
Web Test Automation:
Insights from the Grey Literature

Filippo Ricca1[0000−0002−3928−5408] and Andrea Stocco2[0000−0001−8956−3894]

1 Università degli Studi di Genova, Italy
filippo.ricca@unige.it

2 Università della Svizzera italiana, Lugano, Switzerland
andrea.stocco@usi.ch

Abstract. This paper provides the results of a survey of the grey lit-
erature concerning best practices for end-to-end web test automation.
We analyzed more than 2,400 sources (e.g., blog posts, white-papers,
user manuals, GitHub repositories) looking for guidelines by IT profes-
sionals on how to develop and maintain web test code. Ultimately, we
filtered 142 relevant documents from which we extracted a taxonomy of
guidelines divided into technical tips (i.e., concerning the development,
maintenance, and execution of web tests), and business-level tips (i.e,
concerning the planning and management of testing teams, design, and
process). The paper concludes with distilling the ten most cited best
practices for developing good quality automated web tests.

Keywords: Web Test Automation · Grey Literature · Best Practices.

1 Introduction

End-to-end (E2E) web testing is one of the approaches used for assuring the
correctness of web applications. In this context, the tester verifies the correct
functioning of the application under test through automated test scripts. Such
scripts automate the set of manual operations that the end-user would per-
form on the web application’s graphical user interface (GUI), such as delivering
events with clicks or filling in forms, and they are typically used for regression
testing [41]. Thus, test cases become software artifacts that developers write
resorting to specific testing frameworks. However, the development of complex
test suites requires nontrivial programming skills and domain knowledge of the
application under test.

An effective code development process must be driven by guidelines and
best practices. To the best of our knowledge, the scientific literature has been
neglecting the topic of surveying existing best practices or proposing new ones
to produce high-quality test code. Instead, researchers have proposed solutions
to mitigate specific issues like test fragility [26], or automated repair [40], which
are based mostly on anecdotal findings.

On the other hand, the grey literature—constituted by white-papers, mag-
azines, online blog-posts, question-answers sites, survey results, and technical

2 F. Ricca and A. Stocco

reports—is a rich source of documents in which practitioners often share their
experience matured on the field, and propose best practices, guidelines, and tips
related to different quality aspects of test code. Synthesizing knowledge from
the grey literature is a contemporary issue in empirical software engineering re-
search [16]. For instance, works have mined the knowledge by practitioners about
how to best select the right test automation tool [34], or to highlight the factors
behind the choice of what and when to automate [17].

From our experience, the grey literature is still an unexplored gold mine of
guidelines for E2E web test automation. However, such insights are still hidden
as practitioners lack both the time and the scientific background to distill the
most relevant best practices rigorously. For this reason, we have conducted a
survey to help structure, curate, and unify the grey literature in E2E web test
automation, to understand what best practices are suggested by practitioners,
and what are the challenges reported when they are used.

The main contribution of our work is a taxonomy of best practices for E2E
web test automation, composed by a rich set of guidelines about different tech-
nical and business-level aspects of the testing and development life cycle. We
distilled the set of ten most cited best practices that, according to developers,
can improve the quality of automated tests. Our taxonomy can be useful to both
practitioners and researchers, who can, respectively, use the most quoted best
practices to guide the development of better quality test code, and foster future
research in this field.

2 Background

E2E web testing is a type of black-box testing based on the concept of test
scenario, i.e., a sequence of steps and actions performed by a user on the appli-
cation under test’s GUI. One or more test cases can be derived from a scenario
by specifying the input data and the expected results. The test case execution
can be automated through test scripts within specific testing frameworks [24].

