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Abstract—The automated real-time recognition of unexpected
situations plays a crucial role in the safety of autonomous
vehicles, especially in unsupported and unpredictable scenarios.
This paper evaluates different Bayesian uncertainty quantifica-
tion methods from the deep learning domain for the anticipa-
tory testing of safety-critical misbehaviours during system-level
simulation-based testing. Specifically, we compute uncertainty
scores as the vehicle executes, following the intuition that high
uncertainty scores are indicative of unsupported runtime condi-
tions that can be used to distinguish safe from failure-inducing
driving behaviors. In our study, we conducted an evaluation
of the effectiveness and computational overhead associated with
two Bayesian uncertainty quantification methods, namely MC-
Dropout and Deep Ensembles, for misbehaviour avoidance. Over-
all, for three benchmarks from the Udacity simulator comprising
both out-of-distribution and unsafe conditions introduced via
mutation testing, both methods successfully detected a high
number of out-of-bounds episodes providing early warnings
several seconds in advance, outperforming two state-of-the-art
misbehaviour prediction methods based on autoencoders and
attention maps in terms of effectiveness and efficiency. Notably,
Deep Ensembles detected most misbehaviours without any false
alarms and did so even when employing a relatively small number
of models, making them computationally feasible for real-time
detection. Our findings suggest that incorporating uncertainty
quantification methods is a viable approach for building fail-safe
mechanisms in deep neural network-based autonomous vehicles.

Index Terms—autonomous vehicles testing, uncertainty quan-
tification, self-driving cars, failure prediction.

I. INTRODUCTION

Autonomous driving systems (ADS) are vehicles equipped

with sensors, cameras, radar, and artificial intelligence, used

to let them travel between destinations without human inter-

vention. For a vehicle to be qualified as fully autonomous,

it must possess the capability to autonomously navigate to a

predefined destination on roads that have not been specifically

adapted for its use [1]. The U.S. Department of Transportation,

National Highway Traffic Safety Administration (NHTSA),

has defined five standardized levels of autonomy, from driver

assistance (with the driver being responsible for safe driv-

ing) to full automation (where no human driver is required

to operate the vehicle). Several companies, such as Audi,

BMW, Ford, Google, General Motors, Tesla, Volkswagen,

and Volvo, are actively engaged in the development and

testing of autonomous vehicles. In recent years, we witnessed

advancements such as people hailing self-driving taxis or fleets

of fully automated cars with no accompanying safety drivers.

Deep neural networks (DNNs) are the driving force behind

self-driving car systems. To create autonomous vehicles, devel-

opers rely on extensive datasets harnessed in the field to train

large DNNs. This data includes images captured by cameras

on actual vehicles and other sensors, enabling the DNNs to

learn to identify road elements, traffic lights, pedestrians, and

other elements within diverse driving environments [2].

Safety assessment of ADS is a hard endeavor and exten-

sive testing is required before deployment on public roads.

To validate the safety of ADS, companies adopt a multi-

pillar approach that encompasses simulation-based testing,

test track, and real-world testing [3], [4]. Researchers have

focused primarily on the first pillar, proposing automated

testing techniques that try to expose failing conditions and

corner cases [5]–[9]. However, despite these efforts, public

acceptance of autonomous driving software in the real world

would consider the capabilities of the ADS to operate safely in

partially unknown and uncertain environments, therefore ex-

hibiting a high level of robustness also for sensor inaccuracies

and environmental uncertainties [10].

DNNs are known for their tendency to produce unexpect-

edly incorrect yet overly confident predictions, particularly in

complex environments like autonomous driving. This poses

significant safety concerns for ADS, which should possess

situational awareness capabilities to discern challenging sce-

narios, such as adverse weather conditions, which are likely

to induce errors and then prompt timely warnings to the driver

or trigger fail-safe mechanisms [11], [12].

Previous research has introduced techniques to build safety

in-service monitoring [13]–[19]. Frameworks such as SelfOr-

acle [18], DeepRoad [16], DeepGuard [20] require a data-

box access [21] and they are capable of analyzing real-

world driving data and assess whether the ADS is safe.

However, these approaches work in a black-box manner (i.e.,

they analyze the input/output data and identify anomalous

instances, without considering the internal processing by the

DNN model), which makes them less sensitive to bugs at the

model level [22] and prone to false positives/negatives, given

their external perspective on the system being tested. A recent978-1-5386-5541-2/20/$31.00 ©2024 IEEE



white-box solution uses attention maps as a proxy of the DNN

uncertainty to enhance the accuracy of failure prediction [23],

but it comes with higher costs and therefore is less suitable

for resource-constrained environments.
This paper investigates the problem of building a white-

box ADS failure predictor rooted in the uncertainty quan-

tification (UQ) methods available in the deep learning do-

main. Uncertainty quantification consists of approaches that

compute the confidence, or lack thereof, of deep learning

models in response to certain inputs [11]. UQ is widely used

for the analysis, testing, comprehension, and debugging of

DNNs [11], [12]. In this work, we evaluate two UQ methods

for failure prediction to keep the reliability of the ADS within

safety bounds. Our approach leverages uncertainty scores as

a transparent confidence estimator for the system. Online

monitoring is performed during ADS driving; the uncertainty

scores synthesized from the internals of the DNN under test are

used to automatically identify conditions in which the system

is not confident. In this paper, we show that uncertainty scores

represent important clues about the reliability of the ADS and

can be used as failure predictors. Our technique works unsu-

pervisedly as failure prediction is performed by establishing a

threshold over the uncertainty scores during nominal operating

conditions. Hence, anomalous driving conditions are detected

when the uncertainty scores increase above such threshold

within a specific detection window preceding the failure.
We have evaluated the effectiveness of uncertainty quan-

