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Abstract—Simulation-based testing is widely used to assess
the reliability of Autonomous Driving Systems (ADS), but its
effectiveness is limited by the operational design domain (ODD)
conditions available in such simulators. To address this limitation,
in this work, we explore the integration of generative artificial
intelligence techniques with physics-based simulators to enhance
ADS system-level testing. Our study evaluates the effectiveness
and computational overhead of three generative strategies based
on diffusion models, namely instruction-editing, inpainting, and
inpainting with refinement. Specifically, we assess these tech-
niques’ capabilities to produce augmented simulator-generated
images of driving scenarios representing new ODDs. We employ
a novel automated detector for invalid inputs based on semantic
segmentation to ensure semantic preservation and realism of the
neural generated images. We then perform system-level testing
to evaluate the ADS’s generalization ability to newly synthesized
ODDs. Our findings show that diffusion models help increase the
ODD coverage for system-level testing of ADS. Our automated
semantic validator achieved a percentage of false positives as
low as 3%, retaining the correctness and quality of the generated
images for testing. Our approach successfully identified new ADS
system failures before real-world testing.

I. INTRODUCTION

Before deploying Autonomous Driving Systems (ADS) on
public roads, extensive simulation-based testing [1] is per-
formed to ensure these systems can effectively handle the
scenarios of the Operational Design Domain (ODD), which
defines the specific conditions under which an ADS is de-
signed to operate [2], [3]. Current driving simulators are based
on game engines (e.g., Unity [4] or Unreal [5]) and enable
testing using a predefined set of ODD conditions, the default
being typically sunny weather. Simulators are often limited in
the range of ODD they represent, as they primarily focus on
photorealistic rendering and accurate physics representation.
Thus, they fail to cover many ODD scenarios that are instead
critical for testing ADS. This limitation hinders the effective-
ness of system-level testing of ADS [6], [7], particularly for
edge cases beyond the predefined ODD conditions available
in these simulators.

Enhancing the ODD coverage in a simulator typically
requires developing new conditions within the simulator en-
gine, a task that demands significant domain knowledge and
development effort. Moreover, even if it were feasible to im-
prove the simulation platform, recent research highlighted the
problem of the fidelity gap between the virtual environments
represented in the simulators and the real world [8].

Generative Artificial Intelligence (GenAI) solutions have
been employed to improve the extend the range of ODD
conditions for ADS testing, by improving both the variety and
realism of simulated weather conditions [8]–[13]. However,
approaches such as DeepRoad [12] and TACTICS [11] use
GenAI techniques that require mining a training corpus of
ODD data and focus on offline model-level testing of individ-
ual Deep Neural Networks (DNNs) against different neural-
generated images. Furthermore, these approaches have not
been evaluated for system-level testing, which is crucial for
assessing the safety requirements of autonomous driving [14].
On the other hand, closed-loop data-driven approaches, such as
DriveGAN [15], use GenAI to produce a continuous stream
of driving images. However, their primary limitations lie in
their dependence on learned physics models, which may be
inaccurate or unrealistic. Consequently, these approaches are
mainly useful for training data augmentation, rather than for
testing. The lack of robust physics engines leads to inconsistent
physical behaviors and interactions, making it impossible to
simulate system-level failures such as collisions or vehicles
driving off-road as such scenarios are not available in the
training data.

In this paper, we evaluate three different augmentation
strategies based on state-of-the-art pre-trained diffusion mod-
els [16]–[18]: Instruction-editing, Inpainting, and Inpainting
with Refinement, used to expand the set of ODD conditions
in a driving simulator via real-time image-to-image transla-
tion. Unlike existing GenAI techniques that require explicit
training, diffusion models only necessitate of an input image
and conditioning inputs that represent the transformation to
be applied (e.g., a textual description). As the output of
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diffusion models can be affected by artifacts, distortions,
or inconsistencies that can undermine the effectiveness of
ADS testing [19], our methodology includes an automated
validation technique based on image semantics to assess the
correctness and reliability of the generated images.

While diffusion models can generate diverse images for test-
ing, their direct use in a simulator faces two main challenges.
First, diffusion models exhibit high inference times, in the
order of seconds per image, which makes it impractical for
real-time applications. Second, simulation platforms typically
generate multiple image frames per second, but diffusion
models lack the rendering consistency required for a coher-
ent simulation, resulting in consecutive frames that may be
drastically different. To address these limitations, our approach
leverages knowledge distillation [20] by integrating diffusion
models with a cycle-consistent network [21] to ensure domain
generation consistency and high throughput.

In our experiments, our approach generated images ex-
hibiting a validity rate between 52% and 99%, with the best
approach being Inpainting. When used as a rendering engine
within the simulator to produce 108 simulations using various
ODD conditions, our approach was able to reveal a total of
600 failures across four lane-keeping ADS, 20 times more
than using the ODD conditions available in the simulator, at
the cost of a simulation time increase of 2%.

Our paper makes the following contributions:
Approach. A system-level testing technique for ADS that
combines different GenAI (e.g., diffusion models and cycle-
consistent generative networks) as a rendering engine and
physics-based simulators for effective failure detection. This
novel combination of techniques achieves high ODD diversity,
realism, semantic preservation, temporal consistency, and high
throughput, while the simulator’s underlying physics ensures
accurate representation. Our approach is integrated into the
Udacity simulator for self-driving cars and will be publicly
available. To the best of our knowledge, this is the first solution
that uses GenAI techniques within a driving simulator to
improve the ODD coverage of DNN-based ADS.
Evaluation. An empirical study concerning the validity and
realism of neural-generated driving images, and their usage
for system-level testing of ADS.
Dataset. A dataset of more than 1 million pair of images
and 52 OOD conditions, based on the Udacity simulator for
self-driving cars. This dataset can be used to evaluate the
generalizability of ADS to novel environmental conditions as
well as the performance of failure prediction systems.

