
Noname manuscript No.
(will be inserted by the editor)

Model vs System Level Testing of Autonomous
Driving Systems: A Replication and Extension Study

Andrea Stocco · Brian Pulfer · Paolo
Tonella

Received: date / Accepted: date

Abstract Offline model-level testing of autonomous driving software is much
cheaper, faster, and diversified than in-field, online system-level testing. Hence, re-
searchers have compared empirically model-level vs system-level testing using driv-
ing simulators. They reported the general usefulness of simulators at reproducing
the same conditions experienced in-field, but also some inadequacy of model-level
testing at exposing failures that are observable only in online mode.

In this work, we replicate the reference study on model vs system-level test-
ing of autonomous vehicles while acknowledging several assumptions that we had
reconsidered. These assumptions are related to several threats to validity affect-
ing the original study that motivated additional analysis and the development
of techniques to mitigate them. Moreover, we also extend the replicated study
by evaluating the original findings when considering a physical, radio-controlled
autonomous vehicle.

Our results show that simulator-based testing of autonomous driving systems
yields predictions that are close to the ones of real-world datasets when using
neural-based translation to mitigate the reality gap induced by the simulation
platform. On the other hand, model-level testing failures are in line with those
experienced at the system level, both in simulated and physical environments,
when considering the pre-failure site, similar-looking images, and accurate labels.

Keywords: Autonomous Driving, Model Testing, System Testing, DNN Testing,
Deep Neural Networks

A. Stocco and P. Tonella
Università della Svizzera italiana (USI), Via Buffi, 13 – Lugano, Switzerland
tel +41 58 666 40 00, fax +41 58 666 46 47
E-mail: {andrea.stocco,paolo.tonella}@usi.ch
B. Pulfer
Université de Genève, 24 rue du Général-Dufour – 1211 Genève 4
tel +41 (0)22 379 71 11 fax +41 (0)22 379 11 34
E-mail: brian.pulfer@unige.ch

2 Stocco A., Pulfer B. and Tonella P.

1 Introduction

Self-driving cars (SDCs) are autonomous cyber-physical systems capable of sens-
ing the environment and moving safely within well-established and pre-defined
scenarios. SDCs deployed on public roads embed a large amount of software (es-
timated as +100 million lines of code [2]), among which advanced Deep Neural
Networks (DNNs) used as perception units to process digital images representing
driving scenes and predict the driving control parameters of the vehicle [13,43,59,
72]. This complexity makes half of the entire development budget attributed only
to testing [27]. Due to the virtually unlimited number of driving scenarios that
DNN-based SDCs should support, this cost is expected to grow when testing new
vehicle models and versions.

In the literature, two main approaches are used to test DNNs that perform
driving tasks. The first approach is model-level testing — also referred to as of-
fline testing, whereas the second approach is called system-level testing, or online
testing [18,24]. In model-level testing, the DNN is used as an independent unit of
computation, and it is fed with a set of labeled driving images retrieved from the
real-world, or artificially generated, e.g., by a driving simulator. The DNN predicts
values that are compared to the ground truth labels, which serve as an oracle. The
difference between the prediction and the ground truth label is called error, and
a test is considered failed (model-level failure) when such an error is higher than
some predefined threshold.

Differently, in system-level testing, the DNN is embedded within the opera-
tional ecosystem in which it is designed to operate, such as a physical vehicle or a
driving simulator. While the DNN still processes a stream of (unlabeled) driving
images captured by the onboard camera, its predictions have an immediate effect
on the overall system behavior, as each prediction and driving decision influence
future driving decisions. Thus, the individual DNN’s prediction errors become not
only less meaningful but also uncomputable, because it is not possible to associate
a ground truth label to incoming data. As such, failing tests are characterized in
terms of the misbehavior of the whole system in response to the DNN’s predic-
tions. A system-level failure is experienced when the system no longer fulfills its
safety requirements, such as excessive departure from the driving lane.

While both testing approaches are adopted for ensuring the reliability of DNN-
based SDCs, traditionally model-level testing has been more prevalent because of
the availability of open-source driving datasets that can be readily used, such
as Udacity’s [60] or Waymo’s [66]. Moreover, it does not necessitate the effort
of embedding the DNN within a driving simulator (or a real vehicle), a time-
consuming and daunting process.

Researchers have compared the two testing levels and highlighted their differ-
ences [18,24,25]. In particular, the paper by Ul Haq et al. [24] compares mod-
el/system failures within the PreScan simulator. In their work, the authors first
assess that virtual tests can be considered an adequate proxy for on-road testing,
as their reproduction of the real-life driving conditions of the Udacity dataset [60]
within PreScan yields similar external behavior of the DNNs (i.e., steering an-
gle prediction errors) as the real-world. Second, they evaluate two deep neural
networks vs an autopilot with global knowledge at driving different scenarios to
assess the level of agreement between model and system-level failures. Their re-
sults show high disagreement between the failures detected by the two testing

Model vs System Testing of Autonomous Driving Systems: An Extension Study 3

levels. More specifically, the paper reports a large number of false negatives, i.e.,
failing system-level scenarios in which the individual model-level prediction errors
were found to be acceptable. The authors explain that these failures are caused
by an accumulation of errors during online driving that is not observable during
model-level testing.

We identified three main threats to validity in the work by Ul Haq et al. [24].
First, when comparing real-world and simulated behaviors, driving scenarios are
matched by the similarity of the predicted steering angles, not by comparing the
images used by the DNNs to make their predictions. Second, when comparing
model and system failures, the matched driving scenarios are likely to contain re-
markably different input images because the different technologies involved, i.e.,
DNN vs autopilot with global knowledge, may have different driving behaviours
and hence may follow different trajectories. As a consequence, the ground truth
provided by the autopilot is a quite imprecise proxy for the real ground truth that
the DNN should target. Third, when comparing model and system failures, error
metrics are averaged on the entire scenario (deep neural network’s and autopi-
lot’s), instead of considering the behavior of the DNN/autopilot in the immediate
proximity of the system failure, when model-level errors are more likely to occur.

In this paper, we replicate the study by Ul Haq et al. [24], improving the experi-
mental setting of the original paper to address the identified threats to the validity.
More in detail: (1) to improve the association between simulated and real-world
images, on which to compare the DNN behavior, we take advantage of neural trans-
lation techniques. (2) To mitigate the false negatives possibly due to error metric
averaging over the entire test scenario, we focus the comparison only on a sequence
of online images that precede the failure (pre-failure window). (3) To retrieve accu-
rate labels, we perform visual similarity matching between corresponding pairs of
online/offline images. Moreover, our work doubles the comparison between model-
and system-level failures as we consider both a DNN operating in a simulator and
a DNN driving a radio-controlled (RC) physical self-driving car. Our extension to
the physical dimension is a novel contribution to the literature.

We reproduced the same results and obtained similar conclusions as the repli-
cated paper [24] on the usefulness of the simulator to produce comparable offline
prediction errors as in the real world. Thanks to our improvements in the matching
of images between simulated and real-world, we obtained error distributions that
are, in many cases, statistically indistinguishable. In the original study, the com-
pared distributions were significantly different, with a large effect size, despite the
small prediction error differences. Hence, our study provides stronger statistical
support to the findings of the original paper.

Our experimental results also show that violations of the offline oracle (i.e.,
the occurrence of a high model-level prediction error) have a small number of
system-level false positives (i.e., non-corresponding system-level failures) and a
small number of false negatives (i.e., system-level failures missed by the model
level oracle), suggesting a high agreement between model vs system-level testing.
These findings are in contrast with one of the findings of the replicated paper by Ul
Haq et al. [24]: “Offline testing is more optimistic than online testing because the
accumulation of errors is not observed in offline testing.” In fact, by considering
the pre-failure window and by accurately matching pairs of images using visual
similarity, we were able to observe an accumulation of offline errors in most image
sequences leading to an online failure.

4 Stocco A., Pulfer B. and Tonella P.

The paper is structured as follows. Section 2 reports background information.
Section 3 describes the replicated study and the threats to validity. Section 4
illustrates the empirical study in which we report our mitigation strategies to the
threats to validity affecting the original paper, our extension to a physical SDC,
and detailed statistical analysis. In Section 5 we provide a qualitative analysis
of our results. Section 6 gives an overview of the related work, while Section 7
concludes the paper.

2 Preliminaries

2.1 Autonomous Driving Software

Most existing SDCs are vehicles equipped with specific sensors (such as cameras,
LIDAR and GPS) used to perform different prediction and control tasks, such as
lane-keeping, object avoidance, and path planning, to name a few. SDCs use the
information collected by the sensors during a supervised data collection process
to train DNNs at predicting control values that are sent to the car’s actuators to
perform the actual maneuvers (e.g., steering).

In this work, we study SDC models that perform imitation learning for lane-
keeping, i.e., a supervised learning task in which the DNN learns how to keep the
position of the vehicle in lane, by predicting the steering angle control from a
dataset of driving scenes labeled during a driving session with a human driver.

Our focus is the comparison between model (offline) and system (online) testing
on a closed-loop track, a widely adopted industrial practice that precedes on-road
testing on public roads [30,58,11,16,65,67].

