. Speed is the most often used metric
in the literature. It is measured as the distance travelled by
a vehicle in a unit of time. The operators applied to this
metric most frequently are Mean and SD. Acceleration (ACC)
is the rate of change of a car’s velocity over time. Similarly,
acceleration speed (AS) is the rate at which acceleration
changes over time.

Throttle pedal regulates the vehicle’s speed. Therefore, the
throttle pedal position (TPP) indicates the acceleration level
the car might achieve, which can be used as a substitute for
speed or acceleration. Throttle pedal speed TPS is defined as
the rate at which TPP changes in a time unit. As Table I shows,
ACC and TPP are widely used metrics that get combined with
many different operators, while AS and TPS are custom metrics
each used only once across all analysed papers.
Lateral Position. Lateral Position (LP) is defined as the
distance between the center of the car and the center of the
driving lane. The increase in the variation of LP is commonly
associated with reduced lateral control. As Table I shows, this
variation is most often measured using the SD operator.

Lateral Speed (LS) is measured as the change of the lateral
position in a time unit. Similarly, Lateral Acceleration (LA) is

the change of LS per unit of time. Trajectory Offset (TO) is a
time-independent metric and is measured as the difference of
the LP of the vehicle at the start and at the end of the driving
task. As it can be seen in Table I, LP as a primitive metric or
combined with various operators is much more prevalent in
the literature than LS, LA, or TO.

The events associated with the lateral position of a vehicle
are Lane Change (LC) and Line Crossing (LCR). The Lane
Change Test is a standard test where human drivers are
asked to perform lane changes whenever prompted by road
signs. Very often this experiment is conducted when drivers
are distracted by a secondary task and their performance is
evaluated against driving with no distractions. The quality
of the lane changes, measured by the operators listed in the
table, provides the metrics for comparison. LCR is defined as
any vehicle’s wheel touching any lane marking (except during
lane changes). LCR is an indicator of poor human driving
quality. The number of LCR occurrences per unit of distance
(Count operator) or time to LCR (TimeE operator) are the main
quantifiers of this event.
Headway Position. Headway Position (HP) is the distance
to a lead vehicle, traveling in the ego vehicle’s travel path.
Headway Time (HT) is the time required for the ego vehicle to
reach the lead vehicle. Headway Speed (HS) is measured as the
change of HP over time. In contrast to HP, Distance to Vehicle
(DTV) measures the distance to the closest vehicle in the back,
left, or right of the ego vehicle. Distance to Pedestrian (DTP)
is measured as a longitudinal margin to the pedestrian on the
car’s travel path. All these metrics are calculated under the
assumption that both vehicles maintain their speed.

Collision (COL) with other vehicles or pedestrians is closely
related to headway metrics. The overall number of collisions
(Count(COL), and Time-To-Collision (TimeE(COL)) are the
main operators used to characterise this event.
Steering. Steering is an essential part of the driving task and
the changes in the performance of vehicles often manifest
themselves as erratic steering patterns. Steering Angle (SA) is
defined as the angle between the front of the vehicle and the
steered wheel direction. The SD operator is the one most often
applied to this metric. Steering angle reversal rate (SARR) [21]
is defined as the number, in a time interval, of steering angle
reversals larger than a certain finite angle, or a gap. The
magnitude of the gap is a key parameter of this metric. SA
Speed (SAS) is the change of SA per unit of time.
Braking. Braking is activated to slow down or stop a moving
vehicle. The reaction time to braking (RT(BR)) is the most
widely used event-operator combination in our analysis. The
Brake Pedal Position (BPP) in a vehicle indicates the intensity
with which braking is being applied. Braking Distance (BD) is
the distance a vehicle travels from the initial point of braking
to the point in which the vehicles comes to a complete stop.
Conformance to Traffic Signs. Traffic Sign Occurrence (TSO)
is an event that can trigger different actions in a vehicle, such
as accelerating, braking, or changing the lane. A timely and
correct reaction, measured with RT and RA operators, indicates
conformance to the driving rules.

4

III. EMPIRICAL VALIDATION OF THE METRICS

The goal of the empirical validation of the metrics that
we extracted from the literature was to determine which of
them characterise also the quality of AV driving. For such
purpose, we took videos of AVs driving in a simulation
environment and asked the participants in the study to assess
the quality of driving apparent from the video using a 5-
point Likert scale [22]. We then computed the correlation
between the metrics measured in each road sector and the
human assessment of the video of the same sector.

A. Simulation Platform and Measurement

1) Driving Simulator: We used the Udacity simulator for
self-driving cars [16] as the main simulation environment. The
simulator includes different track circuits and supports training
and testing of AVs that performs behavioural cloning, i.e.,
the AV learns the lane-keeping functionality from a dataset
of labeled driving scenes. We selected the Udacity simulator
because it is a popular platform used by researchers to evaluate
testing techniques for AVs [7], [8], [9], [13], [23].

The simulator provides three closed-loop tracks. Lake Track
(Track1) is a road track designed with gentle bends, a wide
road section, a bridge, and safety tires and road signs. The
street is located on the edge of a lake, therefore the car may
fall into the lake if lane-keeping is violated. Jungle Track
(Track2) is a challenging road track with highly narrow curves.
It is located within a mountain valley and is characterised
by a smaller road section than Track1, and very limited
visibility due to elevation changes. Mountain Track (Track3) is
a mountain race track having one difficult and narrow curve,
long and gentle bends, and a wide three-lane road section.

2) Metrics: The Udacity simulator allowed us to record
most of the quality metrics under investigation, many of which
are readily available on a per-frame basis. Speed values are
capped between 16 and 48 km/h. The steering angle predicted
by the AV model ranges between -25 and +25 degrees. The
throttle value is calculated using a linear interpolation between
the minimum and maximum speed, ensuring the AV decreases
the speed when the steering angle increase (e.g., in a bend).

