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Abstract. This paper provides the results of a retrospective analysis conducted on
a survey of the grey literature about the perception of practitioners on the integration
of artificial intelligence (AI) algorithms into Test Automation (TA) practices.
Our study involved the examination of 231 sources, including blogs, user manuals,
and posts. Our primary goals were to: (a) assess the generalizability of existing
taxonomies about the usage of AI for TA, (b) investigate and understand the
relationships between TA problems and AI-based solutions, and (c) systematically
map out the existing AI-based tools that offer AI-enhanced solutions.
Our analysis yielded several interesting results. Firstly, we assessed a high degree of
generalization of the existing taxonomies. Secondly, we identified TA problems that
can be addressed using AI-enhanced solutions integrated into existing tools. Thirdly,
we found that some TA problems require broader solutions that involve multiple
software testing phases simultaneously, such as test generation and maintenance.
Fourthly, we discovered that certain solutions are being investigated but are not
supported by existing AI-based tools. Finally, we observed that there are tools that
supports different phases of TA and may have a broader outreach.

Keywords: Test Automation · Artificial Intelligence · Grey Literature.

1 Introduction

The adoption of Artificial Intelligence (AI) and Machine Learning (ML) techniques for
Test Automation (TA) is attracting the attention of both researchers and practitioners that
are recognizing the potential of AI to fill the gap between human and machine-assisted
testing activities. In this paper, we refer to such techniques as Artificial Intelligence
supported Test Automation (AIsTA). While AIsTA is increasingly being adopted by
companies [25], there is still a limited knowledge about the problems it faces, the
solutions it proposes, as well as the existing tools and their connection with the software
development process.

Several works tried to review the existing works concerning AIsTA [10,12,16,35].
This work is under the umbrella of these secondary studies but it focuses on the grey
literature [6] to capture the perception of the practitioners about the adoption of AIsTA. To
this aim, we first extended the grey literature conducted by Ricca et al. [25] by considering
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more recent sources (+41%). Secondly, we conducted a retrospective analysis into the
whole set of collected data, aiming at capturing the underlying relationships among TA
problems, AI-based proposed solutions, and existing tools.

Our analysis revealed that existing taxonomies provide a good degree of generalization,
also when considering more recent grey literature sources. Also, we found that some TA
problems require solutions that involve several testing phases (e.g., test creation, execution
and maintenance), with some tools actually supporting this complex scenario. We believe
that our work could help practitioners better comprehend the state of the art and practice
in AIsTA, for instance, for selecting the most appropriate tools for their testing purposes
of problems. Moreover, our work could help researchers in capturing issues that require
more investigation and new research directions.

2 Existing Grey Literature Analysis for AI-assisted Test Automation

A previous work by Ricca et al. [25] (referred to as previous work, hereafter) presented a
study of the grey literature concerning AI/ML-based testing frameworks and tools for Test
Automation. The authors analyzed several hundreds web documents from which they
retrieved: (a) existing problems about different aspects of the actual automated testing
process, (b) solutions based on AI and ML that are used to mitigate such problems and,
(c) the list of most popular frameworks and tools available on the market.

The main contribution of the previous work [25] is the construction of two taxonomies
of problems and solutions in AIsTA. Moreover, the authors identified the six most-cited
AI/ML testing tools that, according to practitioners, can improve the quality of the TA
process and the productivity of testers and developers.

In terms of TA problems that are addressed with AI, the taxonomy reports six main
categories related to (1) test planning, (2) test design, (3) test authoring, (4) test execution,
(5) test closure, and (6) test maintenance [25]. Among the AI-supported solutions to
such problems, the taxonomy reports four main categories related to (1) test generation,
(2) test oracles, (3) debugging, and (4) test maintenance [25]. Previous work also identified
the most popular AIsTA tools, those being Functionize,5 Applitools,6 Mabl,7 Testim,8

Test.ai,9 and Appvance.ai.10 Although being an important first step in understanding this
evolving domain, the previous work falls short in providing critical details concerning an
examination of the connections between TA problems and investigated solutions and a
systematic mapping of AIsTA tools and solutions.