2.2 Model-level Testing

After the training process, DNN models are tested by measuring evaluation metrics
on test datasets [45] such as accuracy or mean squared error (see Fig. 1).

3. MODEL-LEVEL TESTING1. DATA COLLECTION 2. TRAINING

DNN

predicttrain

Labelled DatasetSynthetic /

real-world images Training Set Testing Set

split

split
accuracy/

MSE

Fig. 1: Model-level testing of autonomous vehicles.

We refer to this modality of testing as model-level testing [45], because the
model is tested as a standalone component, evaluating only the predictions the
DNN makes on individual images. This level of testing is comparable to unit
testing for traditional software and can be useful to reveal faults in the training
process (e.g., suboptimal learning rate), or in the quality of the data used for
training (e.g., training data imbalance) [28].

Model vs System Testing of Autonomous Driving Systems: An Extension Study 5

For lane-keeping DNNs, error metrics measure the difference between the DNN’s
predictions and the ground truth values, e.g., by computing the mean squared er-
ror or the mean absolute error. Let us take a driving sequence d composed of n
images. The mean absolute error (MAE) is given by:

MAE(d) =
1

n

n∑
i=1

|yi − f(xi)|

where xi denotes the ith image in the driving sequence d, f(xi) the output of the
DNN, and yi the ground truth value. A failure of the DNN, in model-level (offline)
testing, is defined by a MAE above a certain threshold ϵ.

Failure(d) =

{
True, if MAE(d) ≥ ϵ

False, otherwise

Thresholds confine the maximum tolerable prediction error within validity
ranges that are defined based on the domain knowledge of test engineers for the
possible classes of images (i.e., straight roads, bends, weather conditions).

The main advantages of model-level testing rely upon its simplicity and low
requirements needed to execute it. The disadvantages consist in being stateless,
which makes it ineffective at revealing faults occurring when the DNN is deployed
in production. Indeed, when the DNN model is tested within a vehicle, the whole
system can compensate for some high DNN inaccuracies or, on the contrary, it
might be affected by the accumulation of small DNN inaccuracies over time.

2.3 System-level Testing

To overcome the limitations of model-level testing, system-level testing requires
embedding the DNN within a SDC to test the whole decision-making process.
System-level testing is stateful as it allows to observe the effects that the predic-
tions made by the DNN have on the behavior of the entire system (Fig. 2).

1. DATA COLLECTION 2. TRAINING

Labelled DatasetSynthetic /

real-world images

3. SYSTEM-LEVEL TESTING

Driving Images

capture

DNN Driving ControlsVehicle

predict

DNN

embedtrain Pass/Fail

Fig. 2: System-level testing of autonomous vehicles.

With system-level testing, it is possible to gather concrete values of system
quality metrics [31], such as the speed or the position of the vehicle. Thus, a
system-level failure (or online failure) is characterized as one of the system quality
metrics being higher than a threshold determined by the environment (e.g., the
road width), by the regulations in which the system operates (e.g., the speed limit),
or by safety requirements (e.g., the vehicle drives off-road or causes harm to other
vehicles, to the environment, or people).

6 Stocco A., Pulfer B. and Tonella P.

Fig. 3: Example of simulator-generated driving image from PreScan corresponding
to a real-world image [24]

.

The main advantages of system-level testing consist in the exposure of actual
requirement violations, as failures are associated with the external behaviour of
the software in response to the DNN predictions. Extensive system-level testing is
pivotal when the final goal is the deployment of the SDC on public roads, which
is subject to strict regulations [30,58]. However, the main disadvantage of system-
level testing consists in its high execution cost, as it necessitates embedding the
DNN within a driving simulator or a real vehicle, in addition to the time required
to run extensive test-driving sessions (both virtual or in the field).

3 Replicated Study

This paper is a replication and extension of the work by Ul Haq et al. [24] presented
at the International Conference on Software Testing, Validation and Verification
(ICST) in 2020. An extended version of the paper has been published in the Em-
pirical Software Engineering journal [25]. In this paper, we consider the conference
version of the work.

The work by Ul Haq et al. [24] (replicated paper, hereafter) aims to test a lane-
keeping DNN trained with real-world data of the Udacity dataset [60], both at
model and system level. The authors consider simulation-based testing within the
driving simulator PreScan. The capability of PreScan to reproduce the real-world
conditions of the Udacity dataset [60] is assessed in the first research question:

RQ0: Can we use simulator-generated data as a reliable alternative source to real-
world data?

The authors performed a visual assessment of the Udacity dataset [60] to infer
the road characteristics and environmental conditions. Then, they instrumented
PreScan to generate driving scenarios that are in line with the retrieved char-
acteristics. Finally, they selected sequences of simulator-generated scenarios that
are similar to the real-world data. In their work, the similarity was measured by
means of heuristics that consider only the DNN’s prediction, i.e., the steering angle
predicted by the DNN either on simulated or on real images. A pair of real and
simulated scenarios is considered matched if the scenarios have the same length
and the average difference between pairs of predicted steering angles is lower than
a threshold ϵ (set to 2.5◦). The authors report that the large majority of computer-
generated “scenarios (92/100) could match subsequences of the Udacity real-life
test dataset”.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 7

Fig. 3 shows an example of image match used in the original paper, from which
it is evident that visual similarity of the matched images is low (e.g., shadow or
cloudy sky are not represented in the real-world image). Despite the generally
low resemblance of simulator-generated sequences, empirical results show that
the DNN’s “prediction error differences between simulator-generated datasets and
real-life datasets are less than 0.1, on average”. Thus, the authors “conclude that
we can use simulator generated datasets as a reliable alternative to real-world
datasets for testing DNNs”.
Threat RQ0-T1: poor visual similarity between real and simulated road
images. The authors recognize the poor visual similarity between real-world and
simulator-generated data in the threats to validity. One goal of our replication is
to address the main threat to validity affecting the original authors’ findings for
RQ0: the poor visual similarity between real and simulated road images. Indeed,
when poor visual similarity affects the comparison, the compared DNNs will learn
features that are quite different between real-world and simulated images as DNNs
used for driving make use of convolutional layers as feature extractors. For instance,
considering Fig. 3, a DNN will extract geometrical features both from the double
solid yellow lines on the left as well as the single solid white line on the right for the
real-world image. The simulated image does not represent lane conditions, as the
right lane is occluded by a shadow, not present in the real-world, and the left lane
is a single broken white line. In our paper, we address such a threat by adopting
an automated approach based on neural image translation (see Section 4.4.4).

The second and main research question of the replicated paper focuses on the
comparison between model- and system-level testing on the simulation platform:
RQ1: How do offline and online testing results differ and complement each other?

The authors extended the set of conditions that can be generated by PreScan,
including weather effects to create unseen scenarios that could expose failures
of the DNNs under test at the system level. Then, they generated 50 random
scenarios and used the autopilot module of PreScan to generate a ground truth
driving trajectory (i.e., sequence of steering angles). We contacted the first author
and asked for clarifications about the computation of the ground truth steering
angles; the response was quick and detailed.

They executed two pre-trained DNNs models from the literature, Autumn [13]
and Chauffeur [57], on the same 50 random scenarios, to collect predicted steering
angles, as well as the Maximum Distance from the Center of Lane (MDCL). For
a large set of the generated scenarios (87%), system-level failures occur based
on the observed MDCL, which was above a threshold of 0.7 (corresponding to
approximately 1.5 meter). Then, for each generated scenario (both failing and
non-failing), they computed MAE, as the mean difference between the sequence
of predicted steering angles and the sequence of ground truth steering angles from
the autopilot’s driving trajectory. A MAE above 0.1 (2.5◦) was regarded as a
model-level failure. Scenarios in which the MAE/MDCL are both above or both
below their respective thresholds are said to be in agreement, otherwise, they are
regarded as being in disagreement. The authors found large disagreement in the
case of system-level failures, in contrast to the high agreement for the non-failing
conditions, or for model-level failures.

We have identified two main threats to the validity of the original experimental
design that we wish to address in this work. We use a graphical support to illustrate
our hypothesis. Fig. 4 (left) shows a typical generated test scenario with a road

8 Stocco A., Pulfer B. and Tonella P.

Pre-failure
sub-scenario

DNN-based SDC

Autopilot with
global knowledge

Nominal
sub-scenario

Failure

Generated
Test Scenario

Fig. 4: Scenario-level matching may cause different sets of images to be compared
as it typically combines both nominal and failing sub-scenarios.

characterized by an initial road segment, a curve on the right followed by a curve
on the left. Fig. 4 (right) shows the trajectories taken by the autopilot with global
knowledge, which is used as a reference for the ground truth steering angles, and
by the DNN-based SDC under test.

