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Abstract—Most vulnerability detection studies focus on
datasets of vulnerabilities in C/C++ code, offering limited lan-
guage diversity. Thus, the effectiveness of deep learning methods,
including large language models (LLMs), in detecting software
vulnerabilities beyond these languages is still largely unexplored.

In this paper, we evaluate the effectiveness of LLMs in de-
tecting and classifying Common Weakness Enumerations (CWE)
using different prompt and role strategies. Our experimental
study targets six state-of-the-art pre-trained LLMs (GPT-3.5-
Turbo, GPT-4 Turbo, GPT-4o, CodeLLama-7B, CodeLLama-
13B, and Gemini 1.5 Pro) and five programming languages:
Python, C, C++, Java, and JavaScript. We compiled a multi-
language vulnerability dataset from different sources, to ensure
representativeness. Our results showed that GPT-4o achieves the
highest vulnerability detection and CWE classification scores
using a few-shot setting.

Aside from the quantitative results of our study, we devel-
oped a library called CODEGUARDIAN integrated with VSCode
which enables developers to perform LLM-assisted real-time
vulnerability analysis in real-world security scenarios. We have
evaluated CODEGUARDIAN with a user study involving 22
developers from the industry. Our study showed that, by using
CODEGUARDIAN, developers are more accurate and faster at
detecting vulnerabilities.

I. INTRODUCTION

A software vulnerability is a defect that could allow an
attacker to gain control of a software system, steal or manip-
ulate sensitive data, install a backdoor, or plant other types of
malware [1, 2, 3]. Software vulnerabilities vary in nature and
level of exploitability. Not all vulnerabilities allow attackers
to cause the same types of harm, and not all vulnerabilities
create equally severe risks. However, all vulnerabilities pose
at least some level of risk to the applications they impact, as
well as the environments that host those applications.

Software vulnerabilities may have different root causes,
spanning from the way the software is designed, problems
with the software’s source code, poor management of data,
or access control settings within the application. In this work,
we focus on classes of vulnerabilities related to bugs in the
source code. The U.S. Department of Homeland Security
reports that 90% of security incidents are caused by exploiting
security flaws and defects in the code [4]. A recent survey [5]
found that over 55% of developers struggle to identify code
vulnerabilities, indicating a lack of secure coding knowledge.
Due to the increasing frequency and severity of cybersecurity
incidents, which negatively impact end-users, businesses, and

critical infrastructure [6], identifying security vulnerabilities
within source code has become essential.

Researchers have proposed methods for the automatic de-
tection and repair of software vulnerabilities [7, 8, 9, 10,
11, 12, 13]. For instance, program analysis-based techniques
have been widely employed [14]. However, such rule-based
techniques are affected by high false positive rates and low
effectiveness in handling a large number of diverse types of
vulnerabilities [12]. In addition, they often suffer from long
response times [13], which makes them less suitable for con-
tinuous integration/development environments. Recently, Deep
Learning (DL) techniques have enabled significant progress
in vulnerability detection in the source code [15, 16, 17].
However, most DL models treat the code as linear sequences
or textual data, which limits the finding of the semantic rela-
tionship within the source code and demands the development
of more robust and efficient methods.

To address these limitations, researchers have started ex-
ploring the potential of Large Language Models (LLMs) that
are pre-trained on a large corpus of data and use advanced
natural language processing capabilities based on the trans-
former architecture [18]. LLMs have shown great results
across various natural language and software engineering
tasks [11, 18], including automated vulnerability detection and
repair [9, 10, 11]. Existing studies on vulnerability detec-
tion are executed against datasets that include vulnerabilities
pertaining to only one or two programming languages. In-
stances are the vulnerability-fixing commit dataset by Zhou
et al. [19] (C/C++), by Li et al. [20] (Java), BigVul [21]
(C/C++), SVEN [22] (Python and C/C++), Devign [23] (C),
D2A [24] (C/C++). Consequently, the capabilities of LLMs
across diverse programming languages remain largely un-
explored. Furthermore, these studies are purely quantitative,
and the potential of LLMs to assist developers in identifying
vulnerabilities has not yet been investigated.

To fill these research gaps, this paper investigates the
effectiveness of LLMs in identifying vulnerable codes across
different programming languages. To the best of our knowl-
edge, this is the first study that reports an extensive evaluation
of six state-of-the-art pre-trained LLMs (GPT-3.5-Turbo, GPT-
4 Turbo, GPT-4o, CodeLLama-7B, CodeLLama-13B, and
Gemini 1.5 Pro) in identifying the vulnerabilities pertaining
to five programming languages, namely Python, C, C++, Java,
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and JavaScript. Our study focuses on the top 25 Common
Weakness Enumeration (CWE) classes that represent the most
dangerous software weaknesses [25], for which we compiled a
dataset of vulnerable snippets from existing reference datasets.
Our study targets vulnerability detection and CWE classifica-
tion using zero-shot and few-shot approaches.

Furthermore, to investigate the industrial applicability of
LLMs in software vulnerability detection and debugging, we
have developed a VSCode extension called CODEGUARDIAN.
It integrates the LLM analyzed by our quantitative study
to allow developers to scan code dynamically while edit-
ing, providing instant feedback and enhancing secure coding
practices directly within their workflow. We have evaluated
CODEGUARDIAN with a user study involving six tasks across
the five programming languages and 22 participants with
software engineering experience in the industry and varying
levels of expertise in software security. Our qualitative analysis
revealed that by using CODEGUARDIAN, developers were
twice as accurate at CWE classification and 60% faster, thanks
to the LLM-powered engine.

Our paper makes the following contributions:
Dataset. A dataset of more than 370 manually validated vul-
nerabilities, pertaining to five programming languages, which
can support the evaluation of automated techniques in security
vulnerability detection and classification.
Evaluation. An empirical study concerning the capabilities
of six pre-trained LLMs at detecting and classifying software
vulnerabilities in five programming languages.
CODEGUARDIAN. A VSCode extension that allows develop-
ers to use LLMs to scan code for vulnerabilities while editing.
User Study. A qualitative analysis of CODEGUARDIAN with
a user study of 22 developers from our industrial partner.

II. EMPIRICAL STUDY

A. Research Questions

Our study considers the following research questions:
RQ1 (vulnerability detection): How effective are LLMs

in detecting CWEs across multiple languages? How does
effectiveness vary among different languages?

RQ2 (CWE classification): How effective are LLMs in
classifying CWEs across multiple languages? How does ef-
fective vary across languages? How does effectiveness vary
among different languages?

The first research question evaluates how accurately LLMs
perform binary classification, determining whether a code
snippet is vulnerable or not. The second research question
evaluates the accuracy of LLMs in classifying CWEs by
assigning the correct CWE ID to a given code snippet.

B. Dataset Design

The representativeness of datasets is crucial for effective
vulnerability detection and classification [26, 27]. Existing
works adopted datasets with limited language diversity, fo-
cusing primarily on C/C++ [19, 20, 21, 22, 23, 24].

