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Abstract—Evaluating the behavioral frontier of deep learning
(DL) systems is crucial for understanding their generalizability
and robustness. However, boundary testing is challenging due to
their high-dimensional input space. Generative artificial intelli-
gence offers a promising solution by modeling data distribution
within compact latent space representations, thereby facilitating
finer-grained explorations.

In this work, we introduce MIMICRY, a novel black-box
system-agnostic test generator that leverages these latent rep-
resentations to generate frontier inputs for the DL systems
under test. Specifically, MIMICRY uses style-based generative
adversarial networks trained to learn the representation of
inputs with disentangled features. This representation enables
embedding style-mixing operations between a source and a target
input, combining their features to explore the boundary between
them. We evaluated the effectiveness of different configurations
of MIMICRY at generating boundary inputs for four popular DL
image classification systems. Our results show that manipulating
the latent space allows for effective and efficient exploration
of behavioral frontiers. As opposed to a model-based baseline,
MIMICRY generates a higher quality frontier of behaviors which
includes more and closer inputs. Additionally, we assessed the
validity of these inputs, revealing a high validity rate according
to human assessors.

I. INTRODUCTION

The increasing dependence on Deep Learning (DL) systems
for both everyday tasks and critical sectors [1] makes rigorous
testing for these systems a relevant topic [2], [3]. The concept
of fault in DL systems is more complex than in traditional
software [2]. Even if the code that builds the DL network
is bug-free, the trained DL model may still deviate from the
expected behavior due to faults introduced during the training
phase, such as the misconfiguration of learning parameters or
the use of an unbalanced or non-representative training set [4].
In the context of data-intensive software systems, such as DL
systems, faults often arise from the large, high-dimensional
input space, which requires the generation of test data that
accurately captures the complexity and diversity of the validity
domain, i.e., the portion of the input space for which the
system is designed to operate correctly [2].

Test generation techniques have been developed to produce
artificial inputs that induce unexpected behaviors in DL sys-
tems [2], [3], [5]–[9]. The main goal of these techniques is
to achieve high failure exposure and/or high values of DL-
specific adequacy metrics, such as neuron [10] or surprise
coverage [11]. However, these techniques often neglect a thor-
ough exploration of the input space of DL systems, especially
in regions that are critical for decision making.

In particular, boundary testing focuses on those regions of
the input space where slight changes can trigger different
behaviors of the DL system. These inputs are extremely
relevant for assessing the reliability of DL systems, as they
often reveal how the system handles edge cases and transitions
between different operational domains. However, boundary
testing for DL systems is challenging due to the lack of precise
input partitions and the unconstrained nature of the inputs that
they are expected to handle (e.g., images).

Few techniques in the literature address DL boundary test-
ing [12]. One notable example is DeepJanus [5], a model-
based input generation technique that uses the concept of the
frontier of behaviors. This frontier refers to a collection of
input pairs that exhibit similarity within the pair, yet trigger
different behaviors. While DeepJanus represents a competitive
approach, it assumes the availability of a high-fidelity model
representation of the input domain which can be manipulated
to generate test inputs. However, for most DL benchmarks
such as complex feature-rich image datasets, a model repre-
sentation is not available, limiting the application of boundary
testing. Recent advances in generative artificial intelligence
promise to overcome this limitation, as they can learn a lower-
dimensional representation of the input space (i.e., the latent
space) based on the observed data distribution, facilitating
input manipulation. Although there are existing methods to
generate inputs in the latent space of a DL model [13]–[16],
none of them focuses on generating boundary inputs.

In this paper, we propose a technique to effectively explore
the boundary of DL systems in the latent space of style-based
generative adversarial networks. The key idea behind using
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these networks involves leveraging their style transfer archi-
tecture that automatically learns the separation of high-level
attributes (e.g., shape) from lower-level ones (e.g., texture).
While primarily used for the generation of new, highly diverse
datasets of complex inputs, in this work, we leverage the scale-
specific control of the synthesis and disentangle latent factors
of variation for boundary testing of DL systems.

Our technique, implemented in a tool called MIMICRY,
uses style-mixing operations to find boundary inputs. To do
so, MIMICRY uses a StyleGAN model trained to learn the
visual characteristics of a given image dataset across all its
inputs. StyleGan maps latent vectors inputs to an intermediate
latent vector, called style vector, which controls the image
style at various granularity levels in the generative process.
The main idea of MIMICRY involves the systematical mutation
of the pre-defined set of style vectors between source and
target inputs using scale-specific style mixing and assessing
the impact of these modifications in the image space.

MIMICRY provides focused generation of boundary inputs.
For a given source input, MIMICRY identifies the boundary
exploration direction based on the confidence level of the
DL system, specifically targeting the second most probable
class for that input, by generating a target input for that class.
Subsequently, it alters the visual characteristics of the source
input using the latent code from the target input.

We have evaluated the effectiveness of MIMICRY on four
popular image classification datasets (MNIST, SVHN, Fash-
ionMNIST, CIFAR-10) using DL systems available from the
literature. Our experiments, comprising over 1,600 test cases,
show that MIMICRY identifies a significant number of frontier
inputs for both closer or farther to the boundary seeds. Addi-
tionally, our study shows that the boundary inputs generated by
MIMICRY are valid, exhibiting a high validity rate (81%) and
label preservation rate (65%) as evaluated by human assessors.
Finally, MIMICRY outperforms the model-based DeepJanus
approach in both effectiveness and label coverage. Our paper
makes the following contributions:
Technique. To the best of our knowledge, the first boundary

testing technique for DL systems based on style-mixing.
Evaluation. An empirical study shows that MIMICRY is more

effective than an existing model-based technique, includ-
ing higher validity and label-preservation rates.

