
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Confidence-driven Weighted Retraining for Predicting Safety-Critical
Failures in Autonomous Driving Systems

Andrea Stocco* | Paolo Tonella

1Software Institute, USI, Lugano,
Ticino, Switzerland

Correspondence
*Andrea Stocco Email:
andrea.stocco@usi.ch

Present Address
Università della Svizzera italiana,
Lugano, Via Giuseppe Buffi 13

Summary

Safe handling of hazardous driving situations is a task of high practical relevance for build-

ing reliable and trustworthy cyber-physical systems such as autonomous driving systems.

This task necessitates an accurate prediction system of the vehicle’s confidence to prevent

potentially harmful system failures on the occurrence of unpredictable conditions that make

it less safe to drive. In this paper, we discuss the challenges of adapting a misbehavior pre-

dictor with knowledge mined during the execution of the main system. Then, we present

a framework for the continual learning of misbehavior predictors, which records in-field

behavioral data to determine what data are appropriate for adaptation. Our framework

guides adaptive retraining using a novel combination of in-field confidence metric selection

and reconstruction error-based weighing. We evaluate our framework to improve a mis-

behavior predictor from the literature on the Udacity simulator for self-driving cars. Our

results show that our framework can reduce the false positive rate by a large margin and

can adapt to nominal behavior drifts while maintaining the original capability to predict

failures up to several seconds in advance.

KEYWORDS:

AI Testing, Misbehaviour Prediction, Autonomous Driving Systems, Continual Learning

1 INTRODUCTION

Complex cyber-physical systems (CPS) are used to operate in the physical world. Nowadays, an increasing number of CPS embeds one or more
artificial intelligence (AI) modules, such as Deep Neural Networks (DNNs), to perform advanced safety-critical tasks that cannot be addressed by
traditional programming 1,2. For instance, in the context of autonomous driving, DNNs are used to predict the driving control parameters within a
self-driving car 3, leveraging convolutional neural networks as perception units to process digital images representing driving scenes that are used
for a large variety of tasks such as lane-keeping, pedestrian and vehicle detection. Other domains involve medical diagnosis 4, disease prediction 5,
and aircraft collision avoidance 6.

Despite the rapid advancements of AI, DNN-based CPS carry numerous drawbacks when exposed to open-world operational domains. To date,
DNNs are mostly tested relying on accuracy metrics on large test sets that attempt to represent a meaningful subset of the targeted operational
domain. This is insufficient when the DNN is deployed within a real-world CPS, as the in-field inputs may differ substantially from those of the
test set, thereby creating a false notion of safety. Indeed, erroneous predictions by the AI modules can, in turn, propagate to failures of the CPS as
a whole. Incidents like those reported by Tesla 7, Waymo 8, Uber 9 testify situations in which the perception systems of such CPS may occasionally
fail when exposed to the complexity and variety of the real world.

The main limitation of DNN-based CPS is rooted in their lacking or limited ability to adapt to novel, ever-changing environments. For example,
DNNs are fragile to domain shifts 10 (i.e., test data that differ from the training distribution) and data corruption 11 (e.g., adversarial examples or

2 Andrea Stocco and Paolo Tonella

sensor malfunctions) that may occur when the system is in operation. In the machine learning literature, the problem of detecting inputs that
are unsupported by the model is called out-of-distribution detection 12, whereas in the software testing literature it is mostly referred to as input
validation 13. In either case, a popular solution to address this problem is using unsupervised anomaly detection techniques that need no a priori
knowledge of the anomalies, i.e., without a labeled dataset 14. Rather, anomaly detectors identify the data that differ from the norm and that do
not belong to the nominal data distribution.

In our research, we focus on the development of monitoring techniques that keep the level of reliability and trustworthiness high when the
CPS is deployed and used in production 15,16. We used unsupervised anomaly detection to build an anticipatory testing framework 15 that equips the
real-world CPS (specifically, a self-driving car) with a misbehavior predictor. Such a component analyzes the environment perceived via sensors, to
recognize out-of-distribution conditions that may possibly lead to a failure.

In our previous work 16, of which this article is an extension, we discussed some of the challenges to building a monitoring system that learns
continuously from data gathered during the operation of the main driving component. We proposed an end-to-end misbehavior predictor that con-
tinually learns how to recognize nominal cases from in-field data collected as the system executes 16. Evenwhen exposed to evolving environmental
conditions, in safety-critical settings the true alarm rate must be very close to 1 because unsafe executions should be eliminated or reduced to
a negligible probability. However, misbehavior predictors can achieve a high true alarm rate only at the price of accepting a high false alarm rate
that can occur also in nominal or nearly-nominal conditions, causing much driver’s discomfort and negatively affecting the driving experience. We
analyze the underlying causes behind a high false alarm rate, with the main cause being the class imbalance affecting the training set. In our pre-
vious work, we made misbehavior predictors more robust by leveraging data collected in the field and rebalancing the nominal data available for
retraining to accommodate incoming data distribution drifts while reducing the number of false positives.

The key idea is that an invaluable opportunity for continually learning from the field is offered by the availability of a high amount of unlabelled
nominal data. While such data is useless for retraining the main driving component, because it is unlabelled, it can be still used to improve the
misbehavior predictor, since no labels are required for its training. The main challenge consists of carefully selecting the nominal inputs that can be
used for adaptation. Our framework automates this task by comparing the score of the misbehavior predictor with an in-field driving quality metric.
If the misbehavior predictor raises a false alarm (i.e., the driving scenario is unseen, but the driving component is indeed confident), our framework
stores them in a buffer for adaptation, which is then used for retraining. However, rebalancing the training set is also expected to increase the
overall training cost (training set size and training time), which grows with the number of false positives. To overcome such an issue, in this paper we
propose in-field confidence metric selection and reconstruction error-based weighted retraining. By leveraging the inner learning capabilities of DNNs
and the knowledge fetched during the simulation of the autonomous driving system, we show that our technique allows a misbehavior predictor
to reduce the effect of false positives while maintaining high prediction scores.

This article is a revised and expanded version of our workshop paper 16. We provide details on the differences between our prior work 15, our
workshop paper 16, and this article. Our prior work 15 proposed the use of autoencoders to estimate the black-box confidence of DNN-based
autopilots. The results of the study highlighted a non-negligible percentage of false positives due to the inability of autoencoders to correctly
model the training set data distribution. In our workshop paper 16 we made a step ahead in understanding the root cause of such problem, which
was identified as being the class imbalance in the dataset. We have also proposed a solution based on in-field confidence metrics to automatically
identify such false positives during the simulation and remove them via rebalancing the dataset prior to retraining. In terms of conceptual contri-
butions of this article, we address two problems affecting the technique proposed in our previous paper 16, namely exceeding training size and
catastrophic forgetting. In this paper, we propose confidence-based weighted retraining that requires no additional training data and mitigates the
effects of catastrophic forgetting. In terms of technical contributions, in our workshop paper 16 we implemented two confidence metrics, namely the
cross-track error (CTE) and predictive uncertainty (MC-Dropout), on one out of three tracks of the Udacity simulator (Lake). In the current article,
we allowed for a more controllable injection of the intensity of the weather conditions which are now parameterized instead of being static as in
previous works 15,16. Moreover, we extended the computation of the confidence metrics to all three available tracks (nine scenes in total, three for
training, and six for testing), and displayed the information in a new revised GUI.

The main contributions of our work are:
• A framework for the continual learning of DNN-based misbehavior predictors. We propose to update such predictors in presence of data

distribution shifts using a novel combination of in-field confidence metric selection and reconstruction error-based weighted retraining.
• An extension of the Udacity simulator that computes in-field confidence metrics automatically during a simulation.
• An instantiation and evaluation of our framework to improve an existing misbehavior predictor 15 under a diverse set of in- and out-of-

distribution datasets. We show that the combination yields a reduction of the false alarm rate by a large margin, without affecting the failure
predictive capability, i.e., the true alarm rate, thereby resulting in higher prediction effectiveness.

Andrea Stocco and Paolo Tonella 3

Nominal Conditions (sunny weather)

Failure-inducing Unseen Conditions (rainy weather)

FIGURE 1 An example of the failure of the self-driving model DAVE-2 3 on Udacity’s Lake track (best viewed on a high resolution color monitor).
(top) In nominal driving conditions (sunny), DAVE-2 is able to face the right bend at the default speed of 30 mph. (bottom)Under unseen conditions
(rain), DAVE-2 fails to drive the bend at the default speed of 30 mph and the sequence ends with a system failure (i.e., an out of track event).

2 BACKGROUND

2.1 Self-Driving Car Case Study

We exemplify our framework on the Udacity simulator for self-driving cars 15. The simulator supports training and testing of an autonomous driving
system that performs behavioral cloning, i.e., the autopilot learns the lane keeping functionality from a dataset of driving scenes collected from a
human driver. Three driving scenes are available (Lake, Jungle, and Mountain), representing closed-loop tracks equipped with a single vehicle with
the full availability of the road section. The simulator also allows injecting controllable operational conditions, such as weather changes (rain, snow,
fog), that we will use to produce test datasets having both supported and unsupported inputs.

2.2 Anomalies in Self-Driving Cars

An anomaly is an observation that significantly deviates from other observations so as to arouse suspicion that it was generated by a different
mechanism 17. Anomalies can be caused by errors in data, but they can be also indicative of new, previously unknown, underlying scenarios. A
common leitmotif in anomaly detection is that anomalies are rare, unknown, and possibly diverse in nature. Thus it is not possible to collect a
labeled dataset representative of all possible anomalies.

In the context of this paper, we consider as anomalies instances of driving scenes forwhich a self-driving carwas not previously trained. However,
if we were to select as anomalies driving scenes that are totally or quite different from the ones present in the training set, the problem would be
largely oversimplified. For instance, if images of urban driving scenes are regarded as nominal and images of highways are regarded as anomalous,
the problem of finding a boundary between the distributions obtained with these two sets of images becomes quite trivial.

A more challenging problem, which is the one faced in this paper, consists of finding such a boundary when limited perturbations to the training
set driving scenes are applied.While a robust self-driving car model should generalize well even in the presence of someminor level of perturbation,
increasing perturbation levels, are expected to cause a system failure (see Figure 1). The sequential nature of the driving task makes it possible that
a sequence of inaccurate predictions (due to small perturbations) could ultimately lead to a failure, because of the cumulative prediction errors. By
failure, we mean any deviation from the main system’s requirements (e.g., lane-keeping), such as collisions or out-of-track events. According to the
U.S. Department of Transportation, National Highway Traffic Safety Administration (NHTSA) this kind of failures is second in frequency and first
in cost among the light-vehicle pre-crash scenarios by economic cost with an impact of more than 15B USD 18.

With the goal of preventing such system-level failures, DNNmodel-level testing 1 (i.e., exposing errors of individual predictionsmade by theDNN
model) is not an option, because it is impossible to precisely observe and identify the causal chain going from individual, possibly small, prediction
errors to failures. Offline, DNN model-level testing techniques tend to overestimate the testing effectiveness because the model is not tested as
part of a system that could compensate for small, individual errors. Thus, when testing DNNs that perform the task of driving, online testing is a
fundamental step. However, in-field online testing is very expensive and has severe limitations. Hence, it is usually preceded by extensive online
testing performed within a simulation platform, in which it is possible to measure, analyze and reproduce driving failures (in the rest of the paper,
we use the terms misbehavior and failure interchangeably, to refer to a deviation from the main system requirements).

4 Andrea Stocco and Paolo Tonella

tra
in

in
g

initial training and setup

train

data

Main System

Monitor

deployment and in-field usage

Main System

Monitor

w
ar

ni
ng

in-field
data

outputs

unexpectedness score
> threshold?

threshold

accuracy/MSE

FIGURE 2 Training and usage of a static DNN-based monitor

2.3 Monitors for Self-Driving Car Misbehaviour Prediction

The overall goal of this research is to build a mechanism that prevents the occurrence of system failures with high accuracy. An accurate prediction
of hazardous situations is a necessary prerequisite for the implementation of a fail-safe system having a redundant component (a monitor) that
analyzes the data fed to the main system and, in the face of unsupported inputs, warns it to trigger countermeasures, such as recovering the system
to a safe state. The main reason for having such redundancy is that the monitor can be made substantially simpler than the main system, being
only focused on the task at hand, e.g., misbehavior prediction. This kind of redundant architecture is quite common in practice. For instance, Tesla’s
autopilot system employs 48 deep neural networks that, together, output 1,000 distinct predictions at each time step about the road layout, the
surrounding infrastructure, and 3D objects found in the driving scene.1

In this paper, we consider black-box environment monitors, i.e., monitors that analyze the main system’s input space (with no knowledge of its
internal behavior) and assign an unexpectedness score, which should be low and below the threshold if such inputs are known/supported, or high
and above the threshold otherwise (Figure 2). The functioning of black-box environment monitors is as follows. First, the monitor is trained on
nominal data to learn a model of normality. If the main system is also learning-based, it is advised to use the same training set used to train the
main system. Then, by selecting the accepted false alarm rate, we can determine a fixed initial threshold for deployment 15. The monitor is then
used in the field to warn the main system if the inputs are regarded as unsupported.

