
ThirdEye: Attention Maps for Safe Autonomous Driving Systems
Andrea Stocco

Università della Svizzera italiana
Lugano, Switzerland
andrea.stocco@usi.ch

Paulo J. Nunes
Federal University of Pernambuco

Recife, Brazil
paulojnbp@gmail.com

Marcelo d’Amorim
Federal University of Pernambuco

Recife, Brazil
damorim@cin.ufpe.br

Paolo Tonella
Università della Svizzera italiana

Lugano, Switzerland
paolo.tonella@usi.ch

ABSTRACT

Automated online recognition of unexpected conditions is an in-
dispensable component of autonomous vehicles to ensure safety
even in unknown and uncertain situations. In this paper we pro-
pose a runtime monitoring technique rooted in the attention maps
computed by explainable artificial intelligence techniques. Our ap-
proach, implemented in a tool called ThirdEye, turns attention
maps into confidence scores that are used to discriminate safe from
unsafe driving behaviours. The intuition is that uncommon atten-
tion maps are associated with unexpected runtime conditions.

In our empirical study, we evaluated the effectiveness of dif-
ferent configurations of ThirdEye at predicting simulation-based
injected failures induced by both unknown conditions (adverse
weather and lighting) and unsafe/uncertain conditions created with
mutation testing. Results show that, overall, ThirdEye can predict
98% misbehaviours, up to three seconds in advance, outperforming
a state-of-the-art failure predictor for autonomous vehicles.
ACM Reference Format:

Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella. 2022.
ThirdEye: Attention Maps for Safe Autonomous Driving Systems. In 37th

IEEE/ACM International Conference on Automated Software Engineering (ASE

’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3551349.3556968

1 INTRODUCTION

Autonomous driving systems (ADS) consist of an integration of es-
tablished systems of adaptive cruise control, parking assistance, and
autopilots into a unified functional unit [75]. Modern ADS are de-
veloped with increasing capabilities to act autonomously with little
to no human input, using a perception-plan-execution strategy [75].
The perception part is typically delegated to deep neural networks
(DNNs) which are capable of learning driving actions from labeled
input-output samples [22]. For ADS, typical inputs consist of driv-
ing images, whereas the outputs are driving commands predicted
by the DNN, such as the angle that the car must steer at to drive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556968

safely. The input space of ADS (i.e., all possible driving images) is
huge and hard to cover adequately, even with automated testing
techniques [1, 4, 5, 21, 49]. Consequently, one of the main chal-
lenges associated with deploying trustworthy ADS on public roads
consists in their need to operate safely even in partially unknown
and uncertain environments, which can result in unpredictable and
hazardous situations. On the other hand, increased acceptance of
such driverless vehicles requires a high degree of robustness also
in the presence of non-modelled phenomena, uncertainties, as well
as errors or inaccuracies at the sensor level [53].

Existing works have proposed DNN supervisors to build a safety
envelope over a DNN to assess its level of dependability in opera-
tion [24, 25, 28, 34, 60, 69, 73, 77]. Generic solutions consist of mea-
suring the distance of a given data point from the distribution of the
training dataset [34], or through input validation frameworks based
on internal inconsistencies [73], or prediction snapshots [69]. For
ADS, specific runtime monitoring solutions have been proposed to
mitigate system-level failures. Frameworks such as SelfOracle [60],
DeepRoad [77], or DeepGuard [28] monitor the ADS as a black box
and examine its behaviour in response to changeable environmen-
tal conditions, essentially only by considering the input images
processed by the system.

Themain limitations of these approaches are twofold. First, black-
box solutions can only handle data-driven failures induced by sig-
nificant changes (e.g., corruptions) in the input image that makes
it fall beyond the distribution of the inputs on which the ADS has
been trained (out-of-distribution, or OOD) [16]. Thus, they suffer
from the inability to capture failures caused by an inadequate train-
ing of the DNN model or by bugs at the model level [26]. Second,
black-box solutions are prone to false positives/negatives as their
functioning is extraneous to the internal state of the system, which
can lead to a discrepancy between the system being monitored and
the monitor. Indeed, if the ADS and the correspondingmonitor have
different generalization capabilities, this can cause false alarms to
be reported, or, worse, safety-critical failures to be missed, as also
noticed in the original papers [28, 60, 77].

This paper investigates the problem of building a white-box ADS
failure predictor. Although there are many methods to investigate
the internal functioning of a DNN [20, 34, 69], this paper focuses on
the attention maps produced by explainable artificial intelligence
techniques (XAI). Attention maps [31, 50, 51] are post-training
approaches that highlight the input pixels that influence the output
predictions the most. While primarily used for comprehension
and debugging of DNNs, Tjoa et al. [64] have provided empirical

https://doi.org/10.1145/3551349.3556968
https://doi.org/10.1145/3551349.3556968

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

evidence of the informative content of heatmaps. In this work
we leverage attention maps for failure prediction to maintain the
reliability of the ADS within a safety net.

Our technique, implemented in a tool called ThirdEye, con-
sists of a self-attention monitor for ADS that turns attention maps
into XAI-driven scores used as a white-box confidence estimator
of the system. More specifically, ThirdEye performs online mon-
itoring capturing visual snapshots during the execution of ADS
and leverages the visual information extracted from the attention
maps to automatically identify conditions in which the system is
unconfident. We show that attention snapshots offer clues about
the reliability of the ADS; ThirdEye synthesizes such snapshots
into a confidence score using different summarization strategies
(i.e., average, average derivative over time, reconstruction loss). Our
technique works in an unsupervised fashion: failure prediction is
performed by setting a threshold over the nominal XAI-confidence
scores using probability distribution fitting. Anomalous driving con-
ditions are detected when the confidence scores decrease within a
detection window that precedes the failure.

We have evaluated the effectiveness of ThirdEye on the Udac-
ity simulator for self-driving cars [66], using ADS available from
the literature and a diverse set of failures induced by adverse op-
erational scenes and mutation testing-simulated malfunctions. In
our experiments on +70 simulations accounting for more than 350
failures, ThirdEye was able to safely anticipate up to 98% of them,
up to 3 seconds in advance, a 30% increase with respect to SelfOr-
acle [60], a state-of-the-art black-box strategy from the literature.
The improvement is particularly evident for failures induced by
mutation testing: on average, ThirdEye anticipated 85% more fail-
ures caused by mutated driving models. ThirdEye also achieves
a better trade-off between prediction of misbehaviours and false
alarms, with an 𝐹3 improvement up to 49%.

Our paper makes the following contributions:

Technique. A self-attention monitoring technique for ADS fail-
ure prediction based on attention maps produced by XAI
techniques. Our approach is implemented in the publicly
available tool ThirdEye [65]. To the best of our knowledge,
this is the first solution that uses XAI techniques to esti-
mate the confidence of a DNN-based ADS and to anticipate
system-level failures.

Evaluation. An empirical study showing that the XAI-based con-
fidence scores used by ThirdEye are a promising white-box
confidence metric for failure prediction, outperforming the
black-box approach of SelfOracle [60].

Dataset. Adataset ofmore than 350 out-of-distribution andmutation-
testing-induced ADS failures, based on the Udacity simulator
for self-driving cars. This dataset can be used to evaluate the
performance of failure prediction systems for ADS.

2 BACKGROUND

2.1 Lane-keeping ADS

ADS benefit from data gathered by sensors, cameras, and GPS to
perceive the environment and predict the vehicle’s controls (i.e.,
steer, brake, acceleration) through advanced DNNs.

This paper focuses on ADS that perform behavioural cloning,
i.e., the vehicle learns the lane keeping functionality from humanly-
labeled driving samples. The lane-keeping component is vital for
the safe deployment of DNN-based ADS. The U.S. Department of
Transportation, National Highway Traffic Safety Administration
(NHTSA) reported that off road failures are second in frequency
and first in cost (+15B USD) [68].

Models such as NVIDIA’s DAVE-2 [11] learn how to drive by
discovering latent patterns within a training set of images collected
when the driver is an expert human pilot, and by predicting the
corresponding driving commands imitating the driving behaviour
of the human. In its most simplified form, a lane-keeping ADS such
as DAVE-2 can be seen as a function 𝑓 : R𝑑 → [−25◦, +25◦] where
𝑑 is the dimension of the input image 𝒙 ∈ R𝑑 (e.g., for a 140 × 320
image, 𝑑 = 44800 pixels) and the output is a vector 𝑦 of length 1,
e.g., a real number representing a (predicted) steering angle in the
range

[
−25◦, +25◦

]
, where −25◦ indicates steering full left, +25◦

indicates steering full right, and 0 means no steering applied.1

2.2 Failure Conditions for lane-keeping ADS

The ISO/PAS 21448 Safety of the Intended Function (SOTIF) stan-
dard [29] mandates risk mitigation strategy to be implemented
within ADS to reduce risks and hazards associated with malfunc-
tioning behaviour. At NHTSA Level 4 (High Automation), a sys-
tem monitor checks for emerging functional insufficiencies with
the aim to keep a high functional quality also in extreme condi-
tions [25, 69, 77]. The ADS should disengage if the monitor regards
the current conditions as unsafe, requiring the human driver to
take control of the vehicle.