Selenium is the de-facto ecosystem [14] to support different kinds of E2E web
testing [7,27]. For instance, Selenium IDE is used for quick exploratory testing as
it allows recording the actions performed by the tester on the web application,
from which generated test scripts can be conveniently replayed multiple times.
With Selenium WebDriver, on the other hand, test scripts are programmed in
a high-level programming language using the framework’s APIs. As such, de-
veloped test scripts become first-class citizens that developers design, maintain,
review, and refactor the same way as the production code. For this reason, Web-
Driver is used mostly to create complex and large test suites for browser-based
regression test automation. Finally, Selenium Grid offers services that allow dis-
tributing test scripts over multiple browsers and platforms, which is convenient
for performing cross-browser and cross-platform testing.

Even though the web testing community is highly influenced by the Selenium
ecosystem, in this paper we focus on the best practices for web test code devel-

Web Test Automation: Insights from the Grey Literature 3

opment and maintenance, regardless of the specific testing framework for which
they were originally proposed.

3 Related Work

Researchers have long proposed methodologies and techniques to test web based
systems, including testing classical [37,12] and modern [6,5,4,29,30] web apps.

In recent years, the increased popularity of tools like Selenium motivated the
research community to study the challenges of E2E test automation and propose
solutions to improve the quality of test code produced by such tools [36,24,39].
This literature can be broadly divided into two main categories. A first category
pertains to empirical studies in web test automation such as studies on the
evolution of web test scripts [21], the differences between the approaches [24],
economic perspectives in test automation [33], or other secondary studies on
web test automation [9,18,28,22]. A second category, instead, refers to solution-
based papers that tackle a specific problem in web test automation, such as
robustness of test code [26], automated test repair [20,8,40,25], or test adequacy
criteria [32,31] Most of this research is built on anecdotal facts, or on knowledge
acquired by studies of the first category.

We recognize two main drawbacks. First, both kinds of works are limited in
providing a list of best practices for testers to produce good quality test suites.
Second, existing works are either too focused on one single problem or not driven
by the current state-of-the-practice.

There are works that gathered the practitioners’ opinions to improve the
overall quality of the testing process. Gamido and Gamido [13] provide a com-
parative review of open-source and commercial testing tools to help users select
the appropriate software testing tool based on their needs. Rafi et al. [10] report
academic and practitioner views on software test automation. While publications
are biased by positive results, practitioners agreed that available test automa-
tion tools offer a poor fit for their needs and generally disagreed that automated
testing can be fully replaced by manual testing. Raulamo-Jurvanen et al. [34]
identify 14 different criteria for choosing the right testing tool and highlight that
practitioners’ judgment is highly influenced by related grey literature. Another
study by Garousi [17] aims to characterize what industry wants from academia
in software testing, by soliciting testers’ challenges during their activities.

To the best of our knowledge, no paper provides a curated list of best prac-
tices to drive the development of high-quality test code, even less by taking into
account the developers’ perspective. This paper differs from the existing liter-
ature as it distills and summarizes best practices for E2E web test automation
that can better inform researchers of the developers’ desiderata thereby pro-
viding actionable feedback and more awareness when devising future testing
approaches.

4 F. Ricca and A. Stocco

Google
Search

Start
Document
Selection

2,400 Documents 142 Documents

Literature
Mapping

End Data
Extraction

Data
Validation

candidate
best practices

Fig. 1. Overview of the selection procedure

4 Experimental Study

Our study focuses on the grey literature for functional testing of web applications
with the goals to understand what best practices are suggested by practitioners
and, to structure, curate, and unify the grey literature. This section describes
the selection procedure we carried out to obtain the relevant documents, which
has been designed according to the guidelines proposed by Garousi et al. [15].

4.1 Procedure

Figure 1 graphically illustrates the overall process, which consists of four main
phases: (1) Google search, (2) document selection, (3) data extraction, and
(4) data validation. In the rest of the section, we provide additional details
on each phase.