Some metrics were not available in raw format, and thus
we implemented them within the simulator. For example,
we approximate lane position by means of the cross-track
error (XTE), which is the distance from the center of the
car’s cruising position to the center of the road on the ideal
trajectory between the planned route given by two consecutive
waypoints [24]. To calculate the metrics that are a function of
a unit of time–such as Acc, LS, SAS–we divided the overall
duration of the simulation by the number of frames.1

The simulator used in this study is limited to only one AV,
trained to follow the center of the road and stay within its
initial lane. As such, we had to exclude metrics related to
the presence of other vehicles or pedestrians (e.g., HT, or
DTV), as well as those metrics that require a target value to

1The actual frame rate depends on the given hardware configuration. In our
experiments, the frame rate was 15 fps.

be provided, such as DevT, CountC, SARR. Also, we excluded
metrics that concern the presence of multiple lanes (e.g., LC),
or traffic signs (i.e., TSO). Finally, we excluded metrics that
were mentioned only once in the analysed papers, and metrics
using Var operator since we consider the Standard Deviation
operator SD operator, which is the square root of the variance,
as a more standard and interpretable measure of data spread. In
cases when these exclusion criteria led to the metric being left
without any operators, we applied SD and Mean operators to it.
Overall, 26 metrics were retained and used for the evaluation
of the driving quality of AVs, which are listed in Table II. The
measurements used in this study were obtained when Nvidia’s
DAVE-2 [25] DNN model was driving. DAVE-2 consists of
three 5x5 convolutional layers with stride 2 plus two 3x3
convolutional layers, followed by five fully-connected layers
with dropout, and ReLu activation functions.

B. Research Questions

RQ1 (Correlation). Which metrics correlate with the human
assessed quality of driving?

RQ1 aims to determine the correlation of the metrics used
for assessing human driving quality with respect to the quality
of autonomous driving, i.e., when the vehicle is driven by a
computer program (i.e., a deep neural network in our study).
We collect the human assessment of the videos of driving
performed by a simulated AV model, calculate the values of
the metrics for such driving simulation, and evaluate which
metrics correlate with the human assigned scores.
RQ2 (Independence). Is there a minimal set of metrics that
characterise the quality of AV driving adequately?

RQ2 aims to assess the correlation/independence of the
retrieved metrics among each other, with the aim to identify
a minimal set of metrics that is sufficient to characterise the
quality of driving. Indeed, our driving quality metrics are inter-
related. For instance, different operators applied to the same
set of raw values (e.g., Mean(Speed), and Max(Speed)) may
give highly correlated results. In such cases, keeping only one
of the two or more related metrics could be enough. We use
Principal Component Analysis (PCA) to answer this question.
In particular, we reduce the dimensionality of the metric space
to its principal components and we determine the metrics that
give the highest contribution to the principal components.

C. Procedure and Metrics (RQ1)

Object. We chose DAVE-2 [25] as our AV model since it is a
widely used model in DNN testing papers [7], [8], [9], [13].
More importantly, DAVE-2 exhibits realistic behaviours in
simulated platforms, as well as realistic performance degrada-
tion when not appropriately trained [13], or when the model’s
architecture or training data get corrupted [26].

In order to obtain models with degraded driving perfor-
mance, we created mutants of the original model by means of
the DL mutation tool DeepMutation++ [27]. Specifically, we
used DeepMutation++’s Gaussian Fuzzing mutation operator
with ratio=0.03 for Lake Track and Jungle Track, and the
Neuron Effect Block operator with ratio=0.03 for Mountain

5

Track, to obtain representatives of poor driving quality models.
Indeed, by visual inspection of the mutants driving in the
simulation, we found them to exhibit visible misbehaviours
with respect to the lane-keeping task even with no crashes.

For each available track, we executed DAVE-2 and the
respective mutants on the Udacity simulator and recorded a
screencast video. The simulation’s video was split into smaller
chunks such that (1) each chunk depicts the AV driving in
one to a maximum of three consecutive track’s sectors, and
(2) each chunk’s length ranges between 10−15 seconds. These
values were tuned by means of a pilot experiment, in which
we found that they are appropriate to give the respondents
enough information, while limiting the occurrence of multiple,
possibly contrasting, candidate driving behaviours within the
same video, which are difficult to rate with a single score.
Shorter videos, on the other hand, were found useless due to
lack of context.

Questionnaires. Overall, we prepared 12 questionnaires, four
for each track, so as to cover the entirety of the tracks (for
a total of 132 chunks). Each questionnaire contains between
11 video chunks, divided as follows: five videos were taken
from the good driving quality model, five videos from the
poor driving quality model, and one video of the poor driving
quality model crashing/going off-road, which we inserted as
attention check into the questionnaires (i.e., respondents not
giving the lowest score to this video were discarded, while the
video itself was not used in later correlation analysis). Videos
within the questionnaires were shuffled among respondents to
mitigate carryover effects.

Subjects. We shared the 12 questionnaires within our personal
contacts, trying to diversify the pool of potential respondents.
We involved undergraduate and graduate students, PhD stu-
dents and postdocs in computer science or other engineering
fields. No participants were familiar with the purpose of the
study. Possession of a driving license was the only requirement
for selecting the participants, who were required to fill a pre-
questionnaire including questions on driving experience and
driving license.

Questionnaire Tasks. First, participants were given a short
reference YouTube video of an AV driving in the Udacity
simulator to familiarise themselves with the environment. No
mention of the quality of driving was made at this stage.
Participants were asked to assess the quality of driving of
the 11 video chunks within each questionnaire. There was no
time limit associated with the study. The quality of driving
was assessed on a 5-point Likert scale [22]: (1) Very low; (2)
Low; (3) Neither low nor good; (4) Good; (5) Excellent.