tification methods on the Udacity simulator for self-driving

cars [24], using ADS available from the literature and a diverse

set of failures induced by adverse operational scenes and

mutation testing-simulated malfunctions. More specifically, we

evaluated two uncertainty quantification methods (i.e., Monte

Carlo Dropout and Deep Ensembles) and their effectiveness

when varying their hyperparameters (e.g., number of models

or samples used for uncertainty estimation) at different confi-

dence levels. In our experiments using an existing dataset of

+70 simulations accounting for more than 250 failures [23],

UQ methods demonstrated remarkable predictive capabilities,

forecasting most failures several seconds in advance, a 6-

15% increase in failures detected compared to SelfOracle [18]

and ThirdEye [23], two state-of-the-art strategies from the

literature based on autoencoders and attention maps. Notably,

our most successful UQ method strikes a superior balance

between identifying misbehaviors and minimizing false alarms

(94% F3 score) for a relatively constrained configuration,

ensuring computational feasibility for real-time detection.
Our paper makes the following contributions:

Technique. A monitoring technique for ADS failure predic-

tion based on uncertainty quantification methods. Our

approach is publicly available as a tool [25].

Evaluation. An empirical study showing that the uncertainty

scores are a promising white-box confidence metric for

failure prediction, outperforming the black-box approach

of SelfOracle [18] and the XAI-based approach by Third-

Eye [23]. Our study also discusses the performance of our

methods for real-time prediction.

II. BACKGROUND

A. Lane-keeping ADS

ADS rely on sensor data, cameras, and GPS to perceive their

surroundings and use different processing methods to enable

predictive decisions regarding vehicle controls [1].

From an architectural point of view, ADS can be mainly di-

vided into two categories: end-to-end ADS driving models and

multi-module ADS. The former ones are based on advanced

DNNs that are trained on massive datasets of driving scenes.

The latter ones are organized into four modules: perception,

prediction, planning, and control [1]. The perception module

receives as input various sources of sensor data, such as images

of the front camera, and proximity sensor, to detect objects

in the neighborhood of the vehicle. The prediction module

predicts the trajectories of these objects, which are used by the

planning module to decide a safe route. The control module

translates the route into actual vehicle commands, e.g., a

sequence of steering angles. As of now, the two approaches

coexist [1] and it is not clear if an approach will prevail.

In this paper, we consider testing end-to-end ADS, while

we leave the investigation of multi-module ADS for future

work. Particularly, we focus on ADS that implement the

“behavioral cloning” task through imitation learning. In this

task, the vehicle learns the function of lane-keeping in an end-

to-end manner, from human-labeled driving samples in which

actuators’ values reflect the driving decisions of an expert

human driver operating a real physical vehicle, or a simulated

vehicle within a driving simulator [24]. Once trained, models

like NVIDIA’s DAVE-2 [26] are capable of predicting the

vehicle’s controls (i.e., steer, brake, acceleration).

The ability to keep the vehicle within a lane is a fundamental

component of the safe deployment of DNN-based ADS. No-

tably, the NHTSA has reported that off-road failures are not

only frequent but also come at a significant cost, exceeding

15 billion USD [27].

B. Failure Conditions for Lane-keeping ADS

In the context of NHTSA Level 4 (High Automation), a

system monitor plays a critical role in identifying emerging

functional insufficiencies. Its primary objective is to maintain a

high level of functional quality, even in extreme situations [13],

[16], [17]. When the monitor deems the current condition as

unsafe, the ADS should be designed to disengage, requesting

human intervention to take control of the vehicle, or activating

alternative fail-safe mechanisms [12].

Among the underlying causes of ADS failures, such as

instances of off-road driving, SOTIF [28] highlights the role of

both external unknown and internal uncertain conditions [28].

External unknown conditions encompass “abnormal” inputs

that represent rare, unexpected, and potentially unsupported

environmental events. These conditions typically involve sce-

narios where the ADS was not trained due to the absence of

prior knowledge (i.e., epistemic uncertainty), such as specific

road types or particular weather and lighting conditions. The

DNNs utilized within ADS may not be resilient to such
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Fig. 1: Examples of operational conditions [23]. Left: nominal

(sunny). Center: OOD (night+snow). Right: OOD (snow).

significant changes in data distribution and they are said to be

out-of-distribution (OOD, see Figure 1), potentially resulting

in system-level failures such as the ADS driving off-road.

Conversely, internal uncertain conditions pertain to misbe-

haviors within the decision component of the ADS. These

misbehaviors are often attributed to inherent bugs in the DNN

model, which may be introduced during its development phase.

Common instances of such bugs include inadequate training

data and sub-optimal choices regarding the model architecture

or training hyperparameters [22]. In the rest of the paper, we

shall use the terms failures/misbehaviours interchangeably.

C. Existing Unsupervised Failure Predictions Methods

Researchers have proposed ADS failure prediction models

that can be trained with no supervision (i.e., no knowledge

of the anomalies). Certain propositions are based on a data-

box access [21]1 to the main system [13], [18]–[20], whereas

other solutions require internal information of the systems and

therefore are considered white-box [23], [29], [30].

