Al-based Test Automation: A Grey Literature
Analysis

Filippo Ricca*, Alessandro Marchetto, Andrea Stoccot

*Universita degli Studi di Genova, Genoa, Italy, filippo.ricca@unige.it
TIndependent Researcher, alex.marchetto@gmail.com
Software Institute - USI, Lugano, Switzerland, andrea.stocco@usi.ch

Abstract—This paper provides the results of a survey of the
grey literature concerning the use of artificial intelligence to
improve test automation practices. We surveyed more than 1,200
sources of grey literature (e.g., blogs, white-papers, user manuals,
StackOverflow posts) looking for highlights by professionals on
how Al is adopted to aid the development and evolution of test
code. Ultimately, we filtered 136 relevant documents from which
we extracted a taxonomy of problems that AI aims to tackle,
along with a taxonomy of Al-enabled solutions to such problems.
Manual code development and automated test generation are
the most cited problem and solution, respectively. The paper
concludes by distilling the six most prevalent tools on the market,
along with think-aloud reflections about the current and future
status of artificial intelligence for test automation.

Index Terms—artificial intelligence, test automation, grey lit-
erature

I. INTRODUCTION

The advent of Test Automation (TA) techniques has been a
major advancement in empowering software engineers in their
QA processes. TA is used to enable a large variety of testing
tasks—from automated code analysis, unit testing, acceptance
testing, or performance testing—across many different soft-
ware products, such as web or mobile apps [1].

However, the limitations of TA tools such as Selenium
became apparent to developers who sought to use them to
develop complex test suites. First, nontrivial testing knowledge
and programming skills are still required by these tools, as they
offer limited support in the creation of high-quality test code.
For instance, the creation of robust locators, or deterministic
test scripts, is still largely performed manually by testers.
Second, in case of ever-changing requirements and software
evolution, the technical limitations affecting such automated
tests—such as flaky or fragile tests [2]—make test scripts
almost unusable. Test maintenance is still a laborious and
difficult task because the level of automation of existing tools
in this respect is either very limited or totally absent.

Artificial Intelligence (AI) brings the promise of changing
the way TA is performed, impacting the whole testing phase
by facilitating or automating testing activities such as test
planning, authoring, development, and maintenance. In prin-
ciple, can we really ask a machine to test software systems?
Our conjecture is that Al can facilitate identify, design, build,
execute, and maintain automated test suites by employing
statistical techniques to improve the tasks of testers. A plethora

of testing tools that exploit Al-based capability for delivering
semi- or fully automated testing have been presented, e.g.,
in this work, we surveyed 48 tools. Unfortunately, to date, Al
testing is a hackneyed term. A clear picture of what Al testing
really is, the problems it aims to alleviate, and the solutions
being utilized is missing.

In this paper, we aim to investigate the synergy between Al
and software testing, and how Al is reshaping test automation.
We analyzed sources from the grey literature—e.g., white-
papers, magazines, online blog-posts, question-answers sites,
survey results, and technical reports—because they are the
default fora in which practitioners often share their experiences
matured on the field, and propose novel practices, guidelines,
and tips. Synthesizing knowledge from the grey literature
is a contemporary issue in empirical software engineering
research [3]. For instance, works have mined the knowledge
by practitioners about selecting the right test automation
tool [4], the factors behind the choice of what and when to
automate [S], or the TA best practices for developing high-
quality test code [2].

From our experience, the grey literature is an unexplored
gold mine of Al practices for TA. Potential interesting insights
are still hidden as practitioners lack both the time and the
scientific background to distill the most relevant solutions
rigorously. Our task is to try to surface the source of truth
usually held in sparse documentation, or in the minds of
professionals, stakeholders, developers, and end-users.

To this aim, we surveyed the grey literature to collect, unify,
and organize such existing literature in Al practices for TA,
to understand what tools exist, what problems they target, and
what solutions do they offer.

The main contribution of our work is two taxonomies of
problems and solutions in Al for TA, composed of a rich set
of guidelines about different technical aspects of the testing
process. We also distilled the set of six most cited Al testing
tools that, according to developers, can improve the quality
of the TA process using Al. Our taxonomies can be useful to
both practitioners and researchers, who can, respectively, use
the most quoted tools to deliver better test code and foster
future research in this field.



II. BACKGROUND
A. Test Automation

Test automation encompasses the entire testing process
within a company or an organization. The basic elements of
TA are fest scripts, that are test programs executed against
a portion of the software under test. A test script executes a
sequence of predefined actions, implemented as commands
and inputs, against the software under test and determines
its correct behavior by means of assertions. Assertions are
(often) manually-defined oracles that determine whether the
implemented functionalities are correct. Automated test scripts
can be developed to test any level of the software, such as a
unit, an API, or even the system as a whole in an end-to-end
user-centric fashion. The last option is the most common in
the web and mobile environment.