Google Search To formulate the string for the Google search, the authors iden-
tified an initial set of candidate keywords starting from the goal of the study.
Each tentative search string was then validated against a list of relevant doc-
uments, as suggested in the guidelines by Kitchenham and Charters [23]. This
list includes documents that were already known and which were expected to be
included in the search results. The process terminated when the authors were
satisfied by the search results, i.e., the number of retrieved papers was manage-
able, all relevant documents known in advance were included, and no candidate
relevant keyword was missing in the search string. The final search string is:

((“best practices” OR “guidelines” OR “recommendation” OR “tips”)
AND

(“Selenium” OR “UI” OR “end-to-end” OR “Web”)
AND

(“test”))

Since we are mainly interested in documents that propose testing guidelines,
the first group of terms characterizes words that relate to methods or tech-
niques that have been generally accepted as superior to any alternatives and
have become a de-facto standard. The second group of terms defines specific
aspects related to the testing phase in the software life cycle, along with Sele-
nium, which is the undisputed framework for browser automation. Finally, we

Web Test Automation: Insights from the Grey Literature 5

included the “test” keyword to focus the search on testing-related documents.
All relevant documents contained an instance of each keyword from each group
(AND operator), whereas keywords within the same group were ORed.

The search was performed from 20 May 2020 to 10 July 2020. For each search
query, the first 15 pages of results were scraped, each having 10 documents. The
first author conducted 16 queries, which accounted for 2,400 documents that were
analyzed overall (150 documents for each query). No more significant documents
were found after the 15th page.

Document Selection The Google search is, by construction, very inclusive.
This allowed us to collect as many documents as possible in our pool, at the
price of having documents that are not directly related to the scope of this
study. Accordingly, we defined a set of specific inclusion and exclusion criteria
to remove documents not meeting the criteria and ensure that each collected
document is in line with the scope of the study.

Inclusion Criteria. First, the document should propose guidelines to help
functional test automation of web applications, i.e., such as GUI testing, or
acceptance testing. Other kinds of testing such as performance, load, stress,
security, or usability testing are not considered. Second, the document should
apply to either capture-replay (C&R), programmable, visual, or combinations
of these testing approaches. Last, tools’ user manuals and presentations are
included as long as they specify some guidelines.

Exclusion Criteria. We excluded papers not written in the English language,
or that provided guidelines for manual testing or web development. Further-
more, we did not consider videos or books, which are quite difficult to extract
information from or to retrieve, respectively. We also discarded websites that
required registration for consulting the resource. We excluded sources that pro-
vided either too generic, partial guidelines related to only one specific aspect
(e.g., documents only explaining the Page Object design pattern), or that were
tool-specific and difficult to generalize to other toolsets. We did not consider
documents explaining bad practices, even though, in principle, it is possible to
infer some best practices, for instance, by the negation of such good practices.

Results of the Document Selection. The studies obtained from the database
search were assessed manually by the first author and only those studies that
provide direct evidence about the objective of the study were retained. The final
number of selected primary documents is 142.

Data Extraction In the data extraction step, the first author read and analyzed
in detail the candidate documents, filling out an extraction form with the best
practices gathered from each source [23]. A tabular data extraction form was
used to keep track of the extracted information. In particular, each row of such
form reports a study and each column corresponds to an individual best practice.
It is important to highlight that no predefined set of best practices was provided;
for each newly retrieved best practice found during the data extraction phase, a
new column was added to the form incrementally.

6 F. Ricca and A. Stocco

Table 1. Study Selection Process

Search Query Retrieved Documents Relevant Documents

best practices selenium test 150 46

best practices UI test 150 32

best practices Web test 150 12

best practices end-to-end test 150 11

guidelines selenium test 150 1

guidelines UI test 150 2

guidelines Web test 150 3

guidelines end-to-end test 150 7

recommendation Selenium test 150 1

recommendation UI test 150 2

recommendation Web test 150 1

recommendation end-to-end test 150 2

tips Selenium test 150 10

tips UI test 150 7

tips Web test 150 2

tips end-to-end test 150 3

Total 2,400 142

Data Validation and Taxonomy Construction In the data validation step,
the second author independently analyzed each candidate document, with the
aim of validating each individual best practice retrieved during the data ex-
traction phase. During this task, 130/142 documents (92%) were marked with
a correct and complete extraction. Only 12/142 documents were found to miss
some best practices, which were added. The high agreement rate between the
authors indicates overall a low degree of subjectivity in the extraction task.