In this work, we chose two representative propositions from

both domains, namely SelfOracle [18] and ThirdEye [23]. We

selected these approaches as baselines because they represent

two competitive approaches, one black-box, and one white-

box, that are designed for the task of failure prediction of ADS

and use an unsupervised failure predictor to analyze inputs and

assign a suspiciousness score to them, which should be low

(below a threshold) if the inputs are supported, or high (above

a threshold) otherwise.

These approaches were developed, integrated, and exper-

imented on the Udacity simulator [24]. In this paper, we

evaluate our failure predictors in the same experimental set-

ting as previous work to mitigate the threats to the internal

validity that are possible when experimenting with tools in a

simulation environment different from the one in which they

were originally implemented. In the following of this section,

we provide further details on the two baseline approaches.

SelfOracle [18] is a black-box technique that estimates

the system confidence by analyzing the front-facing camera

images used by the ADS. SelfOracle uses an autoencoder to

reconstruct driving images and the reconstruction loss as a

measure of confidence. The autoencoder is trained to minimize

the distance between the original data and its low-dimensional

reconstruction with metrics such as the Mean Squared Error

1In the original papers, these solutions are described as black-box methods,
despite their reliance on access to the training set of the ADS. Therefore, it
would be more accurate to consider them as data-box techniques. However,
for the sake of simplicity, this paper employs the term black-box to refer to
the existing data-box techniques that are applied in a black-box manner.

(MSE). A low MSE indicates that the input has characteristics

similar to those of the training set, whereas a high MSE

indicates potentially an unsupported sample. While effective,

the main criticism of SelfOracle is that it is not informed by the

internal functioning of the DNNs responsible for controlling

the ADS, as its only connection with such DNNs is the

common training set (i.e., the same inputs are used to train

DNNs and autoencoder, which makes these or similar inputs

relatively familiar and easy to handle/reconstruct for both

DNNs/autoencoder).

To address this, ThirdEye [23] was proposed as a white-

box alternative based on the attention maps produced by

explainable artificial intelligence techniques (XAI). ThirdEye

synthesizes suspiciousness scores using different strategies

(i.e., pixel-level average, or autoencoder-based reconstruction

loss). While proved promising, such confidence scores are only

a proxy of the true uncertainty. Second, computing heatmaps

at runtime requires a non-negligible computational overhead,

which makes their application as a runtime monitoring predic-

tion system a careful, if at all possible, choice.

In this paper, we aim to ground the benefits of UQ for

misbehaviour prediction and compare them with such existing

approaches. While uncertainty quantifiers are expected to be

informative as they are based on full access to the DNN’s

internals, they are also known to be computationally expensive.

To the best of our knowledge, no empirical comparison has

been conducted concerning their effectiveness and efficiency,

which represent the core objectives of this work.

III. DEEP NEURAL NETWORKS UNCERTAINTY

QUANTIFICATION METHODS

Uncertainty quantification has gained an increasingly pivotal

role in ensuring the reliability and robustness of DNNs, espe-

cially those tasked with making critical decisions. Uncertainty

can be classified into two main types: aleatoric uncertainty

and epistemic uncertainty [31]. Aleatoric uncertainty arises

because of the random nature of the system under study,

while epistemic uncertainty stems from the lack of knowledge

of the system. Aleatoric uncertainty cannot be reduced but

can be identified and quantified. Conversely, epistemic un-

certainty can be reduced through methods such as sensitivity

analysis [32], re-training, and fine-tuning. The total predictive

uncertainty can be regarded as the sum of aleatoric and

epistemic uncertainty [11].

In the following, we summarize two popular UQ methods

proposed in the literature, namely Monte Carlo dropout and

Deep Ensembles, and their significance in supervising regres-

sion DNNs, such as the ones employed for ADS [12], [33]

A. Monte Carlo Dropout

The first considered UQ method is Monte Carlo Dropout

(MC-Dropout or MDC for short) [34]. In DNNs, dropout

layers are used at training time as a regularization method

to avoid overfitting. At testing time they are usually disabled

for efficiency reasons, and the final DNN prediction would

be deterministic. However, uncertainty-aware DNNs based on
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Fig. 2: Distribution approximated through MC-Dropout.

MCD can be enabled based on the principle of Markov Chain

Monte Carlo. When estimating predictive uncertainty with

MC-Dropout, the dropout layers of the DNN are enabled

also at inference time. Hence, predictions are no longer deter-

ministic, being dependent on which nodes/links are randomly

chosen by the network (see Figure 2). Therefore, given the

same test data point (X in the figure), the model will predict

slightly different values every time the point is processed by

the DNN, by “dropping” a selection of neurons across layers,

except for the output layer.

This method can be regarded as an approximate Bayesian

Neural Network (BNN) approach to uncertainty modeling.

The Bayesian approach defines the model’s likelihood, where

Gaussian likelihood is often assumed for regression, with ω

being the model parameters, x the input and y the output [35]:

p(y|x, ω) = N (avg(fω(x)), var(fω(x)))

MCD is used to generate samples interpreted as a prob-

ability distribution through Bayesian interpretation [34]: the

value predicted by the DNN will be the mean (avg, or µ

in Figure 2) of such probability distribution. Moreover, by

collecting multiple predictions for input, each with a different

realization of weights due to dropout layers, it is possible to

account for model uncertainty as the variance (var, or σ in

Figure 2) of the observed probability distribution.

