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Abstract Simulation-based testing represents an important step to ensure the
reliability of autonomous driving software. In practice, when companies rely on
third-party general-purpose simulators, either for in-house or outsourced testing,
the generalizability of testing results to real autonomous vehicles is at stake.

In this paper, we strengthen simulation-based testing by introducing the no-
tion of digital siblings, a novel framework in which the AV is tested on multiple
general-purpose simulators, built with different technologies. First, test cases are
automatically generated for each individual simulator. Then, tests are migrated
between simulators, using feature maps to characterize of the exercised driving
conditions. Finally, the joint predicted failure probability is computed and a fail-
ure is reported only in cases of agreement among the siblings.

We implemented our framework using two open-source simulators and we em-
pirically compared it against a digital twin of a physical scaled autonomous vehicle
on a large set of test cases. Our study shows that the ensemble failure predictor
by the digital siblings is superior to each individual simulator at predicting the
failures of the digital twin. We discuss several ways in which our framework can
help researchers interested in automated testing of autonomous driving software.
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1 Introduction

The development of autonomous vehicles (AVs) has received great attention in the
last decade. As of 2020, more than $150 billions have been invested in AVs, a sum
that is expected to double in the near future [14].

AVs typically integrate multiple advanced driver-assistance systems (e.g., for
adaptive cruise control, parking assistance, and lane-keeping) into a unified control
unit, using a perception-plan-execution strategy [73]. Advanced driver-assistance
systems based on Deep Neural Networks (DNNs) are trained on labeled input-
output samples of real-world driving data provided by the vehicle sensory to learn
human-like driving actions [26].

Before deployment on public roads, AVs are thoroughly tested in the field, on
private test tracks [8, 11, 15, 51]. While essential for fully assessing the depend-
ability of AVs on the road, field testing has known limitations in terms of cost,
safety and adequacy [51]. To overcome these limitations, driving simulators are
used to generate several real-life edge case scenarios that are unlikely to be expe-
rienced during field testing, or that are dangerous to reproduce for human oper-
ators [11, 36]. Simulation-based testing represents a consolidated testing practice,
being more affordable than field testing, yet capable of exposing many bugs before
deployment [8, 11, 15, 51].

In this paper, we distinguish two main categories of driving simulators, namely
digital twins (DT) and general-purpose simulators (GPSim).

DT provide a software replica of specific real vehicles, that are digitally recre-
ated in terms of appearance, aerodynamics, and physical interactions with the
environment [11]. In the context of mixed-reality testing approaches [57, 62], such
as Hardware-in-the-Loop and Vehicle-in-the-Loop, the digital twin is connected to
physical AV components to further increase the degree of fidelity. In this paper,
we consider simulation-based testing where the digital twin is a software replica
of a specific real vehicle. Developing a DT is prohibitively expensive [37, 65] and
can take up to five years [71]. Hence, it remains an exclusive prerogative of big
companies such as Uber (Waabi World [69]), Waymo (Simulation City [70]) or
Wayve (Infinity Simulator [71]).

GPSim are generally designed without the need to faithfully reproduce a spe-
cific vehicle or testing scenario, as they rather offer generic APIs to run one or
more AVs on virtual road tracks. GPSim such as Siemens PreScan [49] or ESI Pro-
SiVIC [27] offer a more affordable alternative to the expensive DT development,
and are widely used for outsourcing testing tasks to third-party companies [38],
for which access to, or customizations of the original DT are not feasible for each
individual vehicle [30].

Despite affordability, GPSim can be affected by a fidelity and reality gap, when
the simulated experience does not successfully transfer from the GPSim to the
reference DT and eventually to the real AV [30]. These discrepancies can lead to a
distrust in simulation-based testing, as reported by recent surveys [1, 25, 30, 57].

While comparative works of GPSim exist in the literature [33, 46], cross-
simulator testing for AVs is a relatively unexplored avenue for research. Only
a recent study [11] investigates the use of multiple GPSim for testing a pedes-
trian vision detection system. The study compares a large set of test scenarios on
both PreScan [49] and Pro-SiVIC [27] and reports inconsistent results in terms
of safety violations and behaviors across these simulators. Consequently, using a
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single-simulator approach for AV testing might be unreliable, as the testing results
could be highly dependent on the chosen GPSim.

In this paper, we target the fidelity gap between GPSim and DT by proposing a
multi-simulator approach for AV testing called digital siblings (DSS). Our frame-
work leverages automated test generation and proposes a novel cross-simulator
feature map analysis that combines the outcome of several simulator-specific test
generators into a unified view. We use DSS as a surrogate model of the behavior
of a DT. Our intuition is that agreement among multiple GPSim will increase the
confidence in observing the same behavior in the DT. On the other hand, in the
presence of disagreements, DSS can mitigate or even eliminate the risk of choosing
the worst GPSim, which would give poor simulation testing results.

In detail, our multi-simulator approach consists in the generation of test cases
(i.e., driving scenarios) with an automated test generation tool and in the usage of
feature maps to group failures by similarity, to avoid reporting the same failures
multiple times. To account for the specificities of each GPS, we execute test gen-
eration separately for each sibling. Then, we migrate the tests generated for one
sibling to the other sibling. Finally, we merge failing and non failing executions
based on similarity of features and estimate an overall joint failure probability.

In our study we use DSS to test three state-of-the-art DNN lane-keeping mod-
els, i.e., Nvidia Dave-2 [10], Chauffeur [16], and Epoch [17] (the last two were devel-
oped by the respective teams in the Udacity challenge competition [60]). We con-
sider as siblings two open-source simulators, namely Udacity [59] and BeamNG [6],
widely used in previous studies to test lane-keeping software [24, 31, 45, 55, 78].
As DT, we adopt an open-source framework [58] used in previous research [51,
57, 67, 68, 75] featuring a virtual replica of a 1:16 scale electric AV. We evaluate
DSS with both offline and online testing [29], i.e., the lane-keeping models are
tested both w.r.t. the accuracy of its predictions on labeled individual inputs, and
at the system-level for their capability to control the vehicle on several hundreds
automatically-generated roads.

Our study shows that, at the model-level, the distribution of prediction errors
of DSS is statistically indistinguishable from that of the DT. Overall, at the
system-level, the failure probability of DSS highly correlates with the true failure
probability of the DT. More notably, the quality of driving measured in the DSS
can predict the true failure probability of the DT, which suggests that we can
use the digital sibling framework to possibly anticipate the failures of the real-
world AV more reliably than with a single GPSim. A practical implication of our
findings for software engineers is the usage of digital siblings when adopting AV
testing techniques, to increase the level of fidelity of the observed behaviors and
failures. The same recommendation holds for AV testing researchers.

Our paper makes the following contributions:

– Digital Siblings. A novel approach to AV testing that combines the outcome
of general-purpose driving simulators to approximate a digital twin. This is
the first solution that leverages a multi-simulator approach to overcome the
simulation fidelity gap.

– Evaluation. A case study showing that the digital siblings are effective at
predicting the failures of a digital twin for a physical scaled vehicle in the
lane-keeping task.
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Fig. 1: Overview of our approach and its usage.

2 Approach

The goal of our approach is to use digital siblings to test the driving component
of an AV. The key intuition is that multiple GPSim can better approximate the
driving behavior of the AV run in a DT, as opposed to a single-simulator approach.
Figure 1 (top) shows an overview of our approach in which two digital siblings,
namely DS1 and DS2, are used to test the behavior of a driving model under test
M (e.g., an end-to-end DNN for lane-keeping).