After enumerating all best practices, the authors began the process of cre-
ating a taxonomy, following a systematic process [19]. For each best practice,
candidate equivalence classes were identified and assigned to descriptive labels.
By following a bottom-up approach, the first clustered tags that correspond to
similar notions into categories. Then, they created parent categories, in which
categories and their subcategories follow specialization relationships.

5 Results

Table 2 illustrates our taxonomy of E2E web test automation best practices from
the grey literature. Our study grouped 706 occurrences of best practices into two
main categories, namely technical aspects (80%) and business-level aspects
(20%).

5.1 Technical Best Practices

Technical best practices refer to the development, maintenance, and execution
of web tests. That is, testers are already equipped with test requirements, and
their task is to translate such requirements into actual test code, with appro-
priate oracles, or to adapt existing test code to changes and extensions of such
requirements, or applications’ functionalities.

Web Test Automation: Insights from the Grey Literature 7

Table 2. E2E web test automation best practices from the grey literature.

Best Practice #

Technical (566)
Structural Test Script Quality 163

Manage the synchronization w/ the web app 67
Keep the tests atomic and short 40
Use appropriate naming and code conventions 31
Focus on reusable test code 25

Test Script Development 67
Remove sources of uncertainty (no flakiness) 26
Create tests that are resilient to minor GUI changes 16
Mock external services 15
Write both positive and negative test 10

Monitoring Execution of Test suites and Reporting 67
Produce detailed reports 36
Take/use screenshots 17
Use Continuous Integration (CI) 14

Design Patterns 66
Use the Page Object Pattern (also Page Factory) 52
Others 14

Locators 65
Create robust/proper locators/selectors 48
Preferred locators order 17

Data 52
Use data-driven testing 33
Use high-quality test data 19

Test Script Grouping and Ordering 46
Make tests independent from each other 34
Group tests, e.g., by functional area 12

Test Execution 40
Prioritization 19
Parallelization 14
“Green tests run” policy: All tests must pass 7

Business-level (140)
Planning 54

Do not consider test automation as a replacement for manual testing 16
Choose the correct testing framework 15
Mentorships/Experts 12
Test early and test often 11

Design 46
Focus on key user flows or process flows or functionalities 24
Understand what test cases to actually automate 14
Test from the end-user perspective 8

Process 40
Do not limit to only GUI testing (the testing pyramid) 28
Implement test code review 8
Integrate exploratory testing 4

The most represented subcategory pertains to guidelines on how to achieve
a high structural quality of the test code (29%). Particularly, the most men-
tioned tip is careful handling of the synchronization between the web app and
the test code [2]. Modern web applications are developed using front-end tech-
nologies in which the Document Object Model (DOM) elements are loaded dy-
namically by the browser and may be ready for interaction at unpredictable
time intervals [3]. This is a huge problem for automated testing since there is
no universal mechanism to understand when a page is fully loaded and when
it is possible to perform actions. As a result, test scripts may encounter ex-

8 F. Ricca and A. Stocco

ceptions like NoSuchElementException, StaleElementReferenceException, or
ElementNotVisibleException. In Selenium WebDriver, testers can use implicit
or explicit waits, which should be preferred to the more generic Thread.sleep().
If one fails to place appropriate wait commands in the test code, the associated
risks span from having pointless lengthy delays in tests’ execution, to having
flaky checks due to the waits being non-deterministic. Other best practices per-
tain to keep the test scripts atomic (each test method should concern only one
single test scenario), using test naming conventions as well as coding rules, and
focusing on reusable test code.