II. BACKGROUND

A. Boundary Analysis of DL Systems

Boundary analysis can identify minimal changes in test
inputs that lead to notably different behaviors of the DL system
under test. Several testing approaches emphasize boundary
analysis [17] due to its effectiveness in debugging by iso-
lating input features that are responsible for different system
behaviors, e.g., a correct prediction and a misprediction in an
image classification task. These test generators aim to produce
pairs of inputs where the members of the pair are similar
among them but produce different behaviors [5]. Many of
these approaches use search-based or optimization techniques

to identify boundary inputs, although their generalizability to
complex data-intensive systems such as DL might require
specific adaptations [5], [18]–[20]. The main goal of these
approaches is to ensure similarity within the input pair and
the validity of the generated inputs. In this work, we aim to
explore these boundaries using advanced generative artificial
intelligence algorithms that allow a controllable search, tar-
geted at specific boundary regions by manipulating inputs at
predefined granularities.

B. Style-Based Generative Adversarial Networks

Generative Adversarial Networks (GANs) are algorithms
designed to learn the statistical distribution of the underlying
training dataset, allowing the synthesis of new samples that
are representative of the learned distribution [21], [22]. GANs
involve jointly training a pair of networks that compete with
each other. This approach is based on game theory and is
implemented by using two neural networks. A first neural
network, called the generator, aims to produce realistic images,
while a second neural network, called the discriminator, acts
as an expert that receives both fake and real (authentic)
images and aims to distinguish between them. In this way,
the generator improves its ability to produce realistic images
by learning to fool the discriminator, which can be leveraged
for test generation [13], [14], [16], [23].

StyleGAN [24] extends the GAN architecture to introduce
new methods for controlling the image synthesis process.
Unlike traditional GANs, StyleGAN enables style control at
multiple levels within the network. The proposed changes to
the generator model involve the use of a mapping network to
map points in the initial latent space to an intermediate latent
space. This intermediate latent space controls the strength
of image features at various scales in the generator model,
inspired by style transfer literature [25]. This architectural
change, combined with noise injected directly into the net-
work, enables the automatic, unsupervised separation of high-
level attributes from stochastic variations in the generated im-
ages. For test generation, StyleGANs provide precise control
over input synthesis and manipulation, which we exploit for
boundary testing.

III. APPROACH

MIMICRY is a black-box approach1 that leverages Style-
GANs to generate boundary inputs through targeted search. It
begins by generating a source latent vector (called source seed)
which belongs to a user-specified class, i.e., the source class.
Based on the confidence of the DL system under test for the
source seed, MIMICRY selects a target class. Then, it generates
a target seed belonging to the target class, and applies focused
style-mixing mutations to identify the boundary between the
source and target seeds by combining their features.

1A recent survey classifies methods that need access to both the training
and test datasets of a learned component as data-box methods. However, to
avoid confusion, we refer to these as black-box methods, since they do not
utilize any internal information from the model itself. [2].
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Algorithm 1: MIMICRY
Input : D: deep learning system under test

classsource: class of the source seed
Smax: max number of style-mix operations
L: list of the style layer combinations
Fsize: failure set size

Output: F : archive of best boundary inputs
1 F ← ∅
2 while |F| < Fsize do
3 source ← GENERATESEED(classsource)
4 image I ← GENERATEIMAGE(source)
5 prediction p, confidenceScores ← PREDICT(D, I)
6 if p = classsource then
7 styleMixCounter ← 0
8 foundMix ← false
9 J ← ϕ

10 while not foundMix and styleMixCounter < Smax do
11 classtarget ← GETCLASS(confidenceScores)
12 target ← GENERATESEED(classtarget)
13 foreach l ∈ L do
14 mix ← STYLEMIX(source, target, l)
15 image M← GENERATEIMAGE(mix)
16 prediction p, confidenceScores ← PREDICT(D, M)
17 if p ̸= classsource then
18 foundMix, J ← EVALUATEPAIR(I, M, J )
19 if foundMix then
20 BREAK

21 styleMixCounter ← styleMixCounter + 1

22 F ← F ∪ (< I, J >)

23 return F

Algorithm 1 shows the main steps of MIMICRY. Our
approach takes as input the DL system, the source class
classsource, the maximum number of style-mixing mutation
operations Smax, and the list of layer combinations used for
style mixing L. The termination condition is met when the
testing budget is exhausted, e.g., by finding the desired number
of solutions in the failure set (Fsize).

Initially, the failure set F is empty (Line 1). Then, the
main loop of the algorithm (Lines 3—22) generates source
seeds and applies focused style-mixing mutations on them
until either a failure is found or the budget of style-mixing
mutations Smax is exhausted. Specifically, at every iteration,
a latent vector of class classsource is generated by StyleGAN
(Line 3) and decoded to the pixel space into an actual image
I (Line 4). Then, the input image is evaluated by the DL
system D (Line 5). If the input results in a failure (i.e.,
the predicted class is different from the source class), then
no further test generation is necessary: the input is already
beyond the boundary and it is discarded. Otherwise, the main
style-mixing cycle starts (Lines 10—21). Based on the DL
system’s per-class confidence scores, MIMICRY determines the
boundary exploration direction (Line 11) leveraging the DL
system’s uncertainty between two classes.