Threat RQ1-T1: different driving conditions experienced by autopilot vs
DNN. Although the driving scenario, among the 50 that have been generated, is
kept the same when autopilot or DNN are driving, the sequence of images captured
and processed by the autopilot is likely to be quite different from the sequence of
images captured and processed by the DNN. Indeed, from the replicated paper, it is
reported that, for 87% of the cases, the outcome of the simulation diverges between
the autopilot and the DNN, as the autopilot is expected to exhibit no failures,
thanks to its access to global knowledge. Hence, the labels by the autopilot are not
reliable because they have been obtained on a set of images that are different from
the ones experienced by the DNN, especially during near-failing sub-sequences of
the test scenarios (see Fig. 4 right). Thus, for the computation of the MAE, more
reliable labels should be used for assessing offline DNN failures.

In our work, we address RQ1-T1 as follows: we perform a search using a state-
of-the-art visual matching algorithm, Structural Similarity Index (SSIM) [64], to
match each individual driving frame observed by the DNN within the pre-failure
sequence with the closest labeled driving frame available in the training set. We
use the label of such a matching frame from the training set as the ground truth
steering angle for the calculation of the MAE.

Threat RQ1-T2: MAE computed on entire driving scenario. In the re-
sults tables of the original paper [24], the case “MAE < 0.1 and MDCL ≥ 0.7”
is the second most prevalent, while it becomes the most prevalent in the jour-
nal extension of the replicated paper [25]. This can be interpreted as most DNN
predictions being correct even when the vehicle is departing from the road. The
authors motivate this as “Offline testing is more optimistic than online testing be-
cause the accumulation of errors (eventually causing a critical lane departure) is
not observed in offline testing.” [24]. While the motivation provided by the authors
is intuitive, we hypothesize another explanation for these results.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 9

Since it is not possible to retrieve the ground truth for each individual image
observed and processed by the DNN, because the autopilot might have never seen
exactly the same image, the authors rely on a coarse-grained matching, performed
by considering the entire sequence of steering angles in the same scenario driven
by both autopilot and DNN (threat RQ1-T1). Correspondingly, MAE values are
computed as the average over all the images observed in an entire driving scenario
and a model-level failure occurs only when such average is above the threshold
0.1. This has the disadvantage to include in the comparison also many images in
which the car is not yet deviating from the lane, along with the corresponding
(presumably) correct steering angles. While in this case the frames in which the
DNN-based vehicle is not yet deviating are likely to be more similar to the reference
autopilot’s frames, both nominal driving and pre-failure driving sub-scenarios are
considered within the same sequence-level comparison (see Fig. 4). If the nominal
sub-scenario dominates the pre-failure sub-scenario, the MAE would result below
the threshold even for failing scenarios.

To address RQ1-T2, we adopt the following mitigations: we restrict the compu-
tation of MAE to a pre-failure sub-scenario, which occurs before off-road driving.
While a precise identification of the pre-failure window may be challenging in
most real-world settings, our experimental framework allows us to have full con-
trol. Specifically, our driving simulator logs each frame with the position of the
car on the track. Concerning real-world data, the position of the car is estimated
by a DNN trained for that purpose [51]. Thus, we can identify precisely the first
driving frame in which the car departs from the drivable road section. Based on
this precise definition of system-level failure, we isolate a pre-failure window of
driving frames, as well as the associated predictions, that precede each system-
level failure. Then, we utilize only the pre-failure window when performing the
comparison between model vs system-level testing oracle violations.

4 Empirical Study

In our empirical study, we compare model- and system-level testing of both phys-
ical and virtual SDCs. The goal of the study is to assess whether the results from
the replicated study [24] hold when improving the experimental setting and when
considering the physical platform Donkey Car [21] in addition to its digital twin.

4.1 Research Questions

We consider the same research questions of the replicated study [24], which have
been briefly presented in Section 3:
RQ0: Can we use simulator-generated data as a reliable alternative source to real-
world data?

In the replicated study, the authors rely on a stationary dataset of real-world
images, for which driving quality metrics (i.e, MDCL) are not available. Moreover,
the authors could not reproduce the same driving conditions on a real-world ve-
hicle, because they relied on Udacity’s pre-collected images. For this reason, they
first investigate whether they could rely on the virtual images from a simulator to
test a DNN trained with real-world data.

10 Stocco A., Pulfer B. and Tonella P.

Differently, in our work, we consider on-road system-level testing with a phys-
ical vehicle (hardware-in-the-loop), instead of relying on the stationary dataset
of images provided by Udacity [60]. This obviates the need of demonstrating the
representativeness of simulator-generated data as we can directly measure, or es-
timate, the in-field quality metrics for system-level testing. Nevertheless, we study
RQ0 by addressing RQ0-T1 through unsupervised image neural translation tech-
niques for the reconstruction of real-world scenes within a simulator.
RQ1: How do offline and online testing results differ and complement each other?

RQ1 is the main research question of the paper. We take advantage of the
Donkey Car framework to compare the failure profiles observed in the virtual vs
the physical world, both at the model- and system-level, by addressing RQ1-T1
and RQ1-T2 through pre-failure window selection and visual similarity matching.

4.2 Self-Driving Car Models

We test the same two DNN-based SDCs of the replicated study [24]: Autumn [56]
and Chauffeur [57]. These publicly available SDC models scored high rankings in
the Udacity challenge and they have been used as experimental subjects in several
testing works [31,43,52,53,54,59,72]. Autumn consists of three convolutional lay-
ers, followed by five fully-connected layers [56]. Chauffeur uses six convolutional
layers to extract the features of input images, two-dimensional dropout layers, and
a fully connected layer [57].

4.3 The Platform

While full-scale testing of SDC is still impractical for most academic settings as
it presents severe time, space, and cost constraints [14,62], small-scale vehicles
represent an interesting alternative. Frameworks such as Donkey Car [21] or AWS
DeepRacer [6] are derived from remote-controlled (RC) cars and provide an elec-
trical engine and a battery as a main power unit. Although these are small-scale
vehicles, they reach considerably high speeds and accelerations for their size [10].
RC cars are adopted at the early stages of testing autonomous driving algorithms
as they retain relevant photorealistic conditions of the driving environments which
are experienced also by full-scale cars [62]. These platforms are increasingly used
by researchers who want to experiment their solutions on real vehicles for the pur-
pose of testing newly developed autonomous driving software [7,10,32,39,47,63,
73,75].

In our study, we adopt the Donkey Car™ open-source framework [21]. Donkey
Car includes an HSP 94186 Brushed RC car with self-driving capabilities, a Python
framework supporting training and testing of SDCs that perform lane-keeping, and
a simulator developed with Unity [61], a popular cross-platform game engine, in
which the real-world DonkeyCar’s actuators are modeled with high fidelity. Donkey
Car is one of the reference platforms for studies comparing the autonomous driving
testing of small-scale SDCs [63], because of its open-source nature. In our study,
we leverage the Donkey Car framework to perform model-level vs system-level
testing of SDCs, both in the virtual and in the real world, with the latter being a
totally novel contribution of this study.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 11

4.3.1 Testing Tracks

Our testing track is an 11m long track, printed on a mat of size 3.0m × 4.54m. The
road section is 52 cm wide. Clockwise, the track features three curves on the right
and one on the left. The Donkey Car simulator features a scene that resembles our
real-world track in terms of the road’s shape, colors, and proportions [51].

In our setting, the car follows the middle line on a two-lane road (as if it were
a single-lane, one-way road) and moves only forward. We use the lateral position,
or cross-track error (XTE), to assess the lane-keeping capability of SDC models.
XTE measures the distance from the center of the car to the center of the road [52].
The MDCL metric used in the replicated paper measures the distance of the center
of the car from the center of the lane of a two-lane, two-way road (instead of the
center of the road). Hence, we consider a thresholded XTE (i.e., a Maximum XTE)
as comparable to MDCL.

4.4 RQ0: Procedure and Results

4.4.1 SDCs Data Collection

For each testing environment (virtual and physical world), we collect two training
sets by manually driving on both the virtual and physical tracks, incentivizing the
vehicle to stay close to the centerline of the track. We followed the guidelines by
Kramer et al. [55] for generating driving sequences for the DNN. In particular,
we followed the suggestion to generate both nominal and near-failing driving se-
quences [13,55]. Nominal driving sequences are those that incentivize the vehicle
to stay on track. Near-failing driving sequences are used to teach the DNN how to
recover the vehicle back to track. Both driving styles are needed for the training
of a robust lane-keeping DNN [13,55], in order to make the DNN able to cope
with different driving conditions possibly occurring in the same track sector. We
kept a constant throttle value of 0.3, resulting in a maximum driving speed of 3.1
mph (5 km/h, or 1.40 m/s) during data collection. Images are acquired from the
front-facing camera at 21 frames per second (FPS), labeled with the ground truth
steering angle of the human driver.

Fig. 5 shows the distributions of steering angles of our training sets for both
testing environments. Average steering angles are 0.314±0.461 for simulated and
0.316±0.431 for real-world training sets, respectively.

Fig. 5: Steering angles distributions for the virtual (left) and real-world (right).