Metrics. We compute Pearson’s correlation [28] between each
metric and the Likert scale assessment made by questionnaire
respondents. We also measure the correlation’s p-value, which
indicates the probability of lack of correlation. We consider
metrics whose p-value is less than 0.05 where the sign of
the correlation indicates whether they score good (positive
correlation) or poor (negative correlation) quality of driving.

D. Procedure and Metrics (RQ2)

We used Principal Component Analysis (PCA), a method
that reduces the dimensionality (i.e., number of features) of
the vectors of a large dataset, while preserving as much
variance (statistical information) as possible. We calculate the
number of principal components required to preserve a total
variance equal to 90% of the original variance (this is also
called the explained variance). Then, for each such principal
component, we get the list of metrics that contribute to it
in the associated linear combination. The absolute value of
each metric’s coefficient in this combination indicates how
much the metric contributed to the principal component. We
calculate the variance score (VS) for a metric by multiply-
ing its coefficient with the variance ratio explained by the
corresponding principal component, and then summing up
these values across all principal components. We then rank
the metrics according to their variance score and select the
top N for our further analysis. This ensures that we prioritise
the metrics by their contribution to the principal components
with the highest explained variance ratio.

E. Results

RQ1 (Correlation). Overall, 63 participants answered our
questionnaires. On average, we received 5 responses for each
of the 12 questionnaires, with a minimum of three and maxi-
mum of 10 responses. To measure the agreement rate between
the different raters, we used the Fleiss’ κ [29] for evaluating
the level of agreement between two or more raters on a
categorical scale (Cohen’s κ could not be used since we had
occasionally more than two rates for the same questionnaire).
Fleiss’ κ takes a value between 0 and 1, where 0 denotes
no agreement and 1 indicates perfect agreement [30]. For 11
questionnaires the agreement rate was statistically significant
(i.e., p-value < 0.05). For nine out of 11 questionnaires the
agreement rate was between 0.2 and 0.4, which is interpreted
as a “fair” agreement according to Landis & Koch [31]. For
the remaining two questionnaires the agreement rate was less
than < 0.2, i.e., there was only a “slight” agreement, therefore
we excluded these two questionnaires from further analysis.

As a result, we obtained human scores assigned to 96
different videos: 33 for Lake Track, 21 for Jungle Track, and
42 for Mountain Track. For each video, we calculated the
values of the driving quality metrics and the average score
given by the human raters. Then, we assessed the correlation
(or lack thereof) of each metric with the average human
score using Pearson’s correlation coefficient [28]. Table II
(macro-column Correlation) lists all metrics and all correlation
coefficients (cc) and p-values (p) both on a per-track and
overall across all tracks.

The number of metrics that correlate with the human score
in a statistically significant way is 16 for Lake Track, seven for
Jungle Track, 15 for Mountain Track, and 13 considering all
tracks. Overall, out of 26 metrics, 25 correlate with the human
score (i.e., p-value <= 0.05) in at least one of the tracks.
Max(Speed) is the only metric that does not correlate, which
makes sense as the maximum speed is capped in the Udacity

6

TABLE II: Correlation Results with Human Scores (RQ1) and Independence (RQ2). Bold values indicate statistical significance.

CORRELATION INDEPENDENCE

Metric Lake Track Jungle Track Mountain Track All Tracks All Tracks

cc p cc p cc p cc p VS

Std(Brake) -0.44 0.01 -0.57 0.01 -0.17 0.29 -0.34 0.00 0.1917
Max(LP) -0.70 0.00 -0.07 0.77 -0.64 0.00 -0.47 0.00 0.1887
Mean(Brake) -0.40 0.02 -0.46 0.03 -0.17 0.29 -0.30 0.00 0.1868
Std(Speed) 0.22 0.21 -0.05 0.82 -0.41 0.01 -0.03 0.77 0.1805
Max(Acc) 0.32 0.07 -0.35 0.11 -0.42 0.01 -0.15 0.15 0.1773
Std(LP) -0.60 0.00 -0.06 0.81 -0.37 0.02 0.38 0.00 0.1758
Min(Acc) 0.53 0.00 0.33 0.14 0.26 0.10 0.18 0.07 0.1744
Std(SA) -0.67 0.00 -0.35 0.12 -0.22 0.15 -0.23 0.02 0.1744
Std(Acc) -0.22 0.21 -0.39 0.08 -0.39 0.01 -0.24 0.02 0.1741
Min(Speed) -0.12 0.51 0.29 0.20 0.39 0.01 0.13 0.21 0.1727
Max(SA) -0.55 0.00 0.29 0.20 -0.24 0.12 -0.23 0.03 0.1724
Mean(TPP) 0.43 0.01 0.02 0.93 -0.29 0.06 -0.01 0.89 0.1706
Std(TPP) -0.04 0.85 -0.39 0.08 -0.42 0.01 -0.19 0.07 0.1693
Std(LS) -0.40 0.02 -0.35 0.12 0.07 0.67 -0.17 0.10 0.1650
Mean(Speed) -0.19 0.29 0.23 0.31 0.32 0.04 0.08 0.42 0.1626
Mean(SAS) 0.60 0.00 0.33 0.15 -0.31 0.04 0.24 0.02 0.1540
Count(Braking) -0.51 0.00 -0.01 0.96 -0.17 0.29 -0.06 0.59 0.1540
Std(SAS) -0.32 0.07 -0.50 0.02 -0.32 0.04 -0.12 0.23 0.1520
Mean(SA) -0.55 0.00 0.47 0.03 0.11 0.50 -0.03 0.74 0.1486
Mean(LS) -0.44 0.01 -0.11 0.62 0.30 0.05 -0.19 0.07 0.1453
Mean(Acc) 0.64 0.00 -0.24 0.30 -0.23 0.15 0.28 0.01 0.1328
Mean(LP) -0.75 0.00 -0.43 0.05 -0.69 0.00 -0.64 0.00 0.1293
Min(LP) -0.24 0.17 -0.41 0.07 -0.45 0.00 -0.30 0.00 0.1268
Max(Speed) 0.23 0.20 0.19 0.40 -0.03 0.84 0.11 0.30 -
Count(Crash) N/A N/A -0.55 0.01 -0.75 0.00 -0.46 0.00 -
Count(LCR) -0.39 0.03 -0.56 0.01 -0.75 0.00 -0.54 0.00 -

simulator. Our correlation results suggest that the extracted
metrics are meaningful and quantify the quality of AV driving
similarly to the human perception of driving.