In this work, we first assessed the generalizability of the proposed taxonomy using a
set of recent studies not used during its development. After having validated and extended
the set of data analyzed by the previous work, aiming at considering more sources, we
make a step ahead in collecting and presenting these important relationships based on
an analysis of the grey literature. This information can be useful for both practitioners
and researchers. Practitioners can determine which solutions to employ based on their
specific requirements and challenges, as well as identify the tools that can assist them in
implementing the identified solution. At the same time, researchers can focus on areas in
which AI is not yet used and that require further investigation.
5 https://www.functionize.com 6 https://applitools.com
7 https://www.mabl.com 8 https://www.testim.io
9 https://www.test.ai 10 https://www.appvance.ai

https://www.functionize.com
https://applitools.com
https://www.mabl.com
https://www.testim.io
https://www.test.ai
https://www.appvance.ai
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3 Retrospective Analysis

The objective of our investigation is to gain insights into how practitioners perceive TA
problems addressed by AI-enhanced tools, as well as their effectiveness. We focus our
retrospective analysis on the grey literature analysis conducted by previous work [25],
that we also extended. With this goal in mind, we aim to unravel the connections between
existing TA issues and AI-driven solutions, as well as the interplay between current TA
tools and these AI-based solutions. We aim to address the following research questions:
RQ0 (Generalizability). What is the generalizability of the previous taxonomies [25]?
RQ1 (Problems vs Solutions). How are TA problems and solutions linked in AIsTA?
RQ2 (Tools vs Solutions). How do AIsTA tools and solutions relate to each other?

RQ0 assesses the degree of generalizability of the existing taxonomies by validating
them on a set of studies that we not used during its development. RQ1 investigates
the solutions provided by AI-powered test automation designed to address specific TA
problems. RQ2 analyzes what solutions can be obtained from AIsTA tools.

3.1 Procedure

Data Extension. Concerning the generalizability of the existing taxonomy (RQ0), we
adopted the same experimental procedure outlined in previous work [25], which is
composed by four distinct phases: (1) Google/arXiv search, (2) document selection,
(3) data extraction, and (4) taxonomy creation. In short, the authors searched a list of
possible web documents with a Google-based search to collect as many documents as
possible regarding TA conducted with AI/ML solutions (details are available in our
replication package [24]). Second, web documents not related to AI/ML-enhanced TA
were filtered out adopting some specific inclusion/exclusion criteria. Third, the authors
read and analyzed the candidate documents, filling out a form with the information
gathered from each source [11]. Finally, following a systematic process [8,7], they created
two taxonomies, one for problems and one for solutions, as well as a list of the most
adopted AIsTA tools.

By considering the same search strings of the original paper, updated to the years
2022 and 2023, we broadened the investigation of grey literature to include also the most
current works released up to February 2023. We followed the same procedure to extract
the information from the sources and update the existing taxonomies. A tabular data
extraction form was used to keep track of the extracted information [24] (e.g., the list of
all the information sources). The authors proceeded with the analysis independently on
separate sets of documents, reusing existing labels previously created, should an existing
label apply to the document under analysis.
Data Collection. Our pool of data contains the newly collected data and the existing
data that were made available in the replication package of the previous work [25]. The
extracted information includes: (1) the link of the document, (2) the author(s) of the
document, (3) the nature of the document (e.g., blog post, interview transcript, white
papers), (4) the data of the document, (5) the TA tool(s), (6) the testing level (e.g.,
acceptance, unit), (7) the problem addressed, and (8) the solution offered.
Data Preprocessing. We used Pandas data-frames [19] to filter the information related
to problems addressed and solutions offered (RQ1) and tools (RQ2). We discarded the
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entries for which either the problem, solution, and tool was unspecified or for which
it was too generic. On the interesting entries, we counted each pairwise combination
of <problem, solution> and <tool, solution>. Particularly, every source
mentioning a problem instance and a solution instance is counted as one connection. From
the original pool of 541 pairs, we retained 335 pairs for our analysis (62%).
Data Visualization. We used the Plotly library [9] to create different Sankey dia-
grams [27]. We decided to use Sankey diagrams since they are used to visualize the flow
of data from an input set to an output set. The elements of both input and output sets are
called nodes. Such nodes are connected by means of links, where each link connects an
input node to an output node, thus showing that a given relationship exists between input
and output. The width of a link indicates the absolute values of the matching instances. By
using Sankey diagrams in our retrospective analysis, we aim at identifying the connections
between TA problems and AI-enhanced solutions, and between the existing AIsTA tools
and such solutions, with the goal to surface trends and patterns. For RQ1, we considered
the pairs pertaining to each software development phase separately (e.g., maintenance).
It is worthy notice that the Sankey diagrams are built by considering all the collected
sources, while the ones shown in this paper focus only on the most evident connections,
only for space and readability reason.