Then, a target seed is generated for the classtarget (Line 12)
and style-mixed with the source seed, using different layers
combinations (Line 13). Once a new style-mixed input is
generated, it is decoded to the pixel space into an actual image
M (Lines 15-16) and evaluated by the DL system (Line 16). In
case of failure, the distance between the boundary input pairs
is evaluated (Line 18). If the distance constraint is satisfied,
the algorithm stores the found boundary input pairs J = M

Class 
Condition 

Latent 

Normalize

Mapping Network f

Synthesis Network g

Generated Image 

Fig. 1. Architecture of StyleGAN [24].

into the failure set (Line 22). Otherwise, it stores the best-
found solution to J and continues the search until the iteration
budget Smax is exhausted (Line 21); finally, the algorithm
returns the failure set F (Line 23).

A. StyleGAN

Our approach uses a conditional StyleGAN [24], which al-
lows for style control of the generated images. The StyleGAN
generator has two main components: the Mapping Network
and the Synthesis Network (see Figure 1). The generator uses
the mapping network to map points in the latent space to
an intermediate latent space. This intermediate latent space
controls the style of image feature strength at different scales
in the generator model. This architecture, combined with in-
jected noise, enables the automatic, unsupervised separation of
high-level attributes from stochastic variations in the generated
images, as well as scale-specific mixing operations.

1) Mapping Network: The mapping network, denoted as
f : [Z,C] → W , is composed of eight fully connected layers
that transform the initial latent input vector z ∈ R512 that is
conditioned with a one-hot encoding class vector c ∈ C into
an intermediate latent output vector w ∈ R512 The reason
for this conversion is that the manipulation of latent vectors
in the latent space Z may yield non-linear changes in the
image, as observed by previous studies [13], [14], [16], [26].
For example, absent features in either endpoint may appear in
the middle of a linear interpolation path. This indicates that the
latent space is entangled and the factors of variation are not
properly separated. The addition of a mapping network before
the generator enhances the separability in the intermediate
latent space W , since the synthesis network prioritizes a
disentangled input representation [24].

2) Synthesis Network: The Synthesis Network generates the
final output images I given intermediate latent vector w of
an input of class classsource (GENERATESEED procedure in
Algorithm 1). It is composed of layers that control coarse,
middle, and fine features. Specifically, each layer takes the
intermediate latent vector w and transforms it into different
levels of the style vectors. The generated input is then fed
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Fig. 2. Style-Mix Mutation Operator between a source seed of class “5” and
a target seed of class “6” for MNIST (top). Titled with [x]: Selected Layer
combination, L2: Euclidean distance between original and mutated image.

to the DL system under test, and the prediction and the
confidence scores for each class are retrieved (GETCLASS
procedure in Algorithm 1). In particular, we measure the
confidence using the output of the softmax layer of the image
classifiers under test, as is extensively done in the literature [5],
[8], [13], [27], [28]. If the prediction does not match the
classsource, a failure is found. Otherwise, the source seed
input is considered further and MIMICRY determines the
boundary exploration target class based on the DL system’s
softmax output. For instance, when the softmax output shows
a non-zero confidence value for a class different from class
classsource, MIMICRY will use this information to narrow
down the search space and designate such class as the target
class (classsource in Algorithm 1) in the boundary exploration
process.

B. Style-Mix Mutation Operator

The mutation operation in MIMICRY performs “style mix-
ing” that can be regarded as a latent-aware semantic (style
and architecture) mutation operator (STYLEMIX procedure in
Algorithm 1). This method involves swapping specific style
vectors between the source and target seeds. The style vectors
are latent vectors of the intermediate latent representation cor-
responding to specific layers of the generator. Specifically, this
operation modifies the intermediate latent representation of the
source input seed by replacing one of its style vectors with a
style vector from the target seed. The modified intermediate
latent representation is then used to generate a new input
that incorporates visual features from the target input seed.
This process enables the synthesis network to create variations
that blend characteristics of both the source and target inputs,
enabling the exploration of the boundary.

The layers in the synthesis network utilize the style vectors
of three types [24]: coarse (layers 0-2), middle (layers 3-6),
and fine (layer 7). The primary challenge is selecting which
styles to swap, given there are 28 = 256 possible combinations

Style 0

Style 1

Style 2

Style 3

Style 4

Style 5

Style 6

Style 7

Style 0

Style 1

Style 2

Style 4

Style 6

Style 7

Style 0

Style 1

Style 2

Style 3

Style 4

Style 5

Style 6

Style 7

Source seed Target seed Stylemix

Style 5

Style 3

Coarse

MIddle

Fine

Synthesis
Network

Synthesis
Network

Synthesis
Network

Fig. 3. An example of the StyleMix mutation operator.

of vectors. Our selection of styles takes into account two ob-
jectives: first, to minimize the extent of variation and preserve
the original label, and second, to prevent hallucinations that
may happen due to entangled layers within or between style
blocks. Following the guidelines of the original StyleGAN
paper [29], replacements in the coarse styles (in layers 0-2),
which underpin the fundamental characteristics of an image,
are avoided (as shown in the second row of Figure 2). This
decision restricts selections to styles 3 through 7, which have
moderate to fine influence on the image’s details (as shown in
the third row of Figure 2). To prevent hallucinations that may
arise in rare cases from layer entanglement, both layers in the
same style block [3, 4], [5, 6] are also retained. Ultimately, our
approach results in a total of eight possible layer combinations:
[7], [6], [5], [4], [3], [5, 6], [3, 4], and [3, 4, 5, 6].
Example. Figure 2 shows an example of handwritten
MNIST digits generated by MIMICRY using different lay-
ers. Consider a source input seed of classsource = 5 for
which the model produces the following softmax vector:
[0.05, 0.05, 0.05, 0.05, 0.05, 0.4, 0.2, 0.05, 0.1, 0.1]. The likeli-
hood for class 5 is 0.4 (highest), while the likelihood for
class 6 is 0.2 (second highest), indicating indecision between
these two classes. Thus, from the point of view of boundary
testing, it makes sense to navigate the latent space towards
class 6. Consequently, MIMICRY generates a target input
seed of classtarget = 6, which is then used for boundary
exploration through style-mixing. Figure 3 shows an example
of an application of the style-mix mutation operator. The
intermediate latent codes of seed for the source class “5” and
target class “6” are represented as a stack of style vectors
(Style 0-7). MIMICRY replaces the style vector “Style 3” of
the source seed with that of the target seed. It results in
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Fig. 4. Boundary pair generated by MIMICRY.