In contrast, in this work, we consider software vulnerabil-
ities of five popular programming languages, namely Python,

Table I
Vulnerabilities benchmarks evaluated in this study.

Dataset # Languages # CWEs # Files

CVEFixes [28] 27 180 18,249
CWE-snippets 42 506 231,571
JVD [29] 1 N/A 12,125

C, C++, Java, and JavaScript. We compiled a dataset that inte-
grates three existing vulnerability datasets: CVEFixes, CWE-
snippets, and the JavaScript Vulnerability DataSet (JVD). Ta-
ble I shows the statistics of these datasets, including the num-
ber of languages, CWEs, and files. CVEFixes is a fix-commit
vulnerability dataset [28]. CWE-snippets is a dataset created
in collaboration with an industrial partner for this study. It
consists of numerous vulnerability snippets across multiple
programming languages. JVD is a vulnerability dataset for
JavaScript code [29]. From each dataset, we selected the top
25 CWE most dangerous software weaknesses [25] for each
of the five selected programming languages.

The maximum number of snippets per class was set to
three across all the languages due to a limited number of
vulnerable code samples available in the reference datasets
for certain CWE classes and programming languages. For
example, CWE-787 (Out-of-bounds Write) is more commonly
associated with memory-unsafe languages like C and C++,
while it is less prevalent in memory-safe languages such as
Python and Java. Consequently, we prioritized constructing a
balanced representation of vulnerabilities across all languages
in our dataset. As a result, we aimed to construct a bal-
anced representation of vulnerabilities across all languages in
our dataset. In total, we retained 378 snippets, ensuring an
equal number of vulnerable and non-vulnerable snippets for
each programming language (nPython = 38, nJava = 42,
nC++ = 36, nC = 44, and nJavaScript = 29).

C. Large Language Models

We evaluate the effectiveness of using six state-of-the-
art pre-trained LLMs. Table II shows the selected LLMs,
including their parameter size (the number of parameters for
GPT and Gemini 1.5 Pro models are not disclosed by the orga-
nizations, and therefore, we report an estimate), architecture,
input, and output token sizes. Specifically, we considered GPT-
3.5 Turbo, GPT-4 Turbo, and CodeLlama models available

Table II
LLMs evaluated for vulnerability detection and classification.

Model Parameters Architecture Input
Tokens

Output
Tokens

GPT-3.5-Turbo [30] > 100B Decoder 16,385 4,096
GPT-4 Turbo [31] > 100B Decoder 128K 4,096
GPT-4o [32] > 100B Decoder 128K 4,096
CodeLLama-7B [33] 7 B Decoder 100K 4,096
CodeLLama-13B [33] 13 B Decoder 100K 4,096
Gemini 1.5 Pro [34] > 100B Decoder 1M 8,192
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Table III
System and user prompts: VD-Sys1, VD-Sys2, VD-User1 and VD-User2 are used for vulnerability detection (RQ1). CWE-Sys1 and CWE-Sys2 are used for
system prompts 1 and 2 for CWE Classification. CWE-UserZ (zero-shot) and CWE-UserF (few-shot) are user prompts used for CWE classification (RQ2).

No. Prompt Type Prompt Template Verbalizer

VD-Sys1 System Description You are an AI binary vulnerability classifier that identifies whether the provided code is
vulnerable or not vulnerable. You should respond with either only ’vulnerable’ or ’not
vulnerable’.

N/A

VD-Sys2 System Description You are an experienced developer who knows the security vulnerability very well. N/A

VD-User1 User Description for VD Classify the following code in vulnerable or not vulnerable. Output either only ’vulnerable’ or
’not vulnerable’.

+: vulnerable
-: non-vulnerable

VD-User2 User Description for VD Now you need to identify whether a code contains a vulnerability or not. If has any potential
vulnerability, output: ’vulnerable’. Otherwise, output: ’not vulnerable’.
You must respond with either ’vulnerable’ or ’not vulnerable’ only. The code is below.

+: vulnerable
-: non-vulnerable

CWE-Sys1 System Description for CWE You are an AI vulnerability classifier that identifies CWE of a sent code, if that code has a
vulnerability.
You should respond with only one CWE. You don’t have to respond with any other information
except for one of the CWEs.

N/A

CWE-Sys2 System Description for CWE
Classification

You are an experienced developer who knows the security vulnerability very well. N/A

CWE-UserZ User Description for CWE
(zero-shot)

Classify the following code in CWE a category. Output only one CWE tag in lowercase letters.
Do not provide the full name of the CWE. Respond with ’non-vul’ if you think the code is
not vulnerable.

CWE ID

CWE-UserF User Description for CWE
Classification with the few-
shot setting

Classify the following code in a CWE category. The code should have a vulnerability that
corresponds to one of the top-25 CWEs below. Output only one CWE tag in lowercase letters.
Do not provide the full name of the CWE. Respond ’non-vul’ if you think the code is not
vulnerable. Below is the list of the top 25 CWEs:

CWE-787: Out-of-bounds Write
...
CWE-276: Incorrect Default Permissions.

CWE ID

as of June 2024, and pertaining from different organizations
such as OpenAI’s GPT-3.5-Turbo [30], GPT-4 Turbo [31] and
GPT-4o [32], as well as Meta’s CodeLLama-7B [33] and
CodeLLama-13B [33], and Google’s Gemini 1.5 Pro [34].

For the GPT models, we utilized the supporting company’s
Azure OpenAI Studio. Concerning hosting CodeLLama-7B
and CodeLLama-13B models, we employed Google Colab and
the transformers library by HuggingFace [35]. For the
Gemini 1.5 Pro model, we used the Vertex AI from the Google
Cloud Platform. Lastly, to minimize the models’ creativity and
obtain more focused, conservative, and consistent responses,
we set the temperature parameter to 0.1 for all LLMs, as done
in previous studies [36].

D. Classification Methods

Our study examined three classification approaches:

• Vulnerability Detection: A simple binary classification
method in which the LLM is tasked to categorize an input
snippet into either “vulnerable” or “not vulnerable”.

• CWE classification (zero-shot): A multi-class classifica-
tion method in which the LLM is tasked to categorize an
input snippet as pertaining to a specific CWE. The zero-
shot setting provides only a task description in natural
language as part of the input prompt.

• CWE classification (few-shot): Same multi-class classifi-
cation method as before, but using a few-shot setting in
which the LLM is provided with code examples from the
list of the top 25 CWEs [25].

E. Prompt and Input Data

LLM’s prompts were divided into two main types: system
prompt, which defines the behavior, and user prompt, which
gives instructions regarding a given task.

In our study, the final prompts combine one system prompt
with one user prompt. Table III reports all the prompts that
were used for our experiments. We considered two system
prompts: VD-Sys1 gives the LLM a detailed role for vulnera-
bility detection. In contrast, VD-Sys2 had a more generic role,
as described by Zhou et al. [37]. Similarly, we designed two
different types of user prompts to detect a vulnerability: VD-
User1 presents a concise request for vulnerability detection,
whereas VD-User2 provides more descriptive instruction as
used by Zhou et al. [37].