B. Artificial Intelligence

Artificial intelligence refers to the “emulation” of human
intelligence by computers that are programmed to think like
humans and mimic their actions and reasoning. The term is
also applied to any machine that exhibits traits associated
with a human mind such as learning and problem-solving.
The goals of artificial intelligence include learning, reasoning,
and perception. With no claims of completeness, we introduce
the Al-related terms that are necessary to understand the
remainder of the paper.

Machine learning (ML) is related to pattern recognition and
learning from data in order to solve classification or regression
problems. The performance of ML algorithms depends heavily
on the representation of the data they are given. Indeed,
ML algorithms “learn” to perform some tasks, based on a
training phase on representative sample data referred to as
training datasets. Machine learning can deal with supervised
learning problems (e.g., classification, regression), in which
training sets are annotated (or labeled) with the ground truth
values, or unsupervised learning problems (e.g., clustering,
or dimensionality reduction), in which no ground truth is
given. The last category is reinforcement learning (RL). RL
algorithms are used to constantly adapt to the environment in
which they operate, based on a feedback-directed mechanism.
The algorithm chooses an action, observes the consequences of
the decision, and adapts its strategy to maximize an expected
cumulative reward function.

Many Al tasks can be solved by designing and extracting the
right set of features. However, for many tasks, it is difficult to
know apriori what features are more relevant to be extracted.
To this aim, artificial neural networks, and in particular deep
neural networks, solve the problem of finding the right rep-
resentation by introducing hierarchies of representations [6].
The input data is sent through layers activated by nonlinear
functions. Each layer transforms the raw input (first level) into
progressively more abstract representations (inner, or hidden,
levels). As such, a deep learning algorithm is able to discover
underlying hidden patterns in high-dimensional data, which
allows the algorithm to correctly perform a task, even on
previously unseen data [6].

Computer Vision (CV) provides techniques for analyzing
and understanding images, similar to the way humans perceive
them. Popular applications in CV include pattern recognition,
image analysis, and optical character recognition.

Finally, Natural Language Processing (NLP) enables com-
puters to analyze and understand human language.

III. RELATED WORK

Secondary studies. Trudova et al. [7] performed a systematic
literature review (SLR) to highlight the role of Al in TA.
Based on the analysis of 34 research papers, they highlight that
scholars adopted mostly ML and CV techniques for manual
effort reduction, improving test suites effectiveness, and their
reusability. Lima et al. [8] present another SLR in which
they highlight that ML techniques (supervised, unsupervised,
and reinforcement learning) are applied mostly to black-
box testing, whereas Artificial Neural Networks and Genetic
Algorithms are applied to fuzz and regression testing.

There are works that gathered the practitioners’ opinions
to improve the overall quality of the testing process [2], [4],
[S], [9], [10]]. For instance, Ricca and Stocco [2] highlight the
TA best practices for test code development and maintenance
based on an analysis of several hundred documents from the
grey literature. Raulamo-Jurvanen et al. [4] identify different
criteria for choosing the right testing tool driven by the
practitioners’ perspective. A study by Garousi [S] aims to
characterize what industry wants from academia in software
testing, by soliciting testers’ challenges during their activities.

Similarly to these works, we consider the grey literature as

a primary source of information. Different from these works,
this paper distills and summarizes the Al-based test automation
tools, what problems they target, and what solutions they
provide. To the best of our knowledge, our work represents
a unique and novel contribution to the state of the art.
Al for TA. Zhu et al. [11] propose an automated tool for
datamorphic testing that classifies test artifacts into test entities
and test morphisms, and synthesizes test strategies to generate
test sets that adequately cover mutant test cases. Yalla and
Sunil [12]] describe an NLP-driven sentence generator that can
be used as test input for conversational Al bots by popular
automated testing tools/frameworks such as Selenium.

In the context of web development, Al has been utilized for
the design and development of graphical user interfaces from
image mockups [13[], [14]], [L5]. Recently, also the software
testing community has witnessed an increasing adoption of CV
techniques for assisting or solving common software engineer-
ing tasks [16], such as detecting cross-browser incompatibili-
ties (XBIs) [LL7], web test migration [18]], [19]], test repair [20],
automated test generation [21], or test prioritization techniques
for mobile applications [22].

Different from these works, our work focuses on tools avail-
able in the state of the practice, often developed, supported,
and maintained by companies with a large user base. The
results of our research are intended to complement the state-
of-the-art in academia and highlight the developers’ desiderata
thereby fostering future research in the field.



Document

Data
Extraction

Google/arXiv 3 @
> .
Search Selection
1206 D 136 D

_ Taxonomy Ea
i —
candidate Creation . )

problems/solutions/tools

Fig. 1: Overview of the selection procedure

IV. EXPERIMENTAL STUDY

Our study focuses on the grey literature describing artificial
intelligence (and machine learning) to support test automa-
tion. We consider the following research questions:

RQ; (Problems). What problems in test automation does
artificial intelligence help to alleviate?