the misclassification as class “6” after imposing an amount
of style-mix-induced modification. The mutation process se-
lectively swaps specific styles following the possible layer
combinations and subsequently evaluates the effect of these
replacements on inducing a class change. Figure 2 shows some
possible style-mix mutations given a source and a target seeds
and highlights how the coarse style vectors produce more
noticeable modifications.

C. Distance Function

To control the extent of the modifications induced by style
mixing, we use a distance function that takes into account
modifications both at the feature level and the pixel level. To
assess the preservation of the characteristics of the original
image after modifications, we employ the Structural Similar-
ity Index [30] (SSIM). This metric evaluates the similarity
between the original and modified images across three dimen-
sions: luminance, contrast, and structure. On the other hand, to
account for pixel-level differences between the original image
and its modified version, we adopt the Euclidean norm, or l2
norm. Particularly, we define the distance metric for MIMICRY
by combining these two measures as follows:

SSIM(o,m) > ϵSSIM ∧ (1 + ϵl2)× l2(o) > l2(o−m) > 0

where o is the original image, m is the modified input,
ϵSSIM is the structural similarity index threshold, and ϵl2 is the
Euclidean norm threshold. Our goal is twofold: (1) ensuring
high structural similarity and (2) minimizing the relative
change with the source input seed o. The former is controlled
by the ϵSSIM threshold. As for the latter, we consider the
norm of the original image l2(o) and determine that, for each
mutated input o, l2(m) should be less than l2(o) ∗ (1 + ϵ),
where ϵ determines the acceptable level of alteration.

Our distance function is designed to ensure that the modified
image m is both perceptually similar to the original image o
but sufficiently different in terms of l2 norm. MIMICRY uses
it as an early stopping criteria (foundMix in Algorithm 1) to
effectively navigate the latent space, leveraging the strengths
of each metric to minimize variation effectively and preserve
the original characteristics of the image (EVALUATEPAIR
procedure in Algorithm 1).

An example of boundary input that retains high perceptual
and quantitative similarities is illustrated in Figure 4.

IV. EMPIRICAL STUDY

A. Research Questions
We consider the following research questions:

RQ1 (Effectiveness): How effective is MIMICRY at finding
boundary inputs?
RQ2 (Output Validity): To what extent are the inputs gener-
ated by MIMICRY valid, label- and target-preserving?
RQ3 (Performance): How efficient is MIMICRY at finding
boundary inputs?
RQ4 (Configuration): Which layers utilized by MIMICRY for
style mixing most frequently produce misbehaviors?
RQ5 (Comparison): How does MIMICRY compare with an
existing model-based baseline?

RQ1 assesses whether MIMICRY generates a large number
of boundary inputs. RQ2 studies the quality of the inputs
produced by MIMICRY, assessed by human evaluators. RQ3
evaluates which layers of MIMICRY yield the best results.
RQ4 evaluates the efficiency. Finally, the last research question
(RQ5) compares MIMICRY with DeepJanus, a state-of-the-art
boundary input generator for DL systems.

B. Objects of Study
In our study, we used four image classification datasets,

namely MNIST [31], FashionMNIST [32], SVHN [33], and
CIFAR-10 [34]. MNIST, FashionMNIST and SVHN are se-
lected as they are used in the experimental studies of the
baselines of our work, DeepJanus [5], [26], which requires
a model of the input. CIFAR-10 is used to demonstrate the
generalizability of our approach to datasets where a model
input representation is not available.
MNIST. Handwritten digits dataset [31] consisting of 28×28
greyscale images labeled with the corresponding digit (the
possible classes range from 0 to 9). MNIST has 60,000
training inputs and 10,000 test inputs. In this paper, we test a
convolutional deep neural network architecture provided in the
replication package of DeepJanus [5]. This model has 1.2M
parameters and achieves 99.11% accuracy on the test set.
FashionMNIST. Another dataset consisting of 28 × 28
greyscale images of Zalando’s articles belonging to 10 cate-
gories [32]. The dataset has more complex patterns and varia-
tions than MNIST and contains 60, 000 images for training and
10, 000 for testing. We used a pre-trained DL model available
in the literature [14], which has 1.6M parameters and achieves
93.58% accuracy on the test set.
SVHN. A more complex dataset contains 32×32 color digits
of house numbers cropped from Google Street View im-
ages [33]. It has 73, 257 training inputs and 26, 032 test
inputs. The classification task is particularly challenging due
to variations in lighting, background clutter, and the presence
of distracting digits adjacent to the digit of interest. To make
it compatible with our baseline DeepJanus, we converted the
digits to grey-scale images in the study of this paper. As for
the system under test, we trained the ALL-CNN [35] model
from the literature [14]. The model has 1.2M parameters and
7 convolutional layers without any dense layers, and obtained
a 95.63% accuracy on the test set.
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CIFAR-10. Another standard benchmark for image classifica-
tion tasks is divided into 10 classes of different objects [34]
and split into 50, 000 training images and 10, 000 testing
images. Although the images are small (32 × 32 pixels),
they contain visual complexities and variations of real-world
objects, which increases the difficulty of requiring models to
extract meaningful features from low-resolution images. We
adopt Vision Tranformer [36] with 86M parameters as the
DL model under test and retrain it with the CIFAR-10 dataset,
achieving a 97.47% accuracy on the test set.