For the classification of CWE (RQ2), we introduced two
system prompts (CWE-Sys1 and CWE-Sys2) and two user
prompts (CWE-UserZ and CWE-UserF).

CWE-Sys1 is a similar prompt compared to VD-Sys1,
which provides a more specific role for CWE classification.
Conversely, CWE-Sys2 is the same prompt as VD-Sys2 [37].

CWE-UserZ is a user prompt for CWE classification with a
zero-shot setting (i.e., without any examples). CWE-UserF is
for CWE classification experiments with the few-shot setting,
and it has a list of the top 25 CWEs comparable to CWE-
UserZ. To form the final prompt text, we concatenated an input
code snippet with one of our described prompt strategies.
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Table IV
RQ1: Effectiveness comparison of six LLMs using four prompt configurations for CWE detection. The best scores are indicated in bold.

LLM / Prompt
VD-Sys1 + VD-User1 VD-Sys1 + VD-User2 VD-Sys2 + VD-User1 VD-Sys2 + VD-User2

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

ALL
GPT-3.5 Turbo 0.62 0.59 0.77 0.67 0.57 0.55 0.82 0.66 0.72 0.73 0.70 0.71 0.61 0.58 0.77 0.66
GPT-4 Turbo 0.81 0.81 0.82 0.81 0.79 0.73 0.92 0.81 0.79 0.75 0.87 0.81 0.78 0.71 0.93 0.81
GPT-4o 0.80 0.72 0.97 0.83 0.71 0.64 0.99 0.78 0.62 0.57 1.00 0.72 0.63 0.57 0.99 0.73
CodeLlama-7b 0.62 0.58 0.89 0.70 0.57 0.54 0.93 0.68 0.54 0.52 0.98 0.68 0.57 0.55 0.84 0.66
CodeLlama-13b 0.60 0.76 0.28 0.41 0.66 0.67 0.65 0.66 0.65 0.62 0.77 0.69 0.66 0.62 0.81 0.71
Gemini 1.5 Pro 0.80 0.79 0.83 0.81 0.69 0.65 0.84 0.73 0.75 0.71 0.83 0.77 0.68 0.62 0.97 0.75

PYTHON
GPT-3.5 Turbo 0.63 0.59 0.87 0.70 0.57 0.54 0.89 0.67 0.74 0.75 0.71 0.73 0.61 0.57 0.87 0.69
GPT-4 Turbo 0.75 0.73 0.79 0.76 0.78 0.72 0.89 0.80 0.78 0.73 0.87 0.80 0.71 0.66 0.87 0.75
GPT-4o 0.76 0.70 0.92 0.80 0.66 0.60 0.95 0.73 0.58 0.54 1.00 0.70 0.59 0.55 0.97 0.70
CodeLlama-7b 0.70 0.67 0.76 0.72 0.58 0.56 0.79 0.65 0.54 0.52 0.97 0.68 0.57 0.55 0.76 0.64
CodeLlama-13b 0.57 0.69 0.24 0.35 0.59 0.59 0.61 0.60 0.59 0.59 0.63 0.61 0.54 0.53 0.63 0.58
Gemini 1.5 Pro 0.76 0.79 0.71 0.75 0.61 0.59 0.71 0.64 0.74 0.70 0.84 0.76 0.66 0.60 0.95 0.73

C
GPT-3.5 Turbo 0.56 0.55 0.68 0.61 0.47 0.48 0.70 0.57 0.69 0.68 0.73 0.70 0.57 0.56 0.68 0.61
GPT-4 Turbo 0.83 0.78 0.91 0.84 0.75 0.67 0.98 0.80 0.80 0.75 0.89 0.81 0.78 0.70 0.98 0.82
GPT-4o 0.83 0.75 1.00 0.85 0.70 0.63 1.00 0.77 0.64 0.58 1.00 0.73 0.66 0.59 1.00 0.75
CodeLlama-7b 0.59 0.55 0.93 0.69 0.59 0.55 0.98 0.70 0.52 0.51 0.95 0.67 0.52 0.51 0.86 0.64
CodeLlama-13b 0.65 0.93 0.32 0.47 0.69 0.67 0.77 0.72 0.65 0.60 0.86 0.71 0.77 0.72 0.89 0.80
Gemini 1.5 Pro 0.77 0.73 0.86 0.79 0.70 0.67 0.80 0.73 0.78 0.79 0.77 0.78 0.73 0.65 1.00 0.79

C++
GPT-3.5 Turbo 0.60 0.57 0.75 0.65 0.60 0.56 0.86 0.68 0.72 0.71 0.75 0.73 0.61 0.59 0.75 0.66
GPT-4 Turbo 0.85 0.82 0.89 0.85 0.83 0.76 0.97 0.85 0.78 0.71 0.94 0.81 0.81 0.73 0.97 0.83
GPT-4o 0.86 0.78 1.00 0.88 0.75 0.67 1.00 0.80 0.62 0.57 1.00 0.73 0.60 0.55 1.00 0.71
CodeLlama-7b 0.61 0.57 0.92 0.70 0.57 0.54 0.94 0.69 0.57 0.54 1.00 0.70 0.60 0.56 0.94 0.70
CodeLlama-13b 0.61 0.83 0.28 0.42 0.62 0.63 0.61 0.62 0.68 0.64 0.83 0.72 0.69 0.64 0.89 0.74
Gemini 1.5 Pro 0.88 0.85 0.92 0.88 0.72 0.67 0.89 0.76 0.72 0.67 0.89 0.76 0.68 0.61 0.97 0.75

JAVASCRIPT
GPT-3.5 Turbo 0.74 0.69 0.86 0.77 0.69 0.63 0.93 0.75 0.81 0.85 0.76 0.80 0.72 0.67 0.90 0.76
GPT-4 Turbo 0.84 0.88 0.79 0.84 0.83 0.77 0.93 0.84 0.78 0.74 0.86 0.79 0.72 0.67 0.90 0.76
GPT-4o 0.67 0.61 0.97 0.75 0.66 0.59 1.00 0.74 0.53 0.52 1.00 0.68 0.53 0.52 0.97 0.67
CodeLlama-7b 0.64 0.58 0.97 0.73 0.55 0.53 0.97 0.68 0.52 0.51 1.00 0.67 0.66 0.60 0.90 0.72
CodeLlama-13b 0.53 0.57 0.28 0.37 0.69 0.72 0.62 0.67 0.66 0.64 0.72 0.68 0.62 0.58 0.86 0.69
Gemini 1.5 Pro 0.88 0.87 0.90 0.88 0.64 0.60 0.86 0.70 0.71 0.67 0.83 0.74 0.60 0.56 1.00 0.72