2.4 Autoencoder-based Monitors

2.4.1 Autoencoders

In many real-world domains, such as autonomous driving, abnormal data represent rare and unexpected events, for which no prior knowledge, or
label, is available (i.e., the context is unsupervised). In the spectrum of black-box unsupervised anomaly detection solutions, architectures based on
autoencoders (AEs) have emerged as a popular and very effective technique 14.

AEs are DNNs whose purpose is to reconstruct the input they are given. Typically, AEs consist of two connected components—an encoder and
a decoder—that are mirrored. The hidden layer encodes a given input x ∈ RD to an internal representation z ∈ RZ using a function f(x) = z.
Usually Z � D, where Z represents the dimension of the encoded representation and D is the dimension of the input 15. The decoder layer
decodes the encoded representation with a reconstruction function g(z) = x′, wherex′ is the reconstructed inputx. The autoencoder is designed
to minimize a loss function L(x, g(f(x))) which measures the distance between the original data and its low-dimensional code representation. A
popular loss function for images is the Mean Squared Error (MSE).

An interesting AE architecture is the variational autoencoder 19 (VAE) that models the relationship between the latent variable z and the input
variable x by learning the underlying probability distribution of observations using variational inference. The MSE loss function can be used for
the VAE as well. However, a more suitable choice for VAEs is to use a loss function consisting of two terms: (1) the expected value of the negative
log-probability of the input x given the code z; (2) the Kullback-Leibler divergence between the distribution of z given x and the distribution of z
alone. The first term plays the role of the reconstruction loss reduction since it maximizes the probability of getting the input from the code. The
second term forces the VAE to minimize information loss in the latent space, hence avoiding that similar inputs are mapped to distant regions of
the latent space. In the remaining of the paper, we refer to such loss function as VAE loss.

2.4.2 Autoencoder Reconstruction Error as Inference-time Unexpectedness Score

In this work, we adopt AEs mainly for two reasons: (1) their training requires no label as the input image already represents the desired output and
(2) the latent variable z ensures approximate reconstruction even in the presence of out-of-distribution inputs. In our case of recognizing anomalous

1https://www.tesla.com/autopilotAI

https://www.tesla.com/autopilotAI

Andrea Stocco and Paolo Tonella 5

invalid
inputs

valid
inputs

training inputs

novel
inputs

anomalies/
outliers

Unsupported
inputs

under

represented

FIGURE 3 Classification of unsupported inputs

driving images, autoencoders are trained only on data with nominal instances, thus learning how to accurately reproduce the most frequent
input characteristics. When facing previously unseen samples, the model will experience a worse reconstruction performance 19. When trained
on nominal driving images, AEs learn how to reconstruct the nominal data patterns with high fidelity, whereas they worsen their reconstruction
capability when unknown inputs are given (i.e., unseen driving images, hereafter referred to as anomalies). Hence, nominal and anomalous inputs
are distinguished by selecting an appropriate threshold based on the reconstruction errors obtained on a validation set. Classical choices for the
threshold are the maximum reconstruction error θmax = maxx∈XL(x,x′) or a large percentile (such as 95%) θ0.95 = p0.95(L(x,x′|x ∈X).

In this paper, we use the reconstruction error of autoencoders as unexpectedness score of the driving scene. This choice is driven by a number
of reasons. First, the camera image is the main functional locus of a self-driving car, as the majority of the vehicle’s actuators are inferred just by
analyzing the images retrieved by the camera through real-time processing. Thus, AEs use information that is readily available, requiring no modifi-
cations to the main system. Second, the differences in reconstruction errors between nominal and anomalous images allow accurate differentiation.
Third, the training process for AEs is quite straightforward and efficient. Even with large datasets, AEs are able to learn meaningful latent spaces
even from a few examples unsupervisedly. Last, AEs are extremely fast at making predictions once trained, which makes them suitable as runtime
in-field monitoring techniques 15.

3 CHALLENGES OF ADAPTATION

3.1 The Need for Adaptation

The monitor’s misbehavior prediction capabilities must be updated as new knowledge becomes available. However, for nontrivial operational
domains, it is virtually impossible to account for all possible nominal scenarios at training time (Figure 3). Moreover, AEs are limited in efficiently
incorporating new knowledge after they have been trained. Finally, the thresholds used for anomaly detection are also determined offline before
AEs operate in the field, which is non optimal when the monitor operates in a constantly changing environment.

Next, we enumerate some of the challenges that need to be addressed when designing online self-adaptive monitors. (1) Effectiveness, i.e., what
novel datas should be considered for adaptation. Ideally, the false positive rate should be kept to a tunable amount, depending on the system’s
or stakeholders requirements. (2) Performance, i.e., when it is appropriate to retrain the monitor. Short-term changes of the data distribution
should not cause many false alarms or frequent model updates, while permanent context drifts should trigger model updates as soon as possible.
(3)Dependability, i.e., how to safely update the oldmonitor with the new onewhile guaranteeing service continuity.When knowledge of anomalies
and novel data accumulates, the monitor needs to be updated without affecting its main functionality. (4) Revalidation, i.e., how to regression test
the new monitor which should continue to meet its requirements, hence mitigating catastrophic forgetting.

In this work, we address the first challenge (Effectiveness) and propose and evaluate metrics that can help automate the decision process of
determining what data to consider for retraining. Themain advantage of using AEs is that no labeling is required for the newly collected data. However,
the main assumption is that all training samples are reconstructed equally well. Training optimal AEs for misbehavior prediction is indeed a difficult
endeavor. Large latent spaces may allow generalization to patterns of anomalous images, thereby increasing the number of false negatives since
also anomalous images are reconstructed well. On the other hand, small-sized latent spaces may affect the reconstruction of nominal images,
resulting in many false positives. Moreover, when used in production, the observed data may differ from those used for training. There could be
cases in which the main system generalizes better than the monitor, and then false alarms would be mistakenly reported. On the other hand, if the
monitor generalizes too much to hazardous scenarios which are unsupported by the main system, true alarms could be missed.

6 Andrea Stocco and Paolo Tonella

3.2 Classes of Unsupported Inputs

Amajor drawback of DNNs (and thus, AEs) consists in their inability to automatically discern supported (valid) from unsupported (invalid) inputs. In
fact, given an input vector, a DNN will produce an output even if the input is meaningless in the domain where the DNN is supposed to operate 20.
Thus, monitors are used to avoiding DNNs processing unsupported inputs, which may cause unpredictable predictions, potentially causing system-
level failures, if not handled properly. Figure 3 categorizes them into three classes based on their proximity to the training set data distribution. The
figure highlights the complexity and the variety of scenarios that AE monitors should aim at. Supported inputs pertain to the same data distribution
of the ones used for training (in-distribution inputs) and therefore they should be handled correctly by the DNN. Unsupported inputs, on the other
hand, pertain to a different data distribution than the one used for training (out-of-distribution inputs). Underrepresented inputs are the first category
of inputs that can cause a failure of the monitor, due to their low occurrences, as compared to other, more represented, classes. A second category
consists of novel data, i.e., data in the domain of validity of what the DNN should support, but which are not yet represented at all in the training set
and should therefore be added to it as representative of new classes of data, when available. This category is the main target of continual learning
and adaptation. Finally, the third category of unsupported inputs that can be found in real-world domains consists of anomalous data, i.e., inputs
that are not in the validity domain, and should therefore be recognized and discarded.

4 CONFIDENCE-BASED CONTINUAL ONLINE MONITORING THROUGH WEIGHTED RETRAINING

The goal of our approach is to adapt an existing monitorM that uses a static threshold for misbehavior prediction (see Figure 2) by equipping it
with online learning capability and incremental model updating strategies. Our idea revolves around an interplay between the main system and the
monitor. By establishing a perpetual information exchange cycle, we collect in-field confidence indicators of the main system’s behavior to guide
the improvement of the monitor.

Our framework leverages two opportunities. First, it uses in-field behavioral confidence indicators to refine the definition of positive and negative
cases. Second, it collects and relies on data that require no label as autoencoder-basedmonitors are trainedwith no supervision.More specifically, the
detection of positives (i.e., sampleswhose reconstruction errors are above the threshold) and negatives (i.e., negative sampleswhose reconstruction
errors are below the threshold) is based only on a black-box analysis of the sole inputs which is immaterial to how the system is actually behaving
in the field in response to such inputs. In the absence of ground truth, we hybridize the definition of positive and negative cases for misbehavior
prediction by taking into account themain system’s behavior. The observed samples are regarded as empirically valid, since they have been collected
during the nominal execution of the system, as far as the feedback from the system is correct (i.e., no safety oracle is violated 21). It is important to
highlight that our focus is on updating and improving the monitor, and not the main system. If, during the in-field learning phase, there is evidence
that the faced data distribution shift is too large to be managed correctly by the main system (i.e., safety oracles are repeatedly violated), then in-
field monitoring is no longer an option and the main system has to be shut down for additional offline retraining and testing. The collected data can
be used for such retraining (at the price of manual labeling operations), or to produce test cases that mimic the novel conditions found in the field 20.

4.1 Approach

Figure 4 illustrates the usage scenario of our framework. Once the monitor is initialized (e.g., after the initial training), it is ready for online misbe-
havior prediction. The monitor predicts the unexpectedness scores but also receives runtime behavior indicators data as the main system executes.
The main thread works on real-time misbehavior prediction, whereas a secondary thread (Distribution Drift Detector) collects behavioral in-field
data from themain system continuously that are later used for adaptation (Weighted Retraining). Next, we describe these two components in detail.

4.1.1 Distribution Drift Detector with In-field Confidence Metrics

The distribution drift detector determines what data to store for adaptation. It uses in-field confidence metrics to understand whether the samples
unsupported byM are also unsupported by the main system. On the occurrence of alarms raised by the monitor or when confidence metrics
indicate poor system performance, anomalous data are stored into an anomaly buffer for later evaluation. When confidence metrics indicate
acceptable system performance, but data are classified as novel, the collected data are added to the training set of the monitorM, which is ready
for retraining: the sample is stored in a buffer containing novel and possibly mistakenly predicted nominal data. A new threshold is computed and
the new monitorM′ substitutes the old one.

As required by our framework, we need an automated way to determine confidence metrics for the main system. We implemented two in-field
metrics that can be used to assess the quality of driving, namely predictive uncertainty and lateral deviation. The former is a white-box confidence
metric for DNNs, whereas the latter is a black-box confidence measure of the whole autonomous vehicle behavior. In our study, we are interested

Andrea Stocco and Paolo Tonella 7

update

train

data

Main Systemin-field
data

predictions

anomalous
data

Nominal pattern

Novel pattern

Anomalous pattern

in-field
confidence

metrics
warning

novel buffer

anomalous buffer
ℳMonitor

…

ℳ′￼Monitor
Distribution

Drift Detector

unexpectedness score,
in-field confidence metrics new

threshold

update

… Weighted
Retraining

FIGURE 4 Our monitoring framework for adaptive misbehavior prediction with in field confidence-driven weighted retraining.

to assess whether such metrics can be used to guide the retraining of a better monitor, whether one metric is preferable over the other, along with
their benefits and limitations.
Predictive Uncertainty. The first considered metric is an internal measure of the system’s confidence in its own predictions. We use the predictive
variance of dropout-based DNNs called Monte Carlo (MC) dropout, which we will refer hereafter simply to as MC-Dropout 22.

In DNNs, dropout layers are used at training time as a regularization method to avoid overfitting, whereas at testing time, for efficiency reasons,
dropout layers are usually disabled: all nodes and connections are kept and weights are properly adjusted (e.g., multiplied by the keep ratio, defined
as 1 - dropout rate). Thus, at testing time, the prediction is deterministic because, without other sources of randomness, themodel will always predict
the same label or value for the same test data point. On the contrary, when estimating predictive uncertainty with MC-dropout, the dropout layers
are enabled at both training and testing time. During testing, predictions are no longer deterministic, being dependent on which nodes/links are
randomly chosen by the network. Therefore, given the same test data point, the model could predict slightly different values every time the point is
passed through the network (see Figure 5a). Therefore, this mechanism is used to generate samples interpreted as a probability distribution (this is
called Bayesian interpretation in the machine learning literature 22). In practice, the value predicted by the DNN will be the expected value (mean)
of such probability distribution. Moreover, by collecting multiple predictions for a single input, each with a different realization of weights due to
dropout layers, it is possible to account for model uncertainty: the variance of the observed probability distribution quantifies such uncertainty
(see Figure 5b). A higher variance marks lower confidence, whereas a lower variance indicates higher confidence. For a complete overview of
MC-Dropout, we refer the reader to the relevant literature 22.