II. BACKGROUND

A. System Level Testing of ADS

ADS must adhere to specific regulations that establish
safety requirements essential for public acceptance and large-
scale deployment. Particularly, standards such as the ISO/PAS
21448 Safety of the Intended Function (SOTIF) standard [22]
or the UN Regulation No 157 (2021/389) concerning the
approval of vehicles with regards to Automated Lane Keeping
Systems [23], demand extensive coverage of the Operational

Design Domain (ODD) conditions. The ODD should describe
the conditions under which the automated vehicle is intended
to drive autonomously, such as roadway types; geographic
area; speed range; environmental conditions (weather as well
as day/night time); and other domain constraints. In this
work, we focus on ODD conditions that visually impact the
environment and the DNNs of the ADS. Specifically, we
used the conditions described in the standard ISO 34505 [2]
“Scenery Elements (Section 9)” and “Environmental Condi-
tions (Section 10)”, some examples being different geographic
areas (e.g., European cities or coastal areas) and weather
conditions (e.g., cloudy or rainy weather as well as day/night).

The safe deployment of ADS necessitates a thorough explo-
ration of the ODDs through simulated and in-field testing. Due
to the significant time, space, and cost constraints associated
with in-field testing (i.e., real-world testing with physical
vehicles), simulation-based testing has become the standard
option for system-level testing of ADS [8]. Driving simulators
can generate data and conditions that closely mimic those
encountered in real-world scenarios [24]. To test the limits
of the ADS, a simulator produces a vast amount of highly
consistent data through synthetic input generation using a
3D image rendering engine. However, a comprehensive test
dataset must not only be statistically significant in volume
but also adequately represent the diverse ODD conditions.
This is a major limitation of current driving simulators, which
often have restricted ODD coverage, which is essential for
comprehensive testing and fault exposure [1].

B. Vision Generative AI

Generative AI models have significantly advanced various
vision tasks by enabling the creation of realistic and diverse
data [25].

In this paper, we consider techniques that allow the control
of the content of the augmentation. Particularly, we experiment
with Diffusion Models [26], a class of Vision Generative AI
techniques that achieved state-of-the-art performance in image
generation tasks [27]. These models operate by reversing a
gradual noising process, starting from a simple distribution
and iteratively refining it to generate high-quality images. For
example, given an initial noisy image, the model denoises it
step-by-step to produce a coherent image. Different randomly
sampled noise seeds lead to variations in the generated images,
allowing these models to create diverse and unique images.

Conditional Diffusion Models allow further control over
image generation using different types of input conditioning.
For instance, Stable Diffusion [18] and DALL-E [28] use
single conditioning through a textual description to guide the
denoising process, as a form of requirement specification (e.g.,
“generate a sunny driving image scenario.”). This guidance
concept aims to make the generated images closely align
with the provided conditions or descriptions. Other techniques
use multiple conditioning. For example, InstructPix2Pix [16]
takes as input an image and a textual editing instruction
that describes the modification to be applied to the image,
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whereas ControlNet [29] facilitates the addition of arbitrary
conditioning inputs to a pre-trained Stable Diffusion model.

III. SOLUTION

Our methodology seamlessly integrates into the standard
system-level testing loop without requiring major modifica-
tions to the simulator or the ADS. The key idea lies in
manipulating the environment perceived by the ADS through
diffusion-based augmentation, while the actual driving com-
mands are executed on the original simulator. Our methodol-
ogy consists of three main phases, namely Domain Augmen-
tation, Semantic Validation, and Knowledge Distillation.

The first phase (Domain Augmentation) involves intercept-
ing the images captured by the car cameras. These images
are then processed using diffusion models to generate a
new image depicting the same road structure but a different
ODD condition (such as background and weather conditions).
The main reason is that a well-trained lane-keeping ADS
should focus on foreground features that characterize the road
scenario, instead of features in the background [30].

The second phase (Semantic Validation) involves a val-
idation step of the generated image to assess the validity
and semantic and label preservation between the original
and the augmented image. Particularly, our approach aims to
generate road images devoid of visual artifacts, distortions,
inconsistencies, or hallucinations and that are semantically
equivalent to the original one in terms of geometrical features
(e.g., direction, lanes, length, width). The semantic validation
process is fundamental to maintaining the validity of the aug-
mentation process, as significant changes to the road structure
introduced during augmentation could cause the ADS to make
decisions based on misleading information. Our approach
addresses visual and semantic consistency, whereas physics-
related factors such as changes in friction and traction (e.g.,
due to snowy conditions) are not considered.

The third and last phase (Knowledge Distillation) enables
the rendering of new ODDs online, during the execution of
a simulation. The diffusion models used in the first phase
for domain augmentation are not suitable for online usage,
because they are too slow at inference time. Hence, we train
a faster cycle-consistent generative neural network [21], using
the output images produced by the first phase as the training
set. At each simulation step, this network transforms the
input image to reproduce the domain augmentation of the
diffusion models. If the augmented image passes the semantic
validation, it is forwarded to the ADS for processing. The
ADS processes the image and predicts the appropriate driving
commands based on the augmented ODD. The predicted driv-
ing commands are sent to the simulator, which actuates them,
completing the feedback loop. The simulator then modifies
the virtual environment and provides the vehicle with updated
sensor data, thus preparing for the next iteration of the testing
loop. In the next sections, we describe each step of each phase
in more detail.

Instruction-editing
Diffusion Model

Input Image

"Change season
to Autumn"

30 denoising steps

High Text Guidance Scale 

Examples
Schema

High Image Guidance Scale 

Fig. 1: Instruction-edited Domain Augmentation Strategy.

A. Domain Augmentation

We analyze three alternative controllable augmentation
strategies based on categories of diffusion models to introduce
environmental ODD changes in driving images: Instruction-
editing, Inpainting, and Inpainting with Refinement.
Instruction-editing. This category takes two inputs: the image
to be modified and an editing instruction (e.g., “add trees” or
“change season to autumn”), and produces an output image
with the editing instruction applied. Instances of Instruction-
editing models are InstructPix2Pix [16] and SDEdit [17].
Instruction-editing models can be configured with two pa-
rameters, image and text guidance scale, that represent how
much the two inputs influence the output generation. The
first parameter image dictates how much of the structure
and spatial details of the input image should be preserved.
The text guidance scale determines the strength to use when
applying the editing instruction. Figure 1 reports a schema
of the strategy (top) and how the two guidance scales can
influence the augmentation process (bottom). Specifically, we
can observe that an excessively high text guidance scale can
compromise the road semantics, while overly increasing the
image guidance scale too much may result in the insufficient
application of the desired edit.
Inpainting. This category employs a text-to-image diffusion
model that performs inpainting. Instances of Inpainting models
are Stable Diffusion [18], DALL-E [28], and Pixart-α [31].