JAVA
GPT-3.5 Turbo 0.60 0.57 0.74 0.65 0.58 0.56 0.76 0.65 0.65 0.69 0.57 0.62 0.58 0.57 0.69 0.62
GPT-4 Turbo 0.80 0.86 0.71 0.78 0.79 0.76 0.83 0.80 0.82 0.83 0.81 0.82 0.83 0.78 0.93 0.85
GPT-4o 0.82 0.75 0.98 0.85 0.79 0.70 1.00 0.82 0.68 0.61 1.00 0.76 0.71 0.64 1.00 0.78
CodeLlama-7b 0.56 0.54 0.88 0.67 0.54 0.52 0.95 0.67 0.54 0.52 1.00 0.68 0.56 0.54 0.76 0.63
CodeLlama-13b 0.60 0.75 0.29 0.41 0.71 0.78 0.60 0.68 0.68 0.65 0.79 0.71 0.65 0.62 0.79 0.69
Gemini 1.5 Pro 0.75 0.74 0.76 0.75 0.76 0.70 0.93 0.80 0.77 0.74 0.83 0.79 0.71 0.65 0.95 0.77

F. Procedure and Metrics

To answer RQ1 and RQ2, we executed each LLM on all
code snippets of our datasets, using the prompt strategies
described in Section II-E. As evaluation metrics, we employed
four metrics, namely accuracy, recall, precision, and F1 score,
commonly used to evaluate the performance of LLMs in
vulnerability detection.

In our evaluation, valid detections/classifications were
treated as the positive class, while detection/classification aug-
mentations were considered the negative class. We accounted
for CWE hierarchical relationships, considering positive scores
for cases where the LLM predicted a code snippet labeled with
a specific CWE (e.g., CWE-77) as one of its child CWEs (e.g.,
CWE-78), according to the MITRE CWE database [38]. For
CWE classification (RQ2), we evaluated the overall perfor-
mance by macro-averaging the precision parameter across all
classes in the precision, recall, and F1 score.

Overall, in our evaluation, we computed 18,144 predictions
(6 LLMs × 378 code snippets × 8 prompt configurations),
approximately 10 hours of computing time.

III. EXPERIMENTAL RESULTS

A. RQ1 (Vulnerability detection)
Table IV (vulnerability detection) presents the effectiveness

results across the different prompt setups. Overall, GPT-
4 Turbo and GPT-4o showed the best binary classification
scores. The former achieved the highest accuracy and pre-
cision (0.81), whereas the latter showed the highest recall
(1.00) and F1 score (0.83). Changing the prompt from VD-
Sys1 to VD-Sys2 (i.e., a more general role definition) had a
positive impact only for GPT-3.5 Turbo and CodeLlama-13b,
proving detrimental for the other LLMs. Although VD-Sys2
configurations achieved the highest recall results, they only
marginally outperformed VD-Sys1 configurations and came
at the cost of reduced precision. The best balance between
detecting vulnerabilities and minimizing false positives was
achieved by the prompt configurations VD-Sys1 + VD-User1
and VD-Sys1 + VD-User2 (the first two macro-columns).
Among these, VD-Sys1 + VD-User1 was the most effective for
minimizing false alarms (GPT-4 Turbo) and detecting security
vulnerabilities (GPT-4o).

For Python, GPT-4 Turbo and GPT-4o consistently outper-
formed other models. In particular, both models achieved the
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Table V
RQ2: Effectiveness comparison of six LLMs using four prompt configurations for CWE classification. The best scores are indicated in bold.

LLM / Prompt
CWE-Sys1 + CWE-UserZ CWE-Sys2 + CWE-UserZ CWE-Sys1 + CWE-UserF CWE-Sys2 + CWE-UserF

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

ALL
GPT-3.5 Turbo 0.45 0.14 0.12 0.12 0.38 0.14 0.12 0.12 0.52 0.34 0.35 0.32 0.44 0.24 0.23 0.21
GPT-4 Turbo 0.56 0.21 0.18 0.18 0.67 0.30 0.23 0.25 0.61 0.42 0.52 0.44 0.69 0.54 0.58 0.53
GPT-4o 0.62 0.23 0.19 0.20 0.52 0.22 0.19 0.19 0.67 0.61 0.69 0.61 0.65 0.60 0.74 0.63
CodeLlama-7b 0.22 0.12 0.09 0.08 0.29 0.08 0.05 0.06 0.11 0.13 0.10 0.08 0.13 0.11 0.08 0.06
CodeLlama-13b 0.33 0.09 0.08 0.08 0.25 0.08 0.05 0.05 0.23 0.09 0.07 0.07 0.21 0.10 0.09 0.07
Gemini 1.5 Pro 0.53 0.15 0.13 0.13 0.55 0.16 0.15 0.14 0.66 0.52 0.56 0.51 0.69 0.56 0.52 0.49

PYTHON
GPT-3.5 Turbo 0.39 0.25 0.21 0.22 0.38 0.22 0.20 0.20 0.47 0.27 0.32 0.28 0.46 0.32 0.30 0.29
GPT-4 Turbo 0.61 0.43 0.42 0.40 0.66 0.42 0.35 0.36 0.51 0.53 0.54 0.48 0.59 0.59 0.55 0.52
GPT-4o 0.54 0.36 0.26 0.27 0.51 0.35 0.31 0.30 0.53 0.58 0.52 0.51 0.58 0.60 0.65 0.60
CodeLlama-7b 0.13 0.09 0.07 0.07 0.26 0.16 0.10 0.11 0.01 0.00 0.02 0.01 0.11 0.15 0.14 0.11
CodeLlama-13b 0.29 0.16 0.15 0.14 0.24 0.10 0.09 0.08 0.21 0.17 0.13 0.11 0.18 0.17 0.18 0.12
Gemini 1.5 Pro 0.54 0.24 0.21 0.20 0.50 0.25 0.22 0.22 0.67 0.61 0.64 0.58 0.71 0.72 0.62 0.62

C
GPT-3.5 Turbo 0.43 0.21 0.20 0.19 0.34 0.20 0.19 0.19 0.44 0.46 0.43 0.39 0.41 0.32 0.33 0.31
GPT-4 Turbo 0.60 0.38 0.37 0.36 0.70 0.46 0.42 0.43 0.65 0.56 0.66 0.58 0.70 0.67 0.69 0.66
GPT-4o 0.61 0.37 0.31 0.32 0.48 0.33 0.28 0.29 0.66 0.64 0.74 0.65 0.60 0.62 0.76 0.64
CodeLlama-7b 0.22 0.19 0.15 0.15 0.19 0.08 0.06 0.07 0.16 0.12 0.20 0.13 0.15 0.12 0.17 0.12
CodeLlama-13b 0.31 0.18 0.15 0.15 0.22 0.15 0.12 0.12 0.22 0.14 0.13 0.12 0.24 0.20 0.21 0.18
Gemini 1.5 Pro 0.40 0.22 0.17 0.18 0.53 0.29 0.26 0.26 0.67 0.57 0.60 0.56 0.70 0.67 0.62 0.61