12 Stocco A., Pulfer B. and Tonella P.

4.4.2 SDCs Model Setup & Training

For each DNN (Autumn, Chauffeur), we trained an individual SDC model on
each training set (virtual and real-world), for a total of four models. Following the
guidelines by Bojarski et al. [13] for the hyper-parameters, the number of epochs
was set to 500, with a batch size of 64 and a learning rate of 0.0001. We used early
stopping with a patience value of 30 and a minimum loss change of 0.0005 on the
validation set. The DNNs use the Adam optimizer to minimize the MSE between
the predicted steering angles and the ground truth values. As common practices
require, we cropped the images to 140× 320 by removing 100 pixels from the top,
which allows the DNN to focus on the part of the image relevant for lane-keeping.
We used data augmentation (e.g., translation, brightness) to increase the diversity
in the training data.

4.4.3 SDCs Sanity Check

After training, we assessed that the four trained models are robust enough to be
considered in the subsequent testing phase. We let them drive in their correspond-
ing testing tracks multiple times and observed that they can drive without crashing
or going off-road. For the physical vehicle, we also controlled the discharge of the
Donkey Car’s battery and we recharged the battery if the voltage was found to
jeopardize the overall quality of driving.

4.4.4 Mitigating RQ0-T1 with CycleGAN

The distribution of real-world images can be different from the distribution of
simulator-generated images [4] (threat RQ0-T1), undermining the validity of our
study. To mitigateRQ0-T1, we use a generative adversarial network (GAN) called
CycleGAN [76] to generate real-world driving images from the corresponding simu-
lated ones. CycleGAN is a cycle-consistent adversarial generative network that per-
forms an unsupervised and unpaired image-to-image translation. The two datasets
of images do not need to be paired, yet they should represent analogous driving
data images (respectively, images from the simulated track and images from the
real-world track). Starting from two sets of images with analogous latent features,
CycleGAN learns two image-to-image encoder-decoder functions that share the la-
tent space, so that, given an image from one domain (e.g., a virtual driving scene),
it is possible to generate not only a similar image in the same domain but also the
corresponding image in the other domain (e.g., a real-world driving scene). Fig. 6
shows an example of neural translation in which we use a CycleGAN model to
convert a real-world image (left) into a virtual image (right).

Fig. 6: Neural-generated driving image corresponding to a real-world image.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 13

4.4.5 Comparing real-world vs virtual driving

From the replication package provided by the authors [24], we were able to obtain
the predictions, ground truth, and MAE values of 31/92 sequences. Correspond-
ingly, we collected 31 real-world scenarios by manual driving: these scenarios are
labeled with humanly produced ground truth steering angle values, for a total of
7,906 real-world images. We used CycleGAN to translate them into 31 correspond-
ing virtual scenarios. Usage of CycleGAN ensures a high visual similarity between
the real-world image and its translation into a simulated image, which was not the
case of the replicated study (Fig. 3).

We executed our SDC models in offline mode, and we compared the obtained
steering angle predictions with the ground truth steering angles to obtain per-
frame absolute errors. We performed a statistical comparison between the predic-
tion error distribution obtained for real-world scenarios and the prediction error
distribution for the simulated scenarios. We assess the statistical significance of
the differences between real-world and simulator errors using the non-parametric
Mann-Whitney U test [68] (with α = 0.05), the magnitude of the differences using
the Cohen’s d effect size [19], and the statistical power with a Monte Carlo power
analysis [15] with 80% power target as our data is not normally distributed.

4.4.6 RQ0: Results

Table 1 reports the results about the prediction error differences between simulator-
generated data and real-world data. For each SDC model, we report the input
type used during training (Train) and testing (Test), the average MAE difference
between real-world and reconstructed virtual scenarios, and the percentage of sim-
ulations for which the MAE difference was below the threshold ϵ = 0.1 (2.5◦) used
in the replicated study.

The first observation is that all models attain an average MAE difference < 0.1,
which is consistent with the results reported in the replicated study [24]. This
happens in our improved experimental setting, which mitigates RQ0-T1 with
neural translation, as well as in our replication of the imprecise image matching
described in the replicated study [24] (last two rows of Table 1). As expected,
the MAE difference is higher when offline testing a DNN-based SDC trained on
real-world data onto the simulation platform.

Table 1: RQ0: Prediction error differences between simulator and real-world data.

Input type Avg MAE Simulations < ϵ

Train Test Diff %

Our Study
Autumn Virtual Virtual 0.01 68
Chauffeur Virtual Virtual 0.02 100
Autumn Real-world Virtual 0.06 39
Chauffeur Real-world Virtual 0.02 90

Replication of [24]
Autumn Real-world Virtual 0.08 74
Chauffeur Real-world Virtual 0.06 84

14 Stocco A., Pulfer B. and Tonella P.

Table 2: RQ0: Statistical analysis of the prediction errors between real-world driv-
ing sequences and their virtual reconstruction.

n
e
g
li
g
ib

le

s
m

a
ll

m
e
d
iu

m

la
r
g
e

p < .05 p ≥ .05 p < .05 p ≥ .05 p < .05 p ≥ .05 p < .05 p ≥ .05

pow pow pow pow

< .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8

Our Study
Autumn 1 16 5 3 0 5 1 0 0 0 0 0
Chauffeur 10 10 7 0 0 4 0 0 0 0 0 0
Autumn 1 4 7 13 0 6 0 0 0 0 0 0
Chauffeur 5 24 0 2 0 0 0 0 0 0 0 0

Replication of [24]
Autumn 0 1 0 0 0 0 0 0 0 30 0 0
Chauffeur 3 3 2 5 0 2 3 0 0 13 0 0

Concerning the statistical analysis of prediction error distributions (not done
in the original paper [24]), Table 2 classifies the simulations of Table 1 according
to whether the distribution of prediction errors was different with statistical sig-
nificance (p-value < 0.05) and those for which it was the same for real-world and
for translated simulator images (i.e., p-value ≥ 0.05, divided by low/high statisti-
cal power). Results are further divided by effect size (negligible, small, medium,
large). We can notice from Table 2 that in our replication of the original study,
the majority of the simulations have prediction errors distributed quite differently
from those obtained from real-world, Udacity images, with statistically signifi-
cant differences and large effect size. Only 3% for Autumn and 23% simulations
for Chauffeur have a negligible/small effect size, and only 13% are supported by
power analysis. Actually, for Autumn, 30/31 simulations (97%) and 24/31 (84%)
simulations in the case of Chauffeur have a large effect size.

In our improved experimental setting, which takes advantage of neural trans-
lation, prediction errors tend to be closer between simulated and real images, in
most cases. When DNN models are trained on simulated images, the two predic-
tion error distributions (obtained on simulated vs real images) exhibit negligible
differences in 84% (Autumn) and 68% (Chauffeur) of the cases. When DNN mod-
els are trained on real-world images, prediction errors have negligible differences
in 55% (Autumn) and 77% (Chauffeur) of the cases (with a negligible effect size,
power analysis requires a huge number of samples to reach the threshold of 0.8).

RQ0: The prediction error differences between simulator-generated and
real-life datasets are less than 0.1, on average, for both Autumn and Chauf-
feur, confirming previous results. Statistical analysis of the prediction error
distributions revealed statistically significant differences with large effect
size in the original experimental setting. In our experimental setting, with
improved image matching due to neural translation, statistical analysis
reports negligible differences between the error distributions, providing a
stronger statistical support to the original findings on the usefulness of the
simulator to trigger similar DNN behaviors as in the real world.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 15

4.5 RQ1: Procedure and Results

In RQ1 we perform a comparison between model and system-level testing, for the
virtual and real-world SDC separately.

4.5.1 Generating Test Scenarios

As our SDC models are constructed to be failure-free in nominal conditions, sim-
ilarly to the replicated study, we test them by injecting unknown conditions (i.e.,
conditions different from those in the training set) onto the existing tracks in
real-time during driving.

We use the black-box image corruptions proposed by Hendrycks et al. [26],
commonly used to test DNNs that process imagery data. The paper proposes 18
corruptions belonging to five classes, namely noise, blur, weather, luminance, and
resolution reduction.

We test each SDC using 36 scenarios, of which 18 failure-inducing scenarios
and 18 failure-free scenarios. The former were obtained from 72 one-lap simula-
tions (for a total of 4,665 images) by enabling the corruptions for each model
Autumn (sim and real) and Chauffeur (sim and real) in their respective environ-
ments (virtual and real). All such simulations (4,665 images overall) experienced
a system-level failure (Section 2.3) due to image corruption. These failing simu-
lations are used to assess the true alarms reported by model-level testing. The
latter were obtained from four one-lap simulations with no corruption enabled,
one for each model, Autumn (sim and real), and Chauffeur (sim and real) in their
respective environments. All such simulations experienced no system-level failures
and are used to assess whether false alarms are reported by model-level testing.

4.5.2 Mitigating RQ1-T2 with pre-failure window selection

We recall that in our setting, a system-level failure occurs during off-road driving
episodes. The simulator automatically flags the car as off-road if the car’s position
deviates by more than half of the track’s width (i.e., |XTE| > 2.2, as XTE = ±2.2
marks the lane borders, whereas XTE = 0 represents the middle of the lane). In
the real world, we use an existing telemetry estimator from the literature [51]
to automatically retrieve the XTE value for real-world images. Thus, for both
settings, based on our definition of system-level failure, we are able to isolate the
pre-failure sub-scenario of driving frames (and predictions) that precedes each
system-level failure, which mitigates threat RQ1-T2.