We customized the inpainting pipeline to preserve the parts
of the images related to the driving actions (i.e., the road),
while the rest of the image can be “repainted” by the diffusion
model. We identify the road automatically by using a semantic
mask that describes which pixels of the image belong to
the semantic class road. In this study, the semantic mask is
provided directly by the simulator, ensuring perfect semantic
segmentation.

The inpainting text-to-image model takes three inputs: an
input image, a mask, and a textual prompt that describes the
desired image. The model generates an image by preserving
only the content selected by the mask while guiding the entire
image to align as closely as possible with the textual prompt.
In our setting, this process ensures that only the parts outside
the road are replaced with new content, thus maintaining the
shape of the road since it is not modified by the inpainting
strategy. Note that the road in the inpainted image is the same
as the one in the input image. For instance, in Figure 2 (top

3



Fig. 2: Inpainting and Inpainting with Refinement Domain Augmentation Strategies.

left), the surrounding environment has been transformed, while
the road structure, markings, and position are unchanged.
Inpainting with Refinement. This model category adds a step
to the Inpainting strategy by performing a refinement of the
entire image. The goal is to improve the visual coherence
between the preserved and the generated parts of the inpainted
image. While the traditional denoising process of diffusion
models starts from fully noised images, the refinement step
starts from a partially noised (inpainted) image. This makes
the refined image more similar to the initial, inpainted one.
The noise level removed during denoising determines the
difference between the inpainted and final image; higher noise
removal leads to greater differences.

The refinement step employs a different type of diffusion
model compared to the inpainting step. This is because image
generation with a text-to-image model (used during inpainting)
can be guided using only text. This is sufficient for the
inpainting step as the road semantics are ensured by the
semantic mask that preserves the road. However, during the
refinement step, the whole image is modified, and thus the
road shape might change. For this reason, in our study,
we evaluated a category of diffusion model with conditional
controls that allow to better guide the augmentation process,
such as ControlNet [29] with Canny edge [32] conditioning,
or T2I Adapter [33]. This model takes three inputs: the edge
map derived from the original input image (captured in the
simulator), a partially noisy inpainted image, and a textual
prompt that describes the desired image. The model takes the
noisy image and refines it using both the edge map and the
textual prompt. The edge map ensures that the refined image
retains edge structures similar to the original, while the textual
prompt directs the overall content.

Figure 2 provides an overview of the Inpainting with
Refinement process (top) and it reports some augmentations
obtained with different levels of denoising and guidance scales
for the same input image (bottom). A stronger refinement
process (more denoising) results in significant differences from
the initial image, but can also lead to inferior preservation of
road semantics. Similarly, higher edge guidance scale values

preserve road semantics more, while lower values encourage
greater freedom, diversity, and realism in the generated image.

B. Semantic Validation

Diffusion model categories aim to produce visually appeal-
ing outputs, but they may still generate invalid outputs, failing
to preserve road semantics during augmentation, for instance,
by widening the road or introducing new intersections. To
mitigate this, our methodology includes a semantic validation
step to minimize incorrect augmentations.

The main objective of this phase is to check that the
generated augmentation is characterized by a road that is
semantically equivalent to the road in the image captured in
the simulator. To this aim, we filter out augmentations that
do not preserve the original road semantics using the metric
OC-TSS (One Class - Targeted Semantic Segmentation) [19].

OC-TSS is a similarity metric that measures semantic details
and structural differences between two images by focusing on
a single, task-relevant class within the semantic masks pre-
dicted by a fine-tuned segmentation model. This metric ranges
from 0 to 1, where 1 indicates perfect semantic equivalence
between the original and augmented images, and 0 suggests
complete dissimilarity. OC-TSS has been applied in previous
work [19] to assess the accuracy of Generative AI models in
translating images across domains for a lane-keeping ADS. In
line with this study, our analysis focuses on the semantic class
“road”, as road lanes represent the relevant image character-
istics for a lane-keeping ADS. Differently from the original
work, we employ a U-Net architecture [34] for semantic
segmentation, rather than the SegFormer architecture [35]. Our
choice of U-Net is motivated by its computational efficiency
with respect to SegFormer.

Figure 3 illustrates how our semantic validation process
distinguishes between semantically valid and invalid augmen-
tations. The top row of Figure 3 (a) shows a semantically
valid augmentation of the input image (Figure 3 (b), while the
bottom row reports an incorrect augmentation (Figure 3 (c)
of the same input image. Specifically, the augmentation in the
bottom figure is considered semantically invalid because the
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Road Segmentation

> t (= 0.9) ? 

OC-TSS = 0.732

INVALID
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b)

c)

OC-TSS = 0.983

> t (= 0.9) ? 
VALID

Semantic Similarity

Semantic Similarity

Image

Fig. 3: Semantic Validation using OC-TSS [19].

road’s orientation changes to the left instead of continuing
straight as in the original image. The middle column presents
the semantic segmentation masks computed by the U-Net
model for each image. In these masks, the road is represented
in white, and the background is represented in black. The
final step of our process, represented in the right column,
involves measuring the distance between the semantic masks
of the augmented and original images, with the differences
highlighted in pink. Augmentations with a similarity score be-
low a threshold are discarded. Higher threshold values ensure
validity, but they may discard valid images and increase the
time required to generate a semantically valid augmentation.
On the other hand, lower thresholds could compromise testing
by allowing too many invalid images, potentially undermining
the test results. In this study, the threshold is determined
based on empirical observations to balance filtering out invalid
augmentations and retaining enough variability for thorough
ADS testing (Section IV-A).