C++
GPT-3.5 Turbo 0.43 0.21 0.19 0.19 0.36 0.25 0.22 0.22 0.54 0.43 0.46 0.41 0.43 0.32 0.32 0.29
GPT-4 Turbo 0.53 0.39 0.39 0.37 0.62 0.44 0.42 0.41 0.64 0.59 0.68 0.60 0.68 0.57 0.66 0.57
GPT-4o 0.65 0.42 0.39 0.39 0.51 0.40 0.38 0.36 0.65 0.61 0.75 0.64 0.60 0.59 0.76 0.62
CodeLlama-7b 0.33 0.17 0.15 0.14 0.36 0.18 0.12 0.14 0.15 0.17 0.18 0.16 0.11 0.09 0.13 0.09
CodeLlama-13b 0.29 0.18 0.15 0.15 0.25 0.12 0.11 0.10 0.26 0.22 0.20 0.19 0.24 0.27 0.22 0.19
Gemini 1.5 Pro 0.58 0.32 0.28 0.29 0.62 0.32 0.30 0.30 0.60 0.45 0.40 0.39 0.64 0.45 0.42 0.41

JAVASCRIPT
GPT-3.5 Turbo 0.53 0.25 0.26 0.24 0.47 0.27 0.27 0.25 0.64 0.42 0.50 0.44 0.50 0.41 0.40 0.37
GPT-4 Turbo 0.52 0.28 0.28 0.26 0.76 0.52 0.52 0.50 0.53 0.52 0.64 0.53 0.79 0.68 0.71 0.66
GPT-4o 0.69 0.37 0.42 0.38 0.53 0.29 0.29 0.27 0.74 0.59 0.62 0.59 0.69 0.53 0.61 0.55
CodeLlama-7b 0.21 0.16 0.20 0.17 0.36 0.25 0.25 0.22 0.14 0.13 0.19 0.13 0.14 0.05 0.12 0.06
CodeLlama-13b 0.41 0.26 0.30 0.26 0.38 0.27 0.27 0.23 0.17 0.08 0.07 0.06 0.14 0.13 0.11 0.09
Gemini 1.5 Pro 0.66 0.31 0.35 0.33 0.59 0.27 0.28 0.26 0.72 0.60 0.73 0.63 0.76 0.52 0.52 0.49

JAVA
GPT-3.5 Turbo 0.46 0.19 0.16 0.16 0.39 0.22 0.18 0.19 0.55 0.28 0.31 0.29 0.42 0.22 0.23 0.21
GPT-4 Turbo 0.51 0.29 0.23 0.25 0.63 0.42 0.35 0.37 0.68 0.49 0.55 0.50 0.69 0.48 0.52 0.48
GPT-4o 0.62 0.35 0.30 0.31 0.58 0.36 0.32 0.32 0.76 0.59 0.63 0.59 0.77 0.63 0.68 0.64
CodeLlama-7b 0.21 0.14 0.10 0.10 0.31 0.11 0.11 0.10 0.10 0.07 0.11 0.07 0.14 0.09 0.13 0.08
CodeLlama-13b 0.36 0.17 0.18 0.17 0.23 0.16 0.16 0.14 0.29 0.14 0.15 0.12 0.24 0.15 0.12 0.12
Gemini 1.5 Pro 0.51 0.28 0.26 0.26 0.51 0.29 0.26 0.26 0.65 0.59 0.69 0.59 0.65 0.52 0.60 0.52

highest F1 score of 0.80 using the VD-User1 task prompt.
Although Gemini 1.5 pro delivered the highest accuracy, its
F1 score did not reach more than 0.80 due to its lower recall
than GPT-4 Turbo and GPT-4o across all the prompt settings.

In C, GPT-4o demonstrated exceptional recall, achieving
perfect scores (1.00) across all prompt configurations. Al-
though the model size of CodeLlama-13b is considerably
smaller than other bigger models, such as GPT-4o and GPT-4
Turbo, it achieved the highest precision of 0.93. This revealed
the potential to reliably identify true positive vulnerabilities
with a smaller sized LLM.

For C++, both GPT-4 Turbo and Gemini 1.5 Pro showed a
solid performance, both achieving the highest F1 score of 0.88
using VD-Sys1 + VD-User1. Particularly, GPT-4o surpassed
other models in recall (1.0) across all prompt sets, which is
similar to C.

In JavaScript, Gemini 1.5 Pro maintained a balance between
precision (0.87) and recall (0.90) in VD-Sys1 + VD-User1;
thus, it achieved the highest F1 score (0.88). Although GPT-
4o obtained the highest recall of 1.0 using two prompt sets,
CodeLlama-7b, a model more than 10 times smaller in size,
also reached a recall of 1.0 (VD-Sys2 + VD-User1).

Lastly, regarding the result in Java, GPT-4 Turbo and GPT-
4o showed the best F1 score of 0.85 using VD-Sys1 + VD-
User1 used by GPt-4o and VD-Sys2 + VD-User2 used by
GPT-4 Turbo. While other models did not achieved satisfactory
performance, GPT-4 Turbo exhibited the highest precision
across all prompt sets. In particular, VD-Sys1 + VD-User1, the
highest precision of 0.86 (GPT-4 Turbo), was approximately
15% better than the second highest one (GPT-4o).

RQ1 (vulnerability detection): Overall, GPT-4
Turbo and GPT-4o achieved the best vulnerability
detection scores across multiple languages (F1 = 0.81
and F1 = 0.83). GPT-4 Turbo was the most effective
for minimizing false alarms. GPT-4 Turbo achieved
the highest F1 score in Python. GPT-4o demonstrated
exceptional recall, particularly in C and C++. Gemini
1.5 Pro performed the best in JavaScript. GPT-4-
based models were the most effective LLMs in Java.
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B. RQ2 (CWE classification)

Table V (CWE classification) presents the effectiveness
results across the different prompt setups. Unlike the detection
task, the scores vary significantly across configurations. Sim-
ilarly to the detection task, overall, GPT-4 Turbo and GPT-4o
showed the best multi-class classification scores. Classification
demonstrates a more difficult task than classification, as GPT-
4 Turbo achieved an F1 score of 0.53 and GPT-4o achieved
an F1 score of 0.63. The best results are obtained using the
few-shot learning technique and a generic role (CWE-Sys2 +
CWE-UserF configuration).

The effectiveness of GPT-3.5 Turbo, GPT-4 Turbo, GPT-
4o, and Gemini 1.5 Pro, improved using the few-shot learning
technique. GPT-4o’s F1 score improves by approximately
tripling in all prompt sets when switching from zero-shot to
few-shot. Similarly, GPT-4 Turbo shows substantial improve-
ments with more than double the recall and F1 score between
CWE-Sys2 + CWE-UserZ and CWE-Sys2 + CWE-UserF.

For Python, Gemini 1.5 Pro was the most effective model
using CWE-Sys2 + CWE-UserF setting. This exhibited the
highest accuracy (> 0.70) and F1 (0.62).

In C, GPT-4 Turbo obtained balanced precision and recall
(0.67 and 0.69), which resulted in the highest F1 score among
all six LLMs using the CWE-Sys2 + CWE-UserF prompt set.
Moreover, similar to the result in RQ1, GPT-4o achieved a
remarkable recall of 0.76.