RQ: (Solutions). What solutions does artificial intelligence
offer to improve test automation?

RQs (Tools). What are the most popular Al-based testing
tools?

This section describes the selection procedure we carried
out to obtain the relevant documents to answer our research
questions, which has been designed according to the guidelines
by Garousi et al. [23]].

A. Procedure

graphically illustrates our four-phase procedure:
(1) Google/arXiv search, (2) document selection, (3) data
extraction, and (4) taxonomy creation. In the rest of the
section, we provide additional details on each phase.

1) Google/arXiv Search: For the Google search, the authors
crafted a search string based on the goal of this study. The
output of this step is a set of candidate relevant studies.
Additionally, we considered the arXiv database to retrieve
relevant papers that are not yet published. This database offers
an advanced search featurd] and has been used in similar
studies [3] as a source of grey literature.

To formulate the search string, the authors identified an
initial set of candidate keywords starting from the goal of the
study. Each tentative search string was then validated against
a list of relevant documents, as suggested in the guidelines by
Kitchenham and Charters [24]. The final search string is:

((“artificial intelligence” OR “AI” OR “machine learning” OR “ML”)
AND
(“test automation” OR “automated testing”))

The first group of terms characterizes words that relate
to artificial intelligence and machine learning, whereas the
second group of terms narrows the search to automated testing
techniques. All relevant documents contained an instance of
each keyword from each group (AND operator), whereas
keywords within the same group were ORed.

The search was performed from 10 September 2020 to 14
September 2020. For each search query, the first 15 pages
of results were scraped, each having 10 documents. We
conducted eight queries, which accounted for 1200 documents
that were analyzed overall (150 documents for each query). No
more significant documents were found after the 15" page. For
arXiv, we retrieved only six documents.

Uhttps://arxiv.org/search/advanced

2) Document Selection: The Google search is, by con-
struction, very inclusive. This allowed us to collect as many
documents as possible in our pool, at the price of having
documents that are not directly related to the scope of this
study. Accordingly, we defined a set of specific inclusion and
exclusion criteria to remove documents not meeting the criteria
and ensure that each collected document is in line with the
scope of the study.

Inclusion Criteria. First, the document should propose ar-
tificial intelligence or machine learning tools or algorithms
to support test automation practices, i.e., such as GUI testing,
acceptance testing, or functional testing. Second, the document
should apply to either capture-replay (C&R), programmable
(or script-based), visual, or combinations of these testing ap-
proaches. Last, tools’ websites and presentations are included
as long as they specify useful information. Presentations and
slide decks are allowed if they have dedicated and detailed
sections discussing tools or algorithms able to support test
automation practices.

Exclusion Criteria. We excluded peer-reviewed papers (very
few recovered through Google search) in agreement with
our goal of conducting grey literature. We also excluded
documents not written in the English language, or that pro-
vided guidelines for using artificial intelligence within manual
testing. Furthermore, we did not consider videos or books,
which are quite difficult to extract information from or to
retrieve, respectively. We also discarded websites that required
registration for consulting the resource. We excluded sources
that provided either generic information, e.g., documents only
explaining Al or TA.

Results of Document Selection. The studies obtained from
the database search were assessed manually by the authors
and only those studies that provide direct evidence about the
objective of the study were retained. The final number of
selected primary documents was 136.

3) Data Extraction: In the data extraction step, the authors
read and analyzed in detail the candidate documents, filling out
an extraction form with the information gathered from each
source [24]]. A tabular data extraction form was used to keep
track of the extracted information. In particular, each row of
such form reports a document and an individual problem or
solution. If multiple problem/solution tuples were found within
a document, they were collected individually within separate
rows. It is important to highlight that no predefined set of
problems/solutions was provided; for each newly retrieved hit
found during the data extraction phase, a new row was added
to the form incrementally.

First, the authors performed a pilot study, in which they
labeled a sample of 10 documents selected randomly. The
consensus on the procedure and the labels were high, therefore


https://arxiv.org/search/advanced

for the subsequent documents, the authors proceeded with the
analysis independently on separate sets of documents. During
the mapping, the authors could reuse existing labels previously
created, should an existing label apply to the document under
analysis. This choice was meant to limit introducing nearly-
similar labels for the same problem/solution, and help authors
to use consistent naming conventions.

4) Taxonomy Creation: After enumerating all extracted
data, the authors began the process of creating a taxonomy
for the first two RQs, following a systematic process [25]. For
each pair problem/solution, candidate equivalence classes were
identified and assigned to descriptive labels. By following a
bottom-up approach, the first clustered tags that correspond
to similar notions into categories. Then, they created parent
categories, in which categories and their subcategories follow
specialization relationships.