C. Knowledge Distillation

The final phase involves creating a fast and consistent neural
rendering engine in the simulator, using outputs from the
previous phases. The diffusion-based models, while effective
for diversity, are computationally expensive and can produce
potentially inconsistent augmentations, which may be prob-
lematic for the temporal coherence of a simulation.

Therefore, we adopt a technique known as knowledge
distillation [20], where a smaller model (student) is trained
to replicate the behavior of a larger, more complex model
(teacher, i.e., the diffusion model). Particularly, for the student
model, we use a cycle-consistent generative network [21] that
can map images from the original domain (virtual images from
the simulator) to another domain (augmented images by the
diffusion models). Instances of these architectures are Cycle-
GAN [21] or UNIT [36]. This technique is widely used for
image-to-image translation tasks, including the autonomous
driving domain, for its low computational overhead, making it
suitable for runtime usage in simulators [8], [12]. Moreover,
training a separate student model for each domain allows
effective learning of the key aspects of the teacher model’s
output, enhancing rendering consistency.

This strategy involves first training the cycle-consistent
network to learn the mapping between the original and aug-
mented image domains produced by the diffusion models.
This process, while computationally intensive, is performed

only once, for each domain. Then, during the online system-
level testing of the ADS, the trained cycle-consistent network
model generator translates images at runtime, i.e., during the
execution of the simulation.

An important advantage of this approach is that it does
not require collecting new data to train the model, as it
leverages existing pre-trained diffusion models. This means the
process can be easily automated and does not require human
intervention (e.g., collecting and labeling data), making it an
efficient solution for rapidly generating consistent and high-
quality domain augmentations online, during ADS simulation.

IV. EVALUATION

We carried out the evaluation of the proposed approach to
answer the following research questions:
RQ1 (semantic validity and realism): Do diffusion models
generate augmented images that are semantically valid and
realistic ODDs? How effective is the semantic validator at
detecting invalid augmentations?
RQ2 (effectiveness): How effective are augmented images in
exposing faulty system-level misbehaviors of ADS?
RQ3 (efficiency): What is the overhead introduced by diffu-
sion model techniques in simulation-based testing? Does the
knowledge-distilled model speed up computation?

The first research question aims to assess the semantic
validity of the augmentations generated by our methodology.
Specifically, the focus is on whether diffusion models can
transform images while preserving road semantics, and if
the proposed semantic validator can effectively identify roads
with different semantics. The second research question aims
to check the utility of the proposed approach in identifying
potential faults in ADS that may not be detected using the
standard simulator alone. The third research question evaluates
the computational cost of our approach, which is crucial for
understanding scalability in real-world ADS testing scenarios.

A. Experimental Setup

Simulation Platform. We used the Udacity simulator with
behavioral cloning ADS models [37], a widely adopted plat-
form in the literature [38], [39]. The simulator supports
various closed-loop tracks (divided into 40 sectors) for test-
ing behavioral cloning ADS, including a predefined set of
ODDs, such as different times of day/night and three weather
conditions (rainy, snowy, and foggy) [40]. We extended the
simulator with the generation of semantic segmentation masks
for vehicle camera images to accurately identify the regions of
the images for inpainting. Also, we developed a synchronous
simulation mechanism that pauses the simulation during image
augmentation and resumes it once the new image is generated.
This ensures that the augmentation process is transparent to
the system-level testing process.
Lane-keeping ADS. We evaluated four different lane-keeping
DNN-based ADS as systems under test to assess the perfor-
mance of the proposed methodology. In particular, we selected
Nvidia DAVE-2 [41], Chauffeur [42] and Epoch [43] since

5



TABLE I: ODD Domains.

Category Domains

Weathers cloudy, dust storm, foggy, lightnings, overcast, smoke, sunny

Seasons autumn, spring, summer, winter

Times of day afternoon, dawn, dusk, evening, morning, night, sunset

Locations coast, desert, forest, lake, mountain, plains, rivers, rural, seaside

Cities beijing, berlin, chicago, el cairo, london, new york, paris, rome,
san francisco, sidney, tokyo, toronto

Countries australia, brazil, canada, china, england, france, germany, italy,
japan, mexico, morocco, usa

they have been often used in multiple testing works [40], [44]–
[46]. Finally, we also included a recent architecture based on
Vision Transformer (ViT-based) [47] that achieved state-of-
the-art performance in lane-keeping tasks.
Operational Design Domains Selection. We selected ODDs
encompassing diverse conditions from existing standards (see
Section II-A). We filtered out domains that do not preserve
the driving action when applied for domain augmentation. For
example, when converting a sunny road image to a snowy
condition, it might require the prediction of a different steering
angle that accounts for the different friction, despite the road
being the same. Overall, we identified 6 domain categories
and 52 distinct label-preserving domains (Table I).

To provide further insight into the difficulty of these do-
mains, we measured the challenge they pose by computing
the distance between augmented domains and the training data.
This was done using the reconstruction error of a Variational
Autoencoder (VAE) [48] to categorize the domains into three
clusters: in-distribution domains (closer to the training distri-
bution, e.g., familiar domain or road conditions), in-between
domains (moderately different from the training distribution),
and out-of-distribution domains (significantly different from
the training distribution). In-distribution domains are useful
for testing the robustness of the ADS by simulating scenarios
similar to those the model has previously encountered. On the
other hand, out-of-distribution domains challenge the ADS’s
ability to generalize to new, unfamiliar conditions that are not
present or rarely available in training data.

To determine the classification of these domains, we first
trained the VAE to reconstruct the training data. The lower the
reconstruction error, the closer the domain is to the training
distribution. We generated 2, 000 augmented images for each
domain using the three domain augmentation strategies and
measured the reconstruction error for each. The domains
were then sorted by reconstruction error and categorized as
in-distribution, in-between, or out-of-distribution. Finally, we
selected three domains that were categorized in the same group
for all three augmentation techniques. The final selections were
as follows: for in-distribution domains, we included sunny,
summer, and afternoon conditions; for in-between domains, we
chose autumn, desert, and winter; and for out-of-distribution
domains, we selected dust storm, forest, and night scenarios.
Diffusion Models Calibration. We used three state-of-the-

art pre-trained diffusion models for our categories: Instruct-
Pix2Pix [16] for Instruction-editing, Stable Diffusion [18]
for Inpainting, and ControlNet [29] with Canny edge [32]
conditioning for Inpainting with Refinement. We fine-tuned the
hyperparameters of each considered model before answering
the research questions. We prioritized image fidelity, adherence
to instructions, and preservation of essential road features,
which will be evaluated in our first research question.