Among the root causes for ADS failures (e.g., off road driving) SO-
TIF recalls external unknown and internal uncertain conditions [29].
External unknown conditions consist of “abnormal” inputs repre-
senting rare, unexpected, and possibly unsupported environmental
events, for which no prior knowledge was available during the
training of the ADS (e.g., a specific road type, or weather/lighting
condition). The DNNs used within ADS are not invariant to severe
data distribution changes and this can cause system-level failures.
Internal uncertain conditions correspond instead to misbehaviors
of the perception component caused by the bugs inherent to the
DNN model, introduced during its development. Instances of such
bugs include inadequate training data and suboptimal choice of the
model’s architecture or of the training hyper-parameters [26].

2.3 Black-box Unsupervised Failure Prediction

Despite standards such as SOTIF [29], in practice, enumerating all
possible hazardous conditions for an ADS in a written requirement
specification is a challenging, if not infeasible, endeavour. As a
consequence, research has considered failure prediction models
that can be trained with no supervision (i.e., no knowledge of the
anomalies), and, to make them more applicable, with no need to
access information of the main system (black-box) [24, 25, 28, 60].

A black-box unsupervised failure predictor analyzes inputs and
assigns a suspiciousness score to them, which should be low (below
a threshold) if the inputs are supported, or high (above a threshold)

1these values reflect the steering capability of an ADS in a driving simulator [66].

ThirdEye: Attention Maps for Safe Autonomous Driving Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

otherwise. Notable examples are one-class SVM [52], clustering [17],
self-organizing maps [35], and autoencoders (AEs) [14].

The variational autoencoder (VAE) is the most popular AE archi-
tecture [14] as it is able to efficiently learn the probability distribu-
tion of a large amount of complex data (such as images) using vari-
ational inference [2]. The VAE is trained to minimize the distance
between the original data and its low-dimensional reconstruction
with metrics such as the Mean Squared Error (MSE). A low MSE
indicates that the input has characteristics similar to those of the
training set, whereas a high MSE indicates potentially an OOD sam-
ple. As such, VAEs are used in anomaly detection tasks [25, 28, 60],
as well as automated validity checkers for DNNs [16].

The main limitations of black-box approaches, including VAEs,
consist in their zero knowledge of the system’s internal behaviour,
thus they are designed to react only for failures induced either by the
corruption of inputs, or by a large degree of out-of-distributioness.
Indeed, for unknown inputs, the ADS is likely to make a sequence of
inaccurate predictions that may ultimately lead to a system failure,
because of the prediction errors accumulated over time [23].

2.4 Deep Neural Networks Explanation

Explaining the predictions of DNNs has been largely studied using
several interpretation methods [37, 40, 50, 51, 56, 63, 76]. The survey
by Tjoa and Guan [63] distinguishes three main categories, namely
verbal methods, signal methods, and saliency methods.

Verbal methods such as decision sets [37] or encoder-decoder
frameworks [40] have been adopted in NLP problems since they
produce lexical statements that humans can interpret naturally.

Signal methods target the stimulation of individual neurons or
collections of neurons in a DNN to reconstruct an image similar to
the input, based on the partial information stored in the neurons.
However, feature maps produced with methods such as guided
backpropagation [56], or deconvolutional networks [76], are known
for producing sparse heatmaps.

Saliency methods explain DNN predictions by attributing a neg-
ative or positive value to each input feature according to how much
it influenced the prediction. For instance, LIME [47] is a black-box
technique that understands classification networks’ decisions by
assessing how the predictions change in response to local perturba-
tions of the input data. Other methods use decomposition of signals
propagated by their algorithms and selectively re-arrange them
to provide interpretable information. For example, GradCam [54]
uses gradient back-propagation up to the last convolutional layer
to explain classifiers. Differently, LRP [7] uses relevance scores that
are decomposed such that the sum of the scores in each layer of
the DNN will be equal to the output. LRP has the drawbacks of
generating noisy explanations as well as very similar outputs for
samples pertaining to different classes [32].

In this paper we consider the attention maps produced by the
SmoothGrad algorithm [55]. Unlike LRP, SmoothGradmakes gradient-
based explanations sharper by adding noise and averaging over
these artificially created noisy gradients. Like GradCAM, attention
maps consider the gradient of the output prediction with respect
to the input pixels [31]. Unlike GradCAM, SmoothGrad also works
with regression DNNs such as those of ADS.

3 MOTIVATING EXAMPLE

Attention maps are images where relevant locations correspond to
hot color intensities (e.g., red/yellow), whereas irrelevant locations
correspond to cold color intensities (e.g., blue).

Figure 1: Attention map of an ADS during nominal driving

(left), and a few seconds before an off-road failure (right).

Figure 1 shows an example in which attention maps—obtained
with SmoothGrad [55]—are indicative of an upcoming failure of the
ADS. In nominal conditions (left), the ADS focuses on foreground
features that characterize the road. In this case, the attention map
portrays two main clusters of attention, corresponding to the road’s
lanes. When driving in unsupported conditions (right), prior to a
failure, the ADS is more uncertain. This is reflected in the attention
map as only part of the attention still focuses on the road, while
substantial attention is also paid to features in the background.

In the next section, we will describe our proposal for using
attention maps by SmoothGrad to anticipate failures in conditions
that cause the ADS to fail. Our technique aims to capture a drop of
DNN confidence by means of metrics derived from the attention maps,
considering single maps, consecutive maps, or map reconstruction
based on nominal maps.

4 APPROACH

Our approach ThirdEye consists of two main phases, namely Train-
ing and Usage. In the first phase (Training, see Figure 2), ThirdEye
automatically generates the attention maps for nominal driving
instances of the ADS (see Section 4.1.1). Such attention maps are
a visual snapshot of the ADS performance during nominal driv-
ing behaviour. ThirdEye is based on two intuitions: (1) attention
maps derived during the processing of the inputs by the ADS are
indicative of the confidence of the system [64], and (2) nominal
and failure-inducing attention maps exhibit differences that can be
captured by an anomaly detector.

ThirdEye turns the attention maps into XAI-driven confidence
scores of the ADS using different summarization methods (Sec-
tion 4.1.2). We consider a realistic setting, in which instances of
failing driving behaviour cannot be sampled in any representa-
tive way, since failure conditions are potentially very diversified
and partly unexpected. Hence, ThirdEye fits a probability distribu-
tion using only nominal scores. Then, it automatically estimates a
threshold from such probability distribution (Section 4.1.3). This
threshold is derived from the user defined permissiveness of the
failure predictor to accept false alarms – i.e., from the tolerable false
positive rate, a tunable parameter of our approach.

In the second phase (Usage, see Figure 3), ThirdEye is used
along with the main ADS system to automatically predict whether
the driving conditions are safe or unsafe, according to the attention
maps retrieved during driving, and the threshold estimated during

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

training set
(nominal)

Attention Map
Generation

driving images attention maps XAI confidence scores

Probability
Distribution Fitting &
Threshold Estimation

fitted
distribution

Threshold-based
failure predictor

DNN-based ADS

Confidence Score
Synthesis

PHASE 1 - TRAINING

driving images

DNN-based ADS

PHASE 2 - USAGE

true

y > γ

γ

warning

Attention Map
Generation

attention maps

Threshold-based
failure prediction

Confidence Score
Synthesis

warning

XAI confidence scores

Figure 2: Training of ThirdEye.

the Training phase. If a driving condition is deemed as unsafe,
ThirdEye warns the main driving component of the ADS (or the
human driver). In the next sections, we describe each step of each
phase in more detail.

4.1 Training of ThirdEye

4.1.1 Attention Map Generation. ThirdEye assumes having access
to the training set𝑇 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛} used to train the ADS, and
to the trained ADS 𝑓 . Our approach, however, does not need to
modify the ADS model’s architecture, nor to retrain it.

ThirdEye uses the XAI algorithm SmoothGrad [55] to retrieve
an attention map for each driving image 𝑥 ∈ 𝑇 used to train 𝑓 .
In particular, SmoothGrad produces an attention map 𝒉 = {ℎ𝑝 }
assigning each pixel 𝑝 of 𝑥 a value {ℎ𝑝 } = H(𝑥, 𝑓 , 𝑝) according to
some functionH derived from 𝑓 . In SmoothGrad, the functionH
constructs 𝒉(𝑥) by differentiating 𝑓 with respect to the input 𝑥 :

𝒉(𝑥) = 𝜕𝑓 (𝑥)/𝜕𝑥
The attention map 𝒉 has the same dimensionality as 𝒙 (i.e., width

𝑊 , height 𝐻 , and 𝐶 channels) and represents how much difference
a small change in each pixel of 𝑥 would make to the prediction score
of 𝑓 . Since the derivative of the function 𝑓 may fluctuate sharply at
small scales [55], SmoothGrad uses a stochastic approximation by
taking random samples in the neighbourhood of the input 𝑥 , and
averaging the resulting attention maps. Mathematically,

𝒉̂(𝑥) = 1
𝑛

∑︁
𝒉(𝑥 + N(𝜇, 𝜎2))

To summarize, SmoothGrad (1) generates 𝑛 versions of the im-
age of interest by adding Gaussian noise to it, (2) it creates pixel
attribution maps for all 𝑛 versions of the image, and (3) it averages
the pixel attribution maps. Averaging over multiple maps “smooths
out” the derivative fluctuations. The output of the attention map
generation step is a set 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑛} of attention maps for
each image of the training set 𝑇 .

4.1.2 Confidence Score Synthesis. ThirdEye uses three summa-
rization functions to turn raw attention maps into XAI-driven con-
fidence scores, namely average, derivative, and reconstruction loss.