V. RESULTS

A. RQ; (Problems)

presents the list of problems in test automation
that, according to our analysis, are addressed with artificial
intelligence. Overall, we grouped 339 individual occurrences
into six main categories, namely test planning (6%), test design
(2%), test authoring (32%), test execution (21%), test closure
(14%), and test maintenance (24%). Around 83 occurrences
were not assigned to any category, being left either unspecified
(18%) or too generic (7%).

The most represented subcategory is Manual code devel-
opment (15%). It is well known that the development of test
scripts is a cumbersome activity. When the programmable ap-
proach is adopted, this task requires good domain knowledge
and sufficient testing and programming expertise because test
scripts must be designed and implemented using programming
languages such as Java, Python, or Ruby. Researchers have
estimated that developing a medium-length Java web test script
(about 10/15 commands) takes an average of 7 minutes [26]
using, e.g., Selenium WebDriver and JUnit frameworks. In-
dustrial projects have test suites in the size of hundreds or
thousands of test cases. Thus, a 7-min development time would
quickly add up to a substantial cost for any company.

The second most mentioned subcategory pertains to the
maintenance of test scripts (12%). This is known to be a
daunting problem, especially in the web and mobile scenarios,
which are subject to rapid and continuous evolution. Thus,
test scripts must undergo periodic maintenance to stay aligned
with the application. Some estimates suggest that this task is
almost as time-consuming as development [26]], or even the
most expensive TA activity [10].

Another relevant subcategory is related to Untested code
(7%). Testing is a resource optimization problem that testers
need to face daily. Since it is impossible to test everything,
testers can only automate those test cases that they deem
crucial for finding faults. As a consequence, automated test
suites can only cover a portion of the application’s functional-
ities. This can have a detrimental effect on the quality of the

TABLE I: Taxonomy of main TA problems by practitioners.

PROBLEM #

Test Planning (22)

Critical paths identification 13
Planning what to test 7
Planning long release cycles 2
Test Design (8)
Programming skills required 5
Domain knowledge required 3
Test Authoring (109)
Manual code development 52
Manual API test development 7
Manual data creation 19
Test object identification 13
Cross-platform testing 10
Costly exploratory testing 5
Locators for highly dynamic elements 1
Test code modularity 1
Accessibility testing 1

Test Execution (71)

Untested code 29
Flakiness 18
Slow execution time 14
Useless test re-execution 4
Scalability 2
Parallelization 2
Low user responsiveness 1
Platform independence 1

Test Closure (47)

Manual debugging overhead 18
Costly result inspection 10
Visual analysis 19
Test Maintenance (82)
Manual test code migration 3
Bug prediction 11
Fragile test script 10
Regression faults 2
Costly visual GUI regression 8
Maintenance overhead 48
Unspecified 60
Generic 23

delivered application because a test suite with low coverage
has a lower chance of spotting bugs [27].

Other less numerous, yet representative, categories pertain
to Manual data creation (5%), Visual analysis (5%), Flakiness
(5%) and Manual debugging overhead (5%). Producing high-
quality data is a critical part of testing [2] as they have a higher
chance of detecting bugs. Unfortunately, realistic test data are
often unavailable, and testers need to come up with their own,
which requires careful input selection and domain knowledge.

Validating the visual correctness of a GUI is another very
challenging task. When performed manually, testers have to
check by eye-balling that all visible parts of the application
are displayed as intended, often on different devices and
platforms. Typically, screenshots of the application under test
are compared to a previously stored baseline (i.e., a golden
master), and any visually significant difference is reported.

Another problem that plagues test automation is test flak-
iness. A test script is flaky when its execution on the same
application yields different outcomes due to environmental
factors such as the screen size, the version of the browser,
or the network traffic [28]]. This problem poses a threat to
the very use of test automation because non-deterministic test
cases are more likely to miss faults (false negatives) or report
erroneous bugs (false positives).



Manual debugging is another prevalent problem experienced
by testers, which requires them to trace the root-cause for test
script failures in the application under test. At last, we mention
test results inspection activities, i.e., analyzing, interpreting,
and validating the results obtained from a test suite execution,
which is also a time-consuming task.

B. RQ; (Solutions)

Solutions. presents the list of solutions provided by
the use of artificial intelligence. Overall, we grouped 307
individual occurrences into four main categories, namely test
generation (41%), test oracle (12%), debugging (20%), and
test maintenance (26%). Around 116 occurrences were not
assigned to any category, being left either unspecified (30%)
or too generic (8%).

Among the solutions, the most represented category is
automated test generation (20% overall). Ideally, the dream
would be to automatically produce a test code with human-
level quality. This is an ambitious goal even for Al. Indeed, in
47% of the cases, the documents we analyzed do not specify
how automated test code generation is implemented. However,
interesting solutions are proposed. For instance, TestSigma
uses NLP to drive the creation of tests. The approach is as
follows. A tester manually initiates a test in the tool, which
analyzes the sentences and divides them into segments. These
segments can be organized into blocks that specify actions,
targets, and input data. As a tester uses limited and precise
language, this is far easier to analyze than everyday speech.
Other Al-based testing tools can automatically produce test
scripts mimicking the behavior of real users (3%) by analyzing
the operations and inputs by real users on the app, or by
inferring test data automatically (6%).