Particularly, we configured all diffusion models to use the
UNIPC multistep scheduler [49] with 30 inference denoising
steps as noise sampling strategy. We chose UNIPC because
it focuses on generating good images with a few denoising
steps. In our exploratory experiments, a higher number of steps
did not lead to significantly better images but only introduced
additional computational overhead.

For InstructPix2Pix, we set the image guidance scale to
2 and the text guidance scale to 10. These settings were
found to be a good balance between image and instruction
inputs, preserving key features from both sources. In the Stable
Diffusion inpainting pipeline, we used a text guidance scale
of 10, which maintained a high level of control over the
generated content without compromising the quality of the
inpainting process. ControlNet refining was configured with
a text guidance scale of 10 and a noise level of 50%. This
configuration preserved the structural integrity of the road
while still allowing for meaningful and diverse augmentations.
Higher noise levels were found to risk excessive alteration of
images and potential loss of essential road semantics.
Semantic Validator Configuration. To determine an appro-
priate threshold for the OC-TSS metric, we collected 150
images from the simulator of different road semantics, which
were manually assigned to three categories: images of straight
roads, right turns, and left turns. We computed the OC-
TSS for all images and evaluated the OC-TSS similarity
between images within the same category and across different
categories. We aimed for a threshold that deems images within
the same category as semantically similar and those in different
categories as distinct, giving higher priority to filtering out
invalid images that belong to another category, rather than
including as many valid images from the same category as
possible. Correspondingly, after manual inspection of a sample
of included/excluded images, we chose a conservative thresh-
old of 0.9, which minimizes the inclusion of semantically
incorrect augmentations, while at the same time avoiding the
exclusion of too many valid images. Thus, augmentations with
an OC-TSS ≥ 0.9 are considered semantically consistent with
the original road layout by our automated semantic validator,
while those below 0.9 are considered invalid and discarded.
Knowledge Distillation Configuration. We used CycleGAN
as the student model to distill knowledge from the pre-trained
diffusion models. The CycleGAN architecture was adjusted
based on recommendations [50] to reduce droplet artifacts.
We trained one CycleGAN for each of the nine selected ODDs
and the three augmentation strategies, resulting in 27 models.
Each model was trained for 10 epochs using 2, 000 pair of
images (from the simulator and augmented), with checkpoints
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saved at the end of every epoch. The best checkpoint was
selected according to the Fréchet Inception Distance [51], a
metric that measures the distance between two sets of images
(the ones generated by CycleGAN and the ones generated by
the diffusion models) by comparing their feature distributions.
Hardware and Software. All experiments were executed on
a server equipped with an AMD 5950X CPU, 64 GB RAM,
and two Nvidia 4090 GPUs (24 GB VRAM). The software
environment includes Python 3.10, CUDA 12.1 for GPU
acceleration, Pytorch 2.3.0 for the ADS implementations, and
Huggingface diffusers 0.27.2 for the diffusion models.

Overall, our evaluation required over 600 GPU hours and
involved over 1.5 million image pairs generated across 52
ODD domains using 3 augmentation techniques. This process
included filtering the domains to keep the experiment manage-
able within a reasonable timeframe as training 27 CycleGAN
models for 10 epochs each, required more than 100 GPU
hours.

B. Metrics

Semantic Validator Effectiveness. We consider valid aug-
mentations as the positive class and invalid augmentations
as the negative class. Correspondingly, a True (resp. False)
Positive TP (resp. FP) is an image regarded as a valid
augmentation by our semantic validator, which is valid (resp.
invalid) according to the ground truth. Similarly, a True (resp.
False) Negative TN (resp. FN) is an image regarded as an
invalid augmentation by our semantic validator, which is
invalid (resp. valid) according to the ground truth. To assess
the effectiveness of our semantic validation methodology, we
utilize the confusion matrix [[TP, FP], [FN, TN]], either with
absolute or percentage values.
Testing Effectiveness. We utilize two categories of metrics to
evaluate ADS performance at the system level: one for mea-
suring misbehavior and another for assessing driving quality.
The first category quantifies errors directly, including incidents
where the vehicle deviates from lane boundaries (Out-of-
Bounds, OOB) or collides with obstacles (C). To capture the
spatial distribution of errors, we use Failure Track Coverage
(FTC), which identifies the percentage of track sectors where
misbehaviors occur. This metric indicates whether errors are
concentrated in specific challenging areas or distributed across
the entire track. In this way, we can determine if errors
primarily arise from the complexity of specific track sections
or are induced more broadly by the new domain.

For driving quality, we assess two key metrics relative
to the ADS’s nominal behavior. The first is Relative Cross-
Track Error (RCTE), which measures the ratio of the average
distance from the lane center in the test domain compared to
the nominal domain. An RCTE value greater than 1 indicates
degraded performance (the vehicle is closer to the edge of the
road), while a value less than 1 indicates improved position
accuracy (the vehicle is closer to the center of the road).
The second metric is Relative Steering Jerk (RSJ), which
calculates the difference in the rate of change of steering
angle between the test and nominal domains. Higher RSJ

TABLE II: RQ1: Semantic Validity Confusion Matrix.

Valid Augmentation Invalid Augmentation

Predicted
Valid Augmentation

48
(55%)

3
(3%)

Predicted
Invalid Augmentation

16
(18%)

20
(23%)

values suggest more abrupt steering adjustments, while lower
values indicate smoother driving. Although these metrics do
not directly indicate errors, they provide valuable insights into
potential performance degradation caused by specific domains.
Computational Overhead. We evaluate the computational
overhead of our domain augmentation strategies by measuring
the average time to generate the augmented image and the
average time required to complete our experiments, including
both the augmentation process and the subsequent testing
of the ADS. We compare these timings against a baseline
where no augmentation is applied, allowing us to quantify the
additional computational load introduced by each strategy.