The rationale for using MC-Dropout is that supported inputs

are expected to be characterized by low DNN uncertainties,

whereas unsupported inputs are expected to increase it [36].

While being simple to implement, MC-Dropout is an intrusive

approach, as it requires access to the existing DNN architec-

tures, for which dropout layers need to be enabled also at

testing time, or added if not already present [11].

Two hyperparameters influence the behaviour of MCD:

(i) the number of stochastic forward passes and (ii) the dropout

rate. While empirical guidelines exist [34], in this paper we

aim to assess the effectiveness of MCD as a failure predictor

for ADS testing under a large combination of these parameters.

x x x

y1 y2 yN

μ

σ

… …

Model 1 Model 2 Model N

Fig. 3: Distribution approximated through Deep Ensembles.

B. Deep Ensembles

The second considered UQ method involves another

Bayesian method called Deep Ensembles [37] (DE). DE

requires training multiple instances of the same model ar-

chitecture on the same dataset while varying other factors

to introduce randomicity. The ensemble predictions constitute

an output distribution in which the variance of the ensemble

characterizes the uncertainty (i.e., a larger variance implies

larger uncertainty). Among the strategies to build DE, we re-

call bootstrapping, using different DNN architectures in terms

of a number of layers and type of activation functions, random

initialization of parameters along with a random shuffle of

the datasets, and hyper-ensembles, in which ensembles with

different hyperparameters are combined [11].

In this paper, we rely on random initialization of deep en-

sembles, which has shown promising results for many practical

problems [11], [38]. Figure 3 provides a visual representation

of this method. DE is a mixture model:

p(y|x) =
1

N

N∑

n=1

p∗
n
(y|x, ωn)

where the predictions are combined into one output µ (inter-

preted as a mixture of Gaussian distributions) and the variance

of the outputs (σ in Figure 2) measures the uncertainty.

Deep Ensembles provide a robust measure of uncertainty

that is able to account for multiple sources of model and

data uncertainty [11]. For DE, the main hyperparameter is

the number of models (N ). For large values of N , DE

provides a precise implementation of the BNN approach,

a theoretically grounded approach that provides the best

uncertainty quantification while, however, being associated

with a high computational cost. Thus, the trade-off between

the precision of the BNN approximation and computational

cost must be assessed in each application domain, such as

ADS. An advantage of DE is that it is widely applicable, as

it does not require any modification of any existing DNN.

However, the computational overhead associated with training

multiple models and loading them simultaneously in memory
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during inference might be unacceptable for a large number

of models. In this paper, we aim to assess the effectiveness

and performance of DE as a failure predictor for ADS testing

under a large number of ensemble sizes.

C. Implementation

We implemented our codebase in Python and made it

publicly available [25]. We support ADS models written

in Tensorflow/Keras integrated in the Udacity simulator for

self-driving cars [24]. Both UQ methods (MC-Dropout and

Deep Ensembles) were tested on instances of NVIDIA’s

DAVE-2 [26] models. For MC-Dropout, a dropout layer was

added between each layer of the original model.

IV. EMPIRICAL EVALUATION

A. Research Questions

We consider the following research questions:

RQ1 (effectiveness): How effective is UQ at predicting fail-

ures of ADS? What is the best configuration in terms of

dropout rate and number of samples (for MCD) or number

of models (for DE)? How does the effectiveness vary when

considering different confidence levels?

RQ2 (prediction over time): How does the prediction power

of UQ change when considering different detection periods?

RQ3 (comparison): How does UQ compare with SelfOra-

cle [18] and ThirdEye [23] in terms of effectiveness?

RQ4 (performance): What is the performance of running UQ

in terms of time overhead in making predictions? How do the

UQ methods compare with SelfOracle and ThirdEye?

The first research question (RQ1) aims to assess whether

our approach is able to attain a high failure prediction rate and

which method (i.e., MC-Dropout, Deep Ensembles, and their

parameters) yields the best prediction score. Failure prediction

is only useful if it helps to anticipate a failure, which is

studied in the second research question (RQ2). To assess the

usefulness of UQ methods over existing solutions, the third

research question (RQ3) compares UQ with two state-of-the-

art failure predictors for ADS [18], [23]. The last research

question (RQ4) evaluates the runtime cost of each technique,

to assess efficiency in conjunction with effectiveness.

B. Experimental Setup

In this paper, we follow the same experimental setting of

the original papers we compare against [18], [23], in terms of

simulation platform, objects of study, and metrics. We briefly

summarize the experimental setup next.

1) ADS Under Test: To implement DNN-based ADS, we

use NVIDIA’s DAVE-2 model [26], a reference model widely

used as the object of study in prior related work [16], [18],

[21], [39]–[43]. DAVE-2 consists of three 5x5 convolutional

layers with stride 2 plus two 3x3 convolutional layers (no

stride applied), followed by five fully-connected layers with

a dropout rate of 0.05 and ReLu activation function. For the

experiments with SelfOracle and ThirdEye, we obtained the

trained DAVE-2 models from the replication package of our

baselines [18], [23], to make sure to test the same ADS used

in the previous work. For UQ, we had no choice but to retrain

DAVE-2 (details available in Section IV-B6).