C. Baseline

To assess the relevance of our approach, in RQ4 we compare
MIMICRY against DeepJanus, a state-of-the-art test generator
for the exploration of the frontier of behaviors of DL systems.
DeepJanus uses a multi-objective search-based algorithm to
mutate the control points of a model of the inputs, to generate
pairs of inputs that are close to each other, yet produce
different behaviors of the DL system [5]. The input model
representation is obtained through a vectorization operation,
which produces a sequence of control points that can be
adjusted to achieve slight modifications. The input image
can then be reconstructed through a rasterization operation.
Our comparison focused on the MNIST, FashionMNIST, and
SVHN datasets, as DeepJanus’s model representation supports
these benchmarks. For CIFAR-10, DeepJanus is not appli-
cable since an appropriate input model is not available for
such a feature-rich dataset, and cannot be created with the
adopted vectorization-rasterization approach, as noted by its
authors [5], [26].

D. Configurations

For MNIST, FashionMNIST, and SVHN, we trained a
StyleGAN network, following the training configurations and
guidelines of the original paper [37]. To monitor the model’s
performance during training, we used the Fréchet Inception
Distance (FID) metric [38] The final FID score obtained is
0.91 for MNIST, 2.34 for FashionMNIST and 4.2 for SVHN,
which is in line the original paper [37]. For CIFAR-10, we
used pre-trained StyleGAN networks available in the litera-
ture [29] Concerning our distance function and its thresholds,
we used ϵSSIM > 95% and ϵl2 = 0.2. These values were
selected based on a trial run on 100 seeds to find best-found
frontier pairs under 1,000 StyleMix operations.

E. Procedure

Our approach requires generating seeds using StyleGAN
by sampling latent vectors, which must be inspected for
validity before use. For each dataset, we generated 2, 000
seeds, uniformly distributed across classes, ensuring they were
correctly classified by the DL models under test. Then, two
authors performed a screening task by independently manually
assessing the validity and label preservation of the seeds. Each
author verified the class of each generated seed (e.g., which
digit, piece of clothing, or object is present in each seed
image). We retained only the seeds for which there was a

consensus, resulting in our final pool of seeds for the study:
200 seeds per dataset, of which 100 partial-confidence (Cp)
seeds and 100 full-confidence (Cf ) seeds. In the former case,
the seeds are classified correctly, but with less than 100%
confidence, i.e., the softmax output is less than 1.0 for the
target class. In the latter case, the seeds are classified correctly
with 100% confidence, i.e., the softmax output is 1.0 for the
target class. The distinction between Cp and Cf allows us
to evaluate MIMICRY in different scenarios. Particularly, the
second configuration is used to assess MIMICRY in the worst
case, where no guidance by the DL model is available and the
seeds are far from the boundary.

We applied MIMICRY to all validated seeds to reduce the
inherent randomness of the approach. Specifically, we ran
each configuration of MIMICRY twice, using both partial-
confidence and full-confidence seeds. We used a budget of
100 iterations for all datasets. This upper bound value was
experimentally found adequate for convergence of MIMICRY.
Concerning RQ2, we evaluate validity and label preservation
by employing human assessors. The questionnaire contains 36
generated inputs for each dataset, and 144 in total, where 90
(36+18×3 from 4 datasets) misclassified inputs are produced
by MIMICRY and 54 (18 × 3 from 3 datasets) produced by
DeepJanus as the baseline. For each human accessor, a certain
amount of images are randomly sampled from the generated
input set to ensure equal opportunities among different con-
figurations and inputs. We conducted a questionnaire where
17 participants were recruited from personal contacts using
convenience sampling [39] and were asked to identify the class
or to indicate if it was unrecognizable. This method allowed
us to assess both the validity (if the response was a correct
class) and label preservation (if the response matches the
intended label). Concerning RQ5, we evaluate DeepJanus on
MNIST, SVHN, and FashionMNIST datasets since for CIFAR-
10 a model of the input for CIFAR-10 is not available. For
each dataset, we executed DeepJanus using a budget of 1, 000
iterations, using the default settings of the original paper.

F. Metrics

Concerning RQ1, we evaluate the effectiveness of the test
generation technique by computing the number of boundary
inputs found within a given number of mutation iterations
across different configurations. For our DL systems, a failure
corresponds to a misclassification. For RQ2, we present the
validity, label- and target-preservation rates based on the
human evaluation study. For RQ3, we assess which layers of
StyleGAN most frequently trigger misbehaviors when used
by MIMICRY’s mutation operator. About RQ4, we evaluate
the performance of MIMICRY by computing by the number of
detected boundary inputs over the number of iterations. For
the comparison with the baseline in RQ5, we use the number
of boundary inputs as in RQ1. Moreover, we assess label
coverage, computed as the number of target labels for which
MIMICRY successfully finds boundary inputs divided by the
total number of misclassified labels. This metric helps evaluate
the output diversity of the boundary inputs generated by the
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TABLE I
RQ1 : EFFECTIVENESS (TOP) AND RQ2 : VALIDITY AND LABEL PRESERVATION RESULTS (BOTTOM).