C. RQ1: Semantic Validity and Realism

We conducted two surveys with human assessors to evaluate
the semantic validity of the images generated by the diffusion
models, as well as their degree of realism. We recruited
participants from Amazon Mechanical Turk (MTurk) and per-
sonal contacts using convenience sampling [52]. Each MTurk
participant answered 200 questions, while the others answered
100 questions. Across the two studies, we collected 5, 300
responses, of which only 4, 500 were retained due to failures
in answering the control questions of our surveys. Ultimately,
we retained responses from 35 participants, of which 10 from
MTurk and 25 from personal contacts.

1) Semantic Validity: Participants were shown two ran-
domly ordered images and asked to determine whether the
images represented the same road semantics, focusing on
aspects like road shape and turning direction. For this study,
we randomly selected 36 pairs of images for each of the three
domain augmentation strategies (Instruction-editing, Inpaint-
ing, and Inpainting with Refinement). This resulted in a total of
108 pairs, with each strategy contributing 18 semantically valid
transformations and 18 invalid transformations, according to
our semantic validator. Additionally, we included two control
questions to filter out low-quality responses: one where the
road was the same and one where the road was entirely dif-
ferent. In total, the first questionnaire contained 110 questions,
of which two were used for quality checks.

We considered a road to be semantically equal (or different)
when at least 2

3 of the participants agreed on the outcome.
Overall, participants reached a consensus on 80.6% of the
pairs (87 out of 108). Our study revealed a positive correlation
between OC-TSS similarity scores and user opinions, with a
Pearson correlation coefficient of 0.63 (p-value=2.63 · 10−13).

Table II presents the results as a confusion matrix, where
columns represent human participants judgments and rows
show the semantic validator outcomes, with valid augmenta-
tions considered as the positive class. Our semantic validator

7



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Realism Rating

Simulator

Instruction-edited

Inpainting

Inpainting with 
 Refining

Real-World

Cl
as

s

Fig. 4: RQ1: Realism.

failed to filter out invalid generations in only 3% of cases
(3 FPs), while it rejected 18% of the valid transformations
(16 FNs). The former error can affect the effectiveness of
the proposed methodology as it could lead to testing ADS
on images with different semantics, potentially compromising
the validity of ADS testing. The latter, while less severe, may
increase the time required to find valid augmentations.

2) GenAI Realism: In the second study, we evaluated the
realism of the augmented images. Participants were presented
with individual images and asked to rate their realism on
a 5-point scale, ranging from 1 (not realistic) to 5 (very
realistic). For this study, we selected 18 semantically valid
transformations for each of the three domain augmentation
strategies. We also included 18 images from the simulator
and 18 real-world driving images for a better comparison.
In total, the second questionnaire contained 90 questions.
We computed the average realism score for each category of
images (augmented, simulator, and real-world) based on the
participants’ ratings.

Figure 4 shows the results. The images generated by In-
painting and Inpainting with Refinement strategies are per-
ceived as more realistic compared to those generated by the
Instruction-editing strategy. The Mann-Whitney U test with an
alpha of 0.05 indicates statistically significant differences in
the realism scores between the strategies, with a medium effect
size (0.5 and 0.6, respectively). Additionally, Inpainting with
Refinement was found to produce more realistic images than
Inpainting (p-value=0.02), with a small effect size (0.17).

RQ1: The output of our automated semantic validator
matched human judgment to a large extent, with only
3% of the augmented images incorrectly regarded as
valid by the validator (and 18% valid augmentations
incorrectly discarded by the validator). Inpainting
with Refinement is the augmentation approach that
produces the most realistic images.

D. RQ2: Effectiveness

This experiment evaluates the effectiveness of the domain
augmentation approaches in discovering errors in lane-keeping
ADS. The experiment aims to determine how many errors
each approach could find and the nature of these errors. For
each strategy, we ran 2, 000 ADS simulation steps for each
augmented domain, collecting the failures and driving quality

metrics (Section IV-B). As a baseline, we used the predefined
set of domains available within the simulator (Section IV-A).

Table III reports the results of the experiments with the
augmented domains generated by our methodology and Ta-
ble IV shows the results with the domains available within the
simulator. The findings indicate that the proposed methodology
can identify misbehaviors across all four ADS. As expected,
domains that are more similar to the training conditions (in-
distribution) showed fewer errors and lower failure track cov-
erage compared to in-between and out-of-distribution domains,
reflecting the increased difficulty due to domain shifts. How-
ever, even for in-distribution domains, our approach revealed
failures, ranging from a total of 6 OOB incidents (DAVE-2) to
5 collisions and 22 OOB incidents (ViT-based). The maximum
failure track coverage with in-distribution domains was 25%.
The failure track coverage increased as the domains deviated
further from the training set. For example, when ADS Epoch
was tested with in-between domains, new errors were iden-
tified in up to 75% of the sectors. With out-of-distribution
domains, failure track coverage increased to 87.5%.

Simulated domains revealed errors in up to 17.5% of
the track, while augmented domains generated errors in up
to 87.5% of different sectors of the track. However, in-
distribution domains generated by the augmentation strategies
did not reveal more misbehaviors than the simulator domains.
In contrast, in-between and out-of-distribution domains high-
lighted more errors, particularly with the Instruction-editing
strategy. It is important to note that while in-between and
out-of-distribution domains represent testing scenarios that
the ADS has seen more seldom or was less trained for, the
generated roads are semantically validated and sufficiently
representative to be considered valid test scenarios.

Additionally, we found that the Instruction-editing strategy
was the most effective across all three domain sets (in-
distribution, in-between, and out-of-distribution). This effec-
tiveness can likely be attributed to two main factors. First, the
domains generated using instruction-editing were perceived
as less realistic in our human study (Section IV-C). Despite
being semantically validated by our automated validator, these
less realistic images may still mislead the ADS into making
incorrect decisions. Second, the average distance from these
domains to the training domains was higher compared to
those generated by the other two domain augmentation strate-
gies. Specifically, the average reconstruction errors for the
Instruction-editing strategy ranged from 0.074 (in-distribution)
to 0.218 (out-of-distribution), while the errors for the Inpaint-
ing strategy ranged from 0.067 to 0.078, and for the Inpainting
with Refinement strategy, they ranged from 0.070 to 0.082.