Heatmap Average Function (HA). The first summarization func-
tion is based on the intuition that an attention map captured during
nominal driving will have high relevance values (i.e., pixel inten-
sities) focused on specific regions of interest (e.g., the lanes, see
Figure 1), whereas attention will be more scattered and with lower

pixel intensities during bad driving behaviour. As such, the HA
function computes the average pixel intensity of an attention map.

Assuming attention maps have width𝑊 , height 𝐻 and 𝐶 chan-
nels (usually, RGB channels for colour images), notationally, for
each attention map 𝒉 ∈ 𝐻 , the average attention map score 𝒉 is
computed as follows:

𝒉 =
1

𝑊𝐻𝐶

𝑊,𝐻,𝐶∑︁
𝑖=1, 𝑗=1,𝑐=1

ℎ [𝑖] [𝑗] [𝑐]

When applied to the whole training set 𝑇 , the HA function re-
turns the set of attention map average scores of each individual
attention map in 𝑇 , 𝐻𝐴 = {ℎ1, ℎ2, ℎ3, ..., ℎ𝑛}.

Heatmap Derivative Function (HD). The second summariza-
tion function is based on the intuition that attention maps that do
change frequently during driving could signal a poorly confident
ADS. Thus, the HD function computes the average of the derivative
of attention maps over time. Notationally, for two consecutive atten-
tion maps 𝒉𝒕−1,𝒉𝒕 ∈ 𝐻 , the average of the derivative of attention
map ∇𝒉 is computed as follows:

∇𝒉𝒕 =
1

𝑊𝐻𝐶

𝑊,𝐻,𝐶∑︁
𝑖=1, 𝑗=1,𝑐=1

ℎ𝑡 [𝑖] [𝑗] [𝑐] − ℎ𝑡−1[𝑖] [𝑗] [𝑐]

The HD function returns the set of attention map average deriva-
tives of each individual attention map in 𝑇 (but the first), 𝐻𝐷 =

{ℎ1,∇ℎ2, ...,∇ℎ𝑛}.

Heatmap Reconstruction Loss Function (HRL). The third sum-
marization function uses reconstruction loss, i.e., it is based on
learning a reconstruction function of latent features in the atten-
tion maps captured during nominal driving. A failure to reconstruct
data during testing of the ADS can signal the presence of potentially
failure inducing driving conditions.

The function HRL computes the reconstruction errors of the
attention maps according to a variational autoencoder V . The
encoder of V encodes a given input 𝒙 ∈ R𝑑 to a compressed
representation 𝒛 ∈ R𝑧 using a function 𝑒𝑛𝑐 (𝒙) = 𝒛. The decoder
of V decodes the encoded input with a reconstruction function
𝑑𝑒𝑐 (𝒛) = 𝒙′, where 𝒙′ is the reconstructed input 𝒙 . V minimizes
a loss function L(𝒙, 𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝒙))), which measures the distance
between the original data and its low-dimensional reconstruction.
Following existing guidelines [59], we set the dimension of the
encoded representation 𝑧 to 2 and used the mean squared error
(MSE) as a loss function.

ThirdEye: Attention Maps for Safe Autonomous Driving Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

training set
(nominal)

Attention Map
Generation

driving images attention maps XAI confidence scores

Probability
Distribution Fitting &
Threshold Estimation

fitted
distribution

Threshold-based
failure predictor

DNN-based ADS

Confidence Score
Synthesis

PHASE 1 - TRAINING

driving images

DNN-based ADS

PHASE 2 - USAGE

true

y > γ

γ

warning

Attention Map
Generation

attention maps

Threshold-based
failure prediction

Confidence Score
Synthesis

warning

XAI confidence scores

Figure 3: Usage of ThirdEye.

Figure 4: Examples of distributions of HA (left), HD (center),

and HRL (right) XAI confidence scores.

Notationally, for each attention map 𝒉 ∈ 𝐻 , the reconstruction
error 𝒉𝒆 is computed as follows:

𝒉𝒆 = L(𝒉, 𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝒉)))

The HRL function returns the set of attention maps’ recon-
struction errors of each individual attention map in 𝑇 , 𝐻𝑅𝐿 =

{ℎ𝑒1, ℎ𝑒2, ℎ𝑒3, ..., ℎ𝑒𝑛}.

Windowing of Confidence Scores. To mitigate the effect of indi-
vidual single frame outliers, which are not expected to have a big
impact on the performance of the ADS, ThirdEye applies a window
function on non-overlapping, fixed length, sequences of scores. Two
simple window functions are considered, one that computes the
maximum score within a window, and a second that computes the
arithmetic mean of the scores within a window. Window functions
are applied to each of the proposed XAI confidence scores.

4.1.3 Probability Distribution Fitting & Threshold Estimation. The
sets of (windowed) XAI confidence scores HA/HD/HRL represent a
model of normality collected in nominal driving conditions using
different synthesis methods from the attention maps.

To determine a threshold 𝛾 that sets the expected false alarm
rate in nominal conditions below some configurable level, we use
probability distribution fitting to obtain a statistical model of the
XAI confidence scores.

In particular, 𝛾 is computed by (1) estimating the shape 𝜅 and
scale 𝜃 parameters of a fitted Gamma distribution of the XAI confi-
dence scores and (2) by selecting an acceptable false alarm rate [60].
We fit a Gamma distribution because the distributions of XAI scores
contain strictly positive values (see Figure 4).

In this work, we set𝛾 to the 95% percentile (i.e., we deem 5% as an
acceptable false positive rate), in line with previous works [60]. For
example, for HRL, 𝛾0.95 = 𝑝0.95 (L(𝒉, 𝑔(𝑓 (𝒉)) |𝒉 ∈ 𝑊 (𝐻)), where
𝑊 (𝐻) represents the confidence scores after windowing.

4.2 Usage of ThirdEye

Figure 3 shows the second phase of our approach, Usage, in which
ThirdEye is used as a runtime monitoring technique during the
runtime execution of the ADS.

The ADS generates driving data that are processed by our ap-
proach. ThirdEye analyzes the incoming stream of driving images
and attention maps are retrieved (Section 4.1.1). Next, confidence
scores are synthesized from the attentionmaps (either HA/HD/HRL,
see Section 4.1.2). When sufficient data samples are collected (e.g.,
matching the window size chosen during training, see Section 4.1.2),
ThirdEye applies the window function to the stream (either max
or mean). Each resulting score is compared against the threshold
𝛾0.95, which determines whether the windowed sequence of XAI
confidence scores is to be regarded as anomalous. In such a case,
a warning is sent to the ADS (or to the human driver); otherwise,
ThirdEye keeps monitoring the next incoming driving frames.

4.3 Implementation

We implemented our approach in a Python tool called ThirdEye,
which is available [65]. The tool supports ADS models written in
Tensorflow/Keras, and it is integrated in the Udacity simulator for
self-driving cars [66]. For computing the attention maps, ThirdEye
leverages the SmoothGrad [55] implementation available in the
toolkit tf-keras-vis [36].

5 EMPIRICAL EVALUATION

5.1 Research Questions

We consider the following research questions:
RQ1 (effectiveness): How effective is ThirdEye at predicting
failures of ADS? What is the best configuration?
RQ2 (prediction over time): How does the prediction power of
ThirdEye change when considering different detection periods?
RQ3 (comparison): How does ThirdEye compare with SelfOra-
cle [60], a failure predictor from the literature?

The first research question (RQ1) aims to assess whether our
approach is able to attain a high failure prediction rate, and which
configuration (i.e., XAI confidence scores and window functions)
yields the best prediction rate score. Ideally, failure prediction is
only useful if it helps to anticipate a failure, which is studied in
the the second research question (RQ2). Lastly, to assess the effec-
tiveness of our approach over existing solutions, the final research
question (RQ3) compares ThirdEye with the state-of-the-art failure
predictor for ADS [60].

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

Figure 5: Examples of conditions from our evaluation set.

Left: nominal (sunny). Center: OOD extreme (snow). Right:

OOD moderate (snow).

5.2 Testbed

We tested ThirdEye through simulation-based testing. The usage
of simulation platforms is standard for testing ADS as simulator-
generated data yield comparable conditions as the ones experienced
in real world [23, 41, 57]. Moreover, driving simulators allow testing
an ADS at the system level (online testing) because the DNN is
embedded within the operational ecosystem in which the ADS is
designed to operate. Testing the ADS only from the DNN model
perspective (offline testing), disconnected from the ADS system,
is not useful to expose the safety-critical failures that occur dur-
ing in-field testing, such as the ones considered in this work (see
Section 2.2).

As simulation platform, we used the Udacity simulator for self-
driving cars [66], a cross-platform driving simulator developed
with Unity3D [67], used in the ADS testing literature [28, 30, 48, 58–
60]. The simulator supports various closed-loop tracks for testing
behavioural cloning ADS models, including the ability to generate
changeable driving scenarios (e.g., weather effects), which is useful
to test an ADS on both nominal and unseen conditions.

In this paper, we chose the default sunny weather condition as
the reference nominal scenario for our ADS models. Other choices
of nominal condition are of course possible (e.g., snow). For unsu-
pervised learning techniques such as ours (i.e., techniques that do
not assume the availability of a representative set of anomalous
conditions when training the failure predictor), the only require-
ment is that the chosen supported conditions are the same that are
known at training time by the ADS.