Cp: Partial Confidence Cf : Full Confidence

No Target Class Preservation Preserve Target Class No Target Class Preservation Preserve Target Class

within Dc w/out Dc within Dc w/out Dc within Dc w/out Dc within Dc w/out Dc

Effectiveness
MNIST 85 13 52 30 24 40 1 7
F-MNIST 80 19 81 18 3 74 0 17
SVHN 85 15 83 17 1 70 0 13
CIFAR-10 70 30 71 29 0 100 0 93

Output Validity
MNIST 0.98 / 0.97 1.00 / 0.80 0.98 / 0.95 0.86 / 0.62 0.97 / 0.93 0.98 / 0.93 1.00 / 1.00 0.87 / 0.87
F-MNIST 0.97 / 0.77 0.90 / 0.57 0.91 / 0.72 0.95 / 0.68 1.00 / 1.00 0.92 / 0.66 - / - 0.90 / 0.65
SVHN 0.78 / 0.68 0.90 / 0.80 0.71 / 0.63 0.78 / 0.78 0.75 / 0.75 0.77 / 0.69 - / - 0.81 / 0.71
CIFAR-10 0.82 / 0.67 0.72 / 0.49 0.80 / 0.61 0.84 / 0.39 - / - 0.60 / 0.40 - / - 0.62 / 0.39
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Fig. 5. RQ3: Efficiency results.

techniques, indicating whether the boundary inputs sampled
on the frontier span multiple classes or are limited to a few.
Finally, we evaluate the validity and label preservation of these
boundary inputs.

G. Results

1) RQ1 (Effectiveness): Table I (top) shows the average
effectiveness results, for each dataset. The results are pre-
sented separately for partial-confidence seeds (Cp) and full-
confidence seeds (Cf ). The results are further divided into
boundary inputs that achieve target preservation (i.e., the
misclassification pertains to the target seed) and that respect
the distance metric constraints Dc (Section III-C). Overall,
MIMICRY is able to find a high number of boundary inputs
across all configurations. For partial-confidence seeds and
target class preservation, MIMICRY found boundary inputs
for 98% of the seeds (MNIST), 99% of the seeds (Fash-
ionMNIST), and 100% of the seeds (SVHN and CIFAR-10),
with the large majority being within the distance constraints
Dc. Without target class preservation, the magnitude of the
boundary inputs within the distance constraints Dc changes
substantially only for MNIST (-38%). For full-confidence
seeds, MIMICRY was successful even if it was more chal-
lenging to find boundary inputs within the given budget. This
was expected, as these seeds are farther from the boundary. In

fact, most inputs are not within the distance constraints Dc,
which means that image manipulations of higher magnitude
are necessary to cause failures.

RQ1: MIMICRY is able to find boundary inputs
for all datasets and configurations, both for partial-
confidence seeds (≈ 97%) and full-confidence seeds
(≈ 55%).

2) RQ2 (Output Validity): Table I (bottom) presents the
validity and label preservation rate for the different config-
urations of MIMICRY. For all datasets, the boundary inputs
exhibited a high validity rate, particularly for MNIST and
FashionMNIST. Although the scores for SVHN and CIFAR-10
are slightly lower, they still exceed 60%, suggesting that the
inputs from these datasets are more challenging. A significant
portion of the boundary inputs are also label-preserving, which
highlights the high quality of the boundary inputs produced
by MIMICRY. In fact, the non-preservation of the target
class generally enhances both validity and label preservation,
especially with Dc pairs, highlighting the importance of these
factors in evaluating DL effectiveness.
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Fig. 6. RQ4: Layers usage for StyleMix.

RQ2: The boundary inputs by MIMICRY exhibit a
high validity rate (≈ 81%) and label preservation rate
(≈ 65%), according to human assessors.

3) RQ3 (Performance): Figure 5 presents boxplots illus-
trating the number of iterations required to identify boundary
inputs. For the sake of space, we discuss only two config-
urations for each dataset: partial-confidence seeds and full-
confidence seeds that achieve target preservation. Other config-
urations exhibit similar distributions. Our results indicate that
partial-confidence configurations consistently identify bound-
ary inputs more quickly than full-confidence configurations.
This outcome is expected because full-confidence seeds are
typically distant from the boundary, requiring MIMICRY to
use the entire budget for identifying the boundary.

RQ3: MIMICRY is notably faster at exposing bound-
ary inputs for partial-confidence seeds compared to
full-confidence seeds, with performance improvements
ranging from 5× on CIFAR-10 to 19× on MNIST.

4) RQ4 (Configuration): Figure 6 illustrates the frequency
of layers used for style mixing among the seeds for which
the boundary is successfully found. The results are presented
for each dataset separately. For clarity, we include only two

configurations for each dataset: partial-confidence seeds and
full-confidence seeds. Other configurations are omitted as they
exhibit similar distributions. For partial-confidence seeds, there
is a broad distribution of layers used for style mixing, with the
finest-grained layers (e.g., 6 and 7) frequently chosen to mini-
mize changes. In contrast, for full-confidence seeds, MIMICRY
employs a combination of layers [3, 4, 5, 6], indicating that
a mix of both fine and middle layers is required to achieve
boundary inputs.

RQ4: MIMICRY mostly employs the finest-grained
layers to generate boundary inputs for partial-
confidence seeds. In contrast, full-confidence seeds
require a combination of both fine and middle layers
to generate boundary inputs.