For C++, GPT-4o consistently outperformed other models
across precision, recall, and F1 score, achieving the highest
F1 score (0.64) and recall (0.76) with both prompts for the
few-shot setting.

Regarding JavaScript, GPT-4 Turbo was the most effective
LLM using the CWE-Sys2 + CWE-UserF prompt configura-
tion, especially in accuracy, precision, and F1 score.

Lastly, GPT-4o demonstrated the best overall effectiveness,
with the highest F1 score (0.64) and precision (0.63) using
CWE-Sys2 + CWE-UserF. Across all languages, the few-shot
learning approach (CWE-UserF) consistently yielded better
results compared to zero-shot prompts.

RQ2 (CWE classification): GPT-4o achieved the
best vulnerability classification scores across multi-
ple languages (recall = 0.74 and F1 = 0.63).
GPT-4 Turbo showed strong performance in C and
JavaScript. Gemini 1.5 Pro outperformed in Python.
Few-shot prompts consistently outperformed zero-shot
approaches across all models and languages.

IV. CODEGUARDIAN

To help engineers understand potential vulnerabilities in
source code within their development workflow, we developed
CODEGUARDIAN, a VSCode extension that features just-in-
time LLM-powered vulnerability scanning. It supports devel-
opers by providing real-time vulnerability analysis of their
source code. More specifically, a user can highlight code

snippets in editor, and CODEGUARDIAN provides instant vul-
nerability analysis of the highlighted code. This feature helps
developers identify and address security flaws at a snippet
level. Multi-snippet or multi-file analyses are not supported.

Our study identified GPT-4 Turbo and GPT-4o as the best
models for CWE detection and classification (see Section III).
Consequently, CODEGUARDIAN provides users with the op-
tion to select these models, using Azure OpenAI Studio APIs
in the back end. The back-end system receives the highlighted
code from a user and processes it to be concatenated to a
specific prompt. After the vulnerability analysis, the results
are shown on the extension panel.

The vulnerability analysis in CODEGUARDIAN comprises
two stages: first, a vulnerability detection phase, to determine
whether the code is vulnerable or non-vulnerable, and second,
a CWE classification phase, employing a few-shot setting for
vulnerable code. Finally, the output of CODEGUARDIAN is a
detailed analysis of the CWE classification results.

V. USER STUDY

We evaluated CODEGUARDIAN by a dedicated research
question, with the main objective of providing a qualitative
assessment of LLMs for security vulnerability detection.

RQ3 (usefulness): Does CODEGUARDIAN improve devel-
opers’ accuracy and efficiency in vulnerability detection?

To address RQ3, we performed a user study within an
industrial setting, which we describe next.

A. Experiment Design
Participants and Grouping. Our experiments for the user
study involved a diverse group of participants who have
industrial software engineering experience. A total of 22
participants were selected, and we asked them to answer
our pre-questionnaire. The pre-questionnaire contains several
questions asking each participant about their experience with
software development, software development skills, knowl-
edge of cybersecurity, and familiarity with five selected pro-
gramming languages. We used a 5-point Likert scale for the
skills and knowledge questions and a nominal scale for the
rest of the questions.

Participants were divided into two groups based on their
responses: an experimental group (using CODEGUARDIAN)
and a control group (using only Internet search). Each group
consists of 11 participants. We mainly referred to each par-
ticipant’s years of experience in software development and
cybersecurity to allocate them into equally distributed groups.
Challenges Design. All participants were required to perform
a set of challenges during the experiment, which was identi-
fying possible software vulnerabilities. In this experiment, a
total of six challenges across five programming languages were
presented to both groups. Table VI shows all the code snippets
used for this user study, each snippet contains a specific
vulnerability. While five snippets were vulnerable, one of the
Python codes was used as a Placebo (i.e., not vulnerable).
Independent Variable. The independent variable was the type
of tool used by the participants: CODEGUARDIAN (LLM-
based) and Internet search/own knowledge.
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Table VI
An overview of the six challenges of our user study.

No Language Vulnerability

1 C CWE-125: Out-of-bounds Read
2 C++ CWE-78: OS Command Injection
3 Java CWE-190: Integer Overflow or Wraparound
4 JavaScript CWE-22: Path Traversal
5 Python Placebo (Not Vulnerable)
6 Python CWE-79: Cross-site Scripting

Dependent variables. The experiment for this user study has
two dependent variables: (1) challenge completion time and
(2) challenge completion accuracy.
Experimental Procedure. The first author of this study
demonstrated how to use CODEGUARDIAN exclusively for
the experimental group, taking approximately 2-3 minutes to
explain the usage instructions. Each participant then evaluated
six code snippets, identifying any vulnerabilities and naming
them or providing their CWE labels. The experimental group
used CODEGUARDIAN to address these challenges, while the
control group could only use Internet resources, except for
any LLM-based application. Participants had a maximum of
5 minutes to answer each question; if they finished early, the
session progressed to the next task. All participants worked
on a dedicated workstation to ensure consistent environmental
conditions for all participants. This workstation was an EC2
instance running Debian 12 OS, accessible to all participants
via a browser-based VNC.
Qualitative Analysis. The participants in the experimental
group were asked to answer a post-questionnaire for the quali-
tative analysis of CODEGUARDIAN. The questions focused on
assessing the user experience and effectiveness of our plugin.
Data Analysis. To compare dependent variables across the
experimental group and the control group, we analyzed the
results using the Mann-Whitney U test [39] (with α = 0.05)
and the magnitude of the differences using the rank-biserial
correlation to calculate the effect size [40]. We selected this
non-parametric test as completion time and accuracy data were
not normally distributed.

B. RQ3 (usefulness)

C. Completion Accuracy

Accuracy was calculated based on the amount of correct
answers out of all six challenges. Figure 1 visualizes the
boxplot of challenge completion accuracy for both groups.
We used a one-sided research hypothesis since we assumed
that the experimental group had a higher percentage of cor-
rect answers than the control group. Therefore, the null and
alternative hypotheses were defined as follows:

• H0: The two groups are the same in terms of the total
challenge completion accuracy.

• H1: Total challenge completion accuracy in the experi-
ment group was higher than in the control group.

The experimental group achieved a median accuracy of 1.0
(std = 0.08), while the control group had a median accuracy

Acc
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trl
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1.0

Completion Accuracy

Fig. 1. Challenge completion accuracy between the experimental group
(green) and control group (yellow).

of 0.33 (std = 0.25). This represents a 203% increase in
accuracy due to the use of CODEGUARDIAN. Additionally,
the smaller standard deviation in the experimental group’s
accuracy indicates less variation in correct answer rates among
its participants compared to the control group. This suggests
that CODEGUARDIAN not only enhanced overall accuracy but
also contributed to more consistent performance.