Fig. 7 illustrates an example from our empirical study. In the figure, the Chauf-
feur model drives on our simulated version of the testing track from right to left.
An image corruption of type “fog” is automatically injected onto the original
camera frame (corrupted images). Each image is labeled with the steering an-
gle (SA) predicted by Chauffeur and the XTE value. The simulation fails when
|XTE| > 2.2, which occurs for the leftmost frame of the figure. We refer to this
frame as the first failing image. Thus, we consider a sequence of images preceding
the first failing image as the potential candidate for the root cause of the failure,
i.e., the sequence in the vicinity of the failure site in which most wrong predictions
are expected to have occurred. We have considered a pre-failure sub-scenario of
3 seconds, corresponding to 63 frames (Section 4.4.1), a reasonable value found

16 Stocco A., Pulfer B. and Tonella P.

SA: 0.01
XTE: 0.03

SA: 0.03
XTE: 0.05

SA: 0.00
CTE: -0.08

SA: 0.21
XTE: -0.40

SA: 0.62
XTE: -0.73

SA: 0.85
XTE: -2.13

SA: 0.81
XTE: -2.39

DNN

corrupted images

original images

pre-failure window

Simulator

Donkey Car

Fig. 7: Pre-failure window selection.

during preliminary experiments, given the relative shortness of our testing track.
We refer to such sequence as the pre-failure window.

4.5.3 Mitigating RQ1-T1 with visual similarity search

To mitigate threat RQ1-T1, we perform pre-failure window selection, needed to
find the most similar image with a ground truth label, using a visual similarity
metric called SSIM [64] (structural similarity index). SSIM simulates the high
sensitivity of the human visual system to structural distortions while compensating
for non-structural distortions. It is considered a more reliable measure to the per-
pixel metrics such as Euclidean distance. SSIM is a floating-point number that
ranges from 0 (no similarity) to 1 (perfect match).

We calculate the SSIM score between each image in the pre-failure window
and each image in the subset of the training set that is related to the portion of
the track in which the pre-failure window occurs. Thus, we select the image with
the highest visual similarity (i.e., highest SSIM score) as the reference image to
use as the ground truth. To lower the chance of false matches, we make sure to
match frames that belong to the same part of the track. Our tracks are divided
into five distinct logical sectors. Our simulation platform labels each image with
the corresponding track sector. For real-world images, such information is not
available, thus we manually assigned each image to the sector they belong to in
our real-world closed-loop testing track.

4.5.4 Configurations

For each scenario, we calculated the per-frame absolute error value, both for the
virtual and the real-world scenarios. We also replicated in our setting the scenario-
level matching of the replicated study, by matching entire sequences instead of
individual frames. Since autopilot modules are not available in our framework,
we produced two one-lap simulations by manually driving the tracks, both in

Model vs System Testing of Autonomous Driving Systems: An Extension Study 17

Table 3: RQ1: Results of the comparison between model and system level testing.

Visual search on pre-failure window

virtual real-world

Autumn Chauffeur Autumn Chauffeur

MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1

Nominal 18 0 18 0 14 4 13 5

Pre-failing 2 16 0 18 2 16 2 16

Total 20 16 18 18 16 20 13 23

the virtual and real-world, to obtain a reference driving trajectory (ground truth
steering angles) that can be used for computing the MAE over the entire scenario.

4.5.5 RQ1: Results

Table 3 reports the results for our proposed matching technique (visual search on
pre-failure window) on both environments (simulation and real-world). For each
configuration, the table reports the number of cases in which model-level and
system-level testing are in agreement (i.e., MAE < 0.1 in nominal scenarios, or
MAE ≥ 0.1 in pre-failing scenarios) and the number of cases in which they are in
disagreement (i.e., MAE < 0.1 in pre-failing scenarios scenarios, or MAE ≥ 0.1 in
nominal scenarios).

Overall, our results show a high agreement between model and system-level
testing and are not consistent with the results presented by the original authors.
We believe this is due to our refined experimental setting. In the simulated en-
vironment, the agreement rate is 94% for Autumn and 100% for Chauffeur. The
model level oracle exhibits only two false negatives (i.e., missed system-level fail-
ures) for Autumn. In the real-world physical environment, the agreement rate
is 83% for Autumn and 86% for Chauffeur. The model level oracle exhibits two
false negatives for Autumn, as well as four false positives (wrong expectations of
system-level failures, due to high model-level MAE). For Chauffeur, model-level
testing reports no false negatives, but five false positives.

Table 4: RQ1: Our replication of RQ1 [24].

virtual

Autumn Chauffeur

MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1

Nominal 18 0 18 0

Pre-failing 11 7 9 9

Total 29 7 27 9

Concerning our replication of the results by Ul Haq et al. [24], we were able
to reproduce the results of the original paper (i.e. no false positives) using the
scenario-level matching proposed by the authors (Table 4). Model vs system-level
testing disagreement is 50% for Autumn (100% of false negatives, no false positives)
and drops to 22% for Chauffeur (44% of false negatives, no false positives).

18 Stocco A., Pulfer B. and Tonella P.

RQ1: Model-level (offline) and system-level (online) testing results agree
in most cases when using a scenario matching technique based on the pre-
failure site, similar-looking images, and accurate labels. On the contrary,
the disagreement reported in the replicated study emerges only when using
a scenario matching technique based on the entire image sequence and on
the auto-pilot ground truth.

4.6 Threats to Validity

4.6.1 Internal validity

One threat to internal validity concerns our custom implementation of the SDCs,
with custom training sets. To mitigate this threat, we implemented best prac-
tices [13,55] to make sure to train robust SDC models that exhibited no failures
in nominal conditions. Another threat is that the pre-failing images may not find
a match in the training set if this does not contain diverse trajectories. However,
this scenario never occurred in our experiments.

Lastly, the replicated study uses a simulator in which the car drives on a specific
lane of a two-lane road whereas in our setting the car follows the middle line on a
two-lane road (as if it were a single-lane, one-way road). While the MDCL used in
the replicated paper is a measure of distance from the center of the lane (instead
of the center of the road), we consider a thresholded XTE (i.e., a Maximum XTE)
as comparable to MDCL.

4.6.2 External validity

The use of the Donkey Car framework poses a threat in terms of the generaliz-
ability of our results. While Donkey Car has been used in similar studies for DNN
testing [39,62,63,75], generalizability to other physical settings is not guaranteed.
We considered only one physical track, instead of open-source datasets of labeled
driving images. However, this was unavoidable, as we are not aware of ways to
reliably import real-world driving data within a simulation platform, or within
the Donkey Car.

4.6.3 Reproducibility

We make our data, results, and the Donkey Car simulator available [1]. The tech-
niques and heuristics proposed in this paper do not need necessarily a physical
platform and can be applied, for instance, to stationary datasets as Udacity’s [60].
For a complete replication of our study, two open-source physical assets are needed,
i.e., the Donkey Car and a racing track with the characteristics described in Sec-
tion 4.3.1.

Model vs System Testing of Autonomous Driving Systems: An Extension Study 19

5 Qualitative analysis

The Autumn DNN model exhibited 4 false positives (see Table 3) when driving
the physical Donkey Car. Although this is a small number compared to the true
positives and true negatives (resp. 16 and 14), we have investigated them quali-
tatively in-depth, to understand the core reasons behind a high offline prediction
error when the car can drive safely in nominal conditions. Fig. 8 reports some
meaningful examples from our experiments.

OverestimationSpikes in human labels Conservative behaviour

1

1

2

2

3

3

DNN

Reference

Fig. 8: Examples of wrong predictions causing false positives.

Plot/image ❶ show a case in which, during a straight road segment, the human
driver had to correct the trajectory after a bend, due to the high speed of the
vehicle (green curve). The SDC model, on the other hand, predicts a steering angle
near zero (red curve), which is in line with the average steering angle learned from
the training set distribution for straight road segments of this kind (see Fig. 5).
Hence, the prediction error is large.

Plot/image ❷ show a case in which the human driver applies a moderate steer-
ing angle on the right (≈0.6, or 10◦) and travels a right bend at the center of
the road. The SDC model, on the other hand, predicts a steering angle near 1.0
(16◦) which means full steering on the right, in line with the average steering angle
learned from the training set distribution for right road segments, causing a large
prediction error.

Finally, plot/image ❸ show a case in which the SDC model predicts left steering
angle commands a few frames before the human driver. This anticipating behavior
can be explained by the fact that the DNN has learned a conservative behavior to-
wards certain challenging conditions, which deviate substantially from the human
ground truth angle.

Overall, we observed a different driving style between humans and DNN, de-
spite the latter is imitating the former. This might generate offline errors that do
not correspond to any system-level failure (false positives).

Another finding of this study concerns the generalizability of the results ob-
tained on a simulation platform to the physical environment. We have two main
explanations for this: (1) our simulated platform is a digital twin of the physi-
cal car (i.e., a faithful virtual replica of the vehicle and its sensors) and (2) we
maintained the same experimental setting across virtual and real environments.