The second most mention category pertains to the main-
tenance of test scripts. Most effort has been devoted to the
development of self-healing mechanisms that use Al to proac-
tively detect and fix threats before their occurrence impacts the
production or the test code. This form of anticipatory testing
has been implemented mainly through self-healing test scripts
(8%) or smart locators (6%). Both solutions aim to keep test
scripts and applications aligned during the evolution, but in
practice, this is achieved quite differently.

Self-healing test scripts offer a corrective action when a
test script breaks, through an automated repair procedure that
fixes the test script automatically. For instance, Mabl, one of
the testing frameworks found in the analyzed documents, aims
to identify robustly web elements having similar counterparts
in their neighborhood, like a table, instead of relying on
complex XPath selectors. Suppose the user wants to generate
a locator for an element based on its position in a list or
table. Mabl will look at similar elements on the page that can
function as potential anchors for the target element, along with
a confidence rating. The user can edit the identifying list of
attributes based on the use case. Upon breakage, the broken
locator is shown to the tester, along with several potential fixes
that the user has to manually validate. The selected fix is then
automatically propagated to all tests using that locator.

TABLE II: Taxonomy of Al Solutions to TA problems.

SOLUTION #

Test Generation (125)

Automated test generation 29
Automated test generation using machine translation 11
Automated test generation from user behaviour 11
Automated test generation from API calls 6
Automated test generation from mockups 3
Automated test generation using crawling 2

Automated data generation 22

Robust element localization 13

Dynamic properties recognition based on user behaviour 8

Automated exploratory testing 7
Object recognition engine 6
Mock generation 3
Self-learning 2
Automated API generation 1
Page object recognition 1
Oracle (38)

Visual testing 38
Debugging (62)
Intelligent test analytics 17
Automated coverage report 14
Noticeable code changes identification 12
Runtime monitoring 10
Flaky test identification 7
Bad smell identification 1

Decoupling test framework from host 1
Maintenance (81)

Self-healing mechanisms 43
Self-healing test scripts 24
Smart locators 19

Intelligent fault prediction 12

Test selection intelligent test case re-execution 12

Intelligent waiting sync 5

Intelligent test case prioritization 4

Automated identification environment configurations 3

Pattern recognition 1

Remove unnecessary test cases 1

Unspecified 91
Generic 25

Smart locators, on the other hand, operate a preventive
action that hinders test scripts from breaking. Such locators are
deemed smart because of their resilience to prevent test break-
ages. Smart locators are equipped with multiple constructs
that are updated dynamically as the app evolves. This gives
them the capability to keep test scripts up-to-date with little to
no human effort. In practice, smart locators are implemented
in different ways. An interesting case is the Testim testing
framework, which uses a redundant set of locators for each test
script’s element [29] to train a predictive model that evaluates
the reliability (presumed robustness) of each construct. The
weights of the model are updated continuously based on
the developers’ changes to the web app. For instance, if a
developer changes the text value of an element (e.g., “Login”
— “Login Now!”), the corresponding text attribute is given a
negative weight on the overall prediction because it is regarded
as an unstable attribute. In practice, by maintaining multiple
attributes per element as well as an updated predictive model,
the robustness of test scripts is highly improved. Indeed, based
on such statistical analysis, Testim is always able to select
effective candidate fixes (i.e., alternative correct locators). The
level of automation is arguably superior to the previous Mabl
case, even though the techniques can be combined, e.g., smart
locators can be used within self-healing test scripts.



TABLE III: Most mentioned Al-based TA tools from the grey literature.

Tool Reference Platform Category # Hits
Functionize https://www.functionize.com Web and Mobile Test generation and maintenance 19
Applitools https://applitools.com All Test maintenance, Cross-platform testing 18
Mabl https://www.mabl.com Web Test generation and maintenance 18
Testim https://www.testim.io Web Test maintenance 15
Test.ai https://www.test.ai Mobile Test generation and maintenance 14
Appvance.ai https://www.appvance.ai Web Test generation 11

Among other notable examples of maintenance reduction
techniques, we mention two interesting industry-level cases.
At Netflix, the company uses Reinforcement Learning agents
for test case prioritization in a CI environment. Their algorithm
is inspired by the work by Spieker et al. [30]. On a similar
line, Facebook has implemented a predictive test selection
technique to estimate the probability of each test failing for
a newly proposed code change. Unlike typical regression test
selection (RTS) tools, the system automatically develops a test
selection strategy by learning from a large data set of historical
code changes and test outcomes [31].

Debugging is the third subcategory, with intelligent test
analytics being the most represented (5%). Our survey of the
literature highlighted two main use cases. First, intelligent test
analytics is used to make predictions based on historical data
and spot the portions of the application under test with the
highest probability of containing bugs. Second, it can be also
used to analyze test reports and identify the reason for the
failure of test scripts (root cause analysis).