The rationale for using MC-Dropout is that supported inputs are expected to be characterized by low DNN uncertainties, whereas unsupported
inputs are expected to increase it (see Figure 5b). TheMC-Dropout approach circumvents the computational bottlenecks associated with having to
train an ensemble of DNNs in order to estimate predictive uncertainty. MC-Dropout provides a scalable way to estimate a predictive distribution
and it has been successfully applied to the self-driving car domain 23 as a measure to approximate uncertainty for DNNs that solve regression
problems, such as DAVE-2. The number of stochastic forward passes through the network should be determined empirically; Gal et al 22 suggest
values as small as 10 for a reasonable estimation of the predictive mean and uncertainty. For the implementation of MC-Dropout-based DAVE-2
model, we followed the guidelines provided in a similar experiment 23 in which, for the MC-Dropout predictions, a batch size of 128 was used (the
same used by the DAVE-2 model), as a good trade-off between processing time and accuracy of the predictive distribution sampling.

x x x

μ1 σ1 μ2 σ2 μ3 σ3

μ

σ

… …

(a) Predictive Uncertainty with MC-Dropout. (b) In-field Predictive Uncertainty.

FIGURE 5 Graphical illustration of the predictive uncertainty using MC-Dropout (a). Usage for measuring the confidence of a self-driving car DNN
model (b). The frames having the minimum/maximum values of MC-Dropout predictive uncertainty for the Lake track. The final predicted steering
angle corresponds to the mean µ of 128 stochastic passes by DAVE-2, whereas the uncertainty value is given by the variance σ of such predictions.
The confidence is higher on straight roads, for which the steering angle prediction for DAVE-2 is easier (lower uncertainty values), whereas the
confidence is lower when facing bends at high speed (higher uncertainty values).

8 Andrea Stocco and Paolo Tonella

Lateral Deviation. The second considered metric is a black-box measure of the car’s distance from the center of the road, which we refer to as
lateral deviation 16,21. In a self-driving car simulator, the DNN responsible for lane-keeping generates a sequence of inputs for the car’s actuators that
define an optimal collision-free trajectory according to the vehicle’s dynamics. The car’s controller then instruments the outputs of the (simulated)
actuators to follow that trajectory. One way to assess the correctness of the DNN predictions is by checking whether the predictions sent to the
vehicle’s controller minimize the distance between the predicted position of a vehicle and the corresponding position at the reference trajectory.
The error between a predicted location and the corresponding location at the reference trajectory is called the cross-track error (CTE), which is a
good approximation of the lateral deviation (see Figure 6a).

waypoint A

waypoint B

vehicle
travel path

ideal trajectory

Cross-track

error (CTE)

(a) Lateral Deviation with CTE. (b) In-field CTE.

FIGURE 6 Graphical illustration of the lateral deviation using CTE (a). Usage for measuring the confidence of a self-driving car DNN model (b). The
images show the frames having the minimum/maximum values of CTE for Lake track. The confidence is higher on straight roads, for which the
steering angle prediction for DAVE-2 is easier (lower CTE values), whereas it is lower when facing bends at high speed (higher CTE values).

The rationale for using lateral deviation is that unsupported inputs may cause erroneous steering angle predictions, thus lowering the chances
of the self-driving car to follow the ideal trajectory (see Figure 6b). Thus, CTE can be used as an external confidence metric of an autonomous
driving system that performs lane keeping, as well as similar distance-based tasks (e.g., assisted parking). In the training sets used in our study,
the car is trained to follow the center of the road. Thus, the choice of the center of the lane is instrumental to our experimental setting, but, in
principle, the very definition of CTE can be adapted to measure the distance with any ideal trajectory, not only the center of the lane. In fact,
traveling following the center lane may not be the best trajectory that minimizes the time required to complete a full lap. The tracks in the Udacity
simulator are equipped with waypoints, i.e., phantom objects that are used to mark distinct sectors. We implemented a component within the
Udacity simulator that measures the cross-track error (CTE) as the distance from the center of the car’s cruising position to the center of the road
on the ideal trajectory between the planned route given by two consecutive waypoints.
Threshold Selection. Table 1 shows how we use the internal and confidence metrics (respectively, MC-Dropout and CTE) to classify the collected
data as likely true/false positive/negative cases (LTP, LFP, LTN, LFN), along with the thresholds used in our study. Adaptation of the misbehavior
predictor makes use of the LFP data, i.e., those underrepresented or missing inputs that cause the misbehavior predictor to trigger a false alarm.

Concerning the autoencoder loss, threshold γ95 was selected by estimating the shape κ and scale θ parameters of the fitted Gamma distribu-
tion of the reconstruction errors and selecting the desired accepted false alarm rate 15. Similar to previous works, we adopted a 95% percentile.
Concerning the uncertainty values, threshold θ95 was selected with an analogous strategy. The threshold ε for the CTE is expressed in meters and
was selected empirically, by observation of the geometry of the simulated car and road sizes in the Udacity simulator. Table 1 reports all thresholds
used in our empirical study, on a per-track basis.

4.2 Triggering Adaptation and Model Retraining

In continual learning scenarios, a viable option to update the DNN-based monitor is through retraining. Retraining should aim to incorporate the
new knowledge without deteriorating the existing one (catastrophic forgetting). In DNNs, this essentially means that a new set of weights obtained
through retraining should handle both underrepresented and new inputs, without sacrificing the performance on old inputs.

During the online processing, if the monitor detects that the model no longer fits the current data, then model updating is triggered through
retraining. The key idea of our approach consists in reducing the effect of underrepresented inputs, thereby learning a more accurate model of
the normal data distribution. Likewise, our method can be also used to refine the definition of nominal class with additional novel samples. After
retraining, a new threshold is also computed, by selecting the desired accepted false alarm rate on the new distribution. Finally, the new monitor
M′ seamlessly substitutes the monitorM. Next, we describe two weighted retraining methods that we implemented and evaluated in our work,
namely Rebalanced Dataset Retraining (RDR) and Confidence-based Weighted Retraining (CWR).

Andrea Stocco and Paolo Tonella 9

TABLE 1 Classification of likely true/false positive and negative cases (LTP, LFP, LTN, LFN) for misbehavior prediction based on unexpectedness,
uncertainty, or lateral deviation. Thresholds refer to our best performing misbehavior predictor, the VAE with latent dimension of 16 andMSE loss.
Metric • Threshold Rule Lake Jungle Mountain

Autoencoder Reconstruction Loss • γ95
LTP→ context = unexpected ∧ loss > γ95

γ95 = 318 γ95 = 326 γ95 = 253
LTN→ context = nominal ∧ loss < γ95LFP→context = nominal ∧ loss > γ95LFN→ context = unexpected ∧ loss < γ95

MC-Dropout • θ95 LTP→ Unc > θ95 ∧ loss > γ95

θ95 = 1.04× 10−15 θ95 = 1.04× 10−2 θ95 = 4.78× 10−4LTN→ Unc < θ95 ∧ loss < γ95LFP→ Unc < θ95 ∧ loss > γ95LFN→ Unc > θ95 ∧ loss < γ95

CTE • ε (mt)∗ LTP→ CTE > ε ∧ loss > γ95

ε = 1.5 ε = 0.5 ε = 1.5
LTN→ CTE < ε ∧ loss < γ95LFP→ CTE < ε ∧ loss > γ95LFN→ CTE > ε ∧ loss < γ95

∗ considering the width of the vehicle in the Udacity simulator and the widths of the tracks.

4.2.1 Rebalanced Dataset Retraining (RDR)

In our previous paper 16, we instrumented retraining of the monitor by re-balancing the composition of the training set. The approach works as
follows. First, likely false-positive frames are selected through in-field confidence metrics. Then, the majority class (i.e., the true negatives, the
frames that are reconstructed well) is downsampled, to decrease its relative importance. Last, the minority class (i.e., the likely false positives) are
oversampled through replication. Thus, the in-field confidence metrics are only used for the selection of the frames to be used for adaptation.
Such a method requires two parameters d and o that specify the amount of downsampling and oversampling, respectively. For instance, if the
simulation time is approximately 180 seconds, and the simulator recorded 2,700 frames, the fps is 15. Suppose that 2,314 frames are regarded as
false negatives. Thus, with d = 2 (i.e., we retain half of the frames), 2314

2
= 1157 frames are retained in the training set. Conversely, for the 26

frames regarded as likely false positive, we duplicated each frame by a factor of o. If o = 2, then each frame is added twice to the training set, giving
a final training set of 52 + 1157 = 1209. Such a technique quickly increases the dimension of the training set if the false positive rate is high, even
with slightly increasing values of d. For instance, if the false positives are 700 and d is set to 3, the final dataset would have size 1400+1000 = 3100

(+15%). Thus, the dataset weighting retraining technique is advantageous only when a low number of false positives affects the data distribution.
Moreover, a proper balance between the parameters d and o may be nontrivial to find.

4.2.2 Confidence-based Weighted Retraining (CWR)

A more elegant technique consists of weighting the samples according to their relative importance and let the neural network optimize a weighted
function. Weighted retraining needs a set of weights that are plausible for the given domain. There are no universal rules for weight selection, except
that all weights must be strictly positive values, because negative weights incentivize poor model performance, and zero weights are equivalent to
discarding a sample.

In this paper, we adopt a conceptually simple solution that employs the reconstruction losses of the AE as a meaningful way to weigh each
sample. The idea is that reconstruction losses are always strictly positive values, and yield higher weights for poorly reconstructed samples, and
lower weights for good reconstructed samples. Thus, during retraining, the learned distribution would change negligibly in presence of good
reconstructed samples, whereas the AE model will significantly update the training distribution to incorporate poorly reconstructed samples into
the latent space. This happens because, unlike the rebalanced dataset retraining strategy, confidence-based weighted retraining minimizes a whole
weighted loss. Specifically, each training image xi is combined with a weight wi. Each learned weight wi is a function of confidence that the model
associates to the specific sample i. A weighted reconstruction loss is computed for the AE, notationally Lw =

∑N
i=1 wixi, g(f(xi)). Note that

weights are needed only at training time, and then weights are no longer needed during validation or deployment. Moreover, no additional samples
or data duplication is needed. Confidence-based weighted retraining transforms the AE from a passive reconstructor into an architecture that
ensures that the latent space is constantly representative of the most updated and relevant points observed in the field.
When to Retrain. Several strategies are possible to decide when to trigger a model update, such as setting a limit to the buffer’s size, or a time
limit, possibly combined with the former. Our general guideline is that small distribution drifts can be rapidly incorporated, hence a small buffer

10 Andrea Stocco and Paolo Tonella

size would help achieve fast adaptation. However, a drawback is that the retraining operation is quite computationally and time-demanding for
an online setting, thus if the buffer size is too small, there is a chance that the monitor will be consuming too many computational resources due
to frequent retraining operations. A proper trade-off should be chosen depending on the observed rate of novel samples and on the available
computational resources.

5 EXPERIMENTAL EVALUATION

We performed an empirical study to assess the effectiveness of our framework to improve a misbehavior predictor from the literature, the vari-
ational autoencoder (VAE) used within the tool SelfOracle 15. Improvement is assessed as the capability of the retrained misbehavior predictor
at maintaining a high detection rate while keeping the false alarms low in presence of underrepresented inputs and data distribution shifts. Our
experiments rely on simulation testing using the open-source Udacity simulator for self-driving cars used in similar testing works 15,21,16.

5.1 Research Questions and Metrics

We consider the following research questions:
RQ1 (LFP reduction):How effective is our framework in reducing the likely false positive rate occurring in nominal conditions? Howmuch is the catastrophic
forgetting induced by retraining? The first research question aims to quantify the reduction of the false positives in nominal conditions of misbehavior
predictors thanks to our approach. Moreover, we quantify the effect of the catastrophic forgetting retraining, which should be mitigated. In fact,
adaptation to the distribution shifts should not happen at the expense of higher reconstruction errors in nominal conditions.
RQ2 (misbehavior prediction): How effective are the misbehavior predictors in predicting failures after retraining? The second research question aims
to assess whether our retraining technique does preserve the true positive rate of the retrained misbehavior predictors.
RQ3 (internal validation): How does the misbehavior predictors effectiveness vary when considering different configurations?

RQ3.1 (loss): How does the misbehavior prediction rate vary when considering different loss functions?
RQ3.2 (latent space size): How does the misbehavior prediction rate vary when considering different latent space sizes?
RQ3.3 (in-field confidence metric): How does the misbehavior prediction rate vary when considering different in-field confidence metrics?

The third research question aims to evaluate how the internal factors of our framework affect the effectiveness of the misbehavior predictors.

5.2 Setup

5.2.1 Datasets: Nominal and Unseen Conditions

We set the nominal conditions in the Udacity simulator as sunny weather, which is the default weather condition in each road track scene. To
generate simulations with unseen conditions that could cause major failures of the driving component, we performed simulations activating a
single unexpected condition, namely rain. In the Udacity simulator, we set the rain particles emission rate at fixed timestamps during the simulation.
The intensity of the effect ranges from a minimum of 100 to a maximum of 10,000 particles per second so as to expose the car to increasingly
extreme conditions ultimately leading to system-level failures (Figure 1). Our choice of rain as an unsupported condition is just an experimental
design choice. In the testing autonomous driving systems literature this “leave-one-out” approach is fairly common. There is no special reason for
this specific choice of supported/unsupported conditions and different permutations would be of course allowed (e.g., supported = night + rainy;
unsupported = snowy). The only important prerequisite is that the chosen unsupported condition is unseen at training time.