The results of the Mann-Whitney U test indicated a sta-
tistically significant difference between the two groups (p-
value=0.0001) with a large effect size (0.88). Thus, we reject
the null hypothesis and support the alternative hypothesis, in
which the experimental group achieved higher accuracy in
completing the challenges. This indicates that the usage of
CODEGUARDIAN had a strong positive effect on improving
the number of correct answers among participants.

D. Completion Time

We measured the total challenge completion time (min-
utes:seconds) and compared the results statistically between
the experimental and control groups. A one-sided research
hypothesis was used for this test, as we hypothesized that
the experimental group would complete all the challenges
faster than the control group. Hence, the null and alternative
hypotheses were defined as follows:

• H0: The two groups are the same in terms of the total
challenge completion time.

• H1: Total challenge completion time in the experiment
group is less than in the control group.

Figure 2 depicts the boxplots of completion time over all
the challenges. The median and standard deviation in the
experimental group were approximately 10:03 (mm:ss), and
the standard deviation was 4:29 (mm:ss). On the contrary,
the control group exhibited a mean of 24:59 (mm:ss) and a
standard deviation of 4:58 (mm:ss). Although the standard de-
viation of both groups was almost identical, the experimental
group completed all the challenges in 66% less time than the
control group on average (around 15 minutes, on average).
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Fig. 2. Challenge completion time between the experimental group (green)
and control group (yellow).

The results of the Mann-Whitney U test showed a statisti-
cally significant difference (p-value = 0.00018) with a large
effect size (0.95). Therefore, we reject the null hypothesis and
conclude that the experimental group completed the challenges
faster than the control group.

Furthermore, Figure 3 illustrates the completion time per
challenge. The median completion time in the experimental
group was less than that of the control group in all chal-
lenges. Moreover, challenge 5 had the largest difference in
performance (completion time) between the experimental and
control groups by approximately 3.5 minutes. In contrast,
challenge 2 in the experimental group showed a slight me-
dian difference compared to the control group(Mexp=2:14
and Mctl=3:20). Additionally, the lowest observed standard
deviation for the experimental group was 46 seconds (Chal-
lenge 4), whereas the highest was 1 minute and 13 seconds
(Challenge 1). Similar to the experimental group, the lowest
observed median and standard deviation for the control group
were 3:20 (Challenge 2) and 50 seconds (Challenge 6), and
the highest median and standard deviation were 5 minutes
(Challenge 1 and 6) and 1 minute and 34 seconds (Challenge
1). Although there were a few outliers in both experimental
and control groups, the gaps between the lowest and highest
standard deviations were relatively similar. Additionally, the
experimental group completed the challenges on average by
approximately 47% (Challenge 1), 44% (challenge 2), 58%
(challenge 3), 59% (challenge 4), 65% (challenge 5), and 55%
(challenge 6) faster, compared to the control group.

RQ3 (usefulness): Both statistical tests for the
challenge completion time and accuracy showed sta-
tistically significant improvements in the experimen-
tal group compared to the control group. CODE-
GUARDIAN successfully increased the speed and ac-
curacy of completing the challenges with large effect
size.
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Fig. 3. Comparison of challenge completion time per challenge between the
experimental group (green) and control group (yellow).

VI. THREATS TO VALIDITY

1) Internal validity: We compared all LLMs under iden-
tical experimental settings and on the same benchmark. Our
implementation of the testing scripts to evaluate the scores was
tested thoroughly. Moreover, we evaluated the LLMs with a
limited set of prompts.

Our user study involved 22 participants, a reasonable num-
ber due to selection constraints (i.e., prior industrial knowl-
edge, experience in software development, and cybersecurity).
Although the sample size was small, it achieved the necessary
statistical test power. The varying levels of software devel-
opment and cybersecurity expertise among our participants,
including their familiarity with programming languages and
VSCode, could have influenced our results.

To mitigate this threat, we collected relevant background
information through a pre-questionnaire and divided the par-
ticipants into two groups, striving for an equal distribution of
expertise. Also, we used the same environment for all par-
ticipants (a workstation with Debian 12 OS and a connection
speed of around 700 Mbps). However, the response time of the
GPT-4 Turbo API was occasionally slower, especially during
periods of high usage due to the limited number of regions
where the model is hosted on Azure OpenAI Studio. The
slower response times could potentially impact user experience
and the seamless integration of CODEGUARDIAN into the
development workflow. These issues were reflected in the
users’ responses to the post-questionnaire. However, it is
important to note that this is a limitation of the current hosting
infrastructure on Azure OpenAI Studio.

2) External validity: The limited number of LLMs in our
evaluation poses a threat in terms of the generalizability of
our results, especially with the availability of newer models.
Our results may not generalize or generalize differently when
considering other LLMs. To mitigate this issue, we selected
the best models available as of 05.2024. Likewise, our paper
only involved five programming languages (C, C++, Python,
Java, and JavaScript). This limited scope might not cover the
diversity of programming environments and their associated
vulnerabilities.
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Furthermore, we used a relatively small number of code
challenges in our user study. This was due to the limited
availability of our participants, most of whom were industry
professionals with constrained time. As a result, we included
only one snippet per language, with an additional placebo
snippet for Python. While this approach provided valuable
insights into the effectiveness of CODEGUARDIAN for vulner-
ability analysis, it may not fully represent all vulnerabilities
and coding scenarios encountered in real-world projects.

VII. DISCUSSION

A. Model Selection

GPT-4 Turbo often exhibited higher effectiveness compared
to the other large language models (see Section III). Although
GPT-4o is the successor to GPT-4 Turbo, it did not consistently
outperform its predecessor. GPT-4o achieved higher recall
across all prompt setups, indicating it could identify more
true positives. However, overall, GPT-4 Turbo excelled in
three specific prompt setups (VD-Sys1 + VD-User2, VD-
Sys2 + VD-User1, and VD-Sys2 + VD-User) primarily due
to GPT-4o’s lower precision. This highlights a crucial aspect
of using LLMs for vulnerability detection: newer versions or
successors do not always outperform older models. Therefore,
model selection should be based on specific security priorities.
For instance, GPT-4o is preferable for detecting all potential
vulnerabilities (i.e., reducing false negatives), whereas GPT-4
Turbo is better for minimizing false alarms. This underscores
the importance of selecting the right model based on the
particular requirements.

B. Model Performance in Each Language

Our study revealed significant variations in LLM per-
formance across different programming languages for both
vulnerability detection and CWE classification tasks. GPT-
4-based models mostly outperformed other models across
all languages. However, the strong performance of Gemini
1.5 Pro in JavaScript (vulnerability detection) and Python
(CWE classification) indicates that different models may have
strengths in particular languages or types of code analysis.
This underscores the importance of considering language-
specific performance when we select for secure code review.

C. Complexity of CWE Classification using LLM

Compared to vulnerability detection, our experiments reveal
significant challenges in CWE classification, with performance
varying across different CWE classes and model sizes. Larger
models like GPT-4o, GPT-4 Turbo, and Gemini 1.5 Pro consis-
tently outperformed smaller ones, particularly when employing
few-shot learning techniques. For instance, we observed that
recall rates of GPT-4o approximately triple using the few-shot
setting. This improvement suggests that providing relevant
examples helps models better understand the classification
task. However, using few-shot learning does not help for
smaller models, such as CodeLlama models due to the limited
parameter size restricting their ability to effectively utilize the
few-shot examples.