5) RQ5 (Comparison): We use the best configurations
found in the previous research questions, i.e., MIMICRY
without target preservation, to perform a comparison with
DeepJanus. Table II presents, for all datasets, the results of
the comparison. The table shows, for each tool, the number
of boundary inputs, the label coverage, as well as the validity
and label preservation results from the human study. Overall,
MIMICRY generated more boundary inputs than DeepJanus
(+157% for MNIST, +100% for FashionMNIST, and +452%
for SVHN). These inputs contribute to covering a larger
boundary with other classes, as indicated by the label coverage
(+30% for MNIST, +3% for FashionMNIST, and +248% for
SVHN). More details about the label coverage among the
different configurations of MIMICRY are available in Figure 7.
It is notable that for the CIFAR-10, the label coverage rate
for each source class is very high (over 90%). However, the
label coverage for MIMICRY with Cf and target preservation
performs poorly due to a lack of samples. Concerning validity
and label preservation, both techniques score good results,
with the main difference being for FashionMNIST, where
MIMICRY achieves a validity rate 37% higher.

RQ5: MIMICRY generates more boundary inputs than
DeepJanus. These boundary inputs are characterized
by higher quality in terms of validity, label preserva-
tion rate, and label coverage across all datasets.

H. Threats to Validity
1) Internal validity: We conducted comparisons between

all variants of MIMICRY and the baseline using the same
experimental framework and pool of seeds. Additionally, re-
garding the StyleGAN models, we utilized pre-trained models
available from the literature [24]. When not available, we
trained the StyleGAN models using the scripts available in the
replication package of the original paper [24], as it is difficult
to envision less threat-prone approaches. Our manual analysis
of the seeds also represents a potential threat to validity. Our
human evaluation of the outputs generated using these seeds
also implicitly confirms the reliability of the initial seeds.
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TABLE II
RQ5 : COMPARISON OF MIMICRY WITH DEEPJANUS.

MIMICRY DeepJanus

Boundary Inputs Label Coverage Validity Label Preservation Boundary Inputs Label Coverage Validity Label Preservation

MNIST 162 0.64 0.98 0.95 63 0.49 0.94 0.91
FashionMNIST 176 0.74 0.78 0.69 88 0.72 0.57 0.41
SVHN 171 0.80 0.94 0.70 31 0.23 0.87 0.64
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Fig. 7. RQ5: Label Coverage.

2) External validity: The limited number of DL systems
included in our evaluation poses a threat to the generalizability
of our results. We addressed this issue by incorporating
a variety of datasets with increasing complexity and high-
performing models from related literature. We demonstrated
the usefulness of the original StyleGAN architecture [24];
however, other style-based architectures [29], [37], [40] may
also yield promising results.

V. DISCUSSION

A. Style-Based GANs for Boundary Testing

Our experiments showed the effectiveness of style-based
GANs for boundary testing of DL systems. These networks
are typically used to generate ultra-realistic images thanks to
their high degree of control of both low-level and high-level
image characteristics. In this paper, we show how to leverage
this property for testing, specifically for boundary analysis of
DL systems, an important yet challenging open problem in the
literature.

Our approach depends on the quality of the style-based
GANs, i.e., on their capability to constitute a correct reference
of the DL system’s data distribution, once trained. Well-trained
GANs better capture the relevant structures in a distribution,
thus producing image seeds that are of high quality (i.e.,
valid in-distribution inputs for the DL system under test). In

contrast, GANs with poor training or bugs might produce
invalid inputs. In our study, we trained robust GANs that
demonstrated a high source seed validity rate upon manual
inspection. Additionally, we conducted a human evaluation of
the outputs generated using these seeds. The high validity rate
of these outputs implicitly validates the initial seeds, due to the
minimal targeted modifications introduced by our approach.

Our findings highlight the substantial advantages of using
style-based GANs for boundary testing. These GANs facilitate
low-level modifications of the DNN’s input seeds while main-
taining the validity and relevance of the tests to the original
input domain. A key benefit of MIMICRY is its model- and
system-agnostic nature. It requires only a black-box access to
the training dataset, without necessitating any modifications to
the DL system being tested.

B. MIMICRY’s Configurations

All configurations of MIMICRY demonstrate consistent ef-
fectiveness across all iterations. However, our findings indicate
that selecting the optimal style vector depends on specific
seeds and their associated DL system’s confidence. We evalu-
ated four distinct image classifiers from various domains (e.g.,
digits, clothes). MIMICRY maintained its effectiveness across
different datasets and configurations. We attribute this to its
direct manipulation of the image’s style within the latent space,
which also positively impacts boundary testing. Quite impor-
tantly, MIMICRY generates boundary inputs while retaining the
essential properties of validity and label preservation, ensuring
that the tests fulfill their intended purpose.

The comparison with DeepJanus has produced positive
results for MIMICRY, demonstrating competitive performance
across all metrics. One significant aspect is the balance be-
tween exploration and exploitation. DeepJanus is designed
to prioritize exploration within its fitness function, whereas
MIMICRY adopts a more targeted approach by requiring a
target seed. Despite this difference, our results show that
MIMICRY achieves superior label coverage, contributing to
both the exploration and exploitation of the label space of
failures. This is due to the explicit control that MIMICRY has
over the target boundary, in contrast to DeepJanus.