3.2 Results

RQ0 (Generalizability). Table 1 (Problem) presents the list of problems in TA that are
faced with AI/ML, according to [25], and their occurrences. The table also includes the
updated entries and occurrences derived from our extension.

The two most represented sub-categories are Manual code development and Mainte-
nance of test scripts, two well-known cumbersome activities concerning the development
and maintenance of test scripts. More in detail, test development requires both domain
knowledge and programming expertise. Domain knowledge is required to identify the test
data and test oracle, whereas the programming expertise is required when using script-
based testing frameworks to programmatically develop test code (e.g., with Selenium
WebDriver [5]). Test maintenance is critical in both mobile and web contexts [3,13],
because these kinds of applications are subject to a rapid evolution, thus requiring a non-
trivial effort to evolve and maintain existing test code. Other relevant problems are related
to Untested code, i.e., the inability of automated test suites to test the entire application
under test (AUT); Manual data creation, i.e., the unavailability of high-quality input data
for testing [26]; Visual analysis, related to the assessment of the visual correctness of the
AUT graphical user interface; Test scripts Flakiness, i.e., non-deterministic test scripts
that either pass or fail when executed on the same AUT due to environmental factors such
as the network traffic [17]); and Manual debugging overhead, which concerns the search
of the root-cause behind test script failures and breakages.

Table 1 (Solution) lists the solutions provided by AI/ML, as presented in [25], as
well as the updated entries and occurrences derived from our extension (highlighted in
the figure). The most represented category is Automated test generation, which includes
different sub-categories, such as the usage of machine translation (test cases are described
using natural language and the testing framework interprets and translates them in
executable test scripts) or crawling [21] (automated AUT model inference at support of
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Table 1. Original and Extended Taxonomy (in green) of TA problems and solutions.

PROBLEM [25] # SOLUTION [25] #

Test Planning 22 32 Test Generation 125 192
Critical paths identification 13 13 Aut. test generation 29 48
Planning what to test 7 9 Aut. generation using machine translation 11 13
Planning long release cycles 2 2 Aut. generation from user behaviour 11 22
Test process management - 8 Aut. test generation from API calls 6 6

Test Design 8 22 Aut. test generation from mockups 3 3
Programming skills required 5 11 Aut. test generation using crawling 2 11
Domain knowledge required 3 9 Declarative testing - 2
Test-cases - 1 Predict faulty-areas - 4
Programming-skills required - 1 Aut. data generation 22 22

Test Authoring 109 132 Robust element localization 13 13
Manual code development 52 58 Dynamic user-behaviour properties recognition 8 8

Manual API test development 7 11 Automated exploratory testing 7 10
Manual data creation 19 24 Object recognition engine 6 13
Test object identification 13 13 Mock generation 3 3
Cross-platform testing 10 15 Self-learning 2 3
Costly exploratory testing 5 5 Automated API generation 1 9
Locators for highly dynamic elements 1 1 Page object recognition 1 2
Test code modularity 1 1 Test Execution - 8
Accessibility testing 1 1 Cloud execution - 2
Adequacy-focus on faulty-areas - 3 Decoupling test framework from host - 2

Test Execution 71 103 Smart test execution - 3
Untested code 29 34 Anomaly detection - 1
Flakiness 18 22 Oracle 38 46
Slow execution time 14 16 Visual testing 38 46
Useless test re-execution 4 7 Debugging 62 82
Scalability 2 3 Intelligent test analytics 17 22
Parallelization 2 3 Automated coverage report 14 22
Low user responsiveness 1 1 Noticeable code changes identification 12 13
Slow execution time 14 16 Runtime monitoring 10 11
Platform independence 1 1 Flaky test identification 7 8

Test Closure 47 59 Bad smell identification 1 1
Manual debugging overhead 18 22 Decoupling test framework from host 1 1
Costly result inspection 10 11 Root-cause-analysis - 1
Visual analysis 19 25 Prediction of failures - 3
Data-quality - 1 Maintenance 81 141