5.2.2 Objects of Study

Framework’s Configurations.We implemented different configurations of our framework, varying, in turn, the dimension of the latent space, and
the loss function used to minimize the reconstruction error.
Baseline. We use our previous retraining technique RDR 15 as a baseline for the novel retraining technique CWR. The value for downsampling d
was chosen to select only 3 frames per second (fps) of simulation in the minority class (other than the default value of about 13-18 fps), and the
value for oversampling o was set to 2. Additionally, for RQ1, we use the original VAE from the study by Stocco et al. 15, which was the singled-
image misbehavior predictor that showed the best performance in such a related study. The VAE has a latent dimension of 2, and it is trained to
minimize the MSE loss between the input and reconstructed image.

Andrea Stocco and Paolo Tonella 11

5.2.3 Training Details

Self-Driving Car Model.We used the existing dataset 15 of simulated driving data to train a lane-stable DAVE-2 3 self-driving car model. For each
track, the training set contains 10 laps on nominal sunny conditions following two different track orientations (normal, reverse), and additional data
for recovery. For each time frame (around 13 fps), three images are collected from three front-facing cameras, one positioned at the center of the
car, one facing left, and one facing right. Each image is labeled with the ground truth steering angle value for that driving image. The maximum
driving speed of the driving model was capped to 30 mph during data generation, the default value in the Udacity simulator.

For each track, we trained an individual DAVE-2 model. This facilitated training and converge towards a robust model. The number of epochs
was set to 500, with a batch size of 128 and a learning rate of 0.0001. We used early stopping with a patience of 10 and a minimum loss change
of 0.0005 on the validation set. The network uses the Adam optimizer to minimize the mean squared error (MSE) between the predicted steering
angles and the ground truth value. We used data augmentation to mitigate the lack of image diversity in the training data. Specifically, 60% of the
data was augmented through different image transformation techniques (e.g., flipping, translation, shadowing, brightness). We cropped the images
to 80 x 160 and converted them from RGB to YUV color space. The training was performed on a machine featuring an Nvidia GPU GeForce RTX
2060 with 6GB of memory. This training was meant to create solid models for testing, i.e., able to drive multiple laps on each track under nominal
conditions without showing any misbehavior in terms of crashes or out-of-track events.
Autoencoders. For each track, and for each configuration of our framework, we trained an individual VAE model. Unlike the DAVE-2 model, we
used only the center-facing camera, because it is the only one used by the model during the testing phase for predicting the steering angles for
driving the vehicle. No data augmentation was applied to the autoencoders training, to avoid making them robust to image perturbations that they
should instead fail to reconstruct. As a training set, we used the same one used to train the DAVE-2 model, with the exception of using images
from one lap only for each track, which is sufficient to train a robust VAE model (i.e., finding a function to reconstruct images is way easier than
finding a function between an image and a real number representing a value for a car’s actuator). The number of epochs was set to 100, with a
learning rate of 0.0001. The network uses the Adam optimizer to minimize either the mean squared error (MSE) or the variational (VAE) loss. The
latent space dimensions were chosen in the range [2, 4, 8, 16]. The maximum dimension for our case study was chosen empirically, during our
early experiments. For the retraining phase, we limited the number of epochs to 50, since the set of weights was already initialized during the first
training and fewer passes on the data were required for convergence.

5.3 Procedure and Metrics

To answer our research questions, we performed two studies. The first study concerns the detection and reduction of class imbalance, i.e., under-
represented inputs on nominal conditions that cause the misbehavior predictors to raise false alarms. The second study is related to the prediction
of failures on injected novel unseen conditions. To this aim, for each track, we executed several two-lap simulations on the Udacity simulator, for
each considered condition.

5.3.1 RQ1 (LFP reduction)

We constructed a test set performing one simulation in the same nominal conditions as the training set (i.e., sunny weather). For each frame, the
simulator also recorded the in-field behavioral metrics MC-Dropout and CTE. Then, we used our framework to compute the reconstruction error
on all images of such a test set for all misbehavior predictors and estimated the number of likely false positives (LFP, or likely false alarms) in nominal
conditions using the in-field behavioral metrics MC-Dropout and CTE, according to the ruleset and thresholds in Table 1.

After detecting the likely false positive samples, we retrained the misbehavior predictors twice, using, in turn, the rebalanced dataset retraining
(RDR) and confidence-driven weighted retraining (CWR). Finally, we executed further simulations in nominal conditions to determine the number
of false positives after retraining. To assess effectiveness, we measured the number of likely false positives detected in each configuration of our
framework, using the threshold prior to the adaptation phase. Moreover, we quantify catastrophic forgetting by using a custom metric CF . We
subtract the reconstruction errors before and after retraining only for those frames that were below the estimated threshold (i.e., our notion of
being reconstructed well). Notationally, CF = 1

|L|
∑

x∈L | ‖x− x′‖ − ‖x− x′′‖ |, where L = {x | ‖x − x′‖ < γ95} and x′, x′′ are the
images reconstructed by the autoencoder for an input x before/after adaptation. Basically, we are interested in understanding whether retraining
preserves or degrades the autoencoder’s effectiveness on the part of the distribution that was reconstructed well after the first training (Figure 7).

5.3.2 RQ2 (Misbehaviour Prediction)

We constructed a test set performing simulations on unseen conditions (i.e., rainy weather), and evaluated the misbehavior predictors in detecting
the number of true positives. Following the setting by Stocco et al. 15, we apply a time-series analysis in the form of a simple moving average.
Individual reconstruction error et at time t might be susceptible to single-frame outliers (which are not expected to have a big impact on the

12 Andrea Stocco and Paolo Tonella

FIGURE 7 Exemplary illustration of catastrophic forgetting in autoencoders. Reconstruction errors of driving images for the Lake track, using a
misbehavior predictor based on the VAE loss and a latent dimension of 2. (top) Results for RDR, which does reduce many false positives, but also
causes much catastrophic forgetting, turning many true negatives to false positives (e.g., 1,100–1,300). (bottom) Results for CWR which does
reduce many false positives, but it is also less disruptive towards the original training set data distribution.

driving of the car) but would indeed make the misbehavior predictor falsely report an anomalous context. The simple moving average computes
the arithmetic mean of reconstruction errors over a moving windoww containing k frames. We have chosen a window size forw that corresponds
to 1 second of simulation in the Udacity simulator, by dividing the number of frames retrieved during a simulation by the simulation time. For
instance, if the simulator recorded 2340 frames in 180 seconds, the fps is 13; hence w = 13.

The simulator automatically labels individual frames in which failures occur (i.e., crashes or out-of-track events) as anomalous. Since our frame-
work is expected to predict misbehaviors ahead of time, we labeled the frames preceding the misbehavior as anomalous as well (pre-failure
sequences). The frames in which failure occurs are discarded. ForRQ2 we also do not need to consider the nominal frames. On the list of pre-failure
sequences, we compute the true positive rate (i.e., the number of correct misbehavior predictions) and the false negative rate (i.e., the number of
missed misbehavior predictions) by our framework at a different time to misbehavior (TTM), i.e., considering different detection and reaction win-
dows sizes, in the range [1, 2, 3, 4, 5]. If the average loss score for the images in that window is higher than the automatically estimated threshold
γ95, our framework triggers an alarm. Consequently, a true positive is defined when our framework triggers an alarm during such anomalous win-
dows during the specified TTM. Conversely, a false negative occurs when our framework does not trigger an alarm during an anomalous window,
thus failing at predicting misbehavior. To fully assess effectiveness, the false positive and true negative rates were measured in nominal condition
simulations, to which analogous windowing was applied. In both settings, we used the threshold prior to the adaptation phase.

Our goal is to achieve high recall, or true positive rate (TPR, defined as TP/(TP+FN)), i.e., true alarms while minimizing the complement of
specificity, or false positive rate (FPR, defined as FP/(TN+FP)), i.e., labeling safe situations as unsafe. We are also interested in the F1-score (F1 =

2 · Precision×RecallPrecision+Recall) because, a high F1-score at a given threshold can be reached only when both precision and recall are high. We also consider
two threshold-independent metrics for evaluating classifiers at various thresholds: AUC-ROC (area under the curve of the Receiver Operating
Characteristics), and AUC-PRC (area under the Precision-Recall curve). We included AUC-PRC because AUC-ROC is not informative when data
are heavily unbalanced, since unseen situations are supposed to be rare as opposed to nominal ones. We recall that in unseen conditions, the ideal
situation for a misbehavior predictor would be to have TPR=1 and FNR=0.

5.3.3 RQ3 (Internal Validation)

To answer RQ3, we compare the different metrics for RQ1 (LFP reduction and CF) and for RQ2 (Precision, Recall, AUC-ROC, and AUC-PRC) across
misbehavior predictor configurations (i.e., when varying latent space size, loss function, or in-field metric used for adaptation). MSE is a per-pixel
loss function, therefore it is expected to be quite sensitive to minimal variations or errors. The VAE loss contains the second regularizer term
that has the effect of keeping similar (nominal) image representations close together in the latent space, whereas penalizing representations of
unseen images that are more likely to cause failures. Moreover, we investigate whether the output of the misbehavior predictors is characterized
by different levels of blurriness. To quantify blur, we compute the Laplacian variance for each image 24. The Laplacian variance increases with an
increased focus of an image or decreases with increased blur. Hence, images with a smaller amount of edges tend to have a smaller Laplacian
variance (the Laplacian kernel is often used for edge detection in images).

Andrea Stocco and Paolo Tonella 13

TABLE 2 RQ1: Likely false positive reduction at TPR95 for all misbehavior predictors, for both in-field confidence metrics. ↓ indicates that lower
values are better; ↑ indicates that higher values are better. Best combinations of LFP red. % ↑ and CF over All tracks are highlighted in bold and
grey color on a per latent dimension basis (2, 4, 8, 16).
Model VAE RDR / CWR (MC-Dropout) RDR / CWR (CTE)
(lat. dim. / loss) dataset LFP ↓ LFP ↓ LFP red. % ↑ CF ↓ LFP ↓ LFP red. % ↑ CF ↓

2 / MSE
Lake 167 67 / 59 60 / 65 39 / 24 65 / 59 61 / 65 45 / 27
Jungle 178 111 / 90 38 / 49 109 / 58 120 / 119 32 / 33 138 / 92
Mountain 124 69 / 41 44 / 67 38 / 34 17 / 3 86 / 98 54 / 46
All 156 82 / 63 47 / 60 62 / 39 67 / 60 60 / 65 79 / 55

2 / VAE
Lake 165 110 / 52 33 / 68 48 / 21 62 / 59 62 / 64 36 / 19
Jungle 174 105 / 75 40 / 57 71 / 68 50 / 48 71 / 72 120 / 86
Mountain 91 114 / 88 -25 / 3 44 / 39 90 / 67 1 / 26 44 / 44
All 143 110 / 72 16 / 43 54 / 43 67 / 58 45 / 54 67 / 50

4 / MSE
Lake 127 6 / 5 95 / 96 46 / 51 40 / 23 69 / 82 42 / 42
Jungle 183 90 / 64 51 / 65 51 / 36 58 / 27 68 / 85 70 / 47
Mountain 146 24 / 12 84 / 92 54 / 46 27 / 26 81 / 82 56 / 44
All 152 40 / 27 77 / 84 50 / 44 42 / 25 73 / 83 56 / 44

4 / VAE
Lake 150 49 / 21 67 / 86 40 / 26 42 / 37 72 / 75 42 / 21
Jungle 129 56 / 54 57 / 58 35 / 29 27 / 14 79 / 89 69 / 51
Mountain 108 35 / 11 68 / 90 36 / 28 14 / 11 87 / 90 28 / 29
All 129 47 / 29 64 / 78 37 / 28 28 / 21 79 / 85 47 / 34

8 / MSE
Lake 125 12 / 1 90 / 99 42 / 57 36 / 15 71 / 88 46 / 40
Jungle 188 39 / 37 79 / 80 62 / 39 15 / 4 92 / 98 87 / 59
Mountain 174 21 / 3 88 / 98 54 / 50 8 / 0 95 / 100 56 / 48
All 162 24 / 14 86 / 93 53 / 49 20 / 6 86 / 95 61 / 51

8 / VAE
Lake 135 25 / 7 81 / 95 31 / 23 33 / 30 76 / 78 31 / 21
Jungle 201 44 / 25 78 / 88 54 / 38 4 / 2 98 / 99 66 / 55
Mountain 128 5 / 1 96 / 99 43 / 37 3 / 0 98 / 100 46 / 37
All 155 25 / 11 85 / 94 43 / 33 13 / 11 90 / 92 48 / 38

16 / MSE
Lake 148 5 / 0 97 / 100 41 / 43 31 / 16 79 / 89 41 / 37
Jungle 201 50 / 44 75 / 78 57 / 42 6 / 2 97 / 99 63 / 55
Mountain 114 8 / 5 93 / 96 34 / 32 11 / 5 90 / 96 38 / 32
All 154 21 / 16 88 / 91 44 / 39 16 / 8 89 / 95 48 / 41

16 / VAE
Lake 142 5 / 1 96 / 99 32 / 31 28 / 8 80 / 94 35 / 27
Jungle 190 32 / 30 83 / 84 43 / 30 0 / 0 100 / 100 50 / 40
Mountain 116 4 / 2 97 / 98 40 / 34 0 / 0 100 / 100 42 / 35
All 149 14 / 11 92 / 94 38 / 32 9 / 3 93 / 98 42 / 34

5.4 Results

5.4.1 Results for RQ1 (LFP reduction)

Table 2 presents the results for the first study about the reduction of the false positives in nominal conditions. For each VAE configuration being
considered, and for each in-field confidence metric (MC-Dropout and CTE), the table shows the considered dataset, the number of likely false pos-
itives (LFP) by the VAE adopted in SelfOracle, the number of likely false positives (LFP) detected by the considered configuration, both numerically
and percentage-wise, and the catastrophic forgetting metric (CF). Averages across all tracks are also reported for each configuration. We consid-
ered a confidence threshold of ε = 0.05 (i.e., at TPR = 95%). We recall that in nominal conditions, the ideal situation for a misbehavior predictor
would be to have FPR=0 and TNR=1. A false positive represents a false alarm by our framework, whereas true negative cases occur when our
framework signals correctly the detection of a normal condition.