5.3 Object of Study

To implement DNN-based ADS, we use Nvidia’s DAVE-2model [11],
a reference model widely used as object of study in prior related
work [27, 30, 46, 48, 60, 62, 77]. DAVE-2 consists of three 5x5 convo-
lutional layers with stride 2 plus two 3x3 convolutional layers (no
stride applied), followed by five fully-connected layers with dropout
rate of 0.05 and ReLu activation function. We obtained the trained
DAVE-2 model from the replication package of our baseline [60], to
make sure to test the failure predictors using the same ADS used
in previous work.

5.4 Procedure

5.4.1 Evaluation Set. We simulate the ADS testing practices cus-
tomary of industry, where testers use a closed-loop track in a virtual
environment, prior to on-road testing on public roads [6, 13, 70, 71].
We consider two kinds of scenarios for testing our failure predictor.

External unknown scenario. The first kind of testing scenario
deals with failures induced by out-of-distribution conditions (OOD),

exposing an ADS that has been trained on some given nominal con-
ditions and environment to different instances of that environment.
We use two OOD benchmarks in our study.

The first benchmark contains simulations provided by the repli-
cation package of the SelfOracle paper [60]. We refer to this bench-
mark as OODextreme because it is characterized by severe illumina-
tion conditions w.r.t. the nominal sunny scenario (see Figure 5). It
accounts for 21 simulations with different degrees of extreme OOD
conditions: day/night, rain, snow, fog, day/night + rain, day/night +
snow, day/night + fog. These conditions were created by (i) altering
the environment’s skybox (invisible ceiling object located at the
boundary of the map) from sunny to adverse weather luminosity
and by (ii) adding weather particles (snow or rain) rendered at
runtime along the track.

We also consider a second benchmark of milder OOD condi-
tions, called OODmoderate, This second benchmark evaluates our
approach considering weather effects only, i.e., without interfer-
ences due to adverse weather luminosity (see Figure 5). We deac-
tivated the adverse weather luminosity skybox, while retaining a
single unexpected weather condition at a time, namely rain, fog,
or snow. We executed the DAVE-2 ADS varying the intensity of
each condition in the range

[
10%, . . . , 100%

]
, thus 10 times for each

weather condition (day/night was discarded because non tunable).
Overall, concerning external unknown scenarios, a total of 51

OOD one-lap simulations were collected: 21 for OODextreme and
30 for OODmoderate (10 × rain, 10 × fog, 10 × snow).

Internal uncertain scenario. The second kind of testing scenar-
ios deals with faulty ADS models produced by automated mutation
testing [27] that drive on the simulator under nominal conditions
(sunny). Intuitively, these scenarios simulate the development pro-
cess of an ADS model that has not been yet trained adequately. The
third benchmark—referred to as Mutants—represent these scenar-
ios. We obtained instances of mutated DAVE-2 models from the
replication package of the DeepCrime mutation testing tool [27].
DeepCrime automatically mutates a DNN model using mutation
operators designed to mimic real fault types occurring when de-
veloping DNNs, considering both data-level faults (e.g., wrongly
labelled training data) and model-level faults (e.g., a suboptimal
learning rate or dropout rate).

We executed all DAVE-2 mutants in the Udacity simulator and
discarded those that were consistently failing (e.g., the corruption
induced by a particular mutation operator caused severe malfunc-
tions to the ADS driving from the very beginning of the simulation).
A total of 20 one-lap simulations were retained that we confirmed to
create internal uncertain scenarios (more details about the selected
mutation operators are in our replication package [65].

Summary. Overall, our evaluation set comprises 349 failures that
our approach is expected to predict and anticipate. Mutation testing
caused most of the failures (66%), which is expected from a tech-
nique that systematically injects faults, whereas out-of-distribution
conditions induced less failures (34%) as they were applied with
different, increasing, levels of severity. Both scenarios are of interest
for a failure predictor, which should be agnostic about the condi-
tions that cause the failures (i.e., unknown inputs or DNN model
bugs). To estimate the threshold used by ThirdEye, we finalized

ThirdEye: Attention Maps for Safe Autonomous Driving Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

the evaluation data collection by performing three one-lap simu-
lations under nominal sunny weather conditions (one for each of
three benchmarks OODextreme, OODmoderate, and Mutants) using
the robust, unmutated, DAVE-2 model.

5.4.2 Detection Windows in Evaluation Set. The Udacity simulator
automatically labels individual failing frames as either nominal or
failing using a boolean flag, according to whether the ADS was on
track or off-track, respectively. Since the goal of our framework is
on predicting misbehaviors before they occur, we focus on the part
of the simulation preceding each failure, whereas the frames labeled
as failing are not considered.

Each simulation can exhibit multiple failures: in our evaluation
strategy we assessed each failure individually. For each of them,
we consider a detection window corresponding to one second of
simulation in the Udacity simulator. Wemove the detection window
from 1 to 3 seconds prior to the failures (time to failure, TTF for
short). Studies on pre-crash automated seat belt systems [39, 81]
indicate a range between 3 seconds to half a second as adequate
TTF values for the activation of automated seat belt tightening.
Also, according to previous studies in the Udacity simulator [59], a
TTF of 3 seconds is deemed sufficient to avoid failures at 30 mph,
which is the constant cruising speed of the ADS in the simulator.

5.4.3 ThirdEye’s Configurations. We evaluate six configurations of
ThirdEye. For SmoothGrad [55], we use the same hyper-parameters
suggested in the original paper, specifically a noise level of 20% and
𝑛 = 20 samples for noise attenuation. Regarding the XAI confidence
scores synthesis strategy, we assess all three alternatives, namely
heatmap average (HA), heatmap derivative (HD), and heatmap re-
construction loss (HRL). We also vary the windowing method strat-
egy in the detection window, using mean or max. On the detection
sequences, if the mean/max score is higher than the automatically
estimated threshold 𝛾95, an alarm is triggered (see Section 4.1.3).

We executed ThirdEye to capture the attention maps for all
simulations of our evaluation set using the studied ADS as input.
For the external unknown scenarios (OODextreme andOODmoderate),
we used the DAVE-2 model from the replication package of our
baseline [60]. For the internal uncertain scenarios (Mutants), we
used all the selected 20 mutants.

5.4.4 Baseline. We use SelfOracle [60], a black-box misbehaviour
predictor, as baseline for ThirdEye. We chose SelfOracle for the
following reasons: (1) it is designed for the task of failure prediction
of ADS; (2) it is a competitive approach; results show that it out-
performs the input validation strategy of DeepRoad [77]; (3) it was
developed, integrated, and experimented on the Udacity simulator,
which mitigates the threats to the internal validity that are possible
when experimenting a tool in a simulation environment different
from the one in which it was implemented.

We use the best configuration of SelfOracle presented in the orig-
inal paper, i.e., a variational autoencoder (VAE) that reconstructs
driving images and uses the reconstruction loss as a measure of con-
fidence. The VAE has a latent size of 2 and it was trained to minimize
the MSE (see Section 2.3) between the original and reconstructed
nominal images (sunny). In the original SelfOracle paper, only the
arithmetic mean of the detection window was evaluated [60]. In our
study, we evaluate two configurations of SelfOracle, using both the

mean and the max computed on the detection window, the latter
being a new experimental contribution of this work.

5.4.5 Metrics used for Analysis. We compute the true positives as
the number of correct failure predictions within the predefined TTF
(see Section 5.4.2) and the false negatives as the number of missed
failure predictions when our framework does not trigger an alarm
in a detection window. We remember that the false positives and
true negatives are measured using nominal simulations.

Our primary goal is to achieve high Recall (Re), or true positive
rate, defined as Re=TP/(TP+FN)). Recall measures the fraction of
safety-critical failures detected by a technique. It is also important
to achieve high precision (Pr), defined as Pr=TP/(TP+FP). Precision
measures the fraction of correct warnings that a technique reports.
We also consider the 𝐹𝑏𝑒𝑡𝑎 score [8], with 𝛽 = 3.0, as a weighted
balance between precision and recall (𝐹3 = 10·Precision×Recall

9·Precision+Recall). We
are interested in an F-measure that weights recall higher compared
to precision, because the cost associated with false negatives is very
high in the safety-critical domain [8] as it means a missed failure
detection. In contrast, in our setting, the cost associated with false
positives is relatively lower compared to false negatives. A false
alarm causes annoyance to the human driver (or to the ADS) when
there is no actual hazard; thus their number should be kept low.

5.5 Results

5.5.1 Effectiveness (RQ1). Table 1 presents the effectiveness results
for all configurations of ThirdEye (HA, HD, HRL) and SelfOracle
(Rec. Loss), divided by windowing function (max, mean). Results
are averaged across conditions, split between external unknown
conditions (OODextreme and OODmoderate) and internal uncertain
conditions (Mutants). The effectiveness metrics consider a confi-
dence threshold 𝛾95 (see Section 5.4.3), i.e., the threshold associated
with an expected 5% false positive rate. Precision (Pr) is measured
in anomalous conditions, which explains why it is lower than the
expected value associated with 𝛾95, which is 95% in nominal condi-
tions (see Section 4.1.3).

Due to space constraints, in this section, we only comment
the average 𝐹3 scores over all benchmarks. On average, in terms
of 𝐹3, ThirdEye with windowing=max has a 77%/39%/60% av-
erage improvement over ThirdEye with windowing=mean, for
HA/HD/HRL, respectively. However, this does not impact nega-
tively the false alarm rate, which remains low (average Pr values
for windowing=max are higher than those for windowing=mean).
HD/HRL scores are slightly higher in terms of 𝐹3 than HA (+2%).