Test Maintenance 82 102 Self-healing mechanisms 43 43
Manual test code migration 3 3 Self-healing test scripts 24 32
Bug prediction 11 13 Smart locators 19 21
Fragile test script 10 12 Intelligent fault prediction 12 13
Regression faults 2 7 Intelligent selective test re-execution 12 12
Costly visual GUI regression 8 10 Intelligent waiting sync 5 5
Maintenance overhead 48 57 Intelligent test prioritization 4 6

Aut. identification environment configurations 3 6
Pattern recognition 1 1
Remove unnecessary test cases 1 1
Reduce UI testing - 1

Unspecified 60 77 Unspecified 91 99
Generic 23 33 Generic 25 30

Total 339 560 Total 422 598

test generation). Another relevant category is Maintenance of test scripts, often performed
with self-healing mechanisms that are able to perform automatic fixes in case of breakage,
or via smart locators that are resilient to common breakages causes. Other solutions
concern Debugging with intelligent test analytics able to reveal the portions of the AUT
with high probability of bugs, and Oracles, for enabling visual testing, an approach able to
automatically check the visual appearance and behavior of a AUT graphical user interface.
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Fig. 1. Problems vs Solutions in the Planning (top) and Design phases (bottom).

The extended version of the taxonomies includes 95 new contributions (out of 231
sources considered, i.e., +41.1% with respect to previous work [25]), which we arranged
into categories based on the dimensions described in the prior work. This procedure yielded
419 additional instances to the original taxonomies, of which five new TA problems out of
40 (e.g., test process management, test adequacy on application fault-prone application
areas, and data quality), 10 new types of solution out of 44 (e.g., cloud-based test execution,
smart test execution, and failure prediction) and 22 new tools out of 71 (e.g., Tricentis
Tosca, Google OSS-Fuzz, ChatGPT). For space reasons, we entire list of tools in available
in our replication package [24].

Overall, about the generalizability of the existing taxonomies of TA problems and
AI-based solutions (RQ0), we can observe that in our analysis, we have been only partially
extended the taxonomies presented by Ricca et al. [25].
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Fig. 2. Problems vs Solutions in the Authoring (top) and Execution phases (bottom).

RQ1 (Problems vs Solutions). Figure 1 illustrates the relations between problems and
solutions identified in the planning (top) and design (bottom) phases. Problems are shown
on the left, while solutions are shown on the right.

In the planning phase, the figure depicts the identification of critical paths (e.g.,
sequences of clicks, links and functionalities to test) in the AUT as the main problem.
In the design phase, the need for programming skills required for developing and
implementing test scripts is shown instead as the main issue. It is worth noting that
deciding on which aspects to focus test automation involves a variety of solutions, such as
fault prediction, test analytics, test generation, and test selection. Both Sankey diagrams
emphasize the relationship with various automated test creation activities, ranging from
crawling-based to behavior-driven development (BDD) solutions. In particular, it is
interesting to observe the contribution of crawling (in the planning phase) as a way to
identify critical paths in the AUT and that of declarative testing [34] (in the design phase)
as a way to separate the design of test cases from their technical implementation. This may
be reflective of the separation of testers and developers as two distinct roles in industry.
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In Figure 2, the relationships between problems and solutions in the authoring (top)
and execution (bottom) phases are depicted. The primary challenge addressed in the
authoring phase is manual code development, which is tackled through various automated
test creation activities, including crawling-based and machine-translation-based solutions.
Additionally, the generation of automated tests from user behavior and API calls is
explored as a potential solution to the problem of manual data creation. Interestingly,
the diagram shows that the object identification is a testability problem related to four
possible major solutions such as: (i) object recognition engines (i.e., tools that can identity
testing elements of the AUT GUI); (ii) exploratory testing (e.g., based on taxonomies of
past-discovered bugs); (iii) visual testing (i.e., automated visual checks of the AUT GUI
by means of computer vision approaches); and (iv) intelligent fault prediction. Regarding
the test execution phase, two primary issues arise, namely test flakiness and identifying
portions of code untested. The former can be tackled through various automated techniques
such as self-healing test scripts and smart locators or using intelligent synchronization
methods able to insert waiting commands in the right place of the flaky test script and
with the right waiting time. The latter involves mainly approaches like coverage analysis,
automated test generation and to a minimal extent also fault prediction.