Our results show that the baseline VAE experiences a large number of false positives for any track (more than a hundred, on average), confirming
the results of a previous study 15. In practice, this means that the misbehavior predictor equipped with the baseline VAE would raise a high number
of erroneous warnings to the main driving component, or to the human driver, even in nominal conditions. On the other hand, both our proposed

14 Andrea Stocco and Paolo Tonella

TABLE 3 RQ2: Misbehaviour prediction results for all misbehavior predictors. Scores are computed at a FPR95 and TTM=3 seconds. Best
combinations of F-1 over All tracks are highlighted in bold and grey color on a per latent dimension basis (2, 4, 8, 16).
Model VAE RDR / CWR (MC-Dropout) RDR / CWR (CTE)
(lat. dim. / loss) dataset Prec. (%) Rec. (%) F-1 (%) AUC-ROC AUC-PRC Prec. (%) Rec. (%) F-1 (%) AUC-ROC AUC-PRC Prec. (%) Rec. (%) F-1 (%) AUC-ROC AUC-PRC

2 / MSE
Lake 60 100 75 0.97 0.80 82 / 75 100 / 100 90 / 86 0.99 / 0.99 0.91 / 0.88 70 / 82 100 / 100 82 / 90 0.98 / 0.99 0.85 / 0.91Jungle 56 36 43 0.66 0.50 81 / 66 36 / 32 50 / 43 0.67 / 0.65 0.63 / 0.53 74 / 100 36 / 28 49 / 44 0.67 / 0.64 0.59 / 0.69Mountain 64 61 62 0.78 0.65 52 / 78 42 / 68 47 / 73 0.69 / 0.83 0.50 / 0.75 86 / 74 79 / 74 82 / 74 0.89 / 0.85 0.84 / 0.75
All 60 66 60 0.80 0.65 72 / 73 59 / 67 62 / 67 0.78 / 0.82 0.68 / 0.72 77 / 85 67 / 72 69 / 71 0.85 / 0.83 0.76 / 0.78

2 / VAE
Lake 57 100 72 0.96 0.78 70 / 82 100 / 100 82 / 90 0.98 / 0.99 0.85 / 0.91 75 / 75 100 / 100 86 / 86 0.99 / 0.99 0.88 / 0.88Jungle 53 27 36 0.62 0.44 66 / 81 32 / 36 43 / 50 0.65 / 0.67 0.53 / 0.63 91 / 85 44 / 48 59 / 61 0.72 / 0.73 0.71 / 0.70Mountain 38 18 24 0.60 0.38 35 / 35 21 / 21 26 / 26 0.58 / 0.58 0.33 / 0.33 45 / 39 26 / 21 33 / 27 0.61 / 0.59 0.40 / 0.35All 49 48 44 0.73 0.53 57 / 66 51 / 52 50 / 55 0.74 / 0.75 0.57 / 0.62 70 / 67 57 / 56 59 / 58 0.77 / 0.77 0.66 / 0.64

4 / MSE
Lake 60 100 75 0.97 0.80 100 / 90 100 / 100 100 / 95 1.00 / 1.00 1.00 / 0.95 82 / 82 100 / 100 90 / 90 0.99 / 0.99 0.91 / 0.91Jungle 75 59 66 0.78 0.70 76 / 100 68 / 72 72 / 84 0.82 / 0.86 0.74 / 0.88 81 / 100 72 / 72 76 / 84 0.85 / 0.86 0.78 / 0.88Mountain 71 83 76 0.89 0.78 69 / 69 100 / 100 82 / 82 0.97 / 0.97 0.84 / 0.84 66 / 69 100 / 100 79 / 82 0.97 / 0.97 0.83 / 0.84
All 69 81 72 0.88 0.76 82 / 86 89 / 91 85 / 87 0.93 / 0.94 0.86 / 0.89 76 / 84 91 / 91 82 / 85 0.94 / 0.94 0.84 / 0.88

4 / VAE
Lake 53 100 69 0.96 0.76 70 / 75 100 / 100 82 / 86 0.98 / 0.99 0.85 / 0.88 65 / 75 100 / 100 79 / 86 0.98 / 0.99 0.82 / 0.88Jungle 85 59 69 0.79 0.78 86 / 93 52 / 56 65 / 70 0.75 / 0.78 0.72 / 0.77 100 / 93 52 / 56 68 / 70 0.76 / 0.78 0.79 / 0.77Mountain 69 61 65 0.78 0.67 82 / 87 90 / 84 86 / 85 0.94 / 0.91 0.86 / 0.86 87 / 93 90 / 90 88 / 91 0.94 / 0.94 0.89 / 0.92All 69 73 68 0.84 0.74 79 / 85 81 / 80 78 / 80 0.89 / 0.89 0.81 / 0.84 84 / 87 81 / 82 78 / 82 0.89 / 0.90 0.83 / 0.86

8 / MSE
Lake 60 100 75 0.97 0.80 82 / 75 100 / 100 90 / 86 0.99 / 0.99 0.91 / 0.88 90 / 75 100 / 100 95 / 86 1.00 / 0.99 0.95 / 0.88Jungle 69 63 66 0.80 0.68 95 / 100 84 / 84 89 / 91 0.92 / 0.92 0.91 / 0.93 100 / 95 80 / 84 89 / 89 0.90 / 0.92 0.91 / 0.91Mountain 76 86 80 0.96 0.91 63 / 72 100 / 100 77 / 84 0.96 / 0.98 0.82 / 0.86 69 / 69 100 / 100 82 / 82 0.97 / 0.97 0.84 / 0.84All 68 83 74 0.91 0.80 80 / 82 95 / 95 86 / 87 0.96 / 0.96 0.88 / 0.89 86 / 80 93 / 95 88 / 86 0.96 / 0.96 0.90 / 0.88

8 / VAE
Lake 57 100 72 0.96 0.78 70 / 75 100 / 100 86 / 82 0.98 / 0.99 0.85 / 0.88 65 / 75 100 / 100 79 / 86 0.98 / 0.99 0.82 / 0.88Jungle 78 68 72 0.82 0.75 95 / 100 76 / 80 84 / 89 0.88 / 0.90 0.87 / 0.91 95 / 100 80 / 80 87 / 89 0.90 / 0.90 0.89 / 0.91Mountain 66 66 66 0.81 0.68 82 / 100 90 / 95 86 / 97 0.94 / 0.97 0.86 / 0.98 100 / 100 90 / 95 94 / 97 0.95 / 0.97 0.95 / 0.98
All 67 78 70 0.86 0.74 82 / 92 89 / 92 85 / 89 0.93 / 0.95 0.86 / 0.92 87 / 92 90 / 92 87 / 91 0.94 / 0.95 0.89 / 0.92

16 / MSE
Lake 57 100 72 0.96 0.78 100 / 75 100 / 100 100 / 86 1.00 / 0.99 1.00 / 0.88 90 / 75 100 / 100 95 / 86 1.00 / 0.99 0.95 / 0.88Jungle 76 77 77 0.87 0.78 95 / 100 84 / 84 89 / 91 0.92 / 0.92 0.91 / 0.93 100 / 100 84 / 84 91 / 91 0.92 / 0.92 0.93 / 0.93Mountain 76 86 80 0.96 0.91 66 / 72 100 / 100 79 / 84 0.97 / 0.98 0.83 / 0.86 66 / 69 100 / 100 79 / 82 0.97 / 0.97 0.83 / 0.84All 70 88 76 0.93 0.82 87 / 82 95 / 95 90 / 87 0.96 / 0.96 0.91 / 0.89 85 / 81 95 / 95 89 / 86 0.96 / 0.96 0.90 / 0.88

16 / VAE
Lake 57 100 72 0.96 0.78 65 / 70 100 / 100 79 / 82 0.98 / 0.98 0.82 / 0.85 70 / 70 100 / 100 82 / 82 0.98 / 0.98 0.85 / 0.85Jungle 71 59 65 0.78 0.67 100 / 100 80 / 84 89 / 91 0.90 / 0.92 0.91 / 0.93 100 / 100 80 / 84 89 / 91 0.90 / 0.92 0.91 / 0.93Mountain 81 61 70 0.79 0.73 100 / 100 90 / 90 94 / 94 0.95 / 0.95 0.95 / 0.95 100 / 100 90 / 90 94 / 94 0.95 / 0.95 0.95 / 0.95
All 70 73 69 0.84 0.73 88 / 90 90 / 91 87 / 89 0.94 / 0.95 0.90 / 0.91 90 / 90 90 / 91 88 / 89 0.94 / 0.95 0.90 / 0.91

techniques are capable to reduce the impact of such false alarms to a large extent, showing high debiasing effects for inherent latent class imbal-
ances. For both RDR and CWR, the decrease is higher for latent spaces with a size higher than 2. CWR performs constantly better or equal than
RDR, rating a higher percentage reduction of LFP (LFP red. %) and a lower catastrophic forgetting (CF) for all configurations. For several configu-
rations (16 / MSE CWR on Lake track, 8 / MSE CWR on Mountain track, 8 / VAE on Mountain track, 16 / VAE on Jungle and Mountain tracks) the
number of false alarms is reduced to zero. Statistical significance of the difference was confirmed by applying the non-parametric Mann-Whitney
U test 25, with a confidence threshold α = 0.05, with a small Cohen’s d effect size 26. About VAE vs CWR, the LFP reduction differences were found
statistically significant with a large effect size. About RDR vs CWR, the differences were found statistically significant with a small effect size for
LFP reduction. Moreover, concerning catastrophic forgetting, we can notice that CWR induces a lower reconstruction error deterioration on the
driving scenes that were reconstructed well (i.e., whose reconstruction error was already below the 95% threshold after the first training), high-
lighted by equal to lower CF values than RDR across all configurations and for both confidence metrics. The differences were found statistically
significant with a medium effect size. In conclusion, this means that a large number of true negatives are confirmed after weighted retraining with
CWR, and a substantial portion of false positives become true negatives (Figure 7). Looking at the individual tracks, for the Lake track, the reduc-
tion is higher with increasing sizes of the latent space (for 16 / MSE we have 100% reduction). For the Jungle track, predictors with a latent space
size of 8 work best when considering both MC-Dropout or CTE. For the Mountain track, both dimensions 8 and 16 are equally good, especially
with CTE, whereas a low dimension of 2 experienced the worst performance in our study. For the MC-Dropout metric, the predictors equipped
with VAE loss were found more effective for latent space dimension bigger than 4. For the CTE metric, the predictors equipped with MSE loss
were found more effective for latent space dimension equal to 2 and 8.

RQ1: The misbehavior predictors retrained using confidence-driven weighted retraining (CWR) reduce the LFP rate up by a large margin (up to
zero in some configurations). Therefore, confidence-driven weighted retraining offers clear advantages over rebalanced dataset retraining (RDR)
both in terms of LFP reduction rate and training cost (training size and time).

5.4.2 Results for RQ2 (Misbehaviour Prediction)

Table 3 shows the results for the misbehavior prediction in unseen conditions. For each VAE model configuration being considered, and for each
in-field confidence metric (MC-Dropout and CTE), the table shows the considered dataset, the precision, recall, F-1 scores at FPR95. We reported

Andrea Stocco and Paolo Tonella 15

(a) Lake. (b) Jungle. (c)Mountain.

FIGURE 8 Laplacian variance of the reconstructed nominal/unseen driving images by our best misbehavior predictor.

the results for a time to misbehavior TTM=3, which means having a detection and reaction window of 3 seconds prior to the occurrence of the
misbehavior. Moreover, we report the AUC-ROC score, as well as the AUC-PRC score.