We assessed the statistical significance of these differences using
the non-parametric Mann-Whitney U test [72] (with 𝛼 = 0.05)
and the magnitude of the differences using the Cohen’s 𝑑 effect
size [15]. The difference in 𝐹3 score between HA and HD/HRL were
found to be statistically significant (𝑝-value < 0.05) even if with
a negligible and small effect sizes. As expected by looking at the
average 𝐹3 scores of Table 1, there is no statistically significant
difference between HD and HRL (𝑝-value ≥ 0.05).⌈
RQ1: The configuration of ThirdEye using heatmap derivative

function (HD) and reconstruction loss function (HRL), configured

with windowing=max, achieve the highest failure prediction rate

(𝐹3 = 85%) over all conditions.
⌋

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

Table 1: Results for all failure predictors. Scores are computed for 𝛾95. Average 𝐹3 scores are highlighted in bold, best 𝐹3 scores
are highlighted in grey.

Benchmark

ThirdEye SelfOracle ThirdEye SelfOracle

Windowing: max Windowing: mean

HA HD HRL Rec. Loss HA HD HRL Rec. Loss

TTF (s) Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3 Pr Re 𝐹3

OODextreme

1 40 90 79 30 100 80 27 86 76 24 90 33 26 46 36 19 58 54 10 25 25 20 79 33
2 37 86 81 29 100 80 26 86 79 24 92 32 32 60 55 21 64 55 14 38 32 16 68 32
3 41 93 82 30 100 80 29 93 82 20 77 33 38 71 65 24 71 62 21 51 47 16 68 33
avg 39 90 81 30 100 80 27 89 79 23 87 33 32 59 52 21 64 57 15 38 35 17 71 33

OOD
moderate

1 49 92 84 35 99 83 35 100 83 24 100 75 8 17 15 27 65 56 26 79 65 24 100 75
2 41 72 66 33 96 80 34 100 83 23 100 72 25 41 39 22 46 40 24 76 62 22 92 65
3 41 71 66 33 94 78 34 95 79 23 93 59 24 36 34 25 49 44 24 72 59 18 72 45
avg 44 78 72 34 96 80 34 98 82 23 98 69 19 31 29 25 53 47 25 76 62 21 88 62

Mutants

1 82 100 98 70 100 96 70 100 96 57 97 90 66 61 61 75 99 95 61 88 84 41 59 56
2 82 100 98 70 99 95 70 100 96 47 70 66 66 56 57 70 80 78 50 65 62 6 9 9
3 81 100 98 69 100 96 69 100 96 40 54 52 68 59 59 64 67 66 41 42 42 1 3 2
avg 82 100 98 69 100 96 69 100 96 48 74 69 67 58 59 70 82 80 51 65 63 16 24 22

Average (All)

1 57 94 87 45 100 86 44 95 85 35 96 66 33 41 37 40 74 68 32 64 58 28 79 55
2 53 86 82 44 99 85 43 95 86 31 87 57 41 52 50 37 63 58 29 60 52 15 56 35
3 54 88 82 44 98 85 44 96 85 27 75 48 43 55 53 37 63 58 29 55 49 12 48 27
avg 55 89 83 44 99 85 44 96 85 31 86 57 39 50 47 38 67 61 30 60 53 18 61 39

5.5.2 Prediction Over Time (RQ2). Table 1 reports the effective-
ness considering different TTF (Column 2). In principle, failure
prediction should get more challenging as we move farther from
the failure instant. This is true for all configuration of ThirdEye,
except for HA (windowing=mean), in which the average prediction
power (𝐹3) is higher for {2, 3} seconds before the failures that 1
second before them, on average (+30%). For ThirdEye HRL/HD/HA
with windowing=max, the 𝐹3 scores remain stable over time. On
average, the prediction power decreases only by -6%/-1%/-1% as we
move away from the failures.⌈
RQ2: On average, the effectiveness of the best configurations of

ThirdEye (HRL/HD windowing=max) remains high up to 3 seconds

before the failures (-1% average 𝐹3 decrease).
⌋

5.5.3 Comparison (RQ3). Considering the average 𝐹3 scores across
benchmarks, all configurations of ThirdEye are superior to SelfOr-
acle at predicting misbehaviours.

On the OODextreme benchmark, ThirdEye scores a +142% in-
crease in 𝐹3 w.r.t. SelfOracle (the benchmark used in that work).
For OODmoderate conditions, average 𝐹3 scores raise to 62%, for
ThirdEye’s windowing=max, whereas the failure detection rate by
ThirdEye (HD) is +16% higher (80%). For Mutants, our results show
a remarkable difference of effectiveness between ThirdEye over
SelfOracle. The configuration HD (windowing=max) predicts all
failures induced by internal uncertain conditions (Re=100%), a +35%
increase w.r.t SelfOracle, whereas for 𝐹3 the increment is +39%.

Overall, average results for 𝐹3 show significant improvements
of ThirdEye over SelfOracle, regardless of the configuration being
used and the reaction period considered. The best configurations
HD/HRL (windowing=max) from RQ1 achieve +49% failure pre-
diction scores (𝐹3). We assess the statistical significance of the
differences between ThirdEye HD and SelfOracle using the non-
parametric Mann-Whitney U test [72] (with 𝛼 = 0.05), the magni-
tude of the differences using the Cohen’s𝑑 effect size [15]. Statistical
tests tell that the difference in F3 score between HD are statistically
significant (𝑝-value < 0.05) with a large effect size.⌈
RQ3: ThirdEye outperforms SelfOracle in terms of failure pre-

diction and minimization of false alarms (see 𝐹3), with statistical

significance.

⌋
We analyzed qualitatively some of the failures, to understand the

reasons behind the disagreements between ThirdEye and SelfOra-
cle. Figure 6 reports a meaningful example from our experiments
concerning a failure induced by mutation testing. In the example
(not show in Figure 6 for space reasons), a mutated version of DAVE-
2 is driving on nominal scenarios and fails in proximity of a bend
on the right, missing the bend and proceeding straight off-road.

From the plot on the left, we can see that the white-box approach
by ThirdEye (HD windowing=max) is able to anticipate the failure
as the XAI confidence score spikes a few seconds before the off-
road episode. On the other hand, SelfOracle misses the failure. The
reconstruction errors (plot on the right) of the driving frames raise
above the threshold only when the ADS is already off-track and

ThirdEye: Attention Maps for Safe Autonomous Driving Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 6: Failure (red stroke) induced by mutation testing; threshold 𝛾 is represented by the red line. Left: ThirdEye predicts

the failure a few seconds ahead (see spikes above the threshold). Right: SelfOracle reacts only when the failure has happened,

when the ADS is off-road, and the input image deviates substantially from the nominal, on-road, driving frames.

the image captured by the camera deviates substantially from the
nominal or nearly-failing on-road images.

5.6 Threats to Validity

5.6.1 Internal validity. We compared all variants of ThirdEye and
SelfOracle under identical experimental settings and on the same
evaluation set (Section 5.4.1). The main threat to internal validity
concerns our implementation of the testing scripts to evaluate the
failure prediction scores, which we tested thoroughly. Concerning
the training of ADS model, we used artifacts publicly available in
the replication packages of the SelfOracle [60] and DeepCrime [27]
papers. Regarding the simulation platform, we used the Udacity
simulator adopted in analogous failure prediction studies [28, 60].

5.6.2 External validity. The limited number of self-driving systems
in our evaluation poses a threat in terms of generalizability of
our results to other ADS. Moreover, results may not generalize, or
generalize differently, when considering other simulation platforms
than Udacity. For the attention maps, we considered only attention
maps produced by SmoothGrad [55], and the effectiveness of our
tool may change when considering different XAI algorithms.

5.6.3 Reproducibility. All our results, the source code of ThirdEye,
the simulator, and all subjects are available [65].

6 DISCUSSION

6.1 XAI for Failure Prediction

Our study highlights the complexity and the variety of failure sce-
narios that runtime monitoring techniques should aim to handle.
Attention maps are typically used qualitatively by humans to un-
derstand how a DNN processes its inputs. In this paper, we used
them quantitatively, under the assumption that they contain in-
formation that can potentially be used to assess the behaviour of
DNNs [51, 64] and, by extension, of the ADS that use them.

Our approach depends on the capability of attention maps to
constitute a reference model of normal driving behaviour. Well-
trained DNNs better capture the relevant structures in an image,
thus produce more meaningful attention maps than poorly trained
DNNs, which rather rely on global image statistics. Apart from this
requirement, attention maps offer a more transparent and effec-
tive assessment of the ADS behaviour than a black-box technique
because they indicate the degree of attention (or lack thereof) of
the ADS in response to an input. Our results confirm that they
are generally more effective than a competing black-box technique

on both unknown (out-of-distribution) and uncertain (mutation
testing) scenarios.

6.2 Discussing ThirdEye’s Configurations

All configurations of ThirdEye are stable in terms of prediction
power and we observed no big drop as we move to a longer dura-
tion between prediction and failure. For example, for ADS models
produced by automated mutation testing, this can be explained by
the fact that these self-driving cars are always characterized by a
relatively high proportion of uncertainty internal to the system,
which ultimately causes a failure that ThirdEye is able to detect
because its predictions are made based on information that reflects
the (buggy) internal state of the system.