In the first phase, M is either trained or fine-tuned (step ❶) to run on both
DS1 and DS2, as well as on the target platform (i.e., DT). A test generation phase
(step ❷) is executed for each digital sibling, generating two feature maps FMDS1

and FMDS2
. Feature maps group together test cases with similar feature combi-

nation values to reduce redundancy and summarize the AV behavior for unique
feature combination [77, 78]. The value in a feature map cell (displayed in a colored
heat scale) represents the average test case outcome, i.e., the behavioral informa-
tion about the execution of M in each test scenario (e.g., the failure probability).
For each simulator, the test generation algorithm produces test scenarios that are
executed by M to assess its driving behavior under many different circumstances.
Hence, the output of test generation is simulator and model dependent and the
feature maps of DS1 (FMDS1

) and DS2 (FMDS2
) can be different.

The next step of our approach (step ❸) requires to migrate the test cases across
simulators. In detail, the test cases in FMDS1

are executed on DS2, resulting in
the feature map FMDS1

. Similarly, the test cases in FMDS2
are executed on DS1,

resulting in the feature map FMDS2
. Then, for both DS1 and DS2, we compute
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Fig. 2: Example of test scenario for a lane-keeping autonomous driving system.

the union of the two feature maps, obtaining FMU1
for DS1 and FMU2

for DS2.
Both maps contain the same set of test cases, although executed on two different
simulators. The final output of the digital siblings (step ❹) is obtained by merging
FMU1

and FMU2
into the final feature map FMDSS .

Step ❺ assesses the correlation of the FMDSS map with the FMDT map,
to evaluate the predictive capability of the digital siblings framework. Figure 1
(bottom) shows an overview of the evaluation of our approach (detailed later, in
Section 3). All the test cases in the final feature map FMDSS are executed (i.e.,
migrated) on DT, to obtain the ground truth feature map FMDT .

Our approach supports more than two digital siblings, although for simplicity
and to match the evaluation, we describe it using two digital siblings. However, we
will generalize the most important steps of our approach, i.e., migration (step ❸)
and merge (step ❹), to more than two siblings.

2.1 Test Scenarios

2.1.1 Representation

We adopted an abstract representation of the road in each driving simulator so
that only a sequence of road control points is needed when creating a new road in
the driving scene. We follow the representation given by Riccio and Tonella [45]
who defined a two-lane road using a series of control points (displayed as red stars
in Figure 2). The control points are interpolated using Catmull-Rom splines [5],
giving the road its final shape (yellow solid line).

Figure 2 shows the visualization of a test scenario generated at step ❷. Specifi-
cally, the road is defined using nine control points whereas the Catmull-Rom spline
only goes through seven of them. This is because a spline segment (e.g., P2 − P3)
is always defined by four control points (e.g., P1, P2, P3, P4). Since two of them
are on either side of the endpoints of the spline segment (e.g., P1 and P4), the
spline cannot traverse the extreme endpoints (e.g., P1 and P9). Hence, P2 defines
the start point of the road (depicted as a black triangle) whereas P8 defines the
end point (depicted as a black square).
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2.1.2 Implementation

The default initial state of each test case involves positioning the vehicle in the
first drivable control point (i.e., P2 in Figure 2), at the center of the right lane
following the road orientation.

We uniformed the 3D rendering of each simulator such that the driving sce-
narios have the same look and feel: a two-lane asphalt road, where the road is
delimited by two solid white lines on each side and the two driving lanes are sep-
arated by a single solid yellow line. The road is placed on top of a green plane
representing grass. Harmonization of the driving scenarios across simulators en-
sures that geometrical features are preserved for the collected driving images and
that any color transformation applied to them during training preprocessing re-
mains applicable [10].

2.1.3 Validity and Oracle

After interpolation, a road is deemed valid if it respects the following constraints:
(1) the start and end points are different; (2) the road is contained within a squared
bounding box of a predefined size (specifically 250 × 250); and, (3) there are no
intersections.

A test case is deemed successful when the vehicle drives within the right lane
until the last road control point (e.g., P8 in Figure 2). On the contrary, a test case
failure occurs when the vehicle drives out of bound (OOB).

2.2 Creating/Fine-Tuning the Driving Model

For the creation or fine-tuning of a self-driving model (step ❶), a labeled dataset
of driving scenes is needed.

2.2.1 Data Collection

We automate labeled data collection by resorting to autopilots that have global
knowledge of the driving scenario such as the detailed road geometry and precise
vehicle position. In particular, in each simulator, at each step of the simulation, the
steering angle of the autopilot is computed by a Proportional-Integral-Differential
(PID) controller [21] according to the following formula:

steering = KP · LP+KD · diffLP +KI · totalLP (1)

where LP stands for lateral position [53] (in particular, the lateral position is zero
when the vehicle drives at the center of the lane). Equation 1 states that the
proportional constant KP acts on the raw error while the derivative constant KD

controls the difference between two consecutive errors and the integral constant
KI considers the total sum of the errors during the whole simulation until the
current timestep. Finally, the steering value is clipped in the interval [−1,+1],
where −1 means steering all the way to the left and +1 to the right (0 means the
vehicle goes straight as no steering is applied). The steering values are normalized
in order to account for the different simulators that we use in our approach.
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The autopilot produces a steering angle label for each image which is used to
train the driving model. We aligned the frame rates of the different simulators at
20 fps such that each simulator autopilot collects a comparable number of labeled
images. The speed of the vehicle, both for the autopilot and M , is controlled by
the throttle via a linear interpolation between the minimum speed and maximum
speed so that the car decreases the speed when the steering angle increases (e.g.,
in a curve). The following formula computes the throttle based on the speed of
the vehicle and the steering:

throttle = 1− steering2 −
( speed

K

)2
(2)

where K is set to a predefined low value L when the measured speed is greater than
a given maximum speed threshold, to enforce strong deceleration; viceversa, K is
set to a high value H when the measured speed is lower than or equal to the max-
imum speed threshold, to reduce the deceleration component. From Equation 2,
we can see that the throttle is close to 1 (the highest possible value) when the
vehicle does not steer (steering = 0) and the speed is substantially lower than the
maximum allowed speed (in this case, K = H); when one of the two conditions
is false the throttle decreases, because of either deceleration component. Similarly
to the steering angle values, we clip the throttle value in the interval [0, 1].

2.2.2 Model Fine-Tuning via Hybrid Training

The next step involves training the model M using all simulators and the data
collected in step ❶. Alternatively, if an existing trained model M is available for
the target DT, our approach requires fine-tuning it for all digital siblings. In both
scenarios, we use hybrid training based on gradient descent [13].

Hybrid training requires combining the datasets collected for different simu-
lators/platforms into a unified dataset, making sure that each dataset is equally
represented (i.e., the unified dataset contains the same number of samples from
each simulator/platform specific dataset). Then, the unified dataset is split into
training and validation sets (e.g., using the standard 80/20 ratio). The training
pipeline is designed in such a way that each image, of dimensions 320×160, is pro-
cessed according to the simulator/platform it was taken from. For example, images
may be cropped differently. Depending on the vehicle size, the front part of the car
may, or may not be visible in the frame captured by the camera. Another example
of simulator-specific adaptation is the cropping of the above-horizon portion of
the image, unnecessary for the lane-keeping task. After cropping, each image is
resized to the size required for training, i.e., 320×160.

The training pipeline can be further configured to use plain synthetic virtual
images from the driving simulators, or pseudo-real images resembling real-world
driving images. The first configuration represents the standard practice in AV
testing. In the second configuration, the reality gap due to low photo-realism is
reduced by an image-to-image transformation that translates the driving images
of each simulator into images similar to those captured by the real-world AV
during on-road driving. This practice was proposed in the literature [51] and in
industry [7] to increase the transferability of the driving model tested in simulation
to the real world.
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Fig. 3: Example of translation with the CycleGAN for the three simulators

More specifically, this second configuration requires training a CycleGANmodel
for each driving simulator [76]. CycleGAN entails two generators, one that learns
how to translate images from simulated to real world (sim2real) and the other
that learns the opposite transformation (real2sim). During training of the model,
we use the sim2real generator trained for the respective simulator to translate the
corresponding training set images. During testing, the sim2real generator trans-
lates images on the fly, during the execution of the simulation. We refer to the
translated images as pseudo-real, since they are the output of a generative process
designed to resemble real images.