Results of our retrained misbehavior predictors confirm that most true alarms are detected correctly after adaptation. Apart from a few con-
figurations, the Recall and Precision values are generally high for all predictors with latent space sizes greater or equal to 4. F-1, AUC-ROC and
AUC-PRC are also high for predictors with latent space size greater or equal to 8. The original un-retrained VAE misbehavior predictor obtains
good prediction results, confirming previous results 15. However, the effectiveness is lower than our proposed technique CWR for either of the two
variants MC-Dropout and CTE, with statistical significance measured by the non-parametric Mann-Whitney U test 25, with a confidence threshold
α = 0.05, with a medium to large Cohen’s d effect size 26, respectively. Concerning the in-field confidence metric, both tool configurations show
competitive results for both MC-Dropout and CTE. Indeed, no large differences were expected in terms of misbehavior prediction effectiveness,
as both tool configurations share the same VAE architecture and training set, with the only difference being the way in which they are trained.
Indeed, statistical analysis also revealed no statistically significant differences. However, it is important to remark that the RDR technique has a
major drawback, as it requires a non-negligible overhead in terms of additional training set images to be added to the original training set (on aver-
age, directly proportional to the number of images being reconstructed badly). On the contrary, CWR requires no training set image to be added,
and it works by just reweighing the input samples according to the observed in-field confidence metrics. Concerning the time to misbehavior, we
found empirically that no major differences were observed in a time window between 1 and 3 seconds far from the misbehaviors, on average. Con-
versely, when the considered time window increased over 4 seconds, the prediction capability decreases. Our own experience with the Udacity
simulator confirms that a detection and reaction time of 3 seconds is sufficient to anticipate most misbehaviors at a speed of 30 mph.

RQ2: The misbehaviour predictors retrained using confidence-driven weighted retraining (CWR) exhibit a high misbehavior prediction rate. There-
fore, confidence-driven weighted retraining attains a high TPR rate on unseen conditions allowing anticipating a large number of misbehaviours
(up to 100% in some configurations) up to to 3 seconds ahead.

5.4.3 Results for RQ3 (Internal Validation)

Results for RQ3.1 (loss). Concerning the LFP reduction, we consider misbehavior predictor configurations with the same latent space size. In the
case of MC-Dropout, CWR’s VAE configurations show an LFP reduction for latent dimensions greater or equal to 8. In the case of CTE, all CWR’s
VAE configurations are better than MSE in terms of LFP reduction. Concerning the misbehavior prediction, we compare the AUC-ROC scores
across misbehavior predictor configurations with the same latent space size. In the case of MC-Dropout, CWR’s MSE configurations show better
AUC-ROC scores for all latent dimensions. The same result is confirmed also for the CTE metric. Images generated by the misbehavior predictors
using the VAE loss tend to be more blurry than images generated by misbehavior predictors using the MSE loss for the same images, according
to the Laplacian variance (Figure 8). On average, the nominal images have the highest Laplacian variance (highest focus or least blur) whereas the
reconstructed images are more blurry. The images reconstructed by predictors with MSE loss are significantly less blurry than those reconstructed
by those using the VAE loss. The statistical significance of this difference was assessed with a t-test for paired samples 27 (i.e., the same test images
are used by both autoencoders). The T-score is quite large and the p-value is zero, definitely lower than 0.05. We can therefore conclude that
images generated by the predictors with the MSE loss are significantly less blurry than those generated by the predictors with the VAE loss. The
lower blur level associated with MSE results in reduced false alarms (see LFP in Table 2) and accurate misbehavior prediction (see F-1 in Table 3).

RQ3.1: The misbehavior predictors using theMSE loss function showed superior performance both in reducing the LFP rate as well as in accurately
predicting misbehaviors.

16 Andrea Stocco and Paolo Tonella

TABLE 4 Likely false positive detection by in-field confidence metric.
Lake Jungle Mountain All Tracks

Model MC-Drop. CTE MC-Drop. CTE MC-Drop. CTE MC-Drop. CTE
(lat. dim. / loss) LFP # % # % LFP # % # % LFP # % # % LFP # % # %
2 / MSE 167 146 87 113 78 178 174 98 178 100 124 91 73 124 100 469 411 88 415 882 / VAE 165 152 92 114 89 174 174 100 174 100 91 72 79 91 100 430 398 93 379 88
4 / MSE 127 113 89 86 78 183 183 100 183 100 146 142 97 146 100 456 438 96 415 914 / VAE 150 136 91 107 81 129 129 100 129 100 108 87 81 108 100 387 352 91 344 89
8 / MSE 125 116 93 89 81 188 174 93 185 98 174 167 96 174 100 487 457 94 448 928 / VAE 135 124 92 101 85 201 186 93 201 100 128 118 92 128 100 464 428 92 430 93
16 / MSE 148 138 93 114 87 201 183 91 198 99 114 105 92 114 100 463 426 92 426 9216 / VAE 142 132 93 112 89 190 176 93 190 100 116 106 91 116 100 448 414 92 418 93
Average 145 132 91 105 84 181 172 96 180 100 125 111 88 125 100 451 416 92 409 91

Results for RQ3.2 (latent space size).We compare the LFP reduction across misbehavior predictor configurations with the same latent space size.
In the case of MC-Dropout, all configurations show a significant LFP reduction when the dimension increases. Indeed, the best results are obtained
by the predictors with latent space equal to 16. The same result is confirmed also for the CTE metric. Concerning the misbehavior prediction,
we compare the AUC-ROC scores across misbehavior predictor configurations with the same latent space size. In the case of MC-Dropout, all
configurations show a high AUC-ROC score when the dimension is greater or equal to 8. Indeed, the best results are obtained by the predictors
with latent space equal to 16. The same result is confirmed also for the CTE metric.

RQ3.2: In our autonomous driving domain, the misbehavior predictors using a bigger latent dimension (16, in our experiments) showed superior
performance both in reducing the LFP rate as well as in accurately predicting misbehaviors.

Results for RQ3.3 (in-field confidence metric). Table 4 shows the LFP detection rate for MC-Dropout and CTE across all configurations on a per-
track level. Averages across tracks are also reported. Overall, both metrics exhibited a high detection rate (over 90%), according to the ruleset of
Table 1. The accurate detection of in-field nominal driving conditions benefited our framework to a large extent (see results for RQ1 and RQ2).

Looking at the results for each individual track, for Lake track, MC-Dropout detected 27 LFP more than CTE (+26%). CTE is an approximated
measure (see Section 4.1.1) and the approximation error is larger on long bends, which necessitates a larger number of waypoints to approximate
the central trajectory. The DAVE-2 model can occasionally drive quite far from such a reference trajectory, without necessarily exhibiting major
misbehaviors. In fact, the sequence of steering angles to face a 90-degree bend differs depending on the speed at which the vehicle approaches the
bend. DAVE-2 is indeed able to generalize quite well to our tracks also to speeds and conditions that differ from the exact driving scenes captured
in the training set. In such a situation, MC-Dropout may be better at estimating the confidence of the driving component. On the contrary, for the
Mountain track, CTE offers a better confidence estimation since the ideal trajectory is easier to approximate with waypoints. The road section of
the track allows for multiple correct trajectories to be taken to face the long gentle bends of the track. Indeed, MC-Dropout lost a few frames (14,
amounting to -13%) in which the car deviates substantially from the ideal trajectory. Such frames, however, were correctly captured by CTE. For
the Jungle track, both metrics score very high detection rates. MC-Dropout lost a few frames (9, -5%) because, unlike Mountain track, the road
section is quite narrow and correspondingly the car may suddenly face a hazardous condition. TheMC-Dropout metric failed to immediately report
a decrease in the confidence level of DAVE-2 whereas the CTE metric correctly detected it.

RQ3.3: Both MC-Dropout and CTE offer competitive results as in-field confidence metrics. In scenarios where it is possible to measure CTE
accurately, we suggest to use it as the reference confidence metric for an autonomous driving model that performs lane-keeping.

5.5 Threats to Validity

Wecompared all variants of our framework and our baseline VAE under the same evaluation sets and parameter settings. A threat to internal validity
concerns the training of self-driving car models, which may exhibit a large number of misbehaviors if trained inadequately. We mitigated this threat
by training and fine-tuning the best publicly available driving models. Our custom implementation of the MC-Dropout and CTE metrics within the
Udacity simulator constitutes another threat to validity that we mitigated by testing our implementation extensively. In terms of generalization
of our results, we rely on the Udacity simulator’s capabilities to reflect the autonomous driving model in the real-world and our data might not
generalize to different simulation platforms. Datasets of real driving scenes cannot be used in our study because we cannot compute our metrics
and observe failures for such driving scenarios. All our results, the source code, the simulator, and all subjects are available 28, making the evaluation
repeatable and our results reproducible.

Andrea Stocco and Paolo Tonella 17

6 DISCUSSION

6.1 Analysis of the Results

Our evaluation revealed that the DAVE-2 self-driving car model generalizes differently from the VAE-based misbehavior predictor in case of class
imbalance. The misbehavior predictors based on the variational autoencoder (VAE), on the other hand, are not likewise able to learn meaningful
nominal patterns if class imbalance affects the training set. The latent space of a VAE trained on uniformly weighted data contains many poor-
performing samples that cause many false positives in practice when used in the field. Weighted retraining mitigates such a problem by introducing
more high-performing points into the latent space using a combination of confidence-driven sample selection and autoencoder loss-based weight
initialization. Weighted retraining robustly balances the distribution between poorly reconstructed samples at the expense of good reconstructed
values, which is the intended effect. The gist is that the results on both minimizations of false alarms and misbehavior prediction are broadly
supportive of our approach, which improves an existing state-of-the-art autoencoder-basedmisbehavior predictor for autonomous driving systems.

Our results also show that it is possible to use MC-Dropout to obtain reliable uncertainty scores, confirming previous studies 23. This might
suggest that it would be possible to build misbehavior predictors relying solely on white-box metrics. However, such results should be taken with
care because MC-Dropout predictions can be computationally demanding for an online setting. Even if we do not report extensive performance
results, the performance of the main driving component and the overall driving quality were not affected if the number of samples is kept the
same as the batch size (i.e., 128 in our experimental setting), making our framework a real-time viable solution. Conversely, the driving quality
was affected when increasing the batch size value is increased. Thus, MC-Dropout is a valid choice for online runtime drift detection, especially if
accelerator-specific hardware is available within the deployed system (e.g., tensor processing units).

Even if CTE is commonly used in domains such as aircraft landing systems 29, in the self-driving car domain it is not a standard metric yet as it
may not always be available, since it requires the capability to compare the ideal with the actual trajectory. Current industrial self-driving cars can
accurately approximatemetrics such as CTE bymeans of advanced computer vision algorithms or dedicated sensors. In the future, CTEmay become
more standard and utilized. The advent of smart cities and dedicated roadways designed for autonomous vehicles could provide online information
about the car’s driven lane position. CTE is also increasingly being utilized within reward functions of self-driving cars based on reinforcement
learning algorithms 30.

The best configuration from our experiments is the misbehavior predictor paired with MC-Dropout as drift detector, the VAE loss function,
and a latent space of 16. This essentially means that a latent vector of size 2 as initially used in the paper by Stocco et al. 15 is too constrained to
hold all meaningful differences for the images of the training set. However, a careful selection of the latent space dimension is necessarily domain-
dependent. Concerning the in-field confidence metrics used by our framework, both MC-Dropout and CTE contributed to a competitive reduction
of the likely false-positive rate. When available, CTE might be a good choice in resource-constrained settings, where the available hardware is not
compatible with the expensive online uncertainty computation performed by MC-Dropout.

6.2 Applications

Our monitoring framework applies to both fail-passive and fail-active systems. In the former case, it can be used to prevent failures from happening
by promptly warning the driver or the main driving component about an unsupported driving scenario. In the latter case, it can be used as a
component within a fail-safe mechanism that tries to react in a way that minimal harm is caused to the vehicle, to the environment or to the people.

In this work, we consider black-box environmental monitors, specifically VAEs. However, our adaptation framework is quite generic and can be
applied to any machine learning-based technique used to monitor the environment and identify anomalies from imagery data. The main working
assumption is to use a scoring function that allows accurate differentiation between nominal and anomalous images.

The data mined from the field can be also used for the retraining of the main system. However, such data lack labels, which in practice are
costly to get as labeling requires human effort. In the case of a self-driving car, this problem is even more difficult because it is challenging if
not impossible to manually assign a meaningful label (i.e., a steering angle) only by looking at individual images. A more accurate but expensive
option would require a human driver to drive in a simulated environment as close as possible to the parts of the track in which the likely false
positives were detected. The control actions (e.g., steering angles) performed by the human would then serve as ground truth labels. Automated
test generation techniques could be used to produce a simulation environment that mimics the underrepresented conditions found in the field 20.
For underrepresented frames, an approximate label could be found by looking at the most similar image in the training set, which can be compared
with the one by the autopilot. A k-nearest neighbors search based on some image similarity metric such as the SSIM 31 can be adopted to search
the training set for samples that are close to the ones collected in the field.

We considered a setup in which negative examples are unknown, thus they cannot be used at training time. If knowledge of the expected
true anomaly rate applies to the context, there are multiple options that can be explored. First, knowledge of anomalies can be used to select
a more precise threshold. Another direction would be to retrain more accurate monitors over time using sophisticated AE architectures. Triplet

18 Andrea Stocco and Paolo Tonella

loss function within AEs 32 can minimize the distance (maximize the similarity) between in-distribution and positive samples, while maximizing the
distance (minimizing the similarity) between in-distribution and negative samples. Adversarial autoencoders 33 adopt two networks with competing
objectives: a generator attempts to reconstruct images that belong to the nominal data distribution, whereas a discriminator tries to distinguish
whether the samples belong to the nominal or to the anomalous data distribution.