Mean(LP) is the metric with the highest correlation co-
efficient for the overall dataset as well as for Lake Track
and Mountain Track. This is expected, as the AV is trained
to drive in the center of the lane, and deviations from such
behaviour were rated negatively by the human raters in the
questionnaires. In contrast, for the Jungle Track, the metric
with the highest correlation coefficient is Std(Brake). Given
that this track is characterised by severe elevation changes,
correct use of the braking by the AV is essential for successful
completion of the driving task.
RQ2 (Independence). We considered all 25 metrics that cor-
relate with the human scores, but we excluded Count(Crash)
and Count(LCR), as the occurrence of these events is already
evidence of the worst driving quality scenario. In fact, we are
interested in metrics that are able to characterise a degraded
quality of driving when such degradation does not necessarily
lead to critical scenarios.

We applied PCA to our dataset, which is composed of 23
metrics and 96 different data points (vectors). PCA identified
eight principal components that explain 90% of the variance.
These components had different explained variance ratios, with
the first component explaining 39% of the overall variance and
the last one explaining only 2% of the overall variance.

Table II shows the VS values for all metrics, sorted by
decreasing values of VS. Overall, the metric that contributes
to explaining most variance is Std(Brake) (0.1917), followed

by Max(LP) (0.1887), Mean(Brake) (0.1868) and Std(Speed)
(0.1805). Mean(LP) and Min(LP) have the lowest VS scores,
despite having the highest correlation score with the human
raters. This can be explained by the nature of principal
components: if two variables are linearly correlated, PCA will
include only one of them among the top contributors to the
principal components, since the other does not explain any
further variance. However, by swapping them, so including
the second and excluding the first, PCA might achieve a
comparable explained variance ratio. This means that we
cannot interpret the ordering of metrics in Table II to decide
which metrics are good/bad indicators of the quality of driving.
We can use such ordering only to select the top k metric
that gives the highest, independent contribution to explain the
variance, although alternative, equally good selections of k
variables are possible.

IV. COMPUTATION OF OPTIMAL THRESHOLDS

Driving quality metrics can be used as oracles to assess the
behaviour of an AV. Given a road sector x and a set of quality
metrics m1(x), . . . ,mn(x) collected in such sector, assuming
that such metrics grow as the quality of driving degrades (a
decreasing metric would just require to invert the inequality
≤ into ≥), we can define a quality of driving oracle as:

O(x) = m1(x) ≤ t1 ∧ . . . ∧mn(x) ≤ tn (1)

The problem is how to determine optimal values of the
thresholds t1, . . . , tn, such that the oracle O(x) evaluates to
true in scenarios where the original AV model drives well,

7

TABLE III: Example of metrics collected when D (resp. M1)
is driving in sector x1 (resp. x2)

m1 m2 m3 Killed

D(x1) 0.5 0.3 0.4 -
D(x2) 0.4 0.6 0.9 -

M1(x1) 1.5 0.3 1.4 Yes
M1(x2) 0.2 0.6 0.5 No

while it evaluates to false when it drives poorly. One way
to obtain model instances that drive poorly is by mutation
analysis: the ideal oracle should raise no false alarms in
scenarios where the original model drives well (i.e., it should
have only true negatives), while it should kill as many mutants
as possible (i.e., it should maximise the number of true
positives when mutants are driving) [32].

A. Problem Formulation

Given a model D that behaves correctly on a set X
of driving sectors x ∈ X and given a set of mutants
{M1, . . . ,Mj , . . .} of such a model, the metrics collected
during actual driving of D or Mj are respectively indicated as
mD

1 (x), . . . ,mD
n (x) and m

Mj

1 (x), . . . ,m
Mj
n (x). The optimal

thresholds t∗1, . . . , t
∗
n are those that have only true negatives

(no false alarms) when applied to the metrics collected by D
and maximise the true positives (i.e., true alarms) when Mj

is driving:

∀x ∈ X,mD
1 (x) ≤ t∗1 ∧ . . . ∧mD

n (x) ≤ t∗n (2)

t∗1, . . . , t
∗
n = arg max

t1,...,tn
|{x ∈ X|mMj

1 (x) > t1∨

. . . ∨mMj
n (x) > tn}| (3)

For each metric mi, the optimal threshold t∗i can be easily
shown to be:

t∗i = max
x∈X

mD
i (x) (4)

In fact, this threshold ensures no false alarm because all
values mD

i (x) are lower than or equal to their maximum
value t∗i . Moreover, since the metric value mMj

i (x) triggers
a true alarm if it is greater than the threshold, any threshold
value greater than t∗i can only have the same or less true
positives when mutant Mj is driving. For a metric whose value
decreases with a degraded quality of driving, max should be
replaced by min in Equation (4).