Figure 3 shows an example of image translation with a CycleGAN trained for
each simulator. The corresponding networks translate an image of a road curve
taken in the simulated domain (left) to an image belonging to the real domain
(right)—the test track of a small scale physical AV. During training and testing
of the driving model in a given simulator, we use the generator of the CycleGAN
trained for such simulator.

In our evaluation (Section 3), we consider both configurations of our approach,
i.e., training using either simulator or pseudo-real images. We refer to the model
trained on simulator images as MS , and the model trained on pseudo-real images
as MR.

2.3 Test Generation

While our approach is compatible with any test generation algorithm, in this paper
we adopt the MapElites [40] algorithm implemented in DeepHyperion [78], because
the output of DeepHyperion is projected to a feature map that characterizes each
generated test scenario according to its features. In other words, test cases having
equivalent features (e.g., 3 turns and maximum curvature of 0.2) are grouped into
the same cell of the feature map.

Figure 4 shows an example of feature map generated by DeepHyperion. The
roads (i.e., the test cases) in the map are characterized by two structural features,
i.e., the number of turns in the road (x axis) and the curvature of the road (y
axis), the latter defined as the minimum radius of the circles going through each
sequence of three consecutive road points [78]. Such features have been used in
previous work and have been shown to be effective at characterizing the search
space of road generators [78]. Characterizing a test case based on its structural
features, i.e., only based on the properties of the road, allows us to identify unique
failure scenarios, i.e., failure scenarios with distinctive road properties.

During test generation, the test cases are distributed in the map according to
their features. The value of each cell is influenced by the behavior of M when
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Algorithm 1: DeepHyperion algorithm

Input : M , DNN model under test;
S, Simulator instance;
Ps, Population size;
N , Number of iterations.

Output: Fm, feature map.
1 M ← initFeatureMap()
2 pop ← ∅
3 /* Generate Initial Population */
4 while i ≤ Ps do
5 tc ← generateIndividual()
6 f ← executeIndividual(tc, M , S)
7 placeIndividualMap(Fm, f , tc)
8 pop ← pop ∪ {tc}
9 end

10 /* Evolve Individuals */
11 while i ≤ N do
12 tc ← selectIndividual(pop)

13 t̂c ← mutateIndividual(tc)

14 f ← executeIndividual(t̂c, M , S)

15 placeIndividualMap(Fm, f , t̂c)

16 end
17 return Fm

driving on the roads pertaining to a cell. The minimum lateral distance recorded
by the simulator is used by DeepHyperion as a fitness of the generated test case.
The lateral distance is the opposite of the lateral position, i.e., it is maximum
when the vehicle drives at the center of the lane and it decreases as the vehicle
approaches the road side. In particular, it is negative when the model misbehaves
(i.e., the vehicle goes out of bound). In Figure 4 the two dashed-encircled cells
point out two failure cells for M (i.e., cells containing roads with negative fitness).

Algorithm 1 shows the pseudocode of the DeepHyperion algorithm. It takes
as input the driving model under test M , the simulator instance S and two hy-

Fig. 4: Example of feature map generated by DeepHyperion. The two axes repre-
sent structural features of the roads.
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perparameters, i.e., the population size Ps and the number of iterations N the
search is allowed to run, i.e., the budget of the algorithm. The algorithm starts
by initializing an empty feature map and population (Lines 1–2). Then, the while
loop at Lines 4–9 fills the initial population by randomly generating an individual
(Line 5) and executing it to collect its fitness value f (Line 6).

The assignment to the feature map (Line 7) is done by the procedure pla-
ceIndividualMap based on the feature values of the individual tc (to determine
the coordinates of the target cell) and its fitness value. If the target cell is empty,
the individual is placed in the cell. If the cell is non-empty (i.e., another test case
was already generated for that cell), a local competition based on the value of the
fitness takes place. If the fitness of the individual in the cell is greater than the
fitness of the candidate individual, the individual in the cell gets replaced with the
candidate individual. Otherwise, no replacement is carried out, which also holds
if the individual in the cell already has a negative fitness. The selection function
ensures that the search space of the features is explored at large, while the local
competition on the individual cells keeps only the lowest performing individuals
(i.e., potential misbheaviours) at the end of the generation in order to guide the
search towards misbehaviors with unique feature values.

The while loop at Lines 11–16 evolves the initial population of individuals.
First, an individual is selected (Line 12) and mutated (Line 13), i.e., the control
points of the road are changed in order to form a new individual t̂c with differ-
ent features. Such individual is then executed (Line 14) and placed in the map
(Line 15). The algorithm terminates after a number N of iterations (Line 16).

Algorithm 1 returns a feature map with a single individual for each cell, i.e.,
the one with the lowest fitness (Line 17). In order to further explore the search
space, we run DeepHyperion multiple times for each digital sibling to generate
multiple feature maps. Then, we combine such maps by considering the bounds
of each feature map axis in all the runs (i.e., minimum and maximum value) and
placing each generated individual in the combined map, whose bounds are the
lowest (resp. highest) bound values across maps. In this way, there are potentially
multiple individuals in each cell and the value of a cell represents the metric of
interest averaged over all individuals in that cell (see FMDS1

and FMDS2
in

Figure 1). For instance, considering the failure probability, the value of a cell
represents the number of times the model under test failed over the number of
all individuals in the cell (a failure occurs when the fitness of an individual is
negative).

2.4 Migration and Union

The test generation step produces two feature maps FMDS1
and FMDS2

, for DS1

and DS2, respectively (in general, N feature maps, i.e., FMDS1
, . . . , FMDSN

). The
next step of our approach (i.e., step ❸, see Figure 1) consists of migrating the test
cases in FMDS1

to DS2 (producing FMDS1
) and viceversa (producing FMDS2

).
In general, migrating the test cases in FMDSi

(with i = 1, . . . , N) to DSj (with
j ̸= i), would produce FMDSij

. For instance, if N = 3, migrating the test cases

in FMDS2
to the other siblings would produce FMDS21

when migrating to DS1,
and FMDS23

when migrating to DS3. Such operation consists of instantiating the
abstract (control point based) road representation of the test case being migrated,
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such that it respects the dimensionality constraints of, and it can be supplied as
input to the target simulator.

After migration, for both DS1 and DS2 (in general, DS1, . . . , DSN), we consider
the union of their maps. We consider the bounds of each feature in the two maps,
and we place the respective test cases in a new unified map according to their
coordinates, producing the map FMU1

for DS1 (i.e., FMDS1
+ FMDS2

) and the
map FMU2

for DS2 (i.e., FMDS2
+ FMDS1

). In general, FMUi
= FMDSi

+∑
j ̸=i FMDSji

. For instance, if N = 3, FMU2
= FMDS2

+ (FMDS12
+FMDS32

).
Hence, the two maps, or N maps in general, contain the same tests that fill the
same cells at the same coordinates.