VI. RELATED WORK

The three main families of DL test generation are model-
based input representation, raw input manipulation, and latent
space manipulation. We overview the main propositions next.
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A. Model-based Input Manipulation

Model Input Manipulation (MIM) techniques leverage a
model of the input domain to generate test inputs, similar to
conventional model-driven engineering practices that uphold
compliance with domain-specific constraints [5], [20], [41]–
[44]. The manipulation occurs on the model, which is subse-
quently reconverted to the original format [45].

MIM techniques operate within a restricted input space,
specifically the control parameters of the model representation.
These techniques enhance the realism of the produced outputs
by implementing appropriate model constraints.

Several search-based MIM approaches have been applied
to DL-based image classifiers. DeepHyperion [28] uses the
MAP-Elites Illumination Search algorithm [46] to explore the
feature space of the input domain and identify misbehavior-
inducing features. DeepMetis [47] a MIM approach that gen-
erates inputs that behave correctly on original DL models and
misbehave on mutants obtained through injection of realistic
faults [4], which can be useful to enhance the mutation killing
ability of a test set.

DeepJanus [5] is the MIM approach most related to this
work since it performs boundary testing of DL systems.
Therefore, we performed an explicit empirical comparison
with the DeepJanus approach in this work.

However, a significant limitation of MIM approaches is
their reliance on the availability of a high-quality model
representation for the specific input domain, which is manually
crafted [48]. Unlike MIM techniques, MIMICRY leverages
a generative network to learn the distribution of the input
domain. This approach is largely automated and requires no
labeling or other cost, except for hyperparameter tuning. This
characteristics of MIMICRY broadens its applicability across
various domains.

B. Raw Input Manipulation

Raw input manipulation (RIM) techniques involve modify-
ing an image’s original pixel space to create a new input by
perturbing the pixel values.

DeepXplore [8] employs various techniques, including oc-
clusion, light manipulation, and blackout to cause misbe-
haviors. These perturbations are intended to improve neuron
coverage within the DL system. DLFuzz [49] introduces
noise to the seed image to increase the likelihood of system
misbehavior. DLFuzz generates adversarial inputs for DL
systems without relying on cross-referencing other similar DL
systems or manual labeling. DeepTest [7] alters the images
using synthetic affine transformation from the computer vision
domain, such as blurring and brightness adjustments, to create
simulated rain/fog effects.

RIM techniques aim to produce minimal, often imper-
ceptible changes to original to trigger misbehaviors in the
DL system. However, since RIM techniques are limited to
modifying existing inputs, they cannot thoroughly explore the
input domain and its boundaries, while generative DL models
can sample novel inputs from the data distribution. Moreover,

the manipulated images might not always represent real-
world functional inputs, e.g., images with artificial artifacts
at the corners or unnatural lighting conditions generated by
DeepXplore. Consequently, such techniques are more suitable
for security and robustness testing rather than for functional
testing [48].

Differently, our technique targets functional testing, specifi-
cally boundary value analysis of DL systems. We achieve this
by using style-mixing operations in the latent space to generate
inputs beyond the original datasets, while remaining within the
same distribution.

C. Latent Space Manipulation

Latent space manipulation techniques generate new inputs
by learning and reconstructing the underlying distribution
of the input data. The most commonly used techniques are
Variational Autoencoders (VAE) [50], [51] and Generative
Adversarial Networks (GAN) [21], [22].

Sinvad [13] constructs the input space using VAE and
navigates the latent space by adding a random value sampled
from a normal distribution to a single element of the latent
vector. Sinvad aims to explore the latent space by maximizing
either the probability of misbehaviors, estimated from the
softmax layer output, or by surprise coverage [11].

The Feature Perturbations technique [15], [16] involves in-
jecting perturbations into the output of the generative model’s
first layers, which represent high-level features of images.
These perturbations can affect various characteristics of the
image, such as shape, location, texture, or color. DeepRoad [6]
generates driving images using Generative Adversarial Net-
works (GANs) for image-to-image translation.

CIT4DNN [14] combines VAE and combinatorial test-
ing [52]. This allows the systematic exploration and generation
of diverse and infrequent input datasets. CIT4DNN partitions
latent spaces to create test sets that contain a wide range
of feature combinations and rare occurrences. A recently
proposed technique, Instance Space Analysis, aims to pinpoint
the critical features of test scenarios that impact the detection
of unsafe behavior [20].

Differently from such latent space manipulation techniques,
we leverage the style-mixing operations in the latent space
for boundary value analysis of DL systems to characterize the
frontier of behaviors instead of simply revealing misbehaviors.
Our style-mix latent operations for functional testing represent
a new contribution to the state of the art.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present and evaluate MIMICRY, a testing
tool designed for deep learning (DL) systems. MIMICRY
generates boundary inputs through mutations derived from
style-based generative adversarial networks. The core concept
of MIMICRY lies in the systematic modification of the latent
code of a generated class element within the latent space,
enabling precise assessment of the modifications’ impacts in
the image space.

10



We conducted evaluations of MIMICRY on DL image
classifiers. Our empirical studies demonstrate that MIMICRY
is highly effective at generating boundary inputs for seeds,
regardless of their proximity to the boundary. It achieves this
quickly while maintaining high validity and label preservation
rates. Furthermore, our results indicate that MIMICRY signif-
icantly outperforms a baseline model-level approach in terms
of effectiveness, while also preserving a high validity rate for
failing test inputs.

Future work will involve extending the comparison to
additional benchmarks and exploring the applicability of Style-
GAN inversion techniques, such as Pivotal Tuning for Latent-
based Editing of Real Images (PTI). This will enable us to
invert labeled data from the test dataset back into latent space
representations.
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