20 Stocco A., Pulfer B. and Tonella P.

6 Related Work

6.1 Model vs System Testing Comparison

Codevilla et al. [18] investigate the relation between model-level vs system-level
testing metrics for SDCs. They use the simulation environment CARLA [22], find-
ing that offline prediction errors are not correlated with driving quality. Moreover,
they report that two DNN models with analogous error prediction rates may differ
substantially in their driving quality. In our paper we instead found that offline
prediction errors do correlate with online driving quality metrics, but only if an
accurate scenario matching technique is adopted, capable of computing the pre-
failure site, similar-looking images, and accurate labels.

We have extensively discussed the work by Haq et al. [24], of which this study is
a replication. The authors have extended the original paper in a journal version [25]
in which they consider one more SDC model to the study (Komanda) and further
correlation analysis. However, the threats to validity identified in our study were
not addressed. Thus, our results and findings also hold for the extended version of
the paper.

6.2 Model and System Testing Approaches

Most approaches to testing DNNs that perform autonomous driving are at the
model level [20,43,59,72]. For example, DeepXplore [43] uses white-box testing
to synthesize inputs that maximize both neuron coverage and behavior diversity.
Kim et al. [34] propose several white-box test adequacy criteria based on surprise,
defined as the distance in DNN’s behaviour between a new, candidate test input
and the training data. Inputs should be generated to cover all ranges of surprise,
from low to high surprise. DeepTest [59] uses affine transformations from computer
vision to produce new inputs that cause the DNN to misbehave. DeepRoad [59]
proposes the usage of GANs to generate more realistic driving inputs from streams
of real-world data. ThirdEye [50] uses the attention maps from the explainable AI
domain to predict misbehaviours of self-driving cars. Dang et al. [20] study the
robustness of DNN driving models with respect to different adversarial attacks.
Kong et al. [36] generate realistic adversarial billboards within real-world images
that are able to confound the vehicle. In our work, we also use universal adver-
sarial perturbations at the system-level, finding comparable results in terms of
virtual/physical robustness. However, the focus of our study is on the model vs
system level testing comparison.

Concerning system-level testing techniques for SDCs, researchers proposed
techniques to generate driving scenarios procedurally [3,8,9,41,46,54]. For in-
stance, SilGAN [42] uses GANs to generate driving maneuvers for software-in-
the-loop testing. Mullins et al. [41] use Gaussian processes to drive the search
towards yet unexplored regions of the input space. Abdessalem et al. [3,8,9] com-
bine genetic algorithms and machine learning to test a pedestrian detection system.
Li et al. [37] use ontologies for automatically generating combinatorial test suites
for testing automated driving functions. Riccio and Tonella [46] propose a model-
based test generator that uses Catmull-Rom splines to characterize the road shape
and generate inputs that are at the behavioural frontier of a SDC model. Arri-

Model vs System Testing of Autonomous Driving Systems: An Extension Study 21

eta et al. [5] use a genetic algorithm to generate tests for cyber-physical systems
that optimize requirements coverage, test case (dis-)similarity and test execution
time. Riccio et al. [44] use mutation adequacy-guided test generation to augment
existing test suites for SDCs.

In contrast, our work focuses on the comparison of model vs system-level testing
of SDCs, both on a simulated and a real-world environment. Our extension to a
physical SDC constitutes a novel contribution to the state of the art.

6.3 Challenges for Autonomous Driving Testing

Wotawa [69] discuss the challenges in testing autonomous driving systems and
highlight the similarities and the differences with testing safety critical systems.
Stellet et al. [49] discuss the testing of advanced driver assistance towards au-
tomated driving reporting as main drawback the high initial effort to build the
simulation environment, but also the quantification of the achieved degree of real-
ism of such platforms. Riccio et al. [45] present a systematic mapping of the main
challenges of testing machine learning-based systems, including autonomous driv-
ing systems. A recent work by Zhang et al. [74] provide a comprehensive taxonomy
for critical scenario identification methods based on an analysis of the state-of-the-
art research, and identify open issues and directions for further research. Wotawa
et al. [70] discuss verification and validation methodologies for advanced driver-
assistance systems.

Concerning the oracle problem, Kalra et al. [33] calculate the number of miles
of driving that would be needed to provide clear statistical evidence of autonomous
vehicle safety. Jahangirova et al. [31] evaluated 26 metrics related to the quality
of driving of both human and autonomous driving and showed their usefulness as
functional oracles through mutation testing [29]. Evans et al. [23] design a domain
specific language to express oracles for autonomous driving systems testing such
as safety, liveness, timeliness and temporal properties.

Our work compares model- and system-level based testing both in simulated
and physical environments, and discusses the conditions under which model- and
system-level based testing expose failures.

6.4 Physical Testing of Autonomous Vehicles

The usage of physical RC vehicles has fostered substantial research in the do-
main of autonomous racing, in which DNN malfunctions or deficiencies can have
far-reaching safety consequences [10]. Verma et al. [62] compare different scaled
vehicles concluding that such platforms allow the rapid exploration of many differ-
ent test tracks while retaining realistic environmental conditions, which provides
further justification for our choice to use Donkey Car. Researchers have been us-
ing Donkey Car [39,51,63,73,75] to study also reinforcement learning algorithms
for autonomous driving [7,12,35]. Sinha et al. [47] present a framework to predict
the vehicle’s future state with by experiments on small scale autonomous plat-
forms. Mahmoud et al. [39] use image scaling for functional test of DNN SDC on
the Donkey Car platform. Chen et al. [17] embed a real hardware control unit
within a simulation platform to verify the validity of self-driving DNNs in virtual

22 Stocco A., Pulfer B. and Tonella P.

scenes, including perception, planning, decision making, and control. Sotiropoulos
et al. [48] report on an exploratory study of bugs in outdoor robots navigation,
showing how most of them can be revealed in low-fidelity simulation. Stocco et
al. [51] compare virtual and physical testing of autonomous driving systems, re-
porting a 60% transferability between the two. El Mostadi et al. [40] discuss the
drawbacks of virtual testing of advanced driver-assistance systems, including sim-
ulation crashes, ill-controlled test executions, incorrect verdict assignments, and
waste of time in the running and analysis of useless tests.

Differently from described works, our comparison of model vs system-level
testing of SDCs using a real-world physical environment is a novel contribution to
the studies using physical platforms.

6.5 GAN-based Testing of Autonomous Vehicles

The main focus of existing GAN-based testing techniques is to inject perturba-
tions into a driving scene (e.g., to create realistic weather transition for the same
image) for offline testing [72], or to estimate telemetry data that are unavailable in
the field, when driving a physical car [42,71,51]. DeepRoad [72] uses UNIT [38] to
generate accurate photo-realistic paired driving scenes for SDC testing, which were
evaluated for their capability of exposing individual prediction errors. SilGAN [42]
uses GANs to generate driving maneuvers for software-in-the-loop testing. Sur-
felGAN [71] is a technique developed at Waymo to generate realistic sensor data
for autonomous driving simulation without requiring manual creation of virtual
environments and objects. Differently from existing works, we use CycleGAN, that
requires no pairing, to generate pseudo-real driving scenes to evaluate the predic-
tion differences between virtual and physical SDCs.

7 Conclusions

This paper replicates an existing study on the comparison between model (offline)
and system (online) level testing of autonomous driving systems, with a focus on
supervised models for lane-keeping. We discussed the main threats to the validity
of the original study, and we set up an experimental design that addresses them.
Moreover, our study extends the original study, which was conducted only in
simulation, with the physical dimension, in which we consider a real-world small-
scale self-driving vehicle.

Our experiments did not lead to a full replication of the original study. On
the one hand, our study confirms the original findings reported in the replicated
study about the possibility to use simulator-generated data as an alternative to
real-world data. We obtain a comparably low difference between simulator and
real-world prediction errors, and statistical analysis confirm that the distributions
of such prediction errors have negligible differences. The latter result does not
hold for the data collected in the original study, possibly because of the poor
visual similarity affecting the images matched by the heuristic used by the original
authors. In our work, matches obtained by automated neural translation result in
faithful images across domains (simulator vs real-world).

Model vs System Testing of Autonomous Driving Systems: An Extension Study 23

On the other hand, our study does not confirm the original findings concerning
the disagreement between offline and online testing. The observed disagreements
consisted of false negatives, i.e., low offline errors associated with system failures.
In our replication, such a phenomenon was observed quite rarely and was not as
prevalent as in the original study, the main reason being the improved accuracy
of our scenario matching technique, which determines precisely the pre-failure
sequence, the pairs of online/offline images to match, and the accuracy of the
ground truth assigned to each matching pair.

Our results provide strong justification for the ongoing research on simulation-
based testing and offline model-level testing since they are both highly correlated
with the exposure of real-world failures. Of course, this does not mean that online,
in-field testing should be neglected, as it is impossible to account for the variability
of the real world in a simulator, or offline. However, by investing in the early
levels of testing, companies can reduce substantially the risk of revealing potential
deployment failures when approaching a new release of self-driving car software.