We evaluated two windowing alternatives, max vs mean. Each
has pros and cons: max is more reactive than mean, as it is enough
to observe a spike in the window to trigger an alarm, which may
potentially lead to a higher recall. At the same time, usage of max
during threshold estimation makes 𝛾95 higher, because a higher
threshold must be chosen to ensure as few as 5% false positives in
nominal conditions. A higher 𝛾95 leads naturally to a lower recall.
The combination of the two factors, higher reactivity and higher
𝛾95 threshold, may either lead to better or to worse performance of
max vs mean. Hence, the choice can only be made empirically and
it is quite interesting that our empirical results show very clearly
and neatly the superiority of max over mean.

6.3 Comparison with Other Approaches

Attention maps by XAI are not the only way to analyze the internal
functioning of an ADS. For instance, other white-box approaches
have been proposed in the literature, such as solutions based on
activation traces [34], cross-layer dissection [69], or uncertainty
quantification measures [42]. These methods have two main draw-
backs that hinder their applicability as online failure predictors.
First, in general, these methods are known for being computation-
ally very expensive, thus they may not be real-time viable solutions.
Second, these techniques must be integrated into the development
process from the very beginning, as they require a white-box access
to the model’s architecture and to the training data, because the
ADS must be retrained or modified to enable the computation of
white-box confidence scores. Unlike these methods, we experiment
with attention maps because they do offer a white-box view of the
DNN internals without requiring access to the training data, nor
the need to modify or retrain the ADS model.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

7 RELATEDWORK

Identifying unexpected driving scenarios is the number one need
during ADS testing, according to the survey with developers and
domain experts by Lou et al. [41]. The problem has been tackled by
researchers either by (1) generating test cases for ADS, (2) proposing
anomaly detection tools. We also provide an overview of (3) generic
OOD detectors and (4) the main XAI methods used for ADS testing.

7.1 Test Generation for Autonomous Driving

Test generation techniques mostly use search-based techniques to
automatically construct test cases for DNN-based ADS [1, 4, 5, 34,
43, 46, 49, 62, 77]. Test cases are real-world images of driving scenes,
or road abstractions that are rendered within a driving simulator.
Abdessalem et al. [1, 4, 5] combine genetic algorithms and machine
learning to test a pedestrian detection system. Mullins et al. [45]
use Gaussian processes to drive the search-based test generation
towards yet unexplored regions of the input space, whereas Gambi
et al. [21] propose search-based test generation for ADS based on
procedural content generation.

Test generators aim to maximize the number of failures, whereas
our goal is to predict failures in online mode before they hap-
pen. Nevertheless, test generators can be used in conjunction with
ThirdEye, to generate conditions for our approach to predict.

7.2 Anomaly Detection in Autonomous Driving

We already discussed SelfOracle [60], for which we performed an
explicit empirical comparison in this work. DeepGuard [28] uses the
reconstruction error by VAEs to prevent collisions of vehicles with
the roadside. DeepRoad [77] validates single driving images based
on the distance to the training set, using embeddings rooted in the
features extracted by VGGNet. In other works [58, 59], continual
learning is used to minimize the false positives of a black-box failure
predictor. Hell et al. [24] evaluate three different OOD detection
methods, namely VAEs, Likelihood Regret and the generative mod-
elling SSD, for ADS testing on the CARLA simulator. Henriksson
et al. [25] use the the negative of the log likelihood as a black-box
anomaly score. Borg et al. [12] propose to pair OOD detection with
VAEs with object detection for an automated emergency braking
system. Strickland et al. [61] use an LSTM solution with multiple
metrics to predict collisions with vehicles at crossroads.

Our approach differs from the aforementioned black-box ap-
proaches because it uses a white-box confidence score of the system
synthesized from the attention maps given by an XAI algorithm. For
a broad overview of anomaly detection techniques in autonomous
driving, we refer the reader to the survey by Bogdoll et. al [9].

7.3 Generic OOD Detectors

AutoTrainer [78] monitors the training process of a DNN and auto-
matically repairs it when the metrics used during training degrade.
In contrast, ThirdEye operates at testing time, in production, to
recognize unexpected execution conditions, while AutoTrainer op-
erates at training time to fix common training faults.

Zhang et al. [79] introduce the notion of relative activation and
deactivation to interpret the decision behavior of a DNN and pro-
pose an algorithm for automatic detection of OOD inputs. The
abstraction relies on classifying neurons into different states based

on stronger relative selectivity, which is a quantitative method of
measuring the impact of a particular neuron, or a subset of them,
on the inference of the model as a whole.

The use of this technique raises some challenges, such as which
and how many layers should be selected, and how the different
layers should be aggregated. SelfChecker [73] is a tool that helps
answer these questions, but the evaluation of the DNN prediction
is performed for individual inputs. ThirdEye uses attention map
analysis and does not require to dissect the model layers or the
activation states of the neurons, but just to retrieve the gradients
during a normal feedforward pass, making it computationally more
efficient and easier to integrate into the ADS development process.

Finally, Suraksha [80] is an automated ADS safety evaluation
framework that quantitatively analyzes the safety sensitivity of
different versions of an ADS. ThirdEye can be used as one of the
safety quantification metrics of Suraksha and help improve the
safety parameters of ADS.

7.4 XAI for Autonomous Driving Testing

With the increasing application of DNNs to safety-critical domains
such as autonomous during, XAI algorithms represent one of the
standard choices to debug DNN’s predictions and failures (e.g., dur-
ing an incident). Moreover, XAI is also being adopted to build novel
testing solutions to test DNN-based systems, including, but not
limited to, ADS. In this section we focus on the main related propo-
sitions, i.e., techniques that use attention maps for ADS testing, and
techniques that use XAI as a building block for DNN testing. For a
complete overview of the state of the art on XAI for ADS, we refer
the reader to the survey by Atakishiyev et al. [3].

VisualBackProp [10] was created to visualize which group of
pixels of the input image contributes more to the predictions of a
convolutional neural network (CNN). Kim and Canny [33] explore
the use of attention maps for explaining the CNN behaviour in
a ADS. Lateef et al. [38] uses generative adversarial networks to
train a predictive model that generates attention maps from road
scenes and gives more prominence to the objects in the scene that
are most important to the driver’s decision making (e.g., other cars,
pedestrians, and traffic lights/signs). Xu et al. [74] investigated the
use of XAI techniques to detect action-inducing objects, i.e., objects
that have a relevant effect on a driving decision, and jointly predict
actions and their respective explanations. Mohseni et al. [44] train
the DAVE-2 model to predict a steering angle given the attention
maps by VisualBackProp [10]. Similarly, ThirdEye also leverages
XAI to increase the level of reliability of an ADS. Differently to the
aforementioned works, ThirdEye focuses on failure prediction of
lane-keeping based ADS during external unknown and internal
uncertain driving conditions.

Fahmy et al. [19] apply clustering to LRP heatmaps capturing
the relevance of the DNN predictions to automatically support the
identification of failure-inducing inputs. Such data is used for the
retraining of a gaze detection system that uses DNNs to determine
the gaze direction of the driver. The authors present an extension of
the previous work [18] in which inputs identified by the heatmap-
based mechanism are given in input to a search-based test generator.
In contrast, in this work we use attention maps from SmoothGrad to

ThirdEye: Attention Maps for Safe Autonomous Driving Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

support the prompt detection of low-confidence scenarios of a lane-
keeping DNN-enabled ADS. Zohdinasab et al. [82] use illumination
search to cover a feature map of external behaviours of an ADS.
These feature maps are used as an adequacy criteria of the inputs
generated by an ADS test generator, whereas we use attention maps
from the XAI domain to validate the inputs processed by the ADS.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we describe and evaluate a white-box failure predictor
that estimates the confidence of a DNN-based ADS in response to
unpredictable execution contexts. Our tool ThirdEye performs con-
fidence estimation by turning attention maps derived from the XAI
domain into confidence scores of the driving ADS. Our approach is
able to anticipate many potentially safety-critical failures by sev-
eral seconds, with a low false alarm rate in anomalous conditions,
and a fixed 5% expected false alarm rate in nominal conditions,
outperforming a black-box predictor from the literature.

Future work includes extending the comparison to other white-
box confidence estimators. At the same time, alternative confidence
score synthesis methods based on the semantic of the input image
will be investigated, as well as other XAI algorithms. Moreover, we
also plan to extend the detection of finer-grained driving quality
degradations (e.g., erratic driving behaviour) and to study self-
healing mechanisms within the simulator.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project PRECRIME,
funded under the ERC Advanced Grant 2017 Program (ERC Grant
Agreement n. 787703).

REFERENCES

[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE 2018). ACM.
[2] Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly

Detection using Reconstruction Probability.
[3] Shahin Atakishiyev, Mohammad Salameh, Hengshuai Yao, and Randy Goebel.

2021. Explainable artificial intelligence for autonomous driving: An overview and
guide for future research directions. https://doi.org/10.48550/ARXIV.2112.11561

[4] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2016. Testing advanced
driver assistance systems using multi-objective search and neural networks. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering

(ASE).
[5] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing Vision-

Based Control Systems Using Learnable Evolutionary Algorithms. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE).
[6] BGR Media, LLC. 2018. Waymo’s self-driving cars hit 10 million miles. https://

techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles. On-
line; accessed 18 August 2019.