The second most mentioned subcategories pertain to test development and
reporting of the test results. Concerning the former, it is suggested to implement
deterministic tests by removing uncertainties that may cause tests to pass/fail
nondeterministically [11], as well as implementing GUI-resilient tests, both pos-
itive and negative tests, and mock external services to keep the testing envi-
ronment under full control. Related to the latter, developers suggest providing
detailed reporting, making use of screenshots to help visually assess the bugs,
and of continuous integration (CI) environments.

Design patterns are suggested as an effective mechanism to isolate the code’s
functionalities into reusable methods (12%). Developers suggest different design
patterns: most of our references mention the Page Object [39], whereas lower
occurrences pertain to other patterns such as Bot Pattern, AAA Pattern, and
Screenplay Pattern which do not seem yet consolidated within test development.

Other relevant categories pertain to locators (11%). Locators are commands
that tell the testing framework that GUI elements it needs to operate on. Identi-
fication of correct GUI elements is a prerequisite to creating robust test scripts,
even if accurate localization of GUI elements can be quite challenging due to
the mentioned synchronization issues with the DOM being loaded dynamically.
Developers suggest crafting robust locators, which, however, requires in-depth
domain knowledge of the web app under test.

Finally, a test suite is cost-effective iff test data are of high quality (9%). In
a way, a test suite is as weak as the test data it uses, which defines the overall
fault-finding capability and hence cost-effectiveness of running it. Among the
tips, developers suggest adopting data-driven testing techniques by parameter-
izing the test cases and using realistic inputs, as well as meaningful real-world
combinations that the users may experience.

Other less numerous, yet representative, categories pertain to tests ordering
(8%) and execution (7%). Having independent tests is also a strongly advocated
best practice, as well as grouping them, for instance by functional area. Speeding
up the feedback to developers by prioritizing the execution of tests that are more
immediately impacted by the latest code changes [1] is also a highly suggested
guideline. Then, developers care also about performance, and parallelization has
been also mentioned as a preferred way to speed up the execution of tests.

Web Test Automation: Insights from the Grey Literature 9

5.2 Business-level Best Practices

Business-level aspects are related to the practices of establishing a process that
ensures the final quality of the software product and satisfies the customers as
well as users. Also, it concerns aspects like resource optimization, communica-
tion, cost management, and team building.

The most represented subcategory pertains to Planning the process of test
code development (39%). The main guidelines in this subcategory are: not con-
sidering automation as a replacement for manual testing, choosing the cor-
rect/right testing tool/framework for your organization and, hiring a team of
experts or a skilled automation engineer.

The second most mentioned subcategory is Design (33%), which pertains to
guidelines on how design test cases and how to transform them into test code.
In this subcategory, the most mentioned tips are the following: (1) focusing on
key user flows during test code development, that means to test mainly “happy
paths” capturing typical use scenarios and so limit exception testing; (2) creating
scenarios and test cases in advance before automating test cases, i.e., having
a clear understanding of what test cases to automate, indeed diving straight
into automation without a proper test design can be dangerous; (3) conducting
testing from the users’ perspective, e.g., by getting into the mindset of novice
users.

Finally, it is also worth mentioning the best practice of not relying entirely
on GUI test automation belonging to the Process subcategory. This is one of
the main best practices a testing team should consider at first. Ideally, a test
suite should be constituted by more low-level unit tests and integration tests
than E2E tests running through a GUI (the practical test pyramid3). Another
best practice that is gaining momentum concerns reviewing the test code [38],
similarly to production code. Test code review aims to analyze its quality and to
find mismatches or bad practices. For example, a set of tests could be fulfilling
their coverage criteria, sufficiently invoking the intended code sections, but if
assertions are poorly implemented, the tests will be useless in revealing faults.
Lastly, exploratory testing is also suggested as a way to quickly get an intuition
of the web app’s main functionalities.