8 Declarations

8.1 Funding and/or Conflicts of interests/Competing interests

This work was partially supported by the H2020 project PRECRIME, funded
under the ERC Advanced Grant 2017 Program (ERC Grant Agreement n. 787703).
The authors declared that they have no conflict of interest.

8.2 Data Availability

Our data, results, and the Donkey Car simulator are available [1].

References

1. Code artifacts. https://github.com/tsigalko18/emse22 (2022)
2. Many cars have a hundred million lines of code. https://www.technologyreview.com/

2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/ (2012)
3. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing autonomous

cars for feature interaction failures using many-objective search. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
pp. 143–154. ACM, New York, NY, USA (2018). DOI 10.1145/3238147.3238192. URL
http://doi.acm.org/10.1145/3238147.3238192

4. Afzal, A., Katz, D.S., Le Goues, C., Timperley, C.S.: Simulation for robotics test automa-
tion: Developer perspectives. In: International Conference on Software Testing, Validation
and Verification, ICST ’21 (2021)

5. Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxeberria, L.: Search-based test case
generation for cyber-physical systems. In: 2017 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 688–697 (2017). DOI 10.1109/CEC.2017.7969377

6. AWS Deepracer. https://aws.amazon.com/deepracer (2021)
7. Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G., Sun, T., Tao,

Y., Townsend, B., Calleja, E., Muralidhara, S., Karuppasamy, D.: Deepracer: Educational
autonomous racing platform for experimentation with sim2real reinforcement learning.
CoRR abs/1911.01562 (2019). URL http://arxiv.org/abs/1911.01562

https://github.com/tsigalko18/emse22
https://www.technologyreview.com/2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/
https://www.technologyreview.com/2012/12/03/181350/many-cars-have-a-hundred-million-lines-of-code/
http://doi.acm.org/10.1145/3238147.3238192
https://aws.amazon.com/deepracer
http://arxiv.org/abs/1911.01562

24 Stocco A., Pulfer B. and Tonella P.

8. Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver assis-
tance systems using multi-objective search and neural networks. In: 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 63–74 (2016)

9. Ben Abdessalem, R., Nejati, S., C. Briand, L., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pp. 1016–1026 (2018). DOI 10.1145/3180155.
3180160

10. Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V., Mangharam,
R.: Autonomous vehicles on the edge: A survey on autonomous vehicle racing (2022).
DOI 10.48550/ARXIV.2202.07008. URL https://arxiv.org/abs/2202.07008

11. BGR Media, LLC: Waymo’s self-driving cars hit 10 million miles. https://techcrunch.
com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles (2018). Online; ac-
cessed 1 September 2021

12. Biagiola, M., Tonella, P.: Testing the plasticity of reinforcement learning based systems.
ACM Trans. Softw. Eng. Methodol. (2022). DOI 10.1145/3511701. URL https://doi.
org/10.1145/3511701

13. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,
Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning
for self-driving cars. CoRR abs/1604.07316 (2016). URL http://arxiv.org/abs/1604.
07316

14. Bulsara, A., Raman, A., Kamarajugadda, S., Schmid, M., Krovi, V.N.: Obstacle avoid-
ance using model predictive control: An implementation and validation study using scaled
vehicles. Tech. rep., SAE Technical Paper (2020)

15. Burch, Najm, Yang, Trick: Mcpower: a monte carlo approach to power estimation. In:
1992 IEEE/ACM International Conference on Computer-Aided Design, pp. 90–97 (1992).
DOI 10.1109/ICCAD.1992.279392

16. Cerf, V.G.: A comprehensive self-driving car test. Commun. ACM 61(2), 7–7 (2018).
DOI 10.1145/3177753. URL http://doi.acm.org/10.1145/3177753

17. Chen, S., Chen, Y., Zhang, S., Zheng, N.: A novel integrated simulation and testing plat-
form for self-driving cars with hardware in the loop. IEEE Transactions on Intelligent
Vehicles 4(3), 425–436 (2019). DOI 10.1109/TIV.2019.2919470

18. Codevilla, F., López, A.M., Koltun, V., Dosovitskiy, A.: On offline evaluation of vision-
based driving models. CoRR abs/1809.04843 (2018). URL http://arxiv.org/abs/
1809.04843

19. Cohen, J.: Statistical power analysis for the behavioral sciences. L. Erlbaum Associates,
Hillsdale, N.J (1988)

20. Deng, Y., Zheng, X., Zhang, T., Chen, C., Lou, G., Kim, M.: An analysis of adversarial
attacks and defenses on autonomous driving models (2020)

21. Donkey Car. https://www.donkeycar.com/ (2021)
22. Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: an open urban

driving simulator. CoRR abs/1711.03938 (2017). URL http://arxiv.org/abs/1711.
03938

23. Evans, A.N., Soffa, M.L., Elbaum, S.: A language for autonomous vehicles testing oracles
(2020). URL https://arxiv.org/pdf/2006.10177.pdf

24. Haq, F.U., Shin, D., Nejati, S., Briand, L.: Comparing offline and online testing of deep
neural networks: An autonomous car case study. In: Proceedings of 13th IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST ’20. IEEE
(2020)

25. Haq, F.U., Shin, D., Nejati, S., Briand, L.: Can offline testing of deep neural networks
replace their online testing? a case study of automated driving systems. Empirical Softw.
Engg. 26(5) (2021). DOI 10.1007/s10664-021-09982-4. URL https://doi.org/10.1007/
s10664-021-09982-4

26. Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to common
corruptions and perturbations. CoRR abs/1903.12261 (2019). URL http://arxiv.org/
abs/1903.12261

27. How Software Is Eating the Car. https://spectrum.ieee.org/software-eating-car
(2021)

28. Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella, P.: Taxonomy
of real faults in deep learning systems. ICSE’20. ACM, New York, NY, USA (2020). DOI
10.1145/3377811.3380395

https://arxiv.org/abs/2202.07008
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://doi.org/10.1145/3511701
https://doi.org/10.1145/3511701
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://doi.acm.org/10.1145/3177753
http://arxiv.org/abs/1809.04843
http://arxiv.org/abs/1809.04843
https://www.donkeycar.com/
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://arxiv.org/pdf/2006.10177.pdf
https://doi.org/10.1007/s10664-021-09982-4
https://doi.org/10.1007/s10664-021-09982-4
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
https://spectrum.ieee.org/software-eating-car

Model vs System Testing of Autonomous Driving Systems: An Extension Study 25

29. Humbatova, N., Jahangirova, G., Tonella, P.: Deepcrime: Mutation testing of deep learning
systems based on real faults. In: Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’21 (2021). DOI 10.1145/3460319.
3464825

30. ISO: Road vehicles – Functional safety (2011)
31. Jahangirova, G., Stocco, A., Tonella, P.: Quality metrics and oracles for autonomous vehi-

cles testing. In: Proceedings of 14th IEEE International Conference on Software Testing,
Verification and Validation, ICST ’21. IEEE (2021)

32. Jain, A., Chaudhari, P., Morari, M.: Bayesrace: Learning to race autonomously using prior
experience. CoRR abs/2005.04755 (2020). URL https://arxiv.org/abs/2005.04755

33. Kalra, N., Paddock, S.M.: Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy
and Practice 94, 182–193 (2016). DOI https://doi.org/10.1016/j.tra.2016.09.010. URL
https://www.sciencedirect.com/science/article/pii/S0965856416302129

34. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise adequacy.
In: Proceedings of the 41st International Conference on Software Engineering, ICSE ’19,
pp. 1039–1049. IEEE Press, Piscataway, NJ, USA (2019). DOI 10.1109/ICSE.2019.00108.
URL https://doi.org/10.1109/ICSE.2019.00108

35. Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.A.A., Yogamani, S., Pérez, P.:
Deep reinforcement learning for autonomous driving: A survey (2021)

36. Kong, Z., Liu, C.: Generating adversarial fragments with adversarial networks for physical-
world implementation. CoRR abs/1907.04449 (2019). URL http://arxiv.org/abs/
1907.04449

37. Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous
driving functions. Information and Software Technology 117, 106,200 (2020). DOI https:
//doi.org/10.1016/j.infsof.2019.106200. URL https://www.sciencedirect.com/science/
article/pii/S0950584918302271

38. Liu, M., Breuel, T.M., Kautz, J.: Unsupervised image-to-image translation networks.
CoRR abs/1703.00848 (2017). URL http://arxiv.org/abs/1703.00848

39. Mahmoud, Y., Okuyama, Y., Fukuchi, T., Kosuke, T., Ando, I.: Optimizing deep-neural-
network-driven autonomous race car using image scaling. In: SHS web of conferences,
vol. 77, p. 04002. EDP Sciences (2020)

40. Mostadi, M.E., Waeselynck, H., Gabriel, J.M.: Seven technical issues that may ruin your
virtual tests for adas. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 16–21
(2021). DOI 10.1109/IV48863.2021.9575953