Let us consider two driving sectors x1, x2 and three metrics
m1,m2,m3. Table III shows the values of the metrics col-
lected when either the original model D or Mj was driving.
The optimal thresholds (t∗1 = 0.5, t∗2 = 0.6, t∗3 = 0.9) ensure
zero false alarms by construction when D is driving, and
have two true positives and four false negatives when M1

is driving (no metric is above the respective threshold when
M1 is driving in sector x2; m2 does not kill M1 even in

;; thresholds
(declare-const t1 Real)
(declare-const t2 Real)
(declare-const t3 Real)
;; true negative sector
(declare-const s1 Int)
(declare-const s2 Int)
(assert (<= s1 1))
(assert (>= s1 0))
(assert (<= s2 1))
(assert (>= s2 0))

;; tot true negatives = 1
(assert (= (+ s1 s2) 1))

;; true negatives (original)
;; sector 1
(assert (<= (* s1 0.5) t1))
(assert (<= (* s1 0.3) t2))
(assert (<= (* s1 0.4) t3))

;; sector 2
(assert (<= (* s2 0.4) t1))
(assert (<= (* s2 0.6) t2))
(assert (<= (* s2 0.9) t3))

;; true positives (mutant)
;; sector 1
(assert-soft (or

(> 1.5 t1)
(> 0.3 t2)
(> 1.4 t3)))

;; sector 2
(assert-soft (or

(> 0.2 t1)
(> 0.6 t2)
(> 0.5 t3)))

Fig. 1: Optimal Threshold Constraints (SMT-LIB Language)

x1). In this example, mutant M1 is killed by metrics m1 and
m3, since a true alarm is raised by these metrics in at least
one sector (x2), while metric m2 is useless, since it does not
kill M1 in any sector. The oracles O1(x) = m1(x) ≤ 0.5
and O2(x) = m3(x) ≤ 0.9 are equally effective in mutation
killing, in this small example.

We can generalise the previous problem formulation to
allow a fraction ε of false positives when the original AV
model D is driving:

|{x ∈ X|mD
1 (x) > t1 ∨ . . . ∨mD

n (x) > tn}|
|X|

≤ ε (5)

max
t1,...,tn

|{x ∈ X|mMj

1 (x) > t1 ∨ . . . ∨mMj
n (x) > tn}| (6)

The case where no false positive is allowed is a particular
case of the ε-formulation with ε = 0. For the example in
Table III, if we allow ε = 0.5 we could decrease t1 from
0.5 to 0.4 (making x1 a false positive), but this would not be
beneficial since no additional mutant would be killed, or we
could decrease both t2 from 0.6 to 0.3 and t3 from 0.9 to 0.4
(making x2 a false positive). The latter is an optimal choice,
since it increases the number of sectors where M1 is killed
from 1 to 2.

To solve the ε-formulation of the problem, we introduce
binary variables sk ∈ {0, 1} which determine whether in
nominal conditions (D is driving) there must be a true negative
in sector xk (then, sk = 1) or a false positive is allowed
(sk = 0). The new equations that replace Equation (2) are:

∀xk ∈ X, sk ·mD
1 (xk) ≤ t1 ∧ . . . ∧ sk ·mD

n (xk) ≤ tn (7)

N∑
k=1

sk = d(1− ε) ·Ne , with N = |X| (8)

The constraints defined by Equations (7), (8) and (6) can be
expressed in the SMT-LIB language as shown in Figure 1. The

8

SMT solver shall satisfy all non retractable constraints (true
negatives, on original) with a choice of si that respects the
total number of required true negatives (d(1− ε) ·Ne), and
shall maximise the number of retractable (assert-soft)
constraints (true positives, on mutant) that are satisfied (this
is also called a MaxSMT problem).

B. Experimental Study

We assessed the possibility to find optimal oracle thresholds
via SMT solving on the Udacity case study, with the aim of
answering the following research question:
RQ3 (Oracle). Can we find metric thresholds that discriminate
between the original model and mutants with no or few false
alarms?

We generated mutants for the driving models DAVE-2 [25]
and Chauffeur [33] for the Lake Track, using two available DL
mutation tools, DeepMutation++ [27] and DeepCrime [34].
The purpose of the study is to assess whether computed oracles
generalise across different AVs for the same lane-keeping task.

DeepMutation++ proposes eight post-training mutation op-
erators for feed-forward neural networks that are applicable
to our case study. Five of these operators target weights and
neurons of the model and have a ratio parameter that identifies
what ratio of weights/neurons is affected by the mutation. We
used three values of ratio equal to 0.01, 0.03, and 0.05 for
each mutation operator [27]. The remaining three operators
are applied to layers. To account for the dependence of these
operators on the selected layer, we generated three different
instances, each time selecting a different layer. Overall, we
generated 24 mutants for each AV model.

Concerning DeepCrime, 15 out of 24 operators are ap-
plicable to our case study. Seven mutation operators have
a parameter that can be selected from a range: the higher
the value of the parameter, the more aggressive the mutation
operator. For such operators, we applied a binary search over
the range of each parameter, in order to exclude crashing
mutants that are trivial to kill. The parameters of the remaining
eight operators require a specific categorical value. For our
experiments, we selected these parameter values randomly.
Overall, we generated 26 mutations for each AV model.

We performed simulations with all 100 mutants (i.e., 50
for DAVE-2 and 50 for Chauffeur). We excluded 22 mutants
of DAVE-2 and 17 of Chauffeur because they were experi-
encing either a crash or line crossing. For the remaining 61
mutants (28 for DAVE-2 and 33 for Chauffeur, respectively),
we computed the values of the driving quality metrics. We
then calculated the optimal oracle thresholds as described in
Section IV-A using DAVE-2 models as a reference (i.e., as
a “training set” to learn the thresholds). Such oracles are
able to kill all DAVE-2 mutants, and we evaluated their
effectiveness on the Chauffeur models, which acted as our
“test set”. Specifically, the original Chauffeur model was used
to assess the false positive rate, whereas its mutants were used
to identify the fault detection capability of the oracle.