[7] Alexander Binder, Grégoire Montavon, Sebastian Bach, Klaus-Robert Müller, and
Wojciech Samek. 2016. Layer-wise Relevance Propagation for Neural Networks
with Local Renormalization Layers. CoRR abs/1604.00825 (2016). arXiv:1604.00825
http://arxiv.org/abs/1604.00825

[8] David C. Blair. 1979. Information Retrieval, 2nd ed. C.J. Van Rijsbergen. London:
Butterworths; 1979: 208 pp. Price: $32.50. Journal of the American Society for

Information Science 30, 6 (1979), 374–375. https://doi.org/10.1002/asi.4630300621
arXiv:https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.4630300621

[9] Daniel Bogdoll, Maximilian Nitsche, and J. Marius Zöllner. 2022. Anomaly
Detection in Autonomous Driving: A Survey. https://doi.org/10.48550/ARXIV.
2204.07974

[10] Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner,
Larry Jackel, Urs Muller, and Karol Zieba. 2016. VisualBackProp: efficient visual-
ization of CNNs. https://doi.org/10.48550/ARXIV.1611.05418

[11] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR abs/1604.07316 (2016).

[12] Markus Borg, Jens Henriksson, Kasper Socha, Olof Lennartsson, Elias Sonnsjö
Lönegren, Thanh Bui, Piotr Tomaszewski, Sankar Raman Sathyamoorthy, Sebas-
tian Brink, and Mahshid Helali Moghadam. 2022. Ergo, SMIRK is Safe: A Safety
Case for a Machine Learning Component in a Pedestrian Automatic Emergency
Brake System. https://doi.org/10.48550/ARXIV.2204.07874

[13] Vinton G. Cerf. 2018. A Comprehensive Self-driving Car Test. Commun. ACM

61, 2 (Jan. 2018).
[14] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:

A Survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009).
[15] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum

Associates, Hillsdale, N.J.
[16] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. 2021. Distribution-

aware testing of neural networks using generative models. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE). IEEE, 226–237.
[17] Brian S. Everitt, Sabine Landau, and Morven Leese. 2009. Cluster Analysis (4th

ed.). Wiley Publishing.
[18] Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2022. Simulator-based expla-

nation and debugging of hazard-triggering events in DNN-based safety-critical
systems. https://doi.org/10.48550/ARXIV.2204.00480

[19] Hazem M. Fahmy, Mojtaba Bagherzadeh, Fabrizio Pastore, and Lionel C. Briand.
2020. Supporting DNN Safety Analysis and Retraining through Heatmap-based
Unsupervised Learning. CoRR abs/2002.00863 (2020). arXiv:2002.00863 https:
//arxiv.org/abs/2002.00863

[20] Yarin Gal and Zoubin Ghahramani. 2016. Dropout As a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd

International Conference on International Conference onMachine Learning - Volume

48 (ICML’16). JMLR.org.
[21] Alessio Gambi, MarcMueller, andGordon Fraser. 2019. Automatically Testing Self-

driving Cars with Search-based Procedural Content Generation. In Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2019). ACM.
[22] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020.

A survey of deep learning techniques for autonomous driving. Journal of Field
Robotics 37, 3 (2020), 362–386.

[23] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. 2020. Comparing
Offline and Online Testing of Deep Neural Networks: An Autonomous Car Case
Study. In Proceedings of 13th IEEE International Conference on Software Testing,

Verification and Validation (ICST ’20). IEEE.
[24] Franz Hell, Gereon Hinz, Feng Liu, Sakshi Goyal, Ke Pei, Tetiana Lytvynenko,

Alois Knoll, and Chen Yiqiang. 2021. Monitoring Perception Reliability in Au-
tonomous Driving: Distributional Shift Detection for Estimating the Impact of
Input Data on Prediction Accuracy. In Computer Science in Cars Symposium (In-
golstadt, Germany) (CSCS ’21). Association for Computing Machinery, New York,
NY, USA, Article 8, 9 pages. https://doi.org/10.1145/3488904.3493382

[25] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer En-
glund, Sankar Raman Sathyamoorthy, and Stig Ursing. 2019. Towards Structured
Evaluation of Deep Neural Network Supervisors. In 2019 IEEE International Con-

ference On Artificial Intelligence Testing (AITest). IEEE.
[26] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea

Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proceedings of 42nd International Conference on Software Engineering

(ICSE ’20). ACM, 12 pages.
[27] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:

Mutation Testing of Deep Learning Systems Based on Real Faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis

(Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery, New
York, NY, USA, 67–78. https://doi.org/10.1145/3460319.3464825

[28] Manzoor Hussain, Nazakat Ali, and Jang-Eui Hong. 2022. DeepGuard: A
Framework for Safeguarding Autonomous Driving Systems from Inconsistent
Behaviour. Automated Software Engg. 29, 1 (may 2022), 32 pages. https:
//doi.org/10.1007/s10515-021-00310-0

[29] Tech. Rep. ISO/PAS 21448:2019 International Organization for Standardization.
2019. Road Vehicles - Safety of the Intended Functionality.

[30] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality Metrics and
Oracles for Autonomous Vehicles Testing. In Proceedings of 14th IEEE International
Conference on Software Testing, Verification and Validation (ICST ’21). IEEE.

[31] Saumya Jetley, Nicholas A Lord, Namhoon Lee, and Philip HS Torr. 2018. Learn
to pay attention. arXiv preprint arXiv:1804.02391 (2018).

[32] Yeon-Jee Jung, Seung-Ho Han, and Ho-Jin Choi. 2021. Explaining CNN and
RNN Using Selective Layer-Wise Relevance Propagation. IEEE Access 9 (2021),
18670–18681. https://doi.org/10.1109/ACCESS.2021.3051171

[33] Jinkyu Kim and John Canny. 2017. Interpretable Learning for Self-Driving Cars
by Visualizing Causal Attention. https://doi.org/10.48550/ARXIV.1703.10631

[34] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-
ing Using Surprise Adequacy. In Proceedings of the 41st International Conference

on Software Engineering (ICSE ’19). IEEE Press.

https://doi.org/10.48550/ARXIV.2112.11561
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://arxiv.org/abs/1604.00825
http://arxiv.org/abs/1604.00825
https://doi.org/10.1002/asi.4630300621
https://arxiv.org/abs/https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.4630300621
https://doi.org/10.48550/ARXIV.2204.07974
https://doi.org/10.48550/ARXIV.2204.07974
https://doi.org/10.48550/ARXIV.1611.05418
https://doi.org/10.48550/ARXIV.2204.07874
https://doi.org/10.48550/ARXIV.2204.00480
https://arxiv.org/abs/2002.00863
https://arxiv.org/abs/2002.00863
https://arxiv.org/abs/2002.00863
https://doi.org/10.1145/3488904.3493382
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1007/s10515-021-00310-0
https://doi.org/10.1007/s10515-021-00310-0
https://doi.org/10.1109/ACCESS.2021.3051171
https://doi.org/10.48550/ARXIV.1703.10631

ASE ’22, October 10–14, 2022, Rochester, MI, USA Andrea Stocco, Paulo J. Nunes, Marcelo d’Amorim, and Paolo Tonella

[35] Teuvo Kohonen. 2001. Self-Organizing Maps, Third Edition. Springer.
[36] Yasuhiro Kubota. 2021. tf-keras-vis. https://keisen.github.io/tf-keras-vis-docs/
[37] Isaac Lage, Emily Chen, JeffreyHe,MenakaNarayanan, Been Kim, SamGershman,

and Finale Doshi-Velez. 2019. An Evaluation of the Human-Interpretability of
Explanation. CoRR abs/1902.00006 (2019). arXiv:1902.00006 http://arxiv.org/abs/
1902.00006

[38] Fahad Lateef, Mohamed Kas, and Yassine Ruichek. 2021. Saliency Heat-Map as
Visual Attention for Autonomous Driving Using Generative Adversarial Network
(GAN). IEEE Transactions on Intelligent Transportation Systems (2021), 1–14.
https://doi.org/10.1109/TITS.2021.3053178

[39] Jeong Keun Lee and Kang Wook Lee. 2013. Study on Effectiveness of Pre-Crash
Active Seatbelt Using Real Time Controlled Simulation.

[40] Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. 2016. Rationalizing Neural
Predictions. CoRR abs/1606.04155 (2016). arXiv:1606.04155 http://arxiv.org/abs/
1606.04155

[41] Guannan Lou, Yao Deng, Xi Zheng, Mengshi Zhang, and Tianyi Zhang. 2021.
Investigation into the state-of-the-practice autonomous driving testing. https:
//doi.org/10.48550/ARXIV.2106.12233

[42] Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal,
and Marta Kwiatkowska. 2020. Uncertainty Quantification with Statistical Guar-
antees in End-to-End Autonomous Driving Control. In 2020 IEEE International

Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August

31, 2020. IEEE, 7344–7350. https://doi.org/10.1109/ICRA40945.2020.9196844
[43] Mahshid Helali Moghadam, Markus Borg, Mehrdad Saadatmand, Seyed Jalaleddin

Mousavirad, Markus Bohlin, and Björn Lisper. 2022. Machine Learning Testing
in an ADAS Case Study Using Simulation-Integrated Bio-Inspired Search-Based
Testing. https://doi.org/10.48550/ARXIV.2203.12026

[44] Sina Mohseni, Akshay Jagadeesh, and Zhangyang Wang. 2019. Predicting
Model Failure using Saliency Maps in Autonomous Driving Systems. CoRR

abs/1905.07679 (2019). arXiv:1905.07679 http://arxiv.org/abs/1905.07679
[45] Galen E. Mullins, Paul G. Stankiewicz, R. Chad Hawthorne, and Satyandra K.