41. Mullins, G.E., Stankiewicz, P.G., Hawthorne, R.C., Gupta, S.K.: Adaptive generation of
challenging scenarios for testing and evaluation of autonomous vehicles. Journal of Systems
and Software 137, 197–215 (2018). DOI https://doi.org/10.1016/j.jss.2017.10.031. URL
http://www.sciencedirect.com/science/article/pii/S0164121217302546

42. Parthasarathy, D., Johansson, A.: Silgan: Generating driving maneuvers for scenario-based
software-in-the-loop testing. CoRR abs/2107.07364 (2021). URL https://arxiv.org/
abs/2107.07364

43. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of deep
learning systems. In: Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pp. 1–18. ACM, New York, NY, USA (2017). DOI 10.1145/3132747.3132785.
URL http://doi.acm.org/10.1145/3132747.3132785

44. Riccio, V., Humbatova, N., Jahangirova, G., Tonella, P.: DeepMetis: Augmenting a deep
learning test set to increase its mutation score. In: Proceedings of the 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’21. IEEE/ACM (2021)

45. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.: Testing
Machine Learning based Systems: A Systematic Mapping. Empirical Software Engineering
(2020)

46. Riccio, V., Tonella, P.: Model-Based Exploration of the Frontier of Behaviours for Deep
Learning System Testing. In: Proceedings of ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE ’20
(2020)

47. Sinha, A., O’Kelly, M., Zheng, H., Mangharam, R., Duchi, J., Tedrake, R.: Formulazero:
Distributionally robust online adaptation via offline population synthesis (2020). DOI
10.48550/ARXIV.2003.03900. URL https://arxiv.org/abs/2003.03900

48. Sotiropoulos, T., Waeselynck, H., Guiochet, J., Ingrand, F.: Can robot navigation bugs
be found in simulation? an exploratory study. In: 2017 IEEE International Conference on

https://arxiv.org/abs/2005.04755
https://www.sciencedirect.com/science/article/pii/S0965856416302129
https://doi.org/10.1109/ICSE.2019.00108
http://arxiv.org/abs/1907.04449
http://arxiv.org/abs/1907.04449
https://www.sciencedirect.com/science/article/pii/S0950584918302271
https://www.sciencedirect.com/science/article/pii/S0950584918302271
http://arxiv.org/abs/1703.00848
http://www.sciencedirect.com/science/article/pii/S0164121217302546
https://arxiv.org/abs/2107.07364
https://arxiv.org/abs/2107.07364
http://doi.acm.org/10.1145/3132747.3132785
https://arxiv.org/abs/2003.03900

26 Stocco A., Pulfer B. and Tonella P.

Software Quality, Reliability and Security (QRS), pp. 150–159 (2017). DOI 10.1109/QRS.
2017.25

49. Stellet, J.E., Zofka, M.R., Schumacher, J., Schamm, T., Niewels, F., Zöllner, J.M.: Testing
of advanced driver assistance towards automated driving: A survey and taxonomy on
existing approaches and open questions. In: 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pp. 1455–1462 (2015). DOI 10.1109/ITSC.2015.236

50. Stocco, A., Nunes, P.J., d’Amorim, M., Tonella, P.: ThirdEye: Attention maps for safe
autonomous driving systems. In: Proceedings of 37th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’22. IEEE/ACM (2022)

51. Stocco, A., Pulfer, B., Tonella, P.: Mind the Gap! A Study on the Transferability of
Virtual vs Physical-world Testing of Autonomous Driving Systems. IEEE Transactions
on Software Engineering (2022). URL https://arxiv.org/abs/2112.11255

52. Stocco, A., Tonella, P.: Towards anomaly detectors that learn continuously. In: Proceedings
of 31st International Symposium on Software Reliability Engineering Workshops, ISSREW
2020. IEEE (2020)

53. Stocco, A., Tonella, P.: Confidence-driven weighted retraining for predicting safety-critical
failures in autonomous driving systems. Journal of Software: Evolution and Process (2021).
DOI 10.1002/smr.2386. URL https://doi.org/10.1002/smr.2386

54. Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehaviour prediction for autonomous
driving systems. In: Proceedings of 42nd International Conference on Software Engineer-
ing, ICSE ’20. ACM (2020)

55. Tawn Kramer, M.E., contributors: Donkeycar. https://www.donkeycar.com/ (2022)
56. Team Autumn: Steering angle model: Autumn. https://github.com/udacity/

self-driving-car/tree/master/steering-models/community-models/autumn (2016).
Online; accessed 1 September 2021

57. Team Chauffeur: Steering angle model: Chauffeur. https://github.com/udacity/
self-driving-car/tree/master/steering-models/community-models/chauffeur
(2016). Online; accessed 1 September 2021

58. Thorn, E., Kimmel, S.C., Chaka, M.: A framework for automated driving system testable
cases and scenarios (2018)

59. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In: Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pp. 303–314. ACM, New York, NY, USA (2018). DOI 10.1145/
3180155.3180220. URL http://doi.acm.org/10.1145/3180155.3180220

60. Udacity self-driving challenge 2, ch2-001 (testing) and ch2-002 (training). https://
github.com/udacity/self-driving-car/tree/master/datasets/CH2 (2016)

61. Unity3d. https://unity.com (2019)
62. Verma, A., Bagkar, S., Allam, N.V.S., Raman, A., Schmid, M., Krovi, V.N.: Implemen-

tation and validation of behavior cloning using scaled vehicles. In: SAE WCX Digital
Summit. SAE International (2021). DOI https://doi.org/10.4271/2021-01-0248. URL
https://doi.org/10.4271/2021-01-0248

63. Viitala, A., Boney, R., Kannala, J.: Learning to drive small scale cars from scratch. CoRR
abs/2008.00715 (2020). URL https://arxiv.org/abs/2008.00715

64. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612
(2004). DOI 10.1109/TIP.2003.819861

65. Waymo Driver. https://waymo.com/waymo-driver/ (2021)
66. Waymo LLC: Waymo Open Dataset. https://waymo.com/open/ (2021). Online; accessed

1 September 2021
67. Waymo Secret Testing. https://www.theatlantic.com/technology/archive/2017/08/

inside-waymos-secret-testing-and-simulation-facilities/537648/ (2017)
68. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80

(1945). DOI 10.2307/3001968. URL https://doi.org/10.2307/3001968
69. Wotawa, F.: Testing Autonomous and Highly Configurable Systems: Challenges and Fea-

sible Solutions, pp. 519–532. Springer International Publishing, Cham (2017). DOI
10.1007/978-3-319-31895-0 22. URL https://doi.org/10.1007/978-3-319-31895-0_22

70. Wotawa, F., Klück, F., Zimmermann, M., Nica, M., Felbinger, H., Tao, J., Li, Y.: Recent
Verification and Validation Methodologies for Advanced Driver-Assistance Systems. CRC
Press (2021)

71. Yang, Z., Chai, Y., Anguelov, D., Zhou, Y., Sun, P., Erhan, D., Rafferty, S., Kret-
zschmar, H.: Surfelgan: Synthesizing realistic sensor data for autonomous driving. CoRR
abs/2005.03844 (2020). URL https://arxiv.org/abs/2005.03844

https://arxiv.org/abs/2112.11255
https://doi.org/10.1002/smr.2386
https://www.donkeycar.com/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
http://doi.acm.org/10.1145/3180155.3180220
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://unity.com
https://doi.org/10.4271/2021-01-0248
https://arxiv.org/abs/2008.00715
https://waymo.com/waymo-driver/
https://waymo.com/open/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://doi.org/10.2307/3001968
https://doi.org/10.1007/978-3-319-31895-0_22
https://arxiv.org/abs/2005.03844

Model vs System Testing of Autonomous Driving Systems: An Extension Study 27

72. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: Deeproad: Gan-based metamorphic
testing and input validation framework for autonomous driving systems. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, pp. 132–142. ACM, New York, NY, USA (2018). DOI 10.1145/3238147.3238187.
URL http://doi.acm.org/10.1145/3238147.3238187

73. Zhang, Q., Du, T.: Self-driving scale car trained by deep reinforcement learning. CoRR
abs/1909.03467 (2019). URL http://arxiv.org/abs/1909.03467

74. Zhang, X., Tao, J., Tan, K., Torngren, M., Gaspar Sanchez, J.M., Ramli, M.R., Tao,
X., Gyllenhammar, M., Wotawa, F., Mohan, N., Nica, M., Felbinger, H.: Finding critical
scenarios for automated driving systems: A systematic mapping study. IEEE Transactions
on Software Engineering pp. 1–1 (2022). DOI 10.1109/TSE.2022.3170122

75. Zhou, H., Chen, X., Zhang, G., Zhou, W.: Deep reinforcement learning for autonomous
driving by transferring visual features. In: 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 4436–4441 (2021). DOI 10.1109/ICPR48806.2021.9412011

76. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. CoRR abs/1703.10593 (2017). URL http://arxiv.
org/abs/1703.10593

http://doi.acm.org/10.1145/3238147.3238187
http://arxiv.org/abs/1909.03467
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

	Introduction
	Preliminaries
	Replicated Study
	Empirical Study
	Qualitative analysis
	Related Work
	Conclusions
	Declarations