TABLE IV: Optimal Threshold Computation (RQ3); FP =
False Positives; FN = False Negatives

Size FP Train (ε) FP Test FN Train Mutants Killed

1 0 (0%) 0 (0%) 1 (3%)
1 1 (4%) 0 (0%) 23 (3%) 1 (3%)
1 2 (7%) 0 (0%) 23 (3%) 1 (3%)
1 3 (11%) 0 (0%) 23 (3%) 1 (3%)
2 0 (0%) 0 (0%) 2 (6%)
2 1 (4%) 0 (0%) 41 (5%) 2 (6%)
2 2 (7%) 0 (0%) 60 (8%) 16 (48%)
2 3 (11%) 2 (7%) 105 (13%) 33 (100%)
3 0 (0%) 0 (0%) 2 (6%)
3 1 (4%) 0 (0%) 41 (5%) 2 (6%)
3 2 (7%) 0 (0%) 60 (8%) 16 (48%)
3 3 (11%) 2 (7%) 105 (13%) 33 (100%)
4 0 (0%) 7 (25%) 33 (100%)
4 1 (4%) 0 (0%) 41 (5%) 2 (6%)
4 2 (7%) 0 (0%) 60 (8%) 16 (48%)
4 3 (11%) 2 (7%) 105 (13%) 33 (100%)
5 0 (0%) 10 (36%) 33 (100%)
5 1 (4%) 0 (0%) 42 (5%) 7 (21%)
5 2 (7%) 0 (0%) 61 (8%) 21 (64%)
5 3 (11%) 2 (7%) 106 (14%) 33 (100%)
6 0 (0%) 11 (39%) 33 (100%)
6 1 (4%) 0 (0%) 45 (6%) 18 (55%)
6 2 (7%) 2 (7%) 78 (10%) 33 (100%)
6 3 (11%) 12 (43%) 108 (14%) 33 (100%)
7 0 (0%) 11 (39%) 33 (100%)
7 1 (4%) 0 (0%) 75 (10%) 24 (73%)
7 2 (7%) 3 (11%) 99 (13%) 33 (100%)
7 3 (11%) 2 (7%) 129 (16%) 33 (100%)

C. Results

RQ3 (Oracle). The quality of the obtained oracles is a com-
bination of their size, mutation killing capability, and number
of false positives. Ideally, the perfect oracle will have a small
size, no false positives, and perfect mutation killing score.
Table IV reports such values for different oracles. Column Size
reports the number of variables considered in the oracle. For
each oracle size n, we selected the top n metrics prioritised
by the variance score (RQ2). Column FP Train reports ε,
the proportion of sectors in which we allowed FPs when
constructing the oracle, using DAVE-2 to train the thresholds,
while column FP Test reports the amount of FP witnessed
during the evaluation of the oracle on Chauffeur. We also
report the number of constraints in the Unsat core (column
FN Train), which have been removed to find a solution to the
threshold optimisation problem. Finally, Chauffeur’s mutants
are considered killed if a true positive alarm is raised in at
least one of the sectors where the mutant drives.

We have analysed oracle sizes up to 10. However, since
no improvements were observed after size seven, we limit
the results to such a meaningful subset. Oracles containing
only one variable have a very low mutation killing score. In
contrast, when we use two variables, it is possible to obtain
an oracle killing all the mutants with 7% FP rate on the
test set. With more than two variables, no further reduction
in the FP rate on the test set is observed while preserving
the 100% mutation score. On the other hand, if we aim for

9

0% FP on the test set, but we also accept a lower mutation
score, we can identify a couple of interesting configurations:
48% mutation score and 0% FP on test set when using three
variables, 64% mutation score and 0% FP on test set when
using five variables, and 73% mutation score with 0% FP with
seven variables.

Overall, we can notice that with a number of variables be-
tween two and five we have several solutions with interesting
trade-offs between FP rate and mutation score, ranging from
no false positive but reduced mutation score, to maximum
mutation score with a few residual false alarms.

D. Threats to Validity

Internal Validity. The main threat to internal validity concerns
our custom implementation of metrics within the simulator.
We tested such implementation extensively. Another possible
threat is the training of our own AVs and mutants, which
may exhibit a large number of misbehaviours if trained inade-
quately. We mitigated this threat by training and fine-tuning the
driving models using the guidelines from existing papers [13]
and by using state-of-the-art DL mutation testing tools.
External. Our results are as representative as the Udacity
simulator’s capabilities to reflect the AV’s model in the real-
world. While there exist datasets of real driving scenes used to
train robust AV models, these datasets cannot be used in our
study because we cannot compute our metrics for such driving
scenarios. We used a limited number of AVs and tracks in our
evaluation, which also pose a threat in terms of generalisability
of our results. We tried to mitigate this threat by choosing
real-world AV models which achieved competitive scores in
the Udacity challenge competition.
Reproducibility. All our results and references, the simulator,
and subjects are available in our replication package [35].

V. RELATED WORK

Simulation Platforms. The Udacity simulation platform for
the behavioural cloning task [16] and BeamNG [36] have
been used in multiple papers on testing AVs [6], [13], [14].
Both platforms, however, to the best of our knowledge, do not
include driving quality metrics to assess AV models.

CARLA [37] reports safety metrics such as off-road
episodes and collisions with pedestrian, or other vehicles [38].
Apollo provides 12 metrics that include both safety violations,
and other violations such as traffic light or lane changes [39].
DeepDrive scores only a test scenario consisting of a car
proceeding on a four-way junction, scored with a combination
of total trip time and g-force caused by acceleration [40].