D. User Study
In our user study, the experimental group consistently com-

pleted challenges faster than the control group. Specifically,
our placebo code analysis (Challenge 5) showed that most
participants who used CODEGUARDIAN were able to answer
in under approximately two minutes. However, the control
group’s participants took, on average, almost all of the allotted
time (5 minutes). Thus, CODEGUARDIAN helped participants
quickly identify whether the code was vulnerable or not. We
believe that this effect is because of the two-stage processing
of CODEGUARDIAN (see Section IV).

Furthermore, in Challenge 4, the most considerable reduc-
tion in completion time was found when participants used
CODEGUARDIAN. Analysis of our pre-questionnaire revealed
that the participants were less skilled in JavaScript than in pop-
ular programming languages, such as Java or Python. Hence,
we assume that, although some participants are not familiar
with certain languages, CODEGUARDIAN enables developers
to analyze code and identify potential vulnerabilities regardless
of prior knowledge.

In addition, accuracy was notably higher in the experimental
group than in the control group. Evidence suggests that seam-
less, instant feedback and automated vulnerability analysis by
CODEGUARDIAN not only accelerate the analysis process but
also correct vulnerability identification. Despite the majority
of participants having limited knowledge of cybersecurity,
according to the pre-questionnaire, the experimental group had
an accuracy of more than 0.90 on average. In contrast, the
accuracy of the control group was less than 0.50. This indi-
cates that CODEGUARDIAN effectively supports developers in
identifying potential software vulnerabilities without having
prior cybersecurity knowledge. However, our tool requires
strict usage guidelines for junior developers, who might overly
depend on their outputs without proper verification. Indeed,
LLMs are prone to hallucinations, where the output appears
plausible but is largely incorrect.

We believe CODEGUARDIAN could have significant impli-
cations for secure software development practices. Reducing
the time and effort required to identify vulnerabilities allows
developers to conduct security checks more seamlessly within
their workflow, potentially leading to more secure code being
produced at a faster rate. The feedback from the experi-
mental group indicated that the majority of participants (>
70%) were satisfied with the speed of the vulnerability scan-
ning process. Furthermore, users particularly appreciated how
CODEGUARDIAN effectively checked potential vulnerabilities
automatically.

VIII. RELATED WORK

A. Conventional Methods and Tools
Conventional vulnerability analysis primarily relies on static

application security testing (SAST) and dynamic application
security testing (DAST). SAST examines source code without
execution and focuses on syntactic and semantic checks.
DAST evaluates applications during runtime, mimicking at-
tacker behavior [41]. However, SAST typically generates a
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high number of false positives [42], and DAST provides high
false negatives, which may miss many vulnerabilities [43].

In constrast, in this paper we focus on LLM-based ap-
proaches to vulnerability detection.

B. ML and DL in Vulnerability Detection

Recently, vulnerability detection systems have become more
adapted to learning from data to predict and identify vulner-
abilities with higher accuracy [16]. DL approaches, particu-
larly utilizing Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks, have further improved
detection accuracy without requiring feature engineering by
hand [15, 44]. Despite the advancement brought by DL, these
models treat code as linear sequences, potentially overseeing
complex semantic relationships as well as long-range depen-
dencies [45].

These approaches are challenged by the development of pre-
trained LLMs. Unlike DL approaches, LLMs such as the ones
used in this paper require no explicit training, while achieving
high scores in vulnerability detection.

C. LLMs in Vulnerability Detection and Classification

Studies have shown that fine-tuned models like BERT
and GPT outperform traditional DL models in vulnerability
detection [9, 10]. However, this approach requires substantial
computational resources and large, well-annotated datasets. In
contrast, prompt engineering leverages pre-trained LLMs with-
out any parameter update, offering a more resource-efficient
approach. Several studies have demonstrated the effectiveness
of prompt engineering, such as few-shot learning and chain-
of-thought in vulnerability detection and classification [46, 47,
48]. Specifically, Zhou et al. [37] showed that GPT-4, using
prompt engineering, outperformed fine-tuned CodeBERT.

Although prompt engineering does not require a large
dataset, the effectiveness of LLM in vulnerability detection and
classification heavily relies on the quality of the dataset used
for evaluation. Recent studies highlighted data quality issues in
existing datasets, such as poor data quality, low label accuracy,
and high data duplication rates [26, 27], causing misleading
results when measuring the effectiveness of LLMs.

Since this study focused on optimizing input prompts and
inference methods without fine-tuning, it was important to
ensure the use of a high-quality dataset. Moreover, to the
best of our knowledge, existing works are limited in terms
of language diversity, which is a characterizing element of
our work.

D. Tools Leveraging LLMs for Vulnerability Analysis

Although ChatGPT is not specifically designed to ana-
lyze and detect vulnerabilities, it has shown promising re-
sults [14, 49]. However, it is challenging to integrate ChatGPT
seamlessly into the development workflow. To address this
limitation, researchers have also developed IDE-integrated
solutions [50, 51]. Yet, current tools rely on less advanced
LLMs, potentially limiting their effectiveness compared to
state-of-the-art LLMs like GPT-4.

To this aim, we developed CODEGUARDIAN as a widely
accessible VSCode extension that makes state of the art LLM
models accessible. Our user study with industrial participants
suggested the benefits and perils of a more pervasive adoption
of LLMs for vulnerability detection beyond purely academic
studies, a novel contribution to the state of the art.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented a comprehensive study on the effec-
tiveness of large language models (LLMs) for secure code
assessment across multiple programming languages. We eval-
uated six state-of-the-art LLMs on vulnerability detection and
CWE classification tasks using our developed multi-language
vulnerability dataset. Our results demonstrate that GPT-4
Turbo and GPT-4o outperform other LLMs. Although the
GPT-4-based models often achieved the highest effectiveness
in both tasks and different programming languages, Gemini
1.5 Pro showed strong performance in JavaScript and Python.

Furthermore, we found that few-shot learning techniques
significantly improve performance, especially for CWE clas-
sification. To bridge the gap between research findings and
practical applications, we developed CODEGUARDIAN inte-
grating LLM-powered vulnerability analysis into developers’
workflows. Our user study with 22 industry-experienced de-
velopers showed that CODEGUARDIAN significantly improves
both the speed and accuracy of vulnerability detection, with
participants completing tasks 66% faster and achieving 203%
higher accuracy compared to traditional methods.

For future work, we should focus on expanding our manu-
ally annotated dataset to improve robustness and generalizabil-
ity. Exploring advanced prompt engineering methods such as
chain-of-thought and Retrieval Augmented Generation (RAG)
could further enhance LLM performance. Additionally, im-
proving CODEGUARDIAN’s user interface and incorporating
user feedback will make it a more effective tool for secure
software development.
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