The last subcategory of our taxonomy pertains to oracles,
specifically those that check the visual correctness of the
application’s GUI (12%). Different CV solutions are used to
quickly find functional and visual problems using OCR or
image-recognition techniques. We have identified two main
approaches. The first approach uses a comparative approach
using the golden master to replace assertions. Applitools is an
instance of such an approach: upon test execution of the test
script, CV is used to compare the currently visualized state of
the page against the correspondent ground truth represented
by the golden master, and reporting human-perceptible differ-
ences. This approach is particularly effective for regression and
multi-browser testing, in which analyzing all GUIs of an app
across different platforms is virtually impossible to perform
manually. In the second approach, used for GUI testing at
eBay, a set of correct and flawed images are used to train a
deep neural network classifier to detect visual imperfections,
such as images partially occluded by other images or text.

C. RQ; (Tools)

Our analysis revealed a proliferation of Al-based TA tools
or TA tools that increasingly adopt some Al. Particularly, we
found 48 different tools that were mentioned in the analyzed
documents. For the sake of space, lists only the tools
that were mentioned at least 10 times, ordered by ascending
number of hits. Overall, we observed a trend towards GUI-
based system testing, as often in the context of test automation.

Next, we briefly describe the main characteristics of the tools
in

Functionize is the most mentioned tool, with 19 hits.
The tool performs NLP-based test script creation and Al-
assisted maintenance to dynamically update test scripts. Partic-
ularly, Functionize proposes self-healing maintenance strate-
gies based on intelligent element selection. Moreover, it in-
cludes smart suggestions capable to automatically identify
the root cause of broken tests as well as intelligent visual
differences recognition.

Applitools is the second most mentioned tool, and it is
focused on visual GUI testing. Applitools is mostly used for
automated visual assertions employing numerous CV algo-
rithms that can filter human imperceptible differences. The
tool integrates smoothly with other testing frameworks (e.g.,
Selenium), to which it offers a programmatic API for enabling
visual analysis. Moreover, Applitools facilitates cross-browser
testing of web applications.

Our third-ranked tool is Mabl. Mabl is a full-fledged test
automation platform built for CI/CD. It is built as a SaaS solu-
tion that is used for creating, executing, and maintaining tests.
For example, Mabl features a link-crawler that autonomously
explores a web application and generates test scripts that cover
all reachable paths. Mabl offers also a self-healing test script
solution: during test script creation, the tool records several
dozens of attributes for each web element, which are used to
locate them during software evolution.

Other promising tools are Testim, Test.ai and Appvance.ai.
In brief, Testim adopts an intelligent capture-replay approach
to the generation of test scripts and guarantees change-resistant
smart locators. Differently, Test.ai allows controlling a running
Al-Bot capable of autonomously navigating the application un-
der test, collecting and labeling data, and creating test scripts.
Finally, Appvance 1Q supports two methods of test creation.
First, a visual script writer enables test engineers to create test
scripts without coding. Second, an Al autonomous scripting
generator uses ML and cognitive generation to produce test
scripts based on the actual user’s activity.

D. Threats to Validity

The main threat to the internal validity of this work is the
possibility of introducing bias and errors during the selection
of documents and classification of the considered items (i.e.,
problems, solutions, and Al-based test automation tools).
Moreover, we may have missed relevant documents that are
not captured by our search queries. Thus, we do not claim


https://www.functionize.com
https://applitools.com
https://www.mabl.com
https://www.testim.io
https://www.test.ai
https://www.appvance.ai

that our survey captures all relevant grey literature but we
are confident that the included documents cover the most
important tools. To minimize classification errors, the authors
followed a systematic and structured procedure with multiple
interactions. Each doubt concerning creating a new category
or classifying an item was discussed among the authors.
Concerning the external validity, we considered only
Google/arXiv documents in a specific time frame, and our
taxonomy may not generalize to other documents or other
search engines and repositories. Finally, other relevant classes
of items might be unrepresented or underrepresented within
our taxonomy. We tried to mitigate this threat by selecting a
diverse range of documents using different search queries.

VI. FINDINGS AND REMARKS

How good are Al-based Test Automation testing tools. The
growing importance of Al-based testing tools is testified by
their adoption within large companies such as eBay, Netflix,
and Facebook. In order to fully understand the potential and
benefits of such tools, comparative experiments should be
carried out (evidence-based software engineering), which are
however challenging given that companies’ policies prevent
transparent access to the algorithms underlying such tools.

Our survey of the grey literature witnessed a proliferation
of Al-based TA testing tools. We distinguish two main cases.
First, there are companies (mainly start-ups) that emerged
with the sole purpose of bridging Al and QA together. A
second category pertains to companies already established on
the market that have decided to introduce AI/ML to provide
a better user experience and increase testers’ accuracy.