We are confident that our framework can also support unseen scenarios similar to the ones used in our experiment (i.e., snow, fog) because
they are expected to perturb the camera images used for steering angle prediction analogously to rain, perhaps with different levels of magnitude.
Other semantically similar image perturbations would consist in perturbing a ratio of images along the stream to simulate malfunctions of the main
camera. Generalization of our results to such unseen scenarios is left for future work.

Concerning other future improvements, onemight study other predictive uncertaintymetrics that take epistemic uncertainty into account (which
is what occurs during data distribution shift) and are efficient for real-time online settings. A promising option is given by temperature scaling 34
whereas ensembles of models, despite being regarded as the best solution 35, are not expected to scale well to real-time scenarios due to their
high computational cost.

6.3 Open Challenges

One major challenge concerns the deployment of new retrained monitors without negatively affecting the main system’s behavior. Moreover, it
is important to strike a balance between old and new knowledge by maintaining also some samples of older data distribution within an archive,
to avoid overfitting the data distribution towards only the most recent data that is collected at runtime. To this extent, generative replay by the
encoder’s part of autoencoders has shown promising results 36.

Techniques should be also devised to maintain the training set size limited only to the most representative examples, as the retraining time scales
up with the size of the training set. Training set minimization techniques can be useful in this context such as those based on stratified sampling
or Synthetic Minority Oversampling Technique (SMOTE) 37. Also, different misbehaviors may have a different time to misbehavior window sizes,
whereas in our experiments we used a fixed window size.

Another open challenge concerns the coupling between the main system and the monitor. The misbehavior predictor’s effectiveness may
diminish in cases whereby the main system produces reasonable in-field behavior also for inputs that should be regarded as anomalies. Thus,
including such inputs in the anomaly detector’s training set might introduce a drift in the monitor’s knowledge, which may become less sensitive
to behaviors similar to the undetected anomalous scenarios. In our experiments, this situation did not occur, as most system-level failures were
correctly detected by the monitor both pre and post adaptation. However, the coupling between the main system and the safety monitor may
have far-reaching consequences that require further investigation.

Lastly, another possible line of research consists of studying the automated generation of countermeasures upon detection of an hazard, such
as reducing the speed, braking, or parking the vehicle into the nearest safe location or combinations of those. This healing component must be
designed carefully as false alarms are not only uncomfortable, but they could also be unsafe. Our system is similar to the safety systems already in
place in existing vehicles such as those for emergency braking. Such systems try to prevent rear-end collisions or mitigate their consequences by
using sensors to assess whether a collision is likely. The system will usually start by warning the driver, using a dashboard message or an audible
alarm. If the driver fails to take action, the automatic or ‘autonomous’ part of the system will apply the brakes automatically. In our work, we focus
on the early detection of potentially unsupported driving scenarios by the autopilot so that either the human driver or the main driver component
can be warned promptly. We do not focus on what actions are best for a particular driving scene, which is a possible follow-up of our work.

7 RELATED WORK

In this section we overview the main related work in the autonomous vehicle testing domain, along the following dimensions: (1) monitoring
systems, (2) quality assessment, and (3) test generation.

7.1 Monitoring Systems for Autonomous Driving Systems

Concerning DNN-based system monitors for autonomous vehicles, Henriksson et al. 38 use the negative of the log-likelihood of the images gener-
ated by a VAE as an anomaly score for driving images. However, the data distribution of the images in their test set (urban scenes) is by far quite
different from that of the training set (highway scenes). In our experiment, we create the anomalous set by gradually injecting anomalous condi-
tions starting from the training set tracks, which allows a more realistic transition from nominal to unexpected scenarios. Strickland et al. 39 use a

Andrea Stocco and Paolo Tonella 19

Convolutional LSTM embedding multiple indicators such as the image of the driving environment and the state of the vehicle to predict impeding
collisions with other vehicles at crossroads. Michelmore et al. 23 proposed the use of MC-Dropout to estimate the confidence of an autonomous
vehicle and use it to predict unsafe situations. In a follow up work, Michelmore et al. 40 use several Bayesian inference methods and show that
uncertainty estimates are highly effective to support decision making in autonomous driving. Langford and Cheng 41 propose Enki to generate
unsupported environmental conditions that expose misbehaviours for a DNN trained for the CIFAR-10 benchmark. In a recent work, Langford and
Cheng 42 combine evolutionary computation with machine learning to produce a method to predict misbehaviors of a DNN-based object detec-
tor for autonomous driving when faced with previously unseen environmental conditions. Differently, in this paper, we use both white-box and
black-box confidence metrics for improving the effectiveness of a monitor based on autoencoders that are improved through weighted retraining.

7.2 Quality Assessment for Autonomous Driving Systems

Concerning quality metrics for evaluating the driving performance, Jahangirova et al. 21 evaluated 26 metrics related to the quality of driving of
both human and autonomous driving and showed their usefulness as functional oracles through mutation testing 43. Evans et al. 44 propose the
design of a domain specific language to express oracles for autonomous driving systems testing. Such a language, ideally, would allow encoding
safety, liveness, timeliness and temporal properties. Ayerdi et al. 45 propose a taxonomy to elicit requirements for Design-Operation Continuum
Engineering of CPS. The taxonomy has been applied to the elevation and railway domains; applicability and usefulness to autonomous driving has
to yet be verified.

Researchers have also investigated the relation between online and offline metrics. In the lane keeping task, offline metrics refer to the error
associated with the prediction of the ground-truth steering angle, while online metrics refer to misbehaviours occurring during a simulation, such
as collisions. Codevilla et al. 46 found that offline prediction errors are not correlated with driving quality, and two models with comparable error
prediction rates may differ substantially in their driving quality. Similarly to Codevilla et al. 46, Haq et al. 47 performed an empirical study comparing
offline and online testing of DNNs for autonomous driving. The goal was to understand whether simulator-generated data can be a reliable proxy
for real-world data. Results show that simulator-generated data yield similar prediction errors as those obtained on real-world datasets. Moreover,
offline testing is less viable in exposing safety violations than online testing. Specifically, all severe violations exposed by simulations are also
exposed by offline techniques/measures, but the opposite is not true. The way authors compare simulated vs real data is by generating a high
number of scenarios in the simulator until sequences of images that have analogous labels (i.e., steering angles) are found. Differently, in this paper,
we use driving quality metrics such as the CTE as confidence values for the retraining of a system monitor that aims to predict misbehaviours.

7.3 Test Generation for Autonomous Driving Systems

Test generation techniques for self-driving cars aim at automatically constructing test cases for vision-based autopilots 48,49,50,51,52,53,54. Test cases
are represented by images of driving scenes as seen by a human driver or images that represent road shapes that are rendered within a simulation
platform. Abdessalem et al. 48,49,50 combine genetic algorithms and machine learning to test a pedestrian detection system. Mullins et al. 55 use
Gaussian processes to drive the search towards yet unexplored regions of the input space, whereas Gambi et al. 56 propose AsFault, a search-based
test generator for autonomous vehicles based on procedural content generation. AsFault uses search operators which mutate and recombine road
segments to construct road networks for testing the lane keeping functionality of self-driving cars. Riccio and Tonella 20 propose DeepJanus, a
model-based test generator that uses Catmull-Rom splines to characterize the road shape and generate inputs that are at the behavioural frontier
of a self-driving car model. Zohdinasab et al. 57 use illumination search to cover the map of external behaviours of a self-driving vehicle. Riccio
et al. 58 augment existing test suites by mutation adequacy-guided test generation. Arrieta et al. 59 use a genetic algorithm to generate tests for
CPS that optimize along three directions, namely requirements coverage, test case similarity and test execution time. The goal of test generators
is to derive extreme and challenging roads, maximizing the number of observed failures, while our goal is to predict system-level failures in online
mode. In contrast to the existing works, we study specifically how to adapt a VAE-based anomaly detector in the self-driving car domain, using
in-field confidence metrics (predictive uncertainty and lateral deviation) as drift detectors. To the best of our knowledge, our study is the first that
combines continual learning with in-field metrics, such as predictive uncertainty, to detect distribution drifts of the input data and to drive the
retraining of a better VAE. We carried out a comparison with the online misbehavior prediction of SelfOracle 15, finding poor performance of the
VAE in presence of data distribution shifts.

Other works propose adversarial input generation to generate inputs that trigger inconsistencies between multiple autonomous driving sys-
tems 51, or between the original and transformed driving scenarios 52,53,60. For example, DeepExplore 51, DeepTest 52 and DeepRoad 53 test the
robustness of self-driving car modules. In these papers, the proposed frameworks synthesize alternative driving images simulating adversarial

20 Andrea Stocco and Paolo Tonella

driving conditions. DeepExplore 51 uses lightning effects and occlusions to transform the testing data into artificially simulated adversarial inputs.
DeepTest 52 alters the images using synthetic affine transformations from the computer vision domain, such as blurring and brightness adjustments,
and Photoshop to create simulated rain/fog effects. Differently, DeepRoad 53 generates images by means of Generative Adversarial Networks
(GANs). Generated images are then validated by measuring their distance in the latent space produced by PCA with respect to the training images.
Results show that unseen scenarios created in this way have larger mean squared error (MSE), therefore in many cases they fool the DNN that
predicts the steering angle. Such solutions alter the input images fed to the DNN by means of artificial transformations (e.g., lightning effects
and occlusions 51, affine transformations 52), as well as generative adversarial networks 53, to simulate adversarial driving conditions. However, the
main use case concerns the identification of underrepresented scenarios in the training data to support re-training and better generalization after
re-training. Indeed, a previous paper highlighted the poor performance of such techniques when used for online misbehavior prediction 15. Con-
cerning the definition of unseen driving scenario, the work by Bolte et al. 61 in the autonomous vehicle domain provides a definition of misbehavior
based on non-predictable relevant objects in a relevant location around the car. Such a definition is compatible with our framework, as our recon-
struction error component would react to the presence of an anomalous object. Coupled with an object recognition component, we may weigh
different parts of the images differently, depending on the presence/absence of an object in them.

8 CONCLUSIONS AND FUTURE WORK

Predicting and minimizing safety-critical system failures in autonomous driving systems is a prerequisite for on-road deployment. A monitoring
system can be helpful, provided that it can quickly adapt to changes in the nominal data distribution. This paper proposes a framework for continual
learning of a runtimemonitoring system based on a variational autoencoder, which keeps evolving a misbehavior predictor as additional experience
of drifting nominal instances becomes available. When the observed instances deviate from the nominal distribution of the data used for training
without affecting any driving quality metrics, new samples are collected and incorporated using adaptive weighted retraining. Our experimental
results show that both black-box and white-box confidence metrics can be used as accurate in-field drift detectors and that the reduction of
the false alarm rate obtained thanks to our technique is substantial. At the same time, the retrained misbehavior predictors attain a high failure
prediction capability because our framework is designed to minimize catastrophic forgetting upon retraining.

In our future work, we plan to address the remaining challenges, which include the safe deployment of the adapted monitors, the trade-off
between frequent adaptations and introduction of regressions, and the exploitation of knowledge about true anomalies observed in the field.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project PRECRIME, funded under the ERC Advanced Grant 2017 Program (ERC Grant Agreement
n. 787703).

References

1. Riccio Vincenzo, Jahangirova Gunel, Stocco Andrea, Humbatova Nargiz, Weiss Michael, Tonella Paolo. Testing Machine Learning based
Systems: A Systematic Mapping. Empirical Software Engineering. 2020;.

2. Humbatova Nargiz, Jahangirova Gunel, Bavota Gabriele, Riccio Vincenzo, Stocco Andrea, Tonella Paolo. Taxonomy of Real Faults in Deep
Learning Systems. In: ICSE ’20:12 pagesACM; 2020.

3. Bojarski Mariusz, Testa Davide Del, Dworakowski Daniel, et al. End to End Learning for Self-Driving Cars.. CoRR. 2016;abs/1604.07316.
4. Zhang Qianqian, Wang Haifeng, Lu Hongya, Won Daehan, Yoon Sang Won. Medical image synthesis with generative adversarial networks for

tissue recognition. In: IEEE; 2018.
5. Zhao Juan, Feng QiPing, Wu Patrick, et al. Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve

Cardiovascular Event Prediction. Scientific Reports. 2019;9(1):717.
6. Julian Kyle D., Kochenderfer Mykel J., Owen Michael P.. Deep Neural Network Compression for Aircraft Collision Avoidance Systems. CoRR.

2018;abs/1810.04240.

Andrea Stocco and Paolo Tonella 21

7. Tesla Vehicle Safety Report. https://www.tesla.com/VehicleSafetyReport2021.
8. WaymoDriverless Car Accident. https://venturebeat.com/2020/10/30/waymos-driverless-cars-were-involved-in-18-accidents-over-20-month/2020.
9. Uber Driverless Car Accident. https://www.bbc.com/news/technology-541753592021.