We observed different behaviors between ADS models
based on Convolutional DNNs (DAVE-2, Chauffeur, and
Epoch) and the one based on Vision Transformer. For the
first ADSs, our augmented domains generally led to lower
RSJ, indicating smoother steering responses. In contrast, the
ViT-based ADS showed an increase in RSJ as the domain
distance increased, suggesting more abrupt steering adjust-
ments in response to unfamiliar scenarios. These differences
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TABLE III: RQ2: Effectiveness results for system-level testing on augmented domains.

In-distribution domains In-between domains Out-of-distribution domains

C OOB FTC RCTE RSJ C OOB FTC RCTE RSJ C OOB FTC RCTE RSJ

DAVE-2
Instruction-editing 0 4 5.0% 1.13 0.85 10 19 45.0% 1.62 0.61 8 66 82.5% 1.90 0.70
Inpainting 0 2 2.5% 1.10 1.06 0 0 0.0% 1.06 0.95 3 7 12.5% 1.21 1.06
Inpainting with Refinement 0 0 0.0% 0.75 2.37 0 0 0.0% 0.90 0.68 0 4 5.0% 0.96 0.80

Chauffeur
Instruction-editing 0 7 12.5% 1.32 0.68 4 19 35.0% 1.60 0.63 7 67 70.0% 1.60 0.57
Inpainting 0 0 0.0% 0.93 0.82 1 2 7.5% 1.23 0.80 1 7 12.5% 1.05 0.80
Inpainting with Refinement 1 3 7.5% 1.03 0.71 0 0 0.0% 0.93 0.68 4 6 20.0% 1.39 0.80

Epoch
Instruction-editing 3 11 25.0% 2.24 0.67 3 54 75.0% 2.28 0.52 10 70 87.5% 2.18 0.41
Inpainting 0 3 7.5% 1.62 0.86 0 5 7.5% 1.65 0.71 3 30 52.5% 1.98 0.71
Inpainting with Refinement 0 8 12.5% 1.55 0.67 4 2 12.5% 1.71 0.67 4 10 15.0% 1.80 0.62

ViT-based
Instruction-editing 2 8 12.5% 1.15 1.30 2 13 27.5% 1.23 2.45 3 21 45.0% 1.77 3.40
Inpainting 1 6 12.5% 1.21 1.74 1 15 25.0% 1.21 1.85 0 10 17.5% 1.07 2.02
Inpainting with Refinement 2 8 12.5% 1.05 1.79 2 12 25.0% 1.17 1.77 2 20 22.5% 1.02 1.02

TABLE IV: RQ2: Effectiveness results for system-level testing
on domains available in the simulator.

Simulator Domains

C OOB FTC RCTE RSJ

DAVE-2 1 6 12.5% 1.19 0.96
Chauffeur 2 9 17.5% 1.20 0.99
Epoch 0 5 10.0% 1.68 1.01
ViT-based 1 7 17.5% 1.21 1.22

can likely be attributed to how these two types of neural
network architectures process data. Convolutional DNNs, with
their hierarchical structure and localized receptive fields, tend
to focus on local features, which may allow for more stable
and incremental responses. In contrast, ViTs, which utilize
global attention mechanisms, can capture broader contextual
information but may also be more sensitive to domain shifts,
leading to more pronounced reactions to unfamiliar data.

RQ2: The proposed augmentation technique has been
able to expose failures of four existing ADS models,
even in domains that are close to the training one.
It represents a valuable complement to the execution
of tests in domains supported by the simulator, as it
was capable of discovering failures in sectors that the
simulator deemed failure-free.

E. RQ3: Efficiency

In this experiment, we assessed the overhead introduced by
domain augmentation strategies, particularly focusing on the
impact of large diffusion models and the potential efficiency
gains from a knowledge-distilled model.

Table V presents the results from testing DAVE-2, with
similar results observed for other lane-keeping ADS systems.
A test run of DAVE-2, consisting of 2, 000 simulation steps
without augmentation, took approximately 15.7 minutes (about
471.0ms per simulation step). DAVE-2 required only 1.2ms
per prediction, while the remaining time was consumed by
infrastructure tasks such as communication between the sim-

TABLE V: RQ3: Performance Overhead.

Augmentation Time
(ms)

Testing Run Time
(min)

Baseline (no augmentation) 15.7± 0.0
Instruction-editing 894.7± 0.8 76.9± 5.1
Inpainting 1245.2± 25.7 53.2± 1.2
Inpainting with Refinement 2172.6± 29.1 74.1± 1.7
Knowledge Distillation 12.3± 0.7 16.0± 0.1

ulator and agent, image processing, persistent logging, and
simulation management. Other ADS systems showed inference
times ranging from 1.1ms to 2.0ms.

The use of diffusion models significantly increased the test
duration. Specifically, the Inpainting strategy extended the
testing time to 53.2 minutes (more than three times longer
than the baseline), while the Instruction-editing and Inpainting
with Refinement strategies increased it beyond 70 minutes
(more than four times longer). While the Instruction-editing
strategy had a faster per-augmentation time (894.7ms), its
overall testing duration was longer because a higher percentage
of semantically invalid images were detected by our semantic
validator and needed to be regenerated. Specifically, the se-
mantic validator filtered out about 48% of images augmented
by Instruction-editing, less than 1% generated by Inpainting,
and 12% generated with Inpainting with Refinement.

Conversely, the knowledge-distilled model based on a Cy-
cleGAN architecture significantly reduced the augmentation
overhead. It generated images in just 12.3ms on average, re-
sulting in a total testing time of approximately 16 minutes, less
than a 2% increase over the baseline without augmentation.