Unfortunately, being commercial frameworks, additional
details on the algorithms and solutions offered by such tools
are often not disclosed. Our preliminary analysis revealed
Functionize as the tool able to tackle the greatest number of
problems listed in However, to date, it is not possible
to comprehensively understand how the existing problems
in TA were addressed. Indeed, the main limitation of the
documents we analyzed consist of their low technical depth
when describing the solutions listed in
What Al-based Test Automation testing tools are good for.
The list of solutions offered by the introduction of AI/ML is
very broad and ranges from the automatic generation of test
cases to their automatic repair. Automated oracles were limited
to the visual correctness of the presentation layer, whereas
the generation of more functional oracles was not considered
in the list of documents we surveyed. A current trend in
research is to consider metamorphic oracles for testing Al-
based software [32]. Despite promising results, we found no
applications of such oracles in the grey literature.

From the considered articles, it appears that Al can generate
test cases and test code using several different approaches,
which is utilitarian for automating more manual tests. How-
ever, the testing activity concerns the identification of faults,
which consists of finding corner cases. From our preliminary
analysis, AI/ML techniques still have to advance to reach

this level of effectiveness, since, at the moment, it can only
generate quite simple test scripts.

Finally, our analysis shows that Al is mainly applied for

unit, regression, and functional end-to-end testing. We hypoth-
esize that applying AI/ML to other testing levels will be more
challenging. For example, functional and unit tests are easier
to generate using Al (e.g., the test requirements are easier to
specify), whereas integration tests are much harder, as they
require a more advanced setup and complex flow.
The role of the tester in Al-based TA tools. Despite
the high claims, our analysis highlighted that we are far
from having fully-automated Al-based testing frameworks able
to autonomously generate robust test scripts. Our analysis
confirmed our initial hypothesis that Al solutions are used as a
toolset to facilitate the use of existing TA tools and practices.
In the near future, we do not envision Al to replace but to
support human testers, whose role will increasingly be that
of a matter expert who knows about the application and how
to verify its correct behavior (or lack thereof). More human
effort and focus will be on providing better training data,
annotations, and analytics.

We recognize two main criticalities of current solutions.
Being probabilistic techniques, it is still hard to understand
the behavior of Al algorithms as transparency of decisions
is sometimes missing. This is quite critical to testing, as
test cases must be as deterministic as possible. Second, most
solutions have evolved to self-healing paradigms, in which test
suites evolve based on the codebase changes. This might be
detrimental to the overall fault-finding capability as the risk to
miss faults is high (what if tests adapt to faulty code?). For
this reason, a safe update and deployment of Al solutions that
are meant to test software need to be backed up by strong
oracles of fail-safe mechanisms.

VII. CONCLUSIONS AND FUTURE WORK

Artificial intelligence proposes to revolutionize the way we
develop and test software systems. Novel tools and testing
frameworks are being proposed every year, however, to date,
little is still known about Al-based test automation, what
problems it addresses, what solutions it offers, and what tools
are available, and for what scope.

Towards filling this gap, in this paper we present a study of
the grey literature concerning Al solutions for test automation.
We manually analyzed several dozens of documents from
which we retrieved many problems about different aspects
of the automated testing process. Moreover, our taxonomy
includes the solutions that are used to mitigate such problems
and the list of most popular tools available.

As part of our ongoing and future work, we plan to
improve the sources of grey literature with more documents,
to assess the generalizability of our taxonomies. Triangulating
our results through surveys and semi-structured interviews
with developers is also part of the plan to validate our findings.
Finally, we intend to run comparative experiments between
traditional and Al-based testing tools, to better assess the
benefits brought by Al to TA.



[1

—

[2

—

[3]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

F. Ricca, M. Leotta, and A. Stocco, “Three open problems in the context
of e2e web testing and a vision: Neonate,” Advances in Computers, 01
2018.

F. Ricca and A. Stocco, “Web test automation: Insights from the grey
literature,” in Proceedings of 47th International Conference on Current
Trends in Theory and Practice of Computer Science, ser. SOFSEM 2021.
Springer, 2021.

V. Garousi, M. Felderer, M. V. Mintyld, and A. Rainer, “Benefitting
from the grey literature in software engineering research,” 2019.

P. Raulamo-Jurvanen, M. Mintyld, and V. Garousi, “Choosing the right
test automation tool: A grey literature review of practitioner sources,” in
Proc. of the 21st International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE '17. ACM, 2017, p. 21-30.

V. Garousi and M. V. Mintyld, “When and what to automate in software
testing? a multi-vocal literature review,” IST, vol. 76, pp. 92-117, 2016.
A. Stocco, “How artificial intelligence can improve web development
and testing,” in Companion of the 3rd International Conference on
Art, Science, and Engineering of Programming, ser. Programming *19.
New York, NY, USA: ACM, 2019, pp. 13:1-13:4. [Online]. Available:
http://doi.acm.org/10.1145/3328433.3328447

A. Trudova., M. Dolezel., and A. Buchalcevova., “Artificial intelligence
in software test automation: A systematic literature review,” in Pro-
ceedings of the 15th International Conference on Evaluation of Novel
Approaches to Software Engineering - Volume 1: ENASE,, INSTICC.
SciTePress, 2020, pp. 181-192.