2) Driving Simulator: We tested UQ through simulation-

based testing, which is the standard practice for testing ADS

and their behaviour prior to real-world deployment [44]–

[47]. We simulate the ADS testing practices customary of

industry, where testers use a closed-loop track in a virtual

environment, prior to on-road testing on public roads [3], [4],

[48], [49]. While our approach is independent from the chosen

simulation platform, in our study to test the lane-keeping ADS

we used the Udacity simulator for self-driving cars [24], a

cross-platform driving simulator developed with Unity3D [50],

used in the ADS testing literature [18], [19], [21], [41], [51],

including our baselines [18], [23]. The simulator supports

various closed-loop tracks for testing behavioural cloning

ADS models, as well as the ability to generate changeable

environmental perturbations (e.g., weather effects), which is

useful to test an ADS on both nominal and unseen conditions.

We chose the default sunny weather condition as the reference

nominal scenario.

3) Benchmark: Concerning our evaluation set, we consider

three existing datasets of simulations from previous work [23].

The first two datasets deal with failures induced by out-of-

distribution conditions (OOD). An ADS that has been trained

on some given nominal conditions and environment can fail

in different instances of that environment. The first OOD

benchmark (OODextreme) is characterized by severe illumina-

tion/weather conditions with respect to the nominal sunny

scenario (see Figure 1). These conditions are available from

the replication package of the SelfOracle paper [18] and

account for 7 simulations with different degrees of extreme

OOD conditions: day/night, rain, snow, fog, day/night +

rain, day/night + snow, day/night + fog. The second OOD

benchmark (OODmoderate) consists of milder weather condi-

tions without the strong luminosity changes present in the

OODextreme benchmark. Overall, concerning the OOD bench-

marks, a total of 51 OOD one-lap simulations were collected:

21 for OODextreme and 30 for OODmoderate (10 × rain, 10 × fog,

10 × snow). The third benchmark (Mutants) consists of faulty

ADS models produced by mutation testing [42]. In this case,

the ADS drives under nominal (sunny) conditions, but it can

occasionally fail due to inadequate training, a frequent scenario

during the development process of an ADS model (i.e., data

collection, training, and testing is an iterative process [21]).

Overall, the evaluation set comprises 265 failures that our

approach is expected to detect timely. Both scenarios are of

interest to our work, as a failure predictor should be agnostic

about the conditions that cause the failures (i.e., unknown in-

puts or DNN model bugs). Moreover, to estimate the threshold

used by UQ methods, the evaluation set includes simulations

under nominal sunny weather conditions (one for each of three

benchmarks OODextreme, OODmoderate, and Mutants) using the

robust, unmutated, DAVE-2 model.

4) Detection Windows in Evaluation Set: The Udacity

simulator automatically labels individual failing frames as

either nominal or failing, according to whether the ADS was
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on track or off-track, respectively. We focus on the part of

the simulation preceding each failure, whereas the frames

labeled as failing are not considered. When a simulation

exhibits multiple failures, we assess each failure individu-

ally. Differently from the compared papers [18], [23], for

all benchmarks, we calculate the actual frame rate of each

simulation, instead of using a fixed window size of 15 frames.

This choice was motivated by the fact the three benchmarks

were captured on different machines and hardware, at different

frame rates. Consequently, using a fixed window size would

fail to uniformly represent simulation time across all datasets,

making it challenging to fairly evaluate the performance of

our predictors.

5) Baselines: As described in Section II-C, we use two

baselines for UQ. Concerning SelfOracle we consider the best

configuration presented in the original paper, which uses a

variational autoencoder [52] (VAE) with a latent size of 2,

trained to minimize the MSE (see Section II-C) between the

original and reconstructed nominal images (sunny). Regarding

ThirdEye, we assessed the best configuration that includes

heatmap derivative as a summarization method.

6) Configurations: For both UQ methods, we trained lane-

stable DAVE-2 models using an existing dataset [18] with

more than 32k images on nominal sunny conditions follow-

ing two different track orientations (normal, reverse), and

additional data for recovery. Each image is labeled with the

human expert-provided ground truth steering angle value for

that driving image. The maximum driving speed of the driving

model was 30 mph during data generation, the default value

in the Udacity simulator.

For MC-Dropout, we trained several DAVE-2

models varying two parameters. The first parameter

is the dropout rate, which we vary in the range

[0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35]. Models with a

dropout rate higher than 0.40 were disregarded for not

being able to complete a lap in the simulator. The

second parameter is the number of samples, which we

vary in the range [2, 3, 4, 5, 10, 20, 32, 64, 128]. For Deep

Ensembles, we trained several DAVE-2 models varying the

number of models in the ensemble, considering the range

[2, 3, 4, 5, 6, 7, 10, 30, 50, 70, 90, 100, 120].
The number of epochs was set to 50, with a batch size

of 128 and a learning rate of 0.0001. We used early stopping

with a patience of 10 and a minimum loss change of 0.0005 on

the validation set. The network uses the Adam optimizer [53]

to minimize the MSE between the predicted steering angles

and the ground truth value. We used data augmentation to

mitigate the lack of image diversity in the training data.

Specifically, 60% of the data was augmented through different

image transformation techniques (e.g., flipping, translation,

shadowing, brightness). We cropped the images to 80x160

and converted them from RGB to YUV color space. We only

retained solid models for testing, i.e., models able to drive

multiple laps in each track under nominal conditions without

showing any misbehavior in terms of crashes or out-of-track

events. This should also provide more guarantees about the

quality of the uncertainty score estimations obtained from

white box access to the models.