The value of each cell in the union maps FMU1
, FMU2

is recomputed from the
individuals assigned to them. For the failure probability, if a given cell in FMDS1

has n1/N1 failing individuals, while the corresponding cell in FMDS2
has n2/N2

failing individuals, the failure probability value of the cell in the union map FMU1

will be (n1 + n2)/(N1 + N2). In general, for a given cell in FMUi
, the failure

probability is computed as (n1 + · · · + ni + . . . nN )/(N1 + · · · + Ni + · · · + NN ).
When a quality of driving metric is computed, instead of a failure probability,
the union map will contain the average of the respective quality of driving met-
rics: qm = (qm1 + qm2)/2, where qm1, qm2 are the quality of driving metrics
found in the same cell in the two feature maps being united (FMDS1

, FMDS2
, or

FMS2
, FMS1

), while qm is the resulting quality of driving metric, in the union
map (FMU1

or FMU2
). In general, for a given cell in FMUi

, the quality metric is
computed as (qm1 + · · ·+ qmi + . . . qmN )/N .

2.5 Merge

The final step of the approach (i.e., step ❹ in Figure 1) requires to merge the two
union maps FMU1

and FMU2
into FMDSS (in general, N union maps FMU1

, . . . ,
FMUN

). The objective of the merge operation is to combine the testing output
of the two digital siblings. Since we aim to use the digital siblings to approximate
the behavior of M on DT and predict its failures, the merge operator privileges
agreements between the maps of the two digital siblings, i.e., only cells in the maps
that have a hot color (e.g., a high failure probability) will produce a hot color in
the merged cell. Indeed, such tests are likely to represent simulator-independent
misbehaviors of the model under test, which are critical for the safety of the system.
Specifically, if the failure probability of FMU1

is fp1 = n1/N1 and that of FMU2

is fp2 = n2/N2, in the merged map the failure probability will be the product,
fp = fp1 × fp2 (in general, the failure probability of a given cell in DSS would be
fp = fp1×· · ·×fpi×· · ·×fpN ). When a quality of driving (resp. lack of quality of
driving) metric is computed, instead of a failure probability, the merged map will
conservatively contain the maximum (resp. minimum) of the respective quality
of driving metrics: qm = max{qm1, qm2} (resp. qm = min{qm1, qm2}), where
qm1, qm2 are the quality of driving metrics found in the same cell in FMU1

,
FMU2

, respectively, while qm is the resulting quality of driving metric, in the
merged map (in general, the quality metric of a given cell in DSS would be qm =
max{qm1, . . . , qmi, . . . , qmN}, and the lack of quality of driving of a given cell
would be qm = min{qm1, . . . , qmi, . . . , qmN}). By giving priority to failures (resp.
quality of driving degradations) that occur in both siblings and are hence very
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likely to be relevant for the target platform, this choice better accommodates the
limited testing budget available for production/field testing [8, 11, 15, 38, 51].

2.6 Evaluation Scenario

While our approach is useful when no DT is available, to evaluate whether the DSS
can approximate the behavior of M and predict its failures when executed on DT,
we migrate all the tests in the digital siblings feature map (i.e., FMDSS) to an
actual DT, which is used to obtain the ground truth map FMDT (see “Evaluation
Scenario” in Figure 1 (bottom)). The two maps being compared contain the same
tests in the same cells, but the values of the cells might differ, depending on the
behavior of M in the different simulators. Thus, we analyze and compare the two
feature maps FMDSS and FMDT to assess the capability of DSS at predicting
the failures of the model when executed on the DT.

3 Case Study

The goal of the case study is to evaluate whether two digital siblings (DSS) can
approximate the behavior of a driving model and predict its failures on a digital
twin (DT) better than using only one general-purpose simulator (GPSim). For
the case study, we focus on the lane-keeping task. To this aim, we consider the
following research questions:

RQ1 (Offline Evaluation). How do the offline prediction errors by the DSS
compare to those of the DT?

We first test our hypothesis at the model-level. For all simulators, we compute
the errors between the model predictions and each autopilot ground truth labels
on a stationary driving images dataset. We compare the error distributions of each
individual simulator with the DT, as well as their combination as digital siblings.

With RQ1 we aim to assess whether a correlation between the offline predic-
tions exists at the model-level, which can be useful for developers to gain trust
about their DNN model prediction accuracy, prior to running system-level tests.

RQ2 (Failure Probability). How does the failure probability of the DSS compare
to that of the DT?

In RQ2 we test the model at the system-level, specifically the hypothesis that
combining the failure probabilities of the two digital siblings provides a better
predictor of the ground truth failure probability of the model executed on the DT.
A positive answer to RQ2 would support our digital siblings framework to predict,
and possibly anticipate, the failures on the DT, which are expected to be accurate
proxies of real-world failures.

RQ3 (Quality of Driving). How does the quality of driving of the DSS compare
to the failure probability of the DT?

By considering only the failure probability, we might overlook the correlation
between real failures on the DT and near-failures on the DSS—test cases in which
the model exhibits a degraded driving quality without necessarily going off road.
Thus, with RQ3, we also assess whether finer-grained driving quality metrics can
predict the ground truth failure probability of the model on the DT.
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3.1 Test Object and Simulators

3.1.1 Study Object

We considered three self-driving architectures, i.e., Dave-2 [10], Chauffeur [16] and
Epoch [17]. Such architectures were used in previous studies on AV testing in the
literature [9, 22, 31, 41, 50, 51, 53, 54, 55, 57, 78], and the respective models
feature different number of parameters. The Dave-2 model has 2.8M parameters,
Chauffeur has 100k parameters while Epoch has 26M parameters (we used a
reduced version of the Epoch model to reduce training and inference time [51]).

Architecturally, Dave-2 consists of five convolutional layers, followed by three
fully-connected layers [10]. Chauffeur has six convolutional layers each followed by
a dropout and a max pooling layer (except the last one) [16]. Epoch has three
convolutional layers and one fully-connected layer, which makes up for most of the
parameter count of the model [17].

3.1.2 Digital Siblings (DSS)

We implemented and investigated the effectiveness of DSS using the simulators
BeamNG [6] and Udacity [63]. We chose them as digital siblings because: (1) they
support training and testing of a DNN that performs lane-keeping, including
Dave-2 , Chauffeur and Epoch; (2) they are often used as simulator platforms
for AV testing, as highlighted by a recent survey on autonomous driving test-
ing [57]; (3) they are potentially complementary because they are developed with
different technologies/game engines and they are characterized by different physics
implementations (e.g., rigid vs soft-body dynamics); (4) they are publicly available
under open-source or academic-oriented licenses, hence customizable.

BeamNG [6] is a framework specialized in autonomous driving developed by
BeamNG GmbH. The framework is released under an academic-oriented license
and it has been downloaded 5.5k times as of January 2023. From a technical stand-
point, BeamNG features a soft-body dynamics simulation based on a spring-mass
model. Such a model is composed of nodes (mass points) that are connected by
beams (springs), i.e., weightless elements that allow accurate vehicle deformation
and other aerodynamic properties [23].

Udacity [63] is developed with Unity 3D [64], a popular cross-platform game
engine. The project has been publicly released in 2016 by the for-profit educational
organization Udacity, to allow people from all over the world to access some of
their technology and to contribute to an open-source self-driving car project. As
of January 2023, the simulator has 3.7k stars on GitHub. From a technical stand-
point, Udacity is based on the Nvidia PhysX engine [42], featuring discrete and
continuous collision detection, ray-casting, and rigid-body dynamics simulation.

3.1.3 Digital Twin (DT)

We use the Donkey Car™ open-source framework [20] as digital twin for our study.
This platform has been used for AV testing research with physical self-driving
cars in physical environments [51, 68, 75]. The framework includes open hardware
to build 1:16 scale radio-controlled cars with self-driving capabilities, a Python
framework for training and testing DNN models with lane-keeping functionalities
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using supervised or reinforcement learning, and a simulator in which the real-
world Donkey Car is faithfully modeled. This was assessed by a recent work [51]
reporting that, for three lane-keeping models, the steering angle distribution of the
AV model driving in the real-world environment is statistically indistinguishable
from the steering angle distribution of the AV model driving in the digital twin.