R. Lima, A. M. R. da Cruz, and J. Ribeiro, “Artificial intelligence applied
to software testing: A literature review,” in 2020 15th Iberian Conference
on Information Systems and Technologies (CISTI), 2020, pp. 1-6.

H. Gamido and M. Gamido, “Comparative review of the features of
automated software testing tools,” International Journal of Electrical
and Computer Engineering, vol. 9, pp. 4473-4478, 10 2019.
Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, K. Petersen,
and M. V. Mintyld, “Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey,” in 2012
7th International Workshop on Automation of Software Test (AST), 2012,
pp. 36-42.

H. Zhu, 1. Bayley, D. Liu, and X. Zheng, “Automation of datamorphic
testing,” in 2020 IEEE International Conference On Artificial Intelli-
gence Testing (AlTest), 2020, pp. 64-72.

M. Yalla and A. Sunil, “Ai-driven conversational bot test automation
using industry specific data cartridges,” in Proceedings of the
IEEE/ACM Ist International Conference on Automation of Software
Test, ser. AST ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 105-107. [Online]. Available: https:
//doi.org/10.1145/3387903.3389306

T. A. Nguyen and C. Csallner, “Reverse engineering mobile application
user interfaces with remaui (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov. 2015, pp.
248-259.

T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” CoRR, vol. abs/1705.07962, 2017. [Online].
Available: http://arxiv.org/abs/1705.07962

K. P. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshy-
vanyk, “Machine learning-based prototyping of graphical user interfaces
for mobile apps,” IEEE Transactions on Software Engineering, 2018.
M. Bajammal, A. Stocco, D. Mazinanian, and A. Mesbah, “A Survey on
the Use of Computer Vision to Improve Software Engineering Tasks,”
IEEE Transactions on Software Engineering, 2020.

(17]

[18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

(32]

S. Mahajan and W. G. J. Halfond, “Detection and localization of
HTML presentation failures using computer vision-based techniques,” in
Proceedings of Sth IEEE International Conference on Software Testing,
Verification and Validation, ser. ICST 15, 2015, pp. 1-10.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Automated migration
of DOM-based to visual web tests,” in Proceedings of 30th Symposium
on Applied Computing, ser. SAC 2015. ACM, 2015, pp. 775-782.
——, “PESTO: Automated migration of DOM-based web tests towards
the visual approach,” Software Testing, Verification And Reliability,
vol. 28, no. 4, 2018.

A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in
Proceedings of the joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC/FSE), 2018, p. 12 pages.
C. Zhang, H. Cheng, E. Tang, X. Chen, L. Bu, and X. Li, “Sketch-

guided GUI Test Generation for Mobile Applications,” in Proc. of ASE
'17, 2017, pp. 38-43.

Y. Feng, J. A. Jones, Z. Chen, and C. Fang, “Multi-objective Test
Report Prioritization Using Image Understanding,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE °16, 2016, pp. 202-213.

V. Garousi, M. Felderer, and M. V. Mintyl4, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” IST, vol. 106, pp. 101-121, 2019.

B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Arpéd Beszédes,
R. Ferenc, and A. Mesbah, “BugJS: A benchmark and taxonomy of
javascript bugs,” Software Testing, Verification And Reliability, 2020.
M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in Proceedings of 20th Working Conference on Reverse
Engineering, ser. WCRE 2013. IEEE Computer Society, 2013, pp.
272-281.

L. Brader, Testing for Continuous Delivery with Visual Studio 2012
(Microsoft patterns & practices). Microsoft patterns & practices, 2013.
Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
643-653. [Online]. Available: https://doi.org/10.1145/2635868.2635920
M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Using multi-locators
to increase the robustness of web test cases,” in Proceedings of Sth
IEEE International Conference on Software Testing, Verification and
Validation, ser. ICST *15. 1EEE, 2015, pp. 1-10.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, ‘“Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
12-22. [Online]. Available: https://doi.org/10.1145/3092703.3092709
M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2019, pp. 91-100.

C. Murphy, G. E. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing,” in Proceedings
of the Twentieth International Conference on Software Engineering &
Knowledge Engineering (SEKE’2008), San Francisco, CA, USA, July
1-3, 2008. Knowledge Systems Institute Graduate School, 2008, pp.
867-872.


http://doi.acm.org/10.1145/3328433.3328447
https://doi.org/10.1145/3387903.3389306
https://doi.org/10.1145/3387903.3389306
http://arxiv.org/abs/1705.07962
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/3092703.3092709