Overall, our experiment includes 232 models under test. For

MC-Dropout, we trained 63 final models (7 dropout rates × 9

number of samples) for parameter optimization and did further

testing on the best dropout rates to study the distribution.

For Deep Ensembles, we trained 138 different models and

built 30 different ensembles. For smaller-sized ensembles [2-

5] we tested various combinations of models to study their

effectiveness. As our evaluation set comprises 380,717 images,

overall we computed 15,723,347 uncertainty scores in our

experiments (11.5 days computing time).

7) Metrics used for Analysis: To answer RQ1, RQ2, and

RQ3, we apply a window function on non-overlapping, fixed

length, sequences of scores, returning the maximum score

within a window. In previous work [23], the arithmetic mean

of the scores within a window was also used, with less

promising results. Therefore, in this paper, we limit our

investigation to the maximum window function. The sets of

(windowed) uncertainty confidence scores represent a model of

normality collected in nominal driving conditions using differ-

ent methods for computing the uncertainty profiles. Following

existing literature [18], [23], we use probability distribution

fitting to obtain a statistical model of the uncertainty scores.

We set a threshold γ for the expected false alarm rate in

nominal conditions and estimate the shape κ and scale θ of a

fitted Gamma distribution of the uncertainty scores to ensure

the expected false alarm rate is below the chosen threshold

γ [18]. In this study, we experiment with different thresholds,

varying γ in the range [0.95, 0.99, 0.999, 0.9999, 0.99999],
hence expanding substantially the γ threshold ranges consid-

ered previously (ThirdEye was only evaluated for γ = 0.95,

whereas SelfOracle was evaluated for γ = 0.95 and γ = 0.99).

We compute the true positives as the number of correct

failure predictions within a detection window and the false

negatives as the number of missed failure predictions when

our framework does not trigger an alarm in a detection

window. The false positives and true negatives are measured

using nominal simulations to which analogous windowing

is applied. Our primary goal is to achieve a high Recall

(Re), or true positive rate, defined as Re=TP/(TP+FN)). Recall

measures the fraction of safety-critical failures detected by a

technique. It is also important to achieve high precision (Pr),

defined as Pr=TP/(TP+FP). Precision measures the fraction

of correct warnings reported by a technique. Consistent with

previous work [23], we consider the Fbeta score [54], with

β = 3.0, as a weighted balance between precision and recall

(F3 = 10·Precision×Recall
9·Precision+Recall

), staying consistent with previous work.

We are interested in an F-measure that weights recall higher

compared to precision because the cost associated with false

negatives is very high in the safety-critical domain [54] as it

means a missed failure detection. In contrast, in our setting, the

cost associated with false positives (false alarms) is relatively

lower compared to false negatives.

We also compute the threshold-independent metric AUC-

ROC (area under the curve of the Receiver Operating Char-

6



TABLE I: RQ1-2-3: Results for the best failure predictors. Bold = average F3 scores; grey = best F3 scores.

MCD5 S32 MCD5 S64 MCD5 S128 DE5 DE10 DE50 SelfOracle ThirdEye

conf = 0.99 conf = 0.99 conf = 0.99 conf = 0.999 conf = 0.999 conf = 0.999 conf = 0.99 conf = 0.95

TTF (s) Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3

OODextreme

1 22 93 69 19 100 69 22 93 69 42 100 87 42 100 87 100 100 100 73 100 96 19 93 65

2 23 100 73 19 95 66 20 88 65 42 100 87 42 100 87 100 100 100 73 96 93 19 95 66

3 23 96 71 17 82 59 22 89 67 43 100 87 43 100 87 100 100 100 70 89 86 19 93 66

avg 22 96 71 18 92 65 21 90 67 42 100 87 42 100 87 100 100 100 72 95 92 19 94 66

OODmoderate

1 31 100 80 30 98 79 30 98 79 100 100 100 100 100 100 100 100 100 51 98 89 13 87 54

2 27 86 69 26 83 67 25 81 65 100 97 97 100 98 98 100 100 100 47 91 83 11 75 47

3 21 63 51 21 63 51 20 63 51 72 70 70 89 79 79 72 70 70 33 62 57 10 62 40

avg 26 83 67 26 81 66 25 81 65 91 89 89 96 92 93 91 90 90 44 84 76 12 75 47

Mutants

1 65 100 94 65 99 94 65 100 94 100 100 100 100 100 100 100 100 100 77 82 81 44 99 87

2 65 98 93 64 97 92 64 97 92 100 96 96 100 97 97 100 97 97 61 49 50 44 97 86

3 60 88 84 59 85 81 59 87 83 100 81 82 100 87 87 94 81 82 56 41 41 41 91 80

avg 63 95 90 63 94 89 63 95 90 100 92 93 100 95 95 98 93 93 65 57 57 43 95 84

Average (All)

1 39 98 81 38 99 81 39 97 81 81 100 96 81 100 96 100 100 100 67 94 89 25 93 69

2 38 95 79 36 92 75 37 89 74 81 97 93 81 98 94 100 99 99 60 79 75 25 89 66

3 34 83 69 32 77 64 34 80 67 71 84 80 77 88 85 89 84 84 53 64 61 24 82 62

avg 37 92 76 36 89 73 36 88 74 78 94 90 79 96 92 96 94 94 60 79 75 24 88 66

acteristics), which we use to choose the top three models as

presenting the results for all models would be infeasible. For

RQ2, for each failure, we adopt a detection window granularity

equal to one second of simulation in the Udacity simulator and

we consider window sizes from 1 to 3 seconds prior to the

failures (time to failure, TTF for short). Previous studies in

the Udacity simulator [36] indicate a TTF of 3 seconds as

sufficient to avoid failures at 30 mph, which is the constant

cruising speed of the ADS in the simulator.