In the rest of the section, we refer to BeamNG as DS1, Udacity as DS2, the
combined digital siblings as DSS, and DonkeyCar as DT.

3.2 Procedure

3.2.1 CycleGAN Models

Data Collection. We collected 15k simulated images, 5k for DS1 and DS2 by
running the autopilots on a set of randomly generated roads. Moreover, we col-
lected 5k real-world images [51] by manually driving the physical twin of the DT
on a physical road track in our lab.
Training. We trained three CycleGAN models, one for each simulator, with the
obtained training sets (5k virtual images and 5k real-world images). Each model
was trained for 60 epochs using the default hyper-parameters of the original pa-
per [76]. We saved a checkpoint model every 5 epochs and we ultimately chose the
one that achieved the best neural translations (in terms of visual quality) using
a test set of ≈8k simulated images for each simulator, representing a test road
driven from beginning to the end [51]. While a quantitative assessment of the out-
put of CycleGAN is still a major challenge [12] and out of the scope of this paper,
the driving capability of the lane-keeping model, as the experimental evaluation
shows, represents an implicit validation of the CycleGAN model’s ability to retain
all essential features needed for an accurate steering angle prediction.

3.2.2 Driving Models

Data Collection. For all simulators (i.e., DS1, DS2 and DT), we collected a
training set by running the autopilots on a set of randomly generated roads (this set
is different from the one used to train the CycleGAN). To ensure having non-trivial
driving scenarios and appropriate labels for challenging curves, the maximum angle
of a curve was set to be less than or equal to 270◦. In particular, for our training
set, we generated 25 roads with 8 control points [78]. To collect a balanced dataset
where left and right curves are equally represented, each road was driven by the
autopilot in both directions, i.e., from the start point to the end point and from
the end point to the start point. The autopilot drove successfully the totality
of the roads on all simulators; our training set comprises ≈70k images, equally
distributed across the simulators.
Training. For each self-driving architecture we trained two models, one by using
the plain simulated images (MS) and the other by translating the images of each
simulator into pseudo-real images (MR) using the respective CycleGAN generator.

We followed the guidelines by Bojarski et al. [10] to train AV autopilots. We
used custom hyperparameters for each self-driving architecture We used the Adam
optimizer [34] to minimize the mean squared error (MSE) between the predicted
steering angles and the ground truth value. For all models, we set a learning rate
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of 10−4 and a batch size of 128. We used 50 epochs for Dave-2 and Chauffeur (only
fort the MR model) and 500 epochs for Epoch and the MS model of Chauffeur. We
used an early stopping of 10 epochs for the models where the number of training
epochs was 50 and an early stopping of 20 epochs otherwise.

Table 1: Offline and online performance on the test set of the lane-keeping models
on DT.

MS MR

MSE Success Rate MSE Success Rate

Dave-2 [10] 0.08 0.84 0.07 0.96

Chauffeur [16] 0.07 0.72 0.07 0.92

Epoch [17] 0.09 0.52 0.07 0.96

Avg 0.08 0.69 0.07 0.95

We evaluated the performance of the trained lane-keeping models on the DT,
as it is the target simulator we want to approximate with the digital siblings
framework. We collected a labeled dataset by running the autopilot on the DT on
25 randomly generated roads each with 8 control points and a maximum angle of
270◦, i.e., the same road parameters as the training set. We computed the mean
squared error (MSE) between the steering angle prediction of the model on each
image and the steering angle of the autopilot. Table 1 shows the MSE of all models
on the first and third columns; on average, the MSE is low for both the models
trained using simulated images (i.e.,MS), and the models trained using real images
(i.e., MR). We also measured the success rate of each model by driving it on the
25 randomly generated roads, and counting the number of times the model was
able to arrive at the end of the road without going out of bound. Overall, each
model is able to successfully complete the majority of the generated roads. Most
notably, MR models are able to complete more than 90% of the test set roads.

3.2.3 Offline Evaluation

We collected a labeled dataset for offline evaluation by generating 20 roads (i.e., 10
roads driven in both directions) with the same parameters as the training set . The
images collected for the offline evaluation dataset amount to ≈26k, considering all
simulators.

3.2.4 Test Generation

After training MS and MR for each self-driving architecture, we executed Deep-
Hyperion twice to generate tests using the two digital siblings DS1 and DS2. We
chose a population size of 20 individuals and a number of search iterations re-
spectively equal to 150 for MS and 100 for MR, as we observed from preliminary
experiments that this choice of hyperparameters allows an extensive coverage of
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the feature maps. For both MS and MR and each digital sibling in each self-driving
architecture, we repeated test generation five times to diversify the exploration of
the search space and to collect multiple test cases for each cell in the feature maps.
Overall, across all runs and driving models, DeepHyperion generated 10,260 tests
for both siblings.

Concerning the simulations, for all simulators, we set the maximum speed for
the vehicle to 30 km/h [78]. When testing MR in a given simulator, we engineered
the testing pipeline to load the appropriate sim2real CycleGAN generator to trans-
late the simulated image generated by BeamNG/Udacity into pseudo-real images
in real-time during driving. For each executed test case, we collected the lateral
position of the vehicle for each simulation step as well as its lateral distance. The
former determines the quality of driving of the model [31], while the latter is the
fitness of the test case.

3.2.5 Migration and Union

For the initial (FMDS1
, FMDS2

) and for the union (FMU1
, FMU2

) feature maps,
we compute the failure probability as the number of tests with a negative fitness
divided by the total number of tests in the respective cell. To evaluate the quality
of driving, we adopted the maximum lateral position (i.e., the distance between
the center of the vehicle and the center of the lane [53]) experienced during the test
case execution. Previous work showed that such metric is effective at characterizing
the degradation in the quality of autonomous driving [31] since the lower the value
of such metric, the higher is the quality of driving (thus, it actually measures lack
of quality of driving). When considering the quality of driving, the value of each
cell in a feature map represents the average of the maximum lateral positions
of each test case in that cell. Furthermore, we normalized the maximum lateral
position values in the interval [0, 1] before taking the union.

3.2.6 Merge

Merging the maps of the two digital siblings requires a different treatment for
failure probability and quality of driving. Regarding the failure probability, the
merge operator that ensures a conservative aggregation of two values is the product.
Regarding the lack of quality of driving, the conservative merge operator is the
minimum, since the quantities to merge are not probabilities. In fact, by taking the
minimum we get a high lack of driving quality only when both simulators exhibit
high values for such a metric.

3.3 Metrics

3.3.1 RQ1 (Offline Evaluation)

We computed the prediction errors given by the difference between the predictions
of the model (MR) on images of the offline evaluation dataset (see Section 3.2)
and the corresponding ground truth labels given by the autopilot. We binned the
prediction errors of the model on each simulator and built the respective probability
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density (i.e., the number of errors in each bin is divided by the total number of
prediction errors) such that different distributions could be compared.

Then, we computed the distance between each digital sibling distribution, as
well as their combination, and the DT using the Wasserstein distance [3] (also
known as the earth mover’s distance). Given two one-dimensional distributions A
and B, the Wasserstein distance W (A,B) is defined by the following formula [43]:

W (A,B) =

∫
R
|CDFA(x)− CDFB(x)|dx (3)

where CDF is the cumulative distribution function of a distribution. In other
words, the Wasserstein distance between two distributions is defined as the differ-
ence between the area formed by their cumulative distribution functions.

We assess whether the difference between two distributions is statistically sig-
nificant using the Wilcoxon test [18] applied to the density functions of the two
error distributions to compute the p-value (with threshold α ≤ 0.05). We also
perform power analysis (with statistical power β ≥ 0.8) on the prediction errors
to check whether a non-significant p-value is due to a low data sample size or to
the difference being statistically insignificant.