Gupta. 2018. Adaptive generation of challenging scenarios for testing and evalu-
ation of autonomous vehicles. Journal of Systems and Software 137 (2018).

[46] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP ’17). ACM.
[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, USA, August 13-17, 2016. 1135–1144.
[48] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael

Weiss, and Paolo Tonella. 2020. Testing Machine Learning based Systems: A
Systematic Mapping. Empirical Software Engineering (2020).

[49] Vincenzo Riccio and Paolo Tonella. 2020. Model-Based Exploration of the Frontier
of Behaviours for Deep Learning System Testing. In Proceedings of ACM Joint

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE ’20).
[50] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and

Klaus-Robert Müller. 2019. Explainable AI: interpreting, explaining and visualizing
deep learning. Vol. 11700. Springer Nature.

[51] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. 2017. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296 (2017).

[52] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-
Taylor, and John C. Platt. 1999. Support Vector Method for Novelty Detection. In
Advances in Neural Information Processing Systems 12, (NIPS).

[53] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan
Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In Ad-

vances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc.

[54] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say
that? Visual Explanations from Deep Networks via Gradient-based Localization.
CoRR abs/1610.02391 (2016). arXiv:1610.02391 http://arxiv.org/abs/1610.02391

[55] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and MartinWatten-
berg. 2017. SmoothGrad: removing noise by adding noise. CoRR abs/1706.03825
(2017). arXiv:1706.03825 http://arxiv.org/abs/1706.03825

[56] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. 2014. Striving for Simplicity: The All Convolutional Net.
arXiv:1412.6806 [cs.LG]

[57] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2022. Mind the Gap! A Study on
the Transferability of Virtual vs Physical-world Testing of Autonomous Driving
Systems. IEEE Transactions on Software Engineering (2022). https://doi.org/10.
1109/TSE.2022.3202311

[58] Andrea Stocco and Paolo Tonella. 2020. Towards Anomaly Detectors that Learn
Continuously. In Proceedings of 31st International Symposium on Software Relia-

bility Engineering Workshops (ISSREW 2020). IEEE.
[59] Andrea Stocco and Paolo Tonella. 2021. Confidence-driven Weighted Retraining

for Predicting Safety-Critical Failures in Autonomous Driving Systems. Journal
of Software: Evolution and Process (2021). https://doi.org/10.1002/smr.2386

[60] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-
behaviour Prediction for Autonomous Driving Systems. In Proceedings of 42nd

International Conference on Software Engineering (ICSE ’20). ACM.
[61] Mark Strickland, Georgios Fainekos, and Hani Ben Amor. 2018. Deep predictive

models for collision risk assessment in autonomous driving. In 2018 IEEE Inter-

national Conference on Robotics and Automation, ICRA 2018 (Proceedings - IEEE

International Conference on Robotics and Automation). Institute of Electrical and
Electronics Engineers Inc.

[62] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings of the

40th International Conference on Software Engineering (ICSE ’18). ACM.
[63] Erico Tjoa and Cuntai Guan. 2019. A Survey on Explainable Artificial Intelligence

(XAI): Towards Medical XAI. CoRR abs/1907.07374 (2019). arXiv:1907.07374
http://arxiv.org/abs/1907.07374

[64] Erico Tjoa, Hong Jing Khok, Tushar Chouhan, and Cuntai Guan. 2022. Improving
Deep Neural Network Classification Confidence using Heatmap-based eXplain-
able AI. CoRR abs/2201.00009 (2022). arXiv:2201.00009 https://arxiv.org/abs/
2201.00009

[65] ThirdEye 2022. Replication Package. https://github.com/tsigalko18/ase22.
[66] Udacity. 2017. A self-driving car simulator built with Unity. https://github.com/

udacity/self-driving-car-sim. Online; accessed 18 August 2019.
[67] unity 2021. Unity3D. https://unity.com.
[68] National Highway Traffic Safety Administration U.S. Department of Transporta-

tion. 2007. Pre-Crash Scenario Typology for Crash Avoidance Research.
[69] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. DIS-

SECTOR: Input Validation for Deep Learning Applications by Crossing-layer
Dissection. In 2020 IEEE/ACM 42nd International Conference on Software Engi-

neering (ICSE). 727–738.
[70] Waymo Driver 2021. Waymo Driver. https://waymo.com/waymo-driver/.
[71] waymos-secret-testing 2017. Waymo Secret Testing. https://www.

theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-
and-simulation-facilities/537648/.

[72] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics

Bulletin 1, 6 (Dec. 1945), 80. https://doi.org/10.2307/3001968
[73] Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian

Elbaum, Yun Lin, and Jin Song Dong. 2021. Self-Checking Deep Neural Networks
in Deployment. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). 372–384. https://doi.org/10.1109/ICSE43902.2021.00044
[74] Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng

Li, and Nuno Vasconcelos. 2020. Explainable Object-induced Action Decision for
Autonomous Vehicles. https://doi.org/10.48550/ARXIV.2003.09405

[75] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE access 8 (2020), 58443–58469.

[76] Matthew D. Zeiler and Rob Fergus. 2013. Visualizing and Understanding
Convolutional Networks. CoRR abs/1311.2901 (2013). arXiv:1311.2901 http:
//arxiv.org/abs/1311.2901

[77] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering (ASE 2018). ACM.
[78] Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. AUTOTRAINER:

An Automatic DNN Training Problem Detection and Repair System. In 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 359–371.
https://doi.org/10.1109/ICSE43902.2021.00043

[79] Zhen Zhang, Peng Wu, Yuhang Chen, and Jing Su. 2021. Out-of-Distribution
Detection through Relative Activation-Deactivation Abstractions. In 2021 IEEE

32nd International Symposium on Software Reliability Engineering (ISSRE). 150–161.
https://doi.org/10.1109/ISSRE52982.2021.00027

[80] Hengyu Zhao, Siva Kumar Sastry Hari, Timothy Tsai, Michael B. Sullivan,
Stephen W. Keckler, and Jishen Zhao. 2021. Suraksha: A Framework to An-
alyze the Safety Implications of Perception Design Choices in AVs. In 2021 IEEE

32nd International Symposium on Software Reliability Engineering (ISSRE). 434–445.
https://doi.org/10.1109/ISSRE52982.2021.00052

[81] Zhiguo Zhao, Liangjie Zhou, Qiang Zhu, Yugong Luo, and Keqiang Li. 2017.
A review of essential technologies for collision avoidance assistance systems.
Advances in Mechanical Engineering 9, 10 (2017).

[82] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021.
DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems
through Illumination Search. In Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’21). Association for Com-
puting Machinery.

https://keisen.github.io/tf-keras-vis-docs/
https://arxiv.org/abs/1902.00006
http://arxiv.org/abs/1902.00006
http://arxiv.org/abs/1902.00006
https://doi.org/10.1109/TITS.2021.3053178
https://arxiv.org/abs/1606.04155
http://arxiv.org/abs/1606.04155
http://arxiv.org/abs/1606.04155
https://doi.org/10.48550/ARXIV.2106.12233
https://doi.org/10.48550/ARXIV.2106.12233
https://doi.org/10.1109/ICRA40945.2020.9196844
https://doi.org/10.48550/ARXIV.2203.12026
https://arxiv.org/abs/1905.07679
http://arxiv.org/abs/1905.07679
https://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1412.6806
https://doi.org/10.1109/TSE.2022.3202311
https://doi.org/10.1109/TSE.2022.3202311
https://doi.org/10.1002/smr.2386
https://arxiv.org/abs/1907.07374
http://arxiv.org/abs/1907.07374
https://arxiv.org/abs/2201.00009
https://arxiv.org/abs/2201.00009
https://arxiv.org/abs/2201.00009
https://github.com/tsigalko18/ase22
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://unity.com
https://waymo.com/waymo-driver/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://doi.org/10.2307/3001968
https://doi.org/10.1109/ICSE43902.2021.00044
https://doi.org/10.48550/ARXIV.2003.09405
https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://doi.org/10.1109/ICSE43902.2021.00043
https://doi.org/10.1109/ISSRE52982.2021.00027
https://doi.org/10.1109/ISSRE52982.2021.00052

	Abstract
	1 Introduction
	2 Background
	2.1 Lane-keeping ADS
	2.2 Failure Conditions for lane-keeping ADS
	2.3 Black-box Unsupervised Failure Prediction
	2.4 Deep Neural Networks Explanation

	3 Motivating Example
	4 Approach
	4.1 Training of ThirdEye
	4.2 Usage of ThirdEye
	4.3 Implementation

	5 Empirical Evaluation
	5.1 Research Questions
	5.2 Testbed
	5.3 Object of Study
	5.4 Procedure
	5.5 Results
	5.6 Threats to Validity

	6 Discussion
	6.1 XAI for Failure Prediction
	6.2 Discussing ThirdEye's Configurations
	6.3 Comparison with Other Approaches

	7 Related Work
	7.1 Test Generation for Autonomous Driving
	7.2 Anomaly Detection in Autonomous Driving
	7.3 Generic OOD Detectors
	7.4 XAI for Autonomous Driving Testing

	8 Conclusions and Future Work
	Acknowledgments
	References