There are two primary concerns related to the closure (top) and maintenance (bottom)
phases (Figure 3). The first concern, which is the visual oracle problem, can be addressed
using visual testing solutions. The second concern, which involves the debugging overhead,
requires a combination of various automated debugging techniques such as self-healing
methods (e.g., to autonomously decide the corrective actions to apply in case of a broken
test), automated coverage toolsets, test analytics (e.g., methods for failure analysis), and
change impact analysis (e.g., to identify what has been tested). These techniques can also
benefit the task of inspecting test results. This Sankey diagram highlights the fact that
in some cases there are unique and specific solutions to a problem (e.g., visual oracle
problem) while in other cases the problems are more complex (e.g., debugging overhead)
and require multiple distinct solutions. Finally, concerning the maintenance phase, the
biggest problem is the overhead of maintaining test scripts and the associated cost, which
also needs different and multi-faceted solutions. The greatest contribution is given by
smart locators and self healing test scripts, being the most cited solutions for this specific
problem. Another important problem is that of the fragility of test scripts. A test script
is fragile if it can no longer identify a web element as the AUT evolves. The proposed
solutions, in this case, are the usage of smart locators and robust web element localization.

Overall, about the link between TA problems and AI-based solutions (RQ1), we can
observe that in our analysis, we captured existing links as perceived by practitioners. In
particular, we observed that some TA problems require solutions that involves several
testing phases and tasks.
RQ2 (Tools vs Solutions). The relations between tools and solutions are depicted in
Figure 4. The figure highlights three commonly used tools—Applitools, Mabl, and
Functionize—each associated with distinct solutions.

Applitools specializes in visual GUI testing (see thicker connection with ORACLE-
visual-testing), which involves automating visual testing and creating visual assertions.
The creators of Applitools claim that their tool is able to replicate the human vision system
to spot functional and visual regressions. Applitools also provides functionality during the
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Fig. 3. Problems vs Solutions in the Closure (top) and Maintenance phases (bottom).

debugging phase, allowing developers to identify code changes that have affected the
visual appearance of the application. This is helpful for regression testing, to verify that
changes to the production code have not caused unintended changes to the GUI. As such,
the figure illustrates three primary links for Applitools: visual testing, usage of an object
recognition system for test creation, and change impact analysis.

Mabl serves as a flexible test automation platform designed for continuous integration
and deployment purposes. Its primary function is to facilitate the creation, execution, and
maintenance of test scripts. Mabl is associated with a vast range of solutions that include
assistance to test generation, automated repair of locators (with a smart element locators
strategy), automated visual testing, and debugging. Although the strengths of Mabl are on
test creation and maintenance, an important aspect is that of visual testing. Indeed, Mabl
is able to identify visual changes in AUT by comparing screenshots from the current test
script run to a visual baseline.

Functionize also turns out to be a fairly complete test platform. Functionize performs
test script creation using natural language processing (NLP) and user behavior specification.
It also offers advanced self-healing maintenance strategies that leverage intelligent element
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Fig. 4. Tools vs Solutions

selection. Additionally, Functionize provides intelligent visual differences recognition,
allowing developers to quickly identify changes to the user interface that may impact the
functionality of the AUT.

In contrast, other tools seem to cater to more specific solutions. For instance, Re-
portPortal focuses on providing intelligent test analytics, while TestSigma is used for
automated test generation with machine translation tools.

Overall, about the link relationship between AI-based solutions and existing tools
(RQ2), we can observe that in our analysis, we identified tools that are more flexible and
seem to support more solutions in contrast to more specialized tools.

4 Discussion

This section discusses the achieved results in terms of observations and evidences, as well
as the open issues and threats to validity affecting our study.

Observations and Evidences. By analyzing the results collected with our retrospective
analysis, we derived the following observations.

O1: We can identify TA problems that could be faced by AI-enhanced existing solutions
implemented in AI-based tools. For instance, a well-known challenge in GUI testing is
the creation of effective oracles [20]. The use of oracles based on visual testing, using
AI and computer vision approaches, is suggested in the grey literature as one of the
possible ways to face this challenge. Furthermore, 11 tools that support oracle visual
testing have been identified, e.g., Applitools, AI testbot, Mabl, Sealights, Testim and
Test.ai. O1 can be of interest, in particular, for practitioners for quickly selecting the
most appropriate solutions for their TA problems and the most adequate tools that
support the solutions to their TA problems.