3.3.2 RQ2 (Failure Probability) and RQ3 (Quality of Driving)

For RQ2, we computed the pairwise Pearson correlation between maps along with
the corresponding p-value. In particular, correlations are computed between each
union feature map of each digital sibling (FMU1

, FMU2
) and the feature map

of the DT (FMDT ), and between FMDSS and FMDT . For RQ3, the setting is
equivalent to that of the failure probability but considering quality of driving maps,
again comparing DS1, DS2 and DSS against the ground truth DT.

To evaluate the capabilities of the digital siblings (individually or jointly) to
predict failures on the DT, we computed the area under the curve Precision-Recall
(AUC-PRC) at increasing thresholds, for both RQ2 and RQ3. This requires the
discretization of failure probabilities into binary values (failure vs non-failure)
for the ground truth (i.e., DT): we consider a cell in the DT feature map to
be a failure cell if the associated failure probability is > 0.0. AUC-PRC is more
informative than the AUC-ROC metric (i.e., the area under of the curve of the
Receiver Operating Characteristics) when dealing with imbalanced [47] datasets,
which is the case of our study (the number of failures in the feature maps is lower
than the number of non-failures with an average 10 to 20% ratio).

3.4 Results

3.4.1 Offline Evaluation (RQ1)

Table 2 reports the results for our first research question. The first column shows
the simulators being compared. Columns 2–5 report the Wasserstein distance be-
tween the prediction error densities of the corresponding simulators, and the p-
value concerning the statistical significance of the differences between the two
densities, for MS and MR.
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Table 2: Results for RQ1. Bold-faced values indicate the best approach.

Offline Evaluation (RQ1)

MS MR

distance p-value distance p-value

Dave-2 [10]

DS1 vs DT 0.04669 0.101 0.03250 0.011

DS2 vs DT 0.02648 0.020 0.02187 0.078

DSS vs DT 0.03776 0.053† 0.00951 0.088†

Chauffeur [16]

DS1 vs DT 0.03989 0.023 0.04625 0.011

DS2 vs DT 0.02641 0.047 0.02145 0.078†

DSS vs DT 0.01208 0.394† 0.01843 0.334†

Epoch [17]

DS1 vs DT 0.06030 0.011 0.03374 0.016

DS2 vs DT 0.01634 0.078† 0.02318 0.078†

DSS vs DT 0.02726 0.053† 0.00989 0.256†

† power > 0.8

For MS (Columns 3–4), our results show that, for Dave-2, the distance between
the steering angle errors obtained for the combined digital siblings DSS and the
errors obtained for the DT is lower than the distance of DS1 (0.03776 vs 0.046) and
higher than the distance of DS2 (0.02648). The distribution of the steering angle
errors of DS2 is statistically different from the errors of the DT (i.e., p-value 0.02
< 0.05), while the distribution of the steering angle errors of DSS is statistically
indistinguishable from the errors of the DT (i.e., p-value 0.053 > 0.05 and power
> 0.8). This behavior is also consistent for Epoch, with the exception that the
distribution of the prediction errors for DS2 is statistically indistinguishable from
that of the DT. However, the distance between DSS and DT is lower than the
distance of DS1 from DT, with a statistically indistinguishable distribution of
prediction errors w.r.t. the DT. For Chauffeur, the combined digital siblings DSS
have the only distribution of errors that is equivalent to that of the DT and its
distance to it is the lowest considering the individual digital siblings.

Regarding MR (Columns 5–6), our results show that, for Dave-2, the distance
between the steering angle errors obtained for the combined digital siblings DSS
and the errors obtained for the DT is 2.8 times lower than the distance of each sim-
ulator taken individually (as a percentage, the distance of DSS is respectively 70%
and 56% smaller than the distance of the two individual siblings, DS1, DS2). The
statistical test confirms that the error distributions of DSS and DT are statistically
indistinguishable (p-value > 0.05 and power > 0.8), which is not the case for the
error distributions of DS1 (p-value < 0.05). Likewise, for all the other self-driving
architectures, the digital siblings DSS have the lowest distance to the DT w.r.t. the
individual siblings and their distribution is always statistically indistinguishable
from that of the DT.
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Fig. 5: Distributions of prediction errors of Dave-2 MR in the two digital siblings,
i.e., DS1 and DS2, their combination (DSS) and the DT. Best viewed in color.

Figure 5 offers a visual explanation of these scores for the Dave-2 model.1 The
subplots compare the steering angle error distributions, respectively, of DS1, DS2

and DSS (shown in light red) with that of DT (shown in light blue). The x-axis of
each subplot represents the magnitude of the prediction errors of the model MR

w.r.t. the predictions of the autopilot, while the y-axis indicates their percentage
for each bin.

From the plots we can see that, overall, at the model-level, MR makes predic-
tion errors with small magnitudes on DS1, DS2 and DSS (i.e., most of the errors
are between 0.0 and 0.3). On the digital sibling DS1 (i.e., BeamNG), MR has a
high agreement with the autopilot, as most errors have a low magnitude. It has
a large number of small errors (< 0.2), while it has only a negligible portion of
the distribution being above 0.2. The agreement with the DT is low as MR under-
approximates the true error distribution on the DT: MR on the DT has less errors
with low magnitude and has a longer tail of errors greater than 0.2 (even greater
than 0.3 in some cases). Differently, on the digital sibling DS2 (i.e., Udacity), the
error distribution has a longer tail than that on the DT. Indeed, MR executed on
DS2 over-approximates the errors it would have on the DT, as the errors observed
on DS2 have higher magnitude than those observed on the DT.

The error distribution of the model on DSS shows why it is appropriate to com-
bine the outcome of two simulators. At the model-level, DSS better approximates
the true error distribution of the model on the DT, by providing an intermediate
error between DS1 and DS2 for both MS and MR.

1 We report the plots for the other lane-keeping models in our replication package [44].
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RQ1: Overall, at the model-level, the digital siblings produce a steering
angle error distribution that is statistically indistinguishable from the true
steering angle error distribution of the model on the digital twin. Consid-
ering all the models, in 5 out of 6 cases, the digital siblings are better at
approximating the distribution of prediction errors of the digital twin.

3.4.2 Failure Probability (RQ2)

Table 3 shows the Pearson correlation (r), the p-value, and the AUC-PRC for the
comparison between DS1, DS2, DSS and DT, respectively. The analysis is reported
separately for MS (Columns 3–5) and MR (Columns 6–8).

Table 3: Results for RQ2. Bold-faced values indicate the best approach.

Failure Probability (RQ2)

MS MR

r p-value AUC-PRC r p-value AUC-PRC

Dave-2 [10]

DS1 vs DT 0.650 10−11 0.654 0.391 10−4 0.403

DS2 vs DT 0.583 10−8 0.512 0.377 10−4 0.306

DSS vs DT 0.710 10−13 0.684 0.457 10−5 0.398

Chauffeur [16]

DS1 vs DT 0.733 10−16 0.774 0.417 10−4 0.481

DS2 vs DT 0.588 10−10 0.715 0.337 10−3 0.300

DSS vs DT 0.700 10−14 0.742 0.422 10−4 0.496

Epoch [17]

DS1 vs DT 0.561 10−8 0.599 0.469 10−5 0.586

DS2 vs DT 0.428 10−5 0.604 0.521 10−7 0.565

DSS vs DT 0.571 10−8 0.622 0.450 10−5 0.641

Concerning MS—i.e., the model driving with simulated driving scenes— the
failure probabilities for Dave-2 have a high positive correlation with the true fail-
ure probability of the DT ( (Column 3). All such correlations are statistically
significant for our DSS framework, as well as for each individual sibling DS1 and
DS2 (p-values < 0.05, see Column 4). Likewise, the correlations are high and
statistically significant for the other lane-keeping models (Epoch features slightly
lower correlations). However, for Dave-2 the correlation of the DSS is 9% higher
than the best individual correlation (i.e., DS1) and 21% higher than the worst
individual correlation (i.e., DS2). In terms of failure prediction, the DSS have the
highest AUC-PRC value, 4% higher than DS1 and 33% higher than DS2.