Differently, the driving quality metrics proposed in this
paper were retrieved by a comprehensive analysis of the
literature. Being more generic, we expect them to be largely
applicable to a wide variety of driving scenarios and sim-
ulators. In this work, we implemented and evaluated them
within the Udacity simulator, providing an enriched platform
to researchers that use this simulator in their studies.
Empirical Studies. Codevilla et al. [41] investigate the re-
lation between online and offline metrics for AVs. Offline

prediction errors are not necessarily correlated with driving
quality, and two models with comparable error prediction rates
may differ substantially in their driving quality. Similarly to
Codevilla et al. [41], Haq et al. [4] performed an empirical
study comparing offline and online testing of DNNs for AVs.
The goal was to understand whether simulator-generated data
can be a reliable proxy for real-world data. Specifically, all
severe violations exposed by simulations are also exposed
by offline techniques/measures, but the opposite is not true.
Compared to our study, the metrics used in both empirical
studies [41], [4] are coarse-grained driving quality indicators.
Oracles in Test Generation. In the offline setting, sev-
eral approaches generate input images that trigger steering
angle inconsistencies between multiple autonomous driving
systems [7], or between the original and transformed driving
driving scenarios [8], [9], [42]. The oracle used in such works
consists of measuring whether the deviation between actual
and reference steering angles is higher than a given threshold.

Concerning online testing techniques for AVs, researchers
proposed search-based techniques to generate scenarios that
cause AVs to misbehave [6], [13], [14], [43]. All such papers
consider coarse-grained functional oracles checking only the
violation of safety requirements, such as collisions or off-road
episodes. Differently, in our work, we introduce fine-grained
metrics that discriminate the actual quality of driving even
in the absence of such extreme misbehaviours, which in our
framework represent the simplest and most straightforward,
but also least discriminative, form of oracle for AVs.

VI. CONCLUSIONS AND FUTURE WORK

Evaluating the driving performance of autonomous driving
systems requires testing techniques equipped with effective
functional oracles able to discriminate good from bad quality
of driving. Towards this aim, in this paper we extracted a large
set of metrics regarding the quality of human driving from the
literature, and studied their applicability to the autonomous
driving domain. The results of our user study suggest that our
list of metrics do correlate with human perceived quality of
driving. Furthermore, we selected a minimal set of metrics to
automatically construct a driving quality oracle that was able
to discriminate between robust and weak AV models (obtained
by means of mutation analysis) with few to no false alarms.

As part of our ongoing and future work, we plan to include
more subjects (and corresponding driving tasks) into our
study, and analyse the sensitivity, reliability and applicability
of the proposed metrics in different driving environments.
Furthermore, we are planning to develop an abstraction layer
to allow easier extensibility of our infrastructure to other
driving simulators and testing frameworks.

ACKNOWLEDGEMENT

This work was partially supported by the H2020 project
PRECRIME, funded under the ERC Advanced Grant 2017
Program (ERC Grant Agreement n. 787703). We are most
grateful to all participants who willingly answered the ques-
tionnaires of our study.

10

REFERENCES

[1] “AIDE - Adaptive Integrated Driver-vehicle InterfacE,” http://www.
aide-eu.org/pdf/sp2 deliv new/aide d2 2 5.pdf, 2005.

[2] “HASTE - Human Machine Interaction and the Safety
of Traffic in Europe,” https://trimis.ec.europa.eu/project/
human-machine-interaction-and-safety-traffic-europe#tab-outline,
2005.

[3] L. Fraade-Blanar, M. S. Blumenthal, J. M. Anderson, and N. Kalra,
“Measuring Automated Vehicle Safety - Forging a Framework,” Rand,
Tech. Rep., 2018.

[4] F. U. Haq, D. Shin, S. Nejati, and L. Briand, “Comparing offline and
online testing of deep neural networks: An autonomous car case study,”
in Proceedings of 13th IEEE International Conference on Software
Testing, Verification and Validation, ser. ICST ’20. IEEE, 2020.

[5] D. Gopinath, G. Katz, C. S. Păsăreanu, and C. Barrett, “Deepsafe: A
data-driven approach for assessing robustness of neural networks,” in
Automated Technology for Verification and Analysis, S. K. Lahiri and
C. Wang, Eds. Cham: Springer International Publishing, 2018.

[6] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in
Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2019. New York,
NY, USA: ACM, 2019, pp. 318–328. [Online]. Available: http:
//doi.acm.org/10.1145/3293882.3330566

[7] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 1–18. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132785

[8] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 303–314. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180220

[9] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018. New York, NY, USA: ACM, 2018, pp. 132–142. [Online].
Available: http://doi.acm.org/10.1145/3238147.3238187

[10] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and
T. Stifter, “Testing autonomous cars for feature interaction failures
using many-objective search,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018. New York, NY, USA: ACM, 2018, pp. 143–154. [Online].
Available: http://doi.acm.org/10.1145/3238147.3238192

[11] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), Sep. 2016, pp. 63–74.

[12] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), May 2018, pp. 1016–1026.

[13] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” in Proceedings of 42nd In-
ternational Conference on Software Engineering, ser. ICSE ’20. ACM,
2020, p. 12 pages.

[14] V. Riccio and P. Tonella, “Model-Based Exploration of the Frontier of
Behaviours for Deep Learning System Testing,” in Proceedings of ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE ’20, 2020.

[15] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[16] Udacity, “A self-driving car simulator built with Unity,” https://github.
com/udacity/self-driving-car-sim, 2017, online; accessed 18/08/2019.

[17] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[18] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering: An
update,” Information and Software Technology, vol. 64, pp. 1–18,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584915000646

[19] K. Bartrim, B. McCarthy, D. McCartney, G. Grant, B. Desbrow, and
C. Irwin, “Three consecutive nights of sleep loss: effects of morning
caffeine consumption on subjective sleepiness/alertness, reaction time
and simulated driving performance,” Transportation research part F:
traffic psychology and behaviour, vol. 70, pp. 124–134, 2020.