5.3 Findings

Based on our analysis, ten best practices emerged as essential for obtaining high-
quality test code (Table 3). Nine of them are related to technical aspects, and
only one to business-level best practices. This suggests that most sources of grey
literature in this domain are predominantly of technological nature. Thus, our
final takeaway message to practitioners is to follow, during the planning and
implementation of automated tests, at least these top 10 guidelines.

As for researchers, our taxonomy can be useful to foster future research and
spot the areas deserving attention. As an example, existing work has been pro-

3 https://martinfowler.com/articles/practical-test-pyramid.html

https://martinfowler.com/articles/practical-test-pyramid.html

10 F. Ricca and A. Stocco

Table 3. Top 10 best practices (listed in descending order of references)

Rank Best Practice Technical Business

1 Manage the synchronization w/ the web app x

2 Use the Page Object Pattern (also Page Factory) x

3 Create robust/proper locators/selectors x

4 Keep the tests atomic and short x

5 Produce detailed reports x

6 Make tests independent from each other x

7 Use data-driven testing x

8 Use appropriate naming and code conventions x

9 Do not limit to only GUI testing (the testing pyramid) x

10 Remove sources of uncertainty (no flakiness) x

posed for creating robust locators [26], automated page objects [39], test inde-
pendence [4], and test minimization [6]. On the other hand, practitioners suggest
removing sources of uncertainties from tests that may cause tests to pass/fail
non-deterministically. However, to the best of our knowledge, in the literature,
no solutions and tools have been proposed to detect and solve flaky web tests,
even less to tackle the synchronization problem.

5.4 Threats to Validity

The main threat to the internal validity of this work is the possibility of intro-
ducing bias when selecting and classifying the surveyed documents included in
our study. We may have missed relevant documents that are not captured by
our list of terms. In this paper, multiple Google searches have been performed
with no use of private browsing mechanisms (i.e., Google’s Chrome Incognito
mode) that prevent saving browsing history, cookies, and other site data. Thus,
it is possible that Google’s search engine provided us with the most suitable
results based on our preferences, or our previous searches. We will refine our
search procedure in our future work. We do not claim that our survey captures
all relevant grey literature; yet, we are confident that the included documents
cover the major related best practices.

Concerning the best practices, we manually classified all candidate guidelines
into different categories. There is no ground-truth labeling for such a classifica-
tion. To minimize classification errors, we added a data validation phase to the
selection procedure. To reduce the subjectivity involved in the task, the authors
followed a systematic and structured procedure, with multiple interactions.

Concerning the external validity, we overviewed only the documents available
from Google in a specific time frame, and our taxonomy may not generalize
to different documents. Also, other relevant classes of best practices might be
unrepresented or underrepresented within our taxonomy. Nevertheless, we tried
to mitigate this threat by selecting a diverse range of documents using different
search queries.

Concerning reproducibility, all our results and references are available in our
replication package [35].

Web Test Automation: Insights from the Grey Literature 11

6 Conclusions and Future Work

The increasing interest of developers and industry around web test automation
has fostered a large amount of software engineering research. Novel analysis and
testing techniques are being proposed every year, however, without a centralized
knowledge base of best practices by professionals, it is difficult to fairly design
and implement solutions, or to assess research advancements.

Towards filling this gap, in this paper, we presented a taxonomy of best
practices for E2E web test automation derived from an analysis of the grey
literature. We manually analyzed several hundreds of documents from which we
retrieved many best practices, pertaining to different technical and business-level
categories. Moreover, our taxonomy can be used to foster future research in this
field, and spot the areas that merit the greatest attention.

As part of our ongoing and future work, we plan to include other sources
of grey literature (e.g., arXiv) as well as conducting a thorough literature re-
view of the academic literature that may be useful to validate and improve our
taxonomy of best practices. Triangulating our results through surveys and semi-
structured interviews with developers is also part of the plan to validate our
findings. Moreover, we plan to rate our sources with a credibility score, so as to
establish the reliability of a website prior to the data extraction phase.