This also happens with Epoch, where the correlation of DSS is slightly higher
than that of the best sibling DS1 (i.e., 0.571 vs 0.561) and 33% higher than that
of the worst sibling DS2. Regarding failure prediction on the DT the DSS are 3%
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better than the best sibling. In the case of Chauffeur, DS1 has the best results both
in terms of correlation and failure prediction. However, DSS are better than the
worst of the two siblings DS2 both in terms of correlation and failure prediction.

Figure 6 shows the feature maps related to MS of Dave-2.2 The first three
feature maps represent the failure probability of DS1, DS2 and DSS, respectively.
The last feature map represents the ground truth failure probability of DT. The
color of each cell ranges from green (i.e., non-failure, or failure probability = 0)
to red (i.e., failure probability = 1). Let us analyze a false positive case. The test
cases at coordinates (3, 0.25), whose corresponding cells are highlighted with a
dashed line, represent road tracks having three curves and a maximum curvature
of 0.25. In the DT, this cell is green, i.e., all test cases for MS driving on the DT
succeed. On the other hand, MS has contrasting behaviors when the same test
cases are executed on DS1 or DS2. These test cases did not exhibit any failure in
DS1, whereas they did trigger failures in DS2. This disagreement is canceled out
when combining the two digital siblings with the product operator and the cell is
green in the DSS map. As such, digital siblings are conservative w.r.t. failures, as
a failure is reported only when both digital siblings are in agreement. This can be
noticed for test cases at coordinates (1, 0.23), which represent road tracks having

2 We report the plots for the other lane-keeping models in our replication package [44].

Fig. 6: Feature maps representing the failure probability of Dave-2 MS on the two
digital siblings, DS1 and DS2, their combination (DSS) and on the DT. Solid line
cells represent a true failure predicted by DSS while dashed line cells represent a
false positive of DS2. Best viewed in color.
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one curve with a maximum curvature of 0.23—an instance of a true positive case
(the corresponding cells in each map are highlighted with a solid line). Both DS1

and DS2 have a failure probability of 1 and, as a consequence, the DSS map also
does. On the DT, MS has also a high failure probability (0.5), which confirms
the high effectiveness of the DSS framework at approximating the true failure
probability of DT.

Concerning the failure probability forMR—i.e., the model driving with pseudo-
real driving scenes, for Dave-2 and Chauffeur, the DSS are better than each indi-
vidual sibling in terms of correlation with the DT. For Dave-2, DS1 better predicts
the failures of the DT, while for Chauffeur, the digital siblings are better than each
individual sibling. Interestingly, for Epoch, DS2 better correlates with the DT but
the AUC-PRC value of DSS is the higher than the individual siblings.

RQ2: At the system-level, in four cases out of six, the failure probability
of the digital siblings better correlates with the true failure probability of
the digital twin w.r.t. each individual sibling . In four cases out of six,
the failures obtained on the digital siblings are a better predictor of the
ground truth failures experienced on the digital twin.

3.4.3 Quality of Driving (RQ3)

Table 4 shows the Pearson correlation (r), the p-value, and the AUC-PRC for
the comparison between DS1, DS2, DSS and DT, respectively. The comparison
considers the correlation between the quality of driving metric experienced in
DS1, DS2, DSS and the failure probability of the model on the DT, as well as the
prediction of failures from the quality of driving metric. The analysis is reported
separately for both MS (Columns 3–5) and MR (Columns 6–8) models.

For MS , the correlation between DSS and DT is lower than the best individual
correlation for all the lane-keeping models (0.553 of DSS vs 0.621 of DS1 for Dave-2,
0.792 of DSS vs 0.798 of DS1 for Chauffeur, and 0.491 of DSS vs 0.511 of DS1 for
Epoch). For Dave-2, the DSS correlation is 22% higher than the worst individual
correlation (0.553 of DSS vs 0.429 of DS2); percentages are similar for Chauffeur
and Epoch.. For AUC-PRC, DSS and DS1 have the same predictive power both
for Dave-2 and Chauffeur (i.e., respectively 0.659 and 0.940), while for Epoch the
DSS prediction is slightly better than that of DS1. Thus, using the DSS framework
mitigates the risk of relying on the testing results of a low-quality GPSim (i.e.,
DS2).

Concerning MR, we observed a similar trend, i.e., the correlation of DS1 with
the DT are higher than the correlations of DSS with the DT, although DSS always
have a better correlation than the worst of the two siblings, i.e., DS2, for all lane-
keeping models. The digital siblings DSS better predict the failures of the DT for
Dave-2 and are equivalent to DS1 for Chauffeur. For Epoch, the best predictor of
the failures of the DT is DS2, although the digital siblings are only 9% worse.

Figure 7 shows the four feature maps related to the quality of driving of the
MR Dave-2 model on the two digital siblings and the failure probability of MR on
the DT.3 We can observe that the feature map of DS1 and the feature map of the

3 We report the plots for the other lane-keeping models in our replication package [44].
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Table 4: Results for RQ3. Bold-faced values indicate the best approach.

Quality of Driving (RQ3)

MS MR

r p-value AUC-PRC r p-value AUC-PRC

Dave-2 [10]

DS1 vs DT 0.621 10−10 0.659 0.396 10−4 0.513

DS2 vs DT 0.429 10−5 0.496 0.287 10−3 0.351

DSS vs DT 0.553 10−8 0.659 0.379 10−4 0.626

Chauffeur [16]

DS1 vs DT 0.798 10−21 0.940 0.399 10−4 0.460

DS2 vs DT 0.625 10−11 0.791 0.260 0.025 0.359

DSS vs DT 0.792 10−21 0.940 0.382 10−4 0.460

Epoch [17]

DS1 vs DT 0.511 10−7 0.592 0.554 10−8 0.608

DS2 vs DT 0.355 10−4 0.541 0.389 10−3 0.715

DSS vs DT 0.491 10−6 0.594 0.529 10−7 0.651

DSS are similar. As a consequence, the two correlations are similar (0.396 of DS1

vs 0.379 of DSS). On the other hand, the feature map of DS2 is quite different
from the failure probability map of the DT, which causes the correlation to be low
(0.287). . We can observe that all siblings are able to capture the failure of the DT
at coordinates (1, 0.23) (see the corresponding cells highlighted with a solid line).
On the other hand, the test cases at coordinates (4, 0.24) triggered failures only
in DS2, and the DSS correctly predict that in the DT such tests will not cause a
failure.

RQ3: At the system-level, for most lane-keeping models, the quality of
driving of the digital siblings has a correlation with the failure probability
of the digital twin. This correlation is either equivalent to that of the best
digital sibling or falls within the range of the two siblings. In five cases out
of six, the quality of driving in the digital siblings has a failure prediction
capability w.r.t. the digital twin which is equal or higher than the best
individual sibling. As a result, digital siblings reduce the risk associated
with relying on the least reliable simulator.