O2: We can identify TA problems that require solutions involving several phases of TA.
For instance, in the test planning phase, we defined two problems such as (i) planning
what to test and (ii) identifying critical paths in the application under test, among
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the others. We observe that the latter problem can be mainly faced with automatic
test creation solutions, ranging from crawling the application under test, up to the
creation test scripts using user behaviors. The former problem instead can be faced
by solutions involving test scripts creation (e.g., automatic test creations solutions,
test creation by focusing on application areas that are predicted as more buggy), test
selection (e.g., based on fault prediction), test execution (e.g., adoption of intelligent
test re-execution strategies), and, finally, test debugging approaches (e.g., adoption
of test analytics). O2 can be of interest, in particular, for researchers that can better
highlight as some TA problems are addressed from different perspectives, i.e., for
some problems, specific ad-hoc solutions can be adequate while, for other problems,
more complex solutions need to be studied.

O3: We identified solutions presented in the grey literature that are not supported by
existing available tools. However, it is important to keep in mind that the absence
of a tool does not necessarily indicate a lack of existing solutions for a particular
problem. It could simply mean that the specific tooling solutions were not mentioned
in the literature due to the incompleteness of our analysis. For instance, decoupling
the test framework from the host environment is referenced, in the grey literature,
as one possible solution for facilitating cross-platform testing. However, it seems
that this solution is not adequately supported by the existing AI-enhanced tools, that
mainly provide approaches that allow the identification of different environmental
configurations, to face cross-platform testing. Another solution that seems to be
not adequately supported by tools concerns the execution of test cases with mock
responses: no tools support the construction of mock objects that can be used in
TA. Concerning the test selection and optimization, solutions aiming at prioritizing
test cases, removing unnecessary test cases and GUI-based testing seem to be
not adequately supported by existing AI-enhanced tools. O3 can be of interest to
both professionals and researchers with the aim of developing innovative tools and
technologies capable of supporting the identified solutions.

O4: We identified tools that support solutions related to different TA phases while other
tools are specific for a given TA phase. For instance, tools such as Applitools,
EggplantAI, Functionize, Mabl, and Test.ai, are able to support different TA phases,
e.g., test creation, maintenance, execution. Conversely, tools such as Katalon, Retest,
Sapienz, and Testsigma seem to be more specific, thus mainly supporting a given
testing phase, e.g., test creation. O4 can be of interest for practitioners for selecting
the most appropriate tools to use in their business, by taking into account the problems
they have to face and also other aspects such as specificity and flexibility of tools.

Open Issues. Our analysis covers three years of grey literature concerning the usage of
artificial intelligence for test automation. We do not claim that this work captures all
relevant grey literature but we are confident that the included documents cover the most
important tools up to February 2023. On the other hand, the grey literature is the one
that reacts faster to rapidly evolving technological advancements, e.g., the recent release
of large language models (LLMs) to the public. While these tools were only partially
included in our analysis, we expect to see wider adoption of LLMs in the context of test
automation in the future. Further research is necessary to fully understand the complex
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relationships between artificial intelligence and test automation. Nonetheless, our analysis
provides a valuable starting point for understanding the current state of the practice.
Threats to Validity. Threats to the internal validity concern biases and errors during the
selection of documents and classification of the considered items (i.e., problems, solutions,
and AI-based test automation tools). In particular, the classification task is very difficult
in the context of grey literature because the web documents are often informative and
non-technical and the terminology is vague and sometimes ambiguous. We relied on
an existing taxonomy of works and on an existing procedure, thus we also inherit the
threats of the previous work. Our search may have missed relevant documents that are not
captured by the search queries. To minimize classification errors, we followed a systematic
and structured procedure with multiple interactions. Each doubt concerning creating a new
category or classifying an item was discussed among the authors. Concerning the external
validity, we considered only Google/arXiv documents in a specific time frame, and our
findings may not generalize to other documents or other search engines and repositories.
Concerning reproducibility, all our results, in terms of data, plots and references are
available in our replication package [24].