References

1. Alimadadi, S., Mesbah, A., Pattabiraman, K.: Hybrid DOM-Sensitive Change Im-
pact Analysis for JavaScript. In: Proc. of the 29th European Conference on Object-
Oriented Programming. ECOOP ’15, vol. 37, pp. 321–345 (2015)

2. Alimadadi, S., Mesbah, A., Pattabiraman, K.: Understanding asynchronous inter-
actions in full-stack javascript. In: Proc. of the 38th International Conference on
Software Engineering. p. 1169–1180. ICSE ’16, ACM (2016)

3. Alimadadi, S., Sequeira, S., Mesbah, A., Pattabiraman, K.: Understanding
javascript event-based interactions. In: Proc. of the 36th International Conference
on Software Engineering. p. 367–377. ICSE ’14, ACM (2014)

4. Biagiola, M., Stocco, A., Mesbah, A., Ricca, F., Tonella, P.: Web test dependency
detection. In: Proc. of 27th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. p. 12 pages.
ESEC/FSE 2019, ACM (2019)

5. Biagiola, M., Stocco, A., Ricca, F., Tonella, P.: Diversity-based web test genera-
tion. In: Proc. of 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. p. 12 pages. ESEC/FSE
2019, ACM (2019)

6. Biagiola, M., Stocco, A., Ricca, F., Tonella, P.: Dependency-aware web test gen-
eration. In: Proc. of 13th IEEE International Conference on Software Testing,
Verification and Validation. p. 12 pages. ICST ’20, IEEE (2020)

7. Cerioli, M., Leotta, M., Ricca, F.: What 5 million job advertisements tell us about
testing: a preliminary empirical investigation. Proc. of the 35th Annual ACM Sym-
posium on Applied Computing (2020)

12 F. Ricca and A. Stocco

8. Choudhary, S.R., Zhao, D., Versee, H., Orso, A.: WATER: Web Application TEst
Repair. In: Proc. of 1st International Workshop on End-to-End Test Script Engi-
neering. pp. 24–29. ETSE ’11, ACM (2011)

9. Doğan, S., Betin-Can, A., Garousi, V.: Web application testing: A systematic lit-
erature review. Journal of Systems and Software 91, 174–201 (2014)

10. Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Petersen, K.,
Mäntylä, M.V.: Benefits and limitations of automated software testing: Sys-
tematic literature review and practitioner survey. In: 2012 7th Interna-
tional Workshop on Automation of Software Test (AST). pp. 36–42 (2012).
https://doi.org/10.1109/IWAST.2012.6228988

11. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests:
The developer’s perspective. In: Proc. of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. p. 830–840. ESEC/FSE ’19, ACM (2019)

12. Elbaum, S., Karre, S., Rothermel, G.: Improving web application testing with user
session data. In: 25th International Conference on Software Engineering, 2003.
Proceedings. pp. 49–59 (2003)

13. Gamido, H., Gamido, M.: Comparative review of the features of automated soft-
ware testing tools. International Journal of Electrical and Computer Engineering
9, 4473–4478 (10 2019). https://doi.org/10.11591/ijece.v9i5.pp4473-4478

14. Garćıa, B., Gallego, M., Gortázar, F., Munoz-Organero, M.: A survey of the sele-
nium ecosystem. Electronics 9, 1067 (06 2020)

15. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. IST 106,
101–121 (2019)

16. Garousi, V., Felderer, M., Mäntylä, M.V., Rainer, A.: Benefitting from the grey
literature in software engineering research (2019)

17. Garousi, V., Mäntylä, M.V.: When and what to automate in software testing? a
multi-vocal literature review. IST 76, 92–117 (2016)

18. Garousi, V., Mesbah, A., Betin-Can, A., Mirshokraie, S.: A systematic mapping
study of web application testing. IST 55(8), 1374–1396 (2013)

19. Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Árpád Beszédes, Ferenc,
R., Mesbah, A.: BugJS: A benchmark and taxonomy of javascript bugs. Software
Testing, Verification And Reliability (2020)

20. Hammoudi, M., Rothermel, G., Stocco, A.: WATERFALL: An incremental ap-
proach for repairing record-replay tests of web applications. In: Proc. of 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. pp.
751–762. FSE ’16, ACM (2016)

21. Hammoudi, M., Rothermel, G., Tonella, P.: Why do record/replay tests of web
applications break? In: Proc. of 9th International Conference on Software Testing,
Verification and Validation. pp. 180–190. ICST ’16, IEEE (2016)

22. Imtiaz, J., Sherin, S., Khan, M.U., Iqbal, M.Z.: A systematic literature review of
test breakage prevention and repair techniques. IST 113, 1–19 (2019)

23. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering (2007)

24. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. Advances in Computers 101, 193–237 (01 2016)

25. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Using multi-locators to increase the
robustness of web test cases. In: Proc. of 8th IEEE International Conference on
Software Testing, Verification and Validation. pp. 1–10. ICST 2015, IEEE (2015)

https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.11591/ijece.v9i5.pp4473-4478

Web Test Automation: Insights from the Grey Literature 13

26. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Robula+: An algorithm for generating
robust xpath locators for web testing. Journal of Software: Evolution and Process
28, 177–204 (03 2016)

27. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: PESTO: Automated migration of
DOM-based web tests towards the visual approach. Software Testing, Verification
And Reliability 28(4) (2018)

28. Li, Y.F., Das, P.K., Dowe, D.L.: Two decades of web application testing–a survey
of recent advances. Information Systems 43, 20–54 (2014)

29. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Transactions on
the Web 6(1), 3:1–3:30 (2012)

30. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of mod-
ern web applications. IEEE TSE 38(1), 35–53 (2012)

31. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: Efficient javascript mutation test-
ing. In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation. pp. 74–83 (2013)

32. Mirzaaghaei, M., Mesbah, A.: Dom-based test adequacy criteria for web appli-
cations. In: Proc. of the 2014 International Symposium on Software Testing and
Analysis. p. 71–81. ISSTA ’14, ACM (2014)

33. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: Balancing
automated and manual testing with opportunity cost. In: Proc. of 1st International
Workshop on Automation of Software Test. pp. 85–91. AST ’06, ACM (2006)

34. Raulamo-Jurvanen, P., Mäntylä, M., Garousi, V.: Choosing the right test automa-
tion tool: A grey literature review of practitioner sources. In: Proc. of the 21st
International Conference on Evaluation and Assessment in Software Engineering.
p. 21–30. EASE ’17, ACM (2017)

35. Replication Package. https://github.com/riccaF/
sofsem2021-replication-package-material/ (2020)

36. Ricca, F., Leotta, M., Stocco, A.: Three open problems in the context of e2e web
testing and a vision: Neonate. Advances in Computers (01 2018)

37. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Proc. of the
23rd International Conference on Software Engineering. pp. 25–34. ICSE ’01 (2001)

38. Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., Bacchelli, A.:
Test-driven code review: An empirical study. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). pp. 1061–1072 (2019)

39. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: APOGEN: Automatic Page Object
Generator for Web Testing. Software Quality Journal 25(3), 1007–1039 (Sep 2017)

40. Stocco, A., Yandrapally, R., Mesbah, A.: Visual web test repair. In: Proc. of the
26th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. pp. 503–514. ESEC/FSE 2018, ACM
(2018)

41. Tonella, P., Ricca, F., Marchetto, A.: Recent advances in web testing. Advances in
Computers 93, 1–51 (2014)

https://github.com/riccaF/sofsem2021-replication-package-material/
https://github.com/riccaF/sofsem2021-replication-package-material/

	Web Test Automation: Insights from the Grey Literature