To answer RQ4, we compute the execution time (in millisec-

onds ms) and RAM usage during inference using the Python

tool mprofile [55] on a machine featuring an AMD Ryzen

7 3800XT 8-Core (16 Threads) Processor, 32GB system RAM

and a NVIDIA 3070 GPU with 8GB of VRAM. All models

were evaluated using two laps under normal conditions for a

total evaluation set consisting of 11,031 images. All inferences

were computed using the CPU only with all 16 (virtual) cores

enabled. For Deep Ensembles, all models of an ensemble were

loaded into memory and performed the inference concurrently.

For MC-Dropout, the model was loaded into memory and

performed the inference concurrently, running the inference

process multiple times as multiple parallel threads. For SelfOr-

acle and ThirdEye, the cache was cleared, forcing the models

to compute the heatmaps during inference instead of relying

on pre-computed values.

C. Results

1) Effectiveness (RQ1): For MCD, the top three configu-

rations from our experiments are MCD models with dropout

rate=0.05 and number of samples 32, 64, and 128. In the rest of

the paper, we refer to them as MCD-5 S32, MCD-5 S64, and

MCD-5 S128, respectively. For DE, the top three configura-

tions from our experiments are DE with 5, 10, and 128 models,

referred to as DE5, DE10, and DE50 next. Figure 4 reports

the three models for each UQ method and the two baselines at
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Fig. 4: RQ1: F3 scores for the best failure predictors across

all confidence levels.

different confidence values. Deep Ensembles models perform

well across all confidence levels. MC-Dropout models perform

well at confidence levels γ = 0.95 and γ = 0.99 and worse

with higher confidence levels. Consequently, in the rest of

the paper, we report detailed results considering the optimal

confidence threshold for each model.

Table I presents the effectiveness results for the top three

configurations of UQ (MC-Dropout, Deep Ensembles), Self-

Oracle, and ThirdEye. Results are averaged across conditions,

split between external unknown conditions (OODextreme and

OODmoderate) and internal uncertain conditions (Mutants). For

each condition, we evaluate failure detection with a detection

window of 1-3 seconds and also report the average of these

scores. The effectiveness metrics consider the optimal confi-

dence threshold for each model (Figure 4). Precision (Pr) is
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measured in anomalous conditions, which explains why it is

lower than the expected value associated with the confidence

threshold in most cases. Due to space constraints, in this

section, we only comment on the average F3 scores over all

benchmarks. On average, UQ with MC-Dropout reaches a F3

score of 73−76c. UQ with Deep Ensembles, on the other hand,

performs better with F3 scores of 90 − 94. For the MCD-5

model, increasing the sample size does not improve the effec-

tiveness but rather causes a slight drop in the F3 score. The

precision for MCD-5 remains relatively low across all sample

sizes larger than 32, indicating that the false positive rate

does not improve with a higher number of samples. For Deep

Ensembles, the theoretical best performance is DE50 (i.e., an

ensemble of 50 models) with an F3 of 94, outperforming any

other configuration. In practice, though, a DE of 50 models

might be computationally expensive, therefore DE5 or DE10

are more likely to be used. All Deep Ensembles models have

a high recall and a low false positive rate (i.e., high precision).

RQ1: UQ with Deep Ensembles (5/50 models) is the

best-performing failure predictor for ADS, achieving

the highest failure prediction rates across all condi-

tions (F3 = 90-94%).

2) Prediction Over Time (RQ2): Table I reports the effec-

tiveness considering different time to failure (TTF, Column 2).

In principle, failure prediction should get more challenging as

we move farther from the failure. This is confirmed for all

configurations of UQ (considering the average scores) with

the prediction power dropping (F3) slightly when we move

from a 1-second detection window to a 2-second window and

a larger drop when considering a 3-second window. The best

MC-Dropout model performance drops by -3.5% and -14.8%

at 2 and 3 seconds TTF respectively, compared to 1 second

TTF. The best Deep Ensembles model performance drops by

-1% and -16% respectively. When we look at the OODextreme

benchmark, we observe that Deep Ensembles of all sizes do

not drop any predictive power up to 3 seconds TTF, with DE50

predicting all failures.

RQ2: On average, the effectiveness of the best con-

figurations of UQ drops by 16% average F3 up to 3

seconds before the failures. The effectiveness of UQ

with Deep Ensembles remains high under OODextreme

conditions (no decrease in F3) up to 3 seconds before

the failure.