4 Discussion

When combining the two siblings using our framework, the worst case occurs when
the two siblings disagree and the over-approximating sibling (e.g., predicting a
failure) is not compensated by the under-approximating sibling (see Figure 6). In
most cases, we empirically observed that by predicting a failure only when there
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is agreement, the digital siblings framework is equivalent to the best of the two
siblings (see RQ3). However, for the Epoch model, when considering the failure
probabilities of the MR model, the correlation of the digital siblings is slightly
worse than the worst sibling, i.e., DS1 (specifically, 0.450 of DSS vs 0.469 of DS2).
Despite the lowest correlation, the digital siblings have the highest capabilities of
detecting the failures of the DT.

We experimented with both simulated (MS) and real-world models (MR) as
such setting is representative of the current industrial testing practices described by
the NHTSA [62]. From the feature maps in Figure 6 and Figure 7, we can observe
that the driving quality of MS is superior w.r.t. MR (the failure probabilities in
the feature map of the DT are higher), presumably because it is easier for a DNN
to process plain artificial images from a simulator, rather than the images collected
by a real-world camera during driving (i.e., sim2real gap). . Overall, our results
show that, in both settings, the digital siblings better approximate the behavior of
the model on the DT, regardless of the driving capabilities of the different models.

Fig. 7: Feature maps representing the quality of driving of Dave-2 MR (i.e., the
maximum lateral position) on the two digital siblings, DS1 and DS2, their combi-
nation (DSS) and the failure probability on the DT. Solid line cells represent a
true failure predicted by DSS, while dashed line cells represent a false positive of
DS2. Best viewed in color (New).
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4.1 Threats to Validity

4.1.1 Internal validity

We compared all simulators under identical parameter settings. One threat to
internal validity concerns our custom implementation of DeepHyperion within the
simulators. We mitigated this threat by faithfully replicating the code available in
the replication package of the paper [19]. Another threat may be due to our own
data collection phase and training of the lane-keeping models, which may exhibit
a large number of misbehaviors if trained inadequately. We mitigated this threat
by training and fine-tuning a model which was able to drive on the majority of
the training set roads consistently on all simulators.

4.1.2 External validity

We considered only a limited number of DNN models and simulators, which poses a
threat in terms of the generalizability of our results. We tried to mitigate this threat
by choosing three popular real-world DNN models, which achieved competitive
scores in the Udacity challenge [60]. Their diversity in terms of both size and
architectural structure determines different driving behaviors and increases the
generalizability of our results. We considered two open-source GPSim and we chose
DonkeyCar as DT, as it was used as a proxy for full size self-driving cars also in
previous studies [51, 52, 67, 68, 75]. Generalizability to other GPSim or DT would
require further studies.

4.1.3 Construct validity

Threats to construct validity may come from selecting inappropriate metrics to
measure the agreement of the siblings with the DT. To address this threat we
assessed such agreement from two points of view, i.e., at the model-level (RQ1),
by measuring the distance between the two distributions under analysis and testing
the statistical significance of the difference, and at the system-level, by measuring
failure probability and quality of driving. Overall, our results show that the digital
siblings are better at predicting the behavior of the lane-keeping model under test
on the DT.

5 Related Work

5.1 Digital Twins for AV Testing

Digital twins are used by researchers to reproduce real-world conditions within a
simulation environment for testing purposes [2, 4, 32, 48, 72].

Yun et al. [72] test an object recognition system using the GTA videogame. In
particular, they exploit the realism of the game engine to collect data for train-
ing an object recognition system for both collision avoidance and lane-departure
prevention. Barosan et al. [4] describe a digital twin for testing an autonomous
truck. No testing was performed using the digital twin to assess the faithfulness of
the simulator at reproducing real-world failures. Almeaibed et al. [2], analyze the
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safety and security of digital twins and propose a general framework to address
such issues during development. Kapteyn et al. [32], propose a probabilistic graph-
ical model to link the digital twin with its physical replica. The formal definition
ensures that the calibration of the digital twin and its update with real-world data
is principled and scalable. Similarly, San et al. [48] rely on the same mathematical
tool to formalize the update of the digital twin with the goal of using it through-
out the whole lifecycle of its physical replica, i.e., from the design to the operation
phase. Veledar et al. [66] propose a multi-metrics approach for security and safety
validation for the design of a digital twin for autonomous driving.

Such works mostly focus on the design of the digital twin and its update during
the development of the physical replica. Differently, in our paper we investigate
testing transferability between digital siblings, i.e., a framework composed of mul-
tiple general-purpose simulators, and a digital twin, considering both simulated
and pseudo-real images as input to the DNN.

5.2 Empirical Studies

Recent work has confirmed the need for real-world testing of cyber-physical sys-
tems, as simulation platforms are often decoupled from the real world complexi-
ties [1]. Our work is the first to propose the usage of a multi-simulator approach,
called digital siblings, to mitigate the fidelity gap in the field of autonomous driving
testing.

Concerning comparative studies across simulators, to the best of our knowl-
edge, the only study that empirically compares the same AV on different simulation
platforms is by Borg et al. [11]. The authors investigate the use of multiple GPSim
for testing a pedestrian vision detection system. The study compares a large set
of test scenarios on both PreScan [49] and Pro-SiVIC [27] and reports low agree-
ment between testing results across the two simulation platforms. No assessment
is performed of their correlation with a digital twin or a physical vehicle. In our
paper, we take a step ahead and we show how the (dis)agreements can be leveraged
to mitigate the fidelity gap: by combining the predictions of two general-purpose
simulators we successfully covered the gap with a digital twin for a scaled physical
vehicle.

Other studies compare model-level vs system-level testing metrics within a
simulation environment [29]. In our empirical work, we focused on the difference
between general-purpose and digital twin driving simulators. We use offline and
online testing to measure the gap between single- and multi-simulator approaches
at approximating a digital twin, a previously unexplored topic.

5.3 AV Testing Approaches

Most approaches use model-level testing (i.e., offline testing of single image predic-
tions) to test DNN autopilots under corrupted images [35, 61] or GAN-generated
driving scenarios [74], without however testing the self-driving software in its oper-
ational domain. In our work, we assess the effectiveness of our digital siblings with
model-level testing in terms of prediction error distributions, but we also consider
online testing at the system-level.
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Another model-level testing approach is the work by Talwar et al. [56]. Their
focus is to test the generalizability on real-world data of multiple object detection
models trained on simulated images. On the other hand, we use an Image-to-
Image translation architecture [76] to translate simulated images into real-world
images both to evaluate the lane-keeping model offline and to test it online at the
system-level.

Concerning system-level testing for AVs, researchers proposed techniques to
generate scenarios that cause AVs to misbehave [24, 39, 50, 54, 55, 74]. Among
the existing test generators, in this work we adopted DeepHyperion by Zohdinasab
et al. [78], a tool that uses illumination search to extensively cover a map of
structural input features, which allowed us to easily group identical or equivalent
failure conditions occurring in the same feature map cell. Ul Haq et al. [28] use
ML regressors as surrogate models to mimic the simulator’s outcome.

These works only consider single-simulator approaches to testing. Their gener-
alizability to a multi-simulator approach, such as the digital siblings proposed in
this paper, or to cross-simulator testing, is overlooked in the existing literature.

6 Conclusions and Future Work

In this paper, we propose the digital siblings framework to improve the testing of
autonomous driving software. In our approach, we test the autonomous driving
software using two general-purpose simulators in order to better approximate the
behavior of the driving model on a digital twin. We combine the testing outputs
of the model on the two simulators in a conservative way, giving priority to the
agreements on possible failures, where it is more likely to observe the same failing
behavior on the digital twin.

At the model level, our results show that, by combining two general-purpose
simulators, we can approximate the model predictions on the digital twin better
than done by each individual simulator. At the system-level, the digital siblings
are able to predict the failures of the model on the digital twin better than each
single simulator.

In our future work we plan to extend our framework to more than two general-
purpose simulators and to study different ways to combine them based on the
characteristics of each simulator and those of the digital twin.
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