[20] C. Caponecchia and A. Williamson, “Drowsiness and driving perfor-
mance on commuter trips,” Journal of safety research, vol. 66, 2018.

[21] J. R. McLean and E. R. Hoffmann, “Analysis of drivers’ control
movements,” Human Factors, vol. 13, no. 5, pp. 407–418, 1971.
[Online]. Available: https://doi.org/10.1177/001872087101300503

[22] V. R. Preedy and R. R. Watson, Eds., 5-Point Likert Scale. New York,
NY: Springer New York, 2010, pp. 4288–4288. [Online]. Available:
https://doi.org/10.1007/978-0-387-78665-0 6363

[23] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing Machine Learning based Systems: A Systematic
Mapping,” Empirical Software Engineering, 2020.

[24] A. Stocco and P. Tonella, “Towards anomaly detectors that learn con-
tinuously,” in Proceedings of 31st International Symposium on Software
Reliability Engineering Workshops, ser. ISSREW 2020. IEEE, 2020.

[25] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars.” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[26] G. Jahangirova and P. Tonella, “An empirical evaluation of mutation
operators for deep learning systems,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 74–84.

[27] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
A mutation testing framework for deep learning systems,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1158–1161.

[28] W. Kirch, Ed., Pearson’s Correlation Coefficient. Dordrecht: Springer
Netherlands, 2008, pp. 1090–1091. [Online]. Available: https://doi.org/
10.1007/978-1-4020-5614-7 2569

[29] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[30] J. Sim and C. C. Wright, “The kappa statistic in reliability studies: Use,
interpretation, and sample size requirements,” Physical Therapy, 2005.

[31] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, pp. 159–174, 1977.

[32] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test oracle
assessment and improvement,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 247–
258.

[33] Team Chauffeur, “Steering angle model: Chauffeur,” https:
//github.com/udacity/self-driving-car/tree/master/steering-models/
community-models/chauffeur, 2016, online; accessed 18/08/2019.

[34] “DeepCrime,” https://github.com/deepcrime-tool/DeepCrime, 2020.
[35] “Replication Package,” https://github.com/guneljahan/driving quality

metrics/, 2020.
[36] BeamNG GmbH, “BeamNG.research,” https://beamng.gmbh/research/,

2018, online; accessed 18/08/2019.
[37] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun,

“CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938,
2017. [Online]. Available: http://arxiv.org/abs/1711.03938

[38] “CARLA’s Driving Benchmark Performance Metrics,” https://carla.
readthedocs.io/en/0.8.4/benchmark metrics/, 2019.

[39] “Apollo’s Dreamland,” https://github.com/ApolloAuto/apollo/blob/
bf2b3730835fd5a98f91a5fb00f9d82ef750be9d/docs/specs/Dreamland
introduction.md, 2019.

[40] “DeepDrive Voyage,” https://deepdrive.voyage.auto/leaderboard/, 2019.
[41] F. Codevilla, A. M. López, V. Koltun, and A. Dosovitskiy, “On offline

evaluation of vision-based driving models,” CoRR, vol. abs/1809.04843,
2018. [Online]. Available: http://arxiv.org/abs/1809.04843

[42] S. Müller, D. Hospach, O. Bringmann, J. Gerlach, and W. Rosenstiel,
“Robustness evaluation and improvement for vision-based advanced
driver assistance systems,” in 2015 IEEE 18th International Conference
on Intelligent Transportation Systems, Sep. 2015, pp. 2659–2664.

[43] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K.
Gupta, “Adaptive generation of challenging scenarios for testing
and evaluation of autonomous vehicles,” Journal of Systems and
Software, vol. 137, pp. 197–215, 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121217302546

11

http://www.aide-eu.org/pdf/sp2_deliv_new/aide_d2_2_5.pdf
http://www.aide-eu.org/pdf/sp2_deliv_new/aide_d2_2_5.pdf
https://trimis.ec.europa.eu/project/human-machine-interaction-and-safety-traffic-europe#tab-outline
https://trimis.ec.europa.eu/project/human-machine-interaction-and-safety-traffic-europe#tab-outline
http://doi.acm.org/10.1145/3293882.3330566
http://doi.acm.org/10.1145/3293882.3330566
http://doi.acm.org/10.1145/3132747.3132785
http://doi.acm.org/10.1145/3180155.3180220
http://doi.acm.org/10.1145/3238147.3238187
http://doi.acm.org/10.1145/3238147.3238192
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584915000646
https://doi.org/10.1177/001872087101300503
https://doi.org/10.1007/978-0-387-78665-0_6363
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/deepcrime-tool/DeepCrime
https://github.com/guneljahan/driving_quality_metrics/
https://github.com/guneljahan/driving_quality_metrics/
https://beamng.gmbh/research/
http://arxiv.org/abs/1711.03938
https://carla.readthedocs.io/en/0.8.4/benchmark_metrics/
https://carla.readthedocs.io/en/0.8.4/benchmark_metrics/
https://github.com/ApolloAuto/apollo/blob/bf2b3730835fd5a98f91a5fb00f9d82ef750be9d/docs/specs/Dreamland_introduction.md
https://github.com/ApolloAuto/apollo/blob/bf2b3730835fd5a98f91a5fb00f9d82ef750be9d/docs/specs/Dreamland_introduction.md
https://github.com/ApolloAuto/apollo/blob/bf2b3730835fd5a98f91a5fb00f9d82ef750be9d/docs/specs/Dreamland_introduction.md
https://deepdrive.voyage.auto/leaderboard/
http://arxiv.org/abs/1809.04843
http://www.sciencedirect.com/science/article/pii/S0164121217302546
http://www.sciencedirect.com/science/article/pii/S0164121217302546