RQ3: Knowledge distillation is an essential com-
ponent of our approach for achieving high simula-
tion efficiency. The augmentation overhead without
knowledge distillation is 470% for Inpainting with
Refinement, the technique that produces more valid
and more realistic images, which becomes just 2%
with knowledge distillation.
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F. Threats to Validity

1) Internal validity: A potential internal validity threat is
our implementation of the scripts used to obtain the results,
which we tested extensively. Additionally, we utilized widely
used model architectures and simulators from the literature.
The selection of the semantic validity threshold poses another
potential threat. In this study, we adopted a conservative
threshold to minimize the inclusion of semantically invalid
images. We also assumed that domain augmentations preserve
driving action labels. Although similar work has made this
assumption [9], [11], we explicitly excluded domains that are
unlikely to maintain label integrity, such as snowy or rainy
weather, as those conditions can alter the vehicle dynamics
and driving style due to changes in friction or traction.

2) External validity: The limited number of ADS models
and driving tasks in our evaluation pose a threat to the
generalizability of our results. Our initial exploration into
the usage of diffusion models for enhancing simulation-based
testing generation has revealed promising for lane keeping,
a relevant task in autonomous driving. Future work will be
directed to study also other vision-based autonomous driving
tasks such as object detection, or end-to-end urban driving.
For the diffusion models, we also considered a limited number
of instances. To address this threat, we selected state-of-the-
art diffusion models of different types, which consistently
improved the simulator across ODDs.

V. RELATED WORK

A. Test Generation for Autonomous Driving

Existing work leverages the ability of driving simulators
to create diverse driving scenes for scenario-based testing
of ADS [53]–[55]. Generated scenarios [56] include a wide
range of driving conditions, such as sudden lane changes,
adverse weather, or interactions with other vehicles and pedes-
trians [56]. Majumdar et al. [57] propose Paracosm, a tool that
simplifies creating complex driving scenarios for systematic
testing of different ADS on simulators. Paracosm allows
users to programmatically define complex scenarios, including
road layouts, weather, and how other agents (e.g., vehicles,
pedestrians) behave. Woodlief et al. [58] propose a framework
that abstracts sensor inputs to coverage domains that account
for the spatial semantics of a scene. A new technique called
Instance Space Analysis was recently proposed to identify the
significant features of test scenarios that affect the ability to
reveal the unsafe behavior of ADS [59].

All these test generators operate within a confined range of
predefined ODD scenarios, including specific weather condi-
tions, background locations, and times of day, to maximize
the number of failures within these predefined scenarios. Our
approach seeks to considerably broaden the range of ODD
conditions beyond those currently available. Our methodology
is complementary and can be integrated with existing test gen-
erators to enhance their effectiveness with no modifications.

B. Offline Testing with Generative AI

Approaches based on GenAI primarily focus on augmenting
existing image datasets by introducing variations like adverse
weather or other visual elements [60], [61]. For example,
Zhang et al. [9] propose DeepRoad, a solution that utilizes
UNIT [36] to generate test images by altering the weather from
sunny to foggy or snowy. Similarly, Pan et al. [10] present a
method that leverages CycleGAN [21] combined with com-
puter vision techniques to synthesize different fog levels with
controllable intensity and direction in driving images. Li et
al. [11] propose TACTICS, an ADS testing framework that
uses search-based strategies to identify critical environmental
conditions and employs MUNIT [62] to reproduce these
conditions in existing driving images. Attaoui et al. [63]
combine GenAI and search-based testing to test the semantic
segmentation module of an ADS. Other approaches augment
existing test images with diffusion models [64]. For instance,
Zhao et al. [65] exploit semantic segmentation maps and a
conditional generative model, ControlNet [29], to generate
high-quality synthetic images. Xu et al. [66] employed a fine-
tuned Stable Diffusion [18] model to create traffic signs in
controllable environments.

While these approaches allow one to assess the behavior of
the ADS, they target model-level testing and only measure
the discrepancy between predicted actions and the ground
truth. In contrast, our focus is on system-level testing, and our
application of GenAI as a rendering engine within a physics-
based simulator constitutes a novel contribution to the state of
the art in ADS testing.

C. Data-driven Simulation

Neural simulators [67] consist of data-driven approaches
in which GenAI is used to produce a continuous stream
of driving images. Unlike traditional simulators [68], which
rely on game-based 3D rendering and physics models, neural
simulators employ a learnable world model [69] to represent
the environment of the ADS and target novel view synthesis
(e.g., bird-eye’s view) [70]. For instance, DriveGAN [15]
utilizes GANs to create driving scenarios with controllable
weather conditions, traffic objects, and backgrounds. Drive-
Dreamer [71] and GAIA-1 [72] employ diffusion models to
generate real-world driving scenarios. UniSim [73] is a neural
closed-loop sensor simulator that transforms a single recorded
log from an ADS into a realistic multi-sensor simulation.

While neural simulators offer a significant advancement
in generating novel and realistic training data for ADS, the
lack of a physical representation of the world limits their
applicability for testing. This deficiency can lead to inaccurate
simulations of failures, such as collisions, resulting in false
positives. Consequently, neural simulators are not the best
choice for testing ADS systems at the system level.

To address this limitation, our approach integrates neural
rendering and GenAI techniques with a physics simulator. This
combination enables effective testing with precise failure de-
termination while expanding the ODD conditions for testing.
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VI. CONCLUSIONS AND FUTURE WORK

We have generated new ODD scenarios for ADS testing
using diffusion models, prompted with instruction editing
operations. We have addressed the validity of the augmented
images by creating an automated semantic validator, which
was found to be extremely accurate in a human study, with
as few as 3% invalid images regarded incorrectly as valid.
We have considered the realism of the augmented images
by conducting a human study that indicated the Inpainting
with Refinement strategy as the technique generating the most
realistic images. We have reduced the simulation overhead
to just 2% by introducing a CycleGAN model that takes
advantage of knowledge distillation. Most importantly, we
have shown that our approach can expose ADS failures even in
domains close to the training one and in track sectors that were
deemed error-free when considering only simulator-generated
test scenarios. Future work will be devoted to exploring
additional domains and investigating alternative diffusion and
knowledge distillation models.

VII. DATA AVAILABILITY

To support reproducibility, all our data, including the code
of the diffusion models and our enhanced simulator will be
available online.
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