5 Related Work

5.1 Test Automation and AI/ML

In the software testing community, there is an increasing adoption of AI/ML solutions to
automate the different phases of testing and to deal with problematic issues (e.g., test-suite
maintenance and test case prioritization). Test generation is one of the most relevant areas
in which the adoption of AI/ML has been investigated. For instance, Zhang et al. [39] and
Walia et al. [37] propose the adoption of Computer vision approaches to automate the GUI
test generation, with the goal of reducing the required human effort. Qian et al. [23] adopt
an evolved OCR-based technique for localizing GUI elements for test generation. Test
maintenance is another well-known testing phase that traditionally requires a huge human
effort (e.g., for page object generation [29,31,30]) and so in which AI/ML techniques can
be beneficial. In fact, computer vision approaches [1] have been also widely used for
web test migration [15,14,28] and test repair [33]. Neural embedding of web pages are
used to automated the web page similarity for automated model inference [32]. Code-less
functional test automation is investigated by Vos et al. [36] and by Phuc Nguyen et
al. [22] for test maintenance. The latter study combines Selenium and a ML technique
for reducing the time spent by testers changing and modifying the test code. Among
other testing issues, Camara et al. [2] propose an ML-based approach for using test code
smells as predictors of flaky tests. Mahajan et al. [18] use a computer vision approach for
the detection of cross-browser incompatibilities. Feng et al. [4] adopt a computer vision
approach for prioritizing test cases for mobile applications. Yadav et al. [38] use ML
to check the new code and identify areas of the code in which the test coverage can be
increased. Differently from these works, we do not aim at investigating a specific AI/ML
technique for TA but rather we aim at going in-depth in the grey literature about TA and
AI/ML techniques by realizing a retrospective analysis for capturing the state-of-the-art in
terms of TA problems, proposed solutions, and existing tools.
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5.2 Secondary Studies

In the literature there are several reviews and surveys in the context of TA via AI/ML. For
instance, Trudova et al. [35] report on a systematic literature review (SLR) conducted to
study the role of AI/ML in TA. The result of the review confirms that most of the literature
studies investigate the use of ML and computer vision techniques for reducing manual
intervention in software testing and improving both the effectiveness and reusability
of test suites. Lima et al. [16] report on a SLR in which they show that fuzzing and
regression testing are the most studied types of testing that adopt ML techniques such as,
in particular, neural networks. Leger et al. [12] report on a literature review about the
adoption of AI in software testing, especially, by focusing on challenges’ identification.
They show that the most relevant ones are, e.g., the domain knowledge gap problem, the
training data availability, the oracle problem, the computational, cost size and quality of
the dataset, test case design, and test result interpretation.

More related to the work presented in this paper are the following two papers. Jha et
al. [10] present a preliminary SLR about E2E test automation tools by focusing on testing
phases where AI techniques can be adopted: test script generation, test data generation,
test execution, test maintenance, and root cause analysis. They also briefly present existing
AI-enhanced tools such as Katalon Studio, Applitools, Testim, TestCraft, Parasoft SOAtest,
Mabl, AccelQ, and Functionize.

We believe that our work could help practitioners better comprehend the state-of-the-
art of AI/ML for test automation, for instance, select the most appropriate tools for their
testing purposes of problems. However, our work could help researchers in capturing
issues that could require more investigation and new research directions.

6 Conclusions and Future Work

This paper focuses on the analysis of the grey literature about how practitioners perceive
the adoption of AI to improve TA. We presented the results of a retrospective analysis
conducted by starting from the data collected by Ricca et al. [25] which was extended
with additional sources and analyses.

Our investigation include several interesting results, for instance, about the identi-
fication of: (i) TA problems faced by existing AI-enhanced solutions implemented in
provided tools; (ii) TA problems that requires solutions involving several TA phases (e.g.,
test creation, execution and maintenance); (iii) solutions investigated but not supported by
existing available tools; and, finally, (iv) tools supporting multiple TA phases.

Future research directions consist in conducting a multi-vocal literature review [6] by
integrating the findings gathered from the grey literature with those of the white literature.
It would be also interesting to conduct controlled experiments with existing AI-enhanced
tools, to quantify the benefits they provide and to validate the observed connections with
the TA problems and the investigated solutions.
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