10. Žliobaitė Indrė, Pechenizkiy Mykola, Gama João. An Overview of Concept Drift Applications:91–114. Cham: Springer 2016.
11. Biggio Battista, Roli Fabio. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition. 2018;84:317–331.
12. Lee Kimin, Lee Kibok, Lee Honglak, Shin Jinwoo. A simple unified framework for detecting out-of-distribution samples and adversarial attacks.

In: :7167–7177; 2018.
13. Wu W., Xu H., Zhong S., Lyu M. R., King I.. Deep Validation: Toward Detecting Real-World Corner Cases for Deep Neural Networks. In:

:125–137; 2019.
14. Chandola Varun, Banerjee Arindam, Kumar Vipin. Anomaly Detection: A Survey. ACM Comput. Surv.. 2009;41(3).
15. Stocco Andrea, Weiss Michael, Calzana Marco, Tonella Paolo. Misbehaviour Prediction for Autonomous Driving Systems. In: ICSE ’20ACM;

2020.
16. Stocco Andrea, Tonella Paolo. Towards Anomaly Detectors that Learn Continuously. In: ISSREW 2020IEEE; 2020.
17. Chalapathy Raghavendra, Chawla Sanjay. Deep Learning for Anomaly Detection: A Survey. CoRR. 2019;abs/1901.03407.
18. Transportation National Highway Traffic Safety Administration. Pre-Crash Scenario Typology for Crash Avoidance Research. 2007.
19. An Jinwon, Cho Sungzoon. Variational Autoencoder based Anomaly Detection using Reconstruction Probability. In: ; 2015.
20. Riccio Vincenzo, Tonella Paolo. Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing. In: ESEC/FSE ’20;

2020.
21. Jahangirova Gunel, Stocco Andrea, Tonella Paolo. Quality Metrics and Oracles for Autonomous Vehicles Testing. In: ICST ’21IEEE; 2021.
22. Gal Yarin, Ghahramani Zoubin. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In: ICML

’16JMLR.org; 2016.
23. Michelmore Rhiannon, KwiatkowskaMarta, Gal Yarin. EvaluatingUncertaintyQuantification in End-to-EndAutonomousDriving Control.CoRR.

2018;abs/1811.06817.
24. Pertuz Said, Puig Domenec, Garcia Miguel Angel. Analysis of focus measure operators for shape-from-focus. Pattern Recognition.

2013;46(5):1415–1432.
25. Wilcoxon Frank. Individual Comparisons by Ranking Methods. Biometrics Bulletin. 1945;1(6):80.
26. Cohen Jacob. Statistical power analysis for the behavioral sciences. Hillsdale, N.J: L. Erlbaum Associates; 1988.
27. WELCH B. L.. THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE

INVOLVED. Biometrika. 1947;34(1-2):28–35.
28. Replication Package. https://github.com/testingautomated-usi/jsep2021-replication-package-material2021.
29. Tyler C. Staudinger Dragos D. Margineantu. XPlane-ML - an Environment for Learning and Decision Systems for Airplane Operations. In:

MLOSS ’18; 2018.
30. Kiran B Ravi, Sobh Ibrahim, Talpaert Victor, et al. Deep Reinforcement Learning for Autonomous Driving: A Survey. 2021.
31. Yandrapally Rahulkrishna, Stocco Andrea, Mesbah Ali. Near-Duplicate Detection in Web App Model Inference. In: ICSE ’20ACM; 2020.
32. Schroff Florian, Kalenichenko Dmitry, Philbin James. FaceNet: A Unified Embedding for Face Recognition and Clustering. In: ; 2015.
33. Makhzani Alireza, Shlens Jonathon, Jaitly Navdeep, Goodfellow Ian, Frey Brendan. Adversarial Autoencoders. 2016.

https://www.tesla.com/VehicleSafetyReport
https://venturebeat.com/2020/10/30/waymos-driverless-cars-were-involved-in-18-accidents-over-20-month/
https://www.bbc.com/news/technology-54175359
https://github.com/testingautomated-usi/jsep2021-replication-package-material

22 Andrea Stocco and Paolo Tonella

34. Laves Max-Heinrich, Ihler Sontje, Kortmann Karl-Philipp, Ortmaier Tobias. Well-calibrated Model Uncertainty with Temperature Scaling for
Dropout Variational Inference. 2019.

35. Weiss Michael, Tonella Paolo. Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring. In: ICST ’21IEEE; 2021.
36. Wiewel F., Yang B.. Continual Learning for Anomaly Detection with Variational Autoencoder. In: ; 2019.
37. Chawla Nitesh V., Bowyer Kevin W., Hall Lawrence O., Kegelmeyer W. Philip. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif.

Int. Res.. 2002;16(1):321–357.
38. Henriksson Jens, Berger Christian, Borg Markus, et al. Towards Structured Evaluation of Deep Neural Network Supervisors. In: IEEE; 2019.
39. Strickland Mark, Fainekos Georgios, Ben Amor Hani. Deep predictive models for collision risk assessment in autonomous driving. In:

Proceedings - IEEE International Conference on Robotics and AutomationInstitute of Electrical and Electronics Engineers Inc.; 2018.
40. Michelmore Rhiannon,WickerMatthew, Laurenti Luca, Cardelli Luca, Gal Yarin, KwiatkowskaMarta. UncertaintyQuantificationwith Statistical

Guarantees in End-to-End Autonomous Driving Control. In: :7344–7350IEEE; 2020.
41. Langford Michael Austin, Cheng Betty H.C.. Enhancing Learning-Enabled Software Systems to Address Environmental Uncertainty. In: :115–

124; 2019.
42. Langford Michael Austin, Cheng Betty H.C.. “Know What You Know”: Predicting Behavior for Learning-Enabled Systems When Facing

Uncertainty. In: :78–89; 2021.
43. Humbatova Nargiz, Jahangirova Gunel, Tonella Paolo. DeepCrime: Mutation Testing of Deep Learning Systems based on Real Faults. In: ISSTA

’21; 2021.
44. Evans Ana Nora, Soffa Mary Lou, Elbaum Sebastian. A Language for Autonomous Vehicles Testing Oracles. 2020.
45. Ayerdi Jon, Garciandia Aitor, Arrieta Aitor, et al. Towards a Taxonomy for Eliciting Design-Operation Continuum Requirements of Cyber-

Physical Systems. In: :280–290; 2020.
46. Codevilla Felipe, López Antonio M., Koltun Vladlen, Dosovitskiy Alexey. On Offline Evaluation of Vision-based Driving Models. CoRR.

2018;abs/1809.04843.
47. Haq Fitash Ul, Shin Donghwan, Nejati Shiva, Briand Lionel. Comparing Offline and Online Testing of Deep Neural Networks: An Autonomous

Car Case Study. In: ICST ’20IEEE; 2020.
48. Abdessalem Raja Ben, Panichella Annibale, Nejati Shiva, Briand Lionel C., Stifter Thomas. Testing Autonomous Cars for Feature Interaction

Failures Using Many-objective Search. In: ASE 2018ACM; 2018.
49. Ben Abdessalem R., Nejati S., Briand L. C., Stifter T.. Testing advanced driver assistance systems using multi-objective search and neural

networks. In: ; 2016.
50. Ben Abdessalem R., Nejati S., C. Briand L., Stifter T.. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms. In: ; 2018.
51. Pei Kexin, Cao Yinzhi, Yang Junfeng, Jana Suman. DeepXplore: Automated Whitebox Testing of Deep Learning Systems. In: SOSP ’17ACM;

2017.
52. Tian Yuchi, Pei Kexin, Jana Suman, Ray Baishakhi. DeepTest: Automated Testing of Deep-neural-network-driven Autonomous Cars. In: ICSE

’18ACM; 2018.
53. Zhang Mengshi, Zhang Yuqun, Zhang Lingming, Liu Cong, Khurshid Sarfraz. DeepRoad: GAN-based Metamorphic Testing and Input Validation

Framework for Autonomous Driving Systems. In: ASE 2018ACM; 2018.
54. Kim Jinhan, Feldt Robert, Yoo Shin. Guiding Deep Learning System Testing Using Surprise Adequacy. In: ICSE ’19IEEE Press; 2019.
55. Mullins Galen E., Stankiewicz Paul G., Hawthorne R. Chad, Gupta Satyandra K.. Adaptive generation of challenging scenarios for testing and

evaluation of autonomous vehicles. Journal of Systems and Software. 2018;137.

Andrea Stocco and Paolo Tonella 23

56. Gambi Alessio, Mueller Marc, Fraser Gordon. Automatically Testing Self-driving Cars with Search-based Procedural Content Generation. In:
ISSTA 2019ACM; 2019.

57. Zohdinasab Tahereh, Riccio Vincenzo, Gambi Alessio, Tonella Paolo. DeepHyperion: Exploring the Feature Space of DeepLearning-Based
Systems through Illumination Search. In: ISSTA ’21Association for Computing Machinery; 2021.

58. Riccio Vincenzo, Humbatova Nargiz, Jahangirova Gunel, Tonella Paolo. DeepMetis: Augmenting a Deep Learning Test Set to Increase its
Mutation Score. In: ASE ’21IEEE/ACM; 2021.

59. Arrieta Aitor, Wang Shuai, Markiegi Urtzi, Sagardui Goiuria, Etxeberria Leire. Search-based test case generation for Cyber-Physical Systems.
In: :688–697; 2017.

60. Müller S., Hospach D., Bringmann O., Gerlach J., Rosenstiel W.. Robustness Evaluation and Improvement for Vision-Based Advanced Driver
Assistance Systems. In: ; 2015.

61. Bolte J., Bar A., Lipinski D., Fingscheidt T.. Towards Corner Case Detection for Autonomous Driving. In: ; 2019.

AUTHOR BIOGRAPHY

Andrea Stocco. Andrea Stocco is a postdoctoral fellow at the Software Institute (USI) in Lugano, Switzerland. His research
involves software testing and empirical software engineering, with current interests being monitoring techniques and auto-
mated functional oracles for deep learning-based systems, with a particular focus on autonomous vehicles, and automated
repair, robustness and maintainability of test suites for web applications. He is the recipient of the Best Student Paper Award
at the 16th International Conference on Web Engineering (ICWE 2016). He serves on the program committees of top-tier
software engineering conferences such as FSE, ICST and ISSRE, and reviews for numerous software engineering journals
including TSE, EMSE, TOSEM, JSS, and IST.
Paolo Tonella. Paolo Tonella is Full Professor at the Faculty of Informatics and at the Software Institute of Universita’ della
Svizzera Italiana (USI) in Lugano, Switzerland. He is also Honorary Professor at University College London, UK. Until mid 2018
he has been Head of Software Engineering at Fondazione Bruno Kessler, Trento, Italy. Paolo Tonella is the recipient of an
ERC Advanced grant as Principal Investigator of the project PRECRIME. In 2011 he was awarded the ICSE 2001 MIP (Most
Influential Paper) award, for his paper: “Analysis and Testing of Web Applications”. He is the author of “Reverse Engineering
of Object Oriented Code”, Springer, 2005, and of “Evolutionary Testing of Classes", ISSTA 2004. Paolo Tonella was Program
Chair of ICSM2011 and ICPC 2007; General Chair of ISSTA 2010 and ICSM2012. He is/was associate editor of TOSEM/TSE

and he is in the editorial board of EMSE and JSEP. His current research interests include deep learning testing, web testing, search based test case
generation and the test oracle problem.

How to cite this article: Stocco A., and Tonella P. (2021), Confidence-driven Weighted Retraining for Predicting Safety-Critical Misbehaviours in
Autonomous Driving Systems, J Softw Evol Proc, .

	Confidence-driven Weighted Retraining for Predicting Safety-Critical Failures in Autonomous Driving Systems
	Abstract
	Introduction
	Background
	Self-Driving Car Case Study
	Anomalies in Self-Driving Cars
	Monitors for Self-Driving Car Misbehaviour Prediction
	Autoencoder-based Monitors
	Autoencoders
	Autoencoder Reconstruction Error as Inference-time Unexpectedness Score

	Challenges of Adaptation
	The Need for Adaptation
	Classes of Unsupported Inputs

	Confidence-based Continual Online Monitoring Through Weighted Retraining
	Approach
	Distribution Drift Detector with In-field Confidence Metrics

	Triggering Adaptation and Model Retraining
	Rebalanced Dataset Retraining (RDR)
	Confidence-based Weighted Retraining (CWR)

	Experimental Evaluation
	Research Questions and Metrics
	Setup
	Datasets: Nominal and Unseen Conditions
	Objects of Study
	Training Details

	Procedure and Metrics
	RQ1 (LFP reduction)
	RQ2 (Misbehaviour Prediction)
	RQ3 (Internal Validation)

	Results
	Results for RQ1 (LFP reduction)
	Results for RQ2 (Misbehaviour Prediction)
	Results for RQ3 (Internal Validation)

	Threats to Validity

	Discussion
	Analysis of the Results
	Applications
	Open Challenges

	Related work
	Monitoring Systems for Autonomous Driving Systems
	Quality Assessment for Autonomous Driving Systems
	Test Generation for Autonomous Driving Systems

	Conclusions and future work
	Acknowledgments
	References
	Author Biography