3) Comparison (RQ3): Considering the average F3 scores

across benchmarks from Table I, the best configurations of

both UQ methods are superior to SelfOracle and ThirdEye at

predicting misbehaviours. MC-Dropout with a 5% dropout rate

and 32 sample size is comparable to SelfOracle with a +1%

improvement in F3 score. Compared to ThirdEye, MCD5-

S32 is +15% better at predicting misbehaviour (F3). Deep

Ensembles 50 outperforms both SelfOracle and ThirdEye, with

an improvement of +25% and +42% in average F3 scores, re-

spectively. On the OODextreme benchmark, UQ scores a +8.7%

and +51% increase in F3 w.r.t. SelfOracle and ThirdEye. For

OODmoderate conditions, average F3 scores raise up to 93, for

DE10, whereas the best F3 from our baseline (SelfOracle) is

76%. For Mutants, our results show a remarkable difference in

effectiveness between UQ over SelfOracle and ThirdEye. Both

MC-Dropout and Deep Ensembles score higher with average

F3 scores in the range of 89-95, a +66.7% w.r.t. SelfOracle in

F3 and 13% w.r.t. ThirdEye.

Overall, average results for F3 show significant improve-

ments of UQ over previous experiments. For Deep Ensembles,

this finding holds independent of the configuration being used

and the reaction period considered.

We assessed the statistical significance of these differences

using the non-parametric Mann-Whitney U test [56] (with

α = 0.05) and the magnitude of the differences using the

Cohen’s d effect size [57]. The difference in F3 score between

Deep Ensembles and SelfOracle and ThirdEye were found to

be statistically significant (p-value < 0.05) with medium and

large effect sizes. As expected by looking at the average F3

scores of Table I, there is no statistically significant difference

between MCD and SelfOracle (p-value ≥ 0.05), whereas

the difference with ThirdEye is statistically significant with

medium effect size.

RQ3: UQ with Deep Ensembles outperforms SelfOr-

acle and ThirdEye in terms of failure prediction under

all conditions, with statistical significance.

4) Performance (RQ4): Figure 5 shows the results of the

different models in ms per iteration/image. Deep Ensembles

performed best with the DE5 employing 2.5 ms/image and

the DE50 employing 17.7 ms/image. SelfOracle has a similar

performance to larger deep ensembles with 12.8 ms/image.
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Fig. 5: RQ4: Computational overhead (ms/iteration).
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MC-Dropout performs worse than deep ensembles and Self-

Oracle. MCD-5 S32 took 13.6 ms/image and 46.9 ms/image

for MCD-5 S128. Both UQ methods, as expected, decrease

in performance when either the number of models or the

sample size increases. ThirdEye, as seen in Figure 5, takes

significantly longer than any other method to process an image,

being 105× slower than Deep Ensembles. This performance

is expected, as ThirdEye needs to compute the heatmap for

each image, which is a computationally expensive process.

Concerning the memory usage of the different models,

we do not report extensive results, but we discuss a few

interesting insights. MC-Dropout used the least amount of

memory considering its best configuration (635 MB). Deep

Ensembles 50 used a larger amount of memory, requiring

loading all models into memory simultaneously (1.37 GB).

The size of each model itself (used in MC-Dropout or the

Deep Ensembles) is approximately 4.7 MB. SelfOracle and

ThirdEye used the most amount of memory, requiring 27.6

GB and 7.3 GB of memory respectively.

RQ4: Small Deep Ensembles are the most computa-

tionally efficient outperforming ThirdEye and SelfOr-

acle. Particularly, DE5 and DE10 employ on average

less than 5 ms/image.

D. Threats to Validity

1) Internal validity: All variants of UQ, SelfOracle, and

ThirdEye were compared under identical experimental settings

and on the same evaluation set. Thus, the main threat to

internal validity concerns our implementation of the testing

scripts to evaluate the failure prediction scores, which we

tested thoroughly. Concerning the training of ADS model, we

used artifacts publicly available in the replication packages

of the SelfOracle [18] and ThirdEye [23] papers. Regarding

the simulation platform, to allow a fair comparison, we used

the Udacity simulator adopted in analogous failure prediction

studies [18], [23]. However, it is important to note our ap-

proach is independent of the chosen simulation platform. Other

open-source propositions are available, such CARLA [58],

LGSVL [59], and BeamNG [60]. CARLA and LGSVL mostly

deal with urban environments with static and dynamic obsta-

cles, whereas BeamNG is conceptually similar to Udacity as it

was used in similar lane-keeping testing studies [5], [9], [61].

We discard commercial close-source solutions such as Siemens

PreScan [62], ESI Pro-SiVIC [63], and PTV VISSIM [64] as

they do not allow full replicability of our results and also focus

on urban scenarios or other ADS tasks such as automated valet

parking or breaking assistance.

2) External validity: The limited number of self-driving

systems in our evaluation constitutes a threat to the gen-

eralizability of our results to other ADS. Moreover, results

may not generalize, or generalize differently, when considering

other simulation platforms than Udacity. For the uncertainty

scores, we considered two quantification methods, and the

effectiveness of our tool may change when considering dif-

ferent strategies. To mitigate this issues, we selected the most

popular techniques for computing uncertainties in regression

deep neural networks, as outlined in Weiss and Tonella [12].

3) Reproducibility: All our results, the source code, and the

simulator are accessible and can be reproduced [25].

V. DISCUSSION

A. UQ for Failure Prediction

Our research emphasizes the intricate nature and diverse

range of failure scenarios that runtime monitoring techniques

must address. Uncertainty scores, usually employed quanti-

tatively by humans to understand deep neural network mis-

predictions, were used in this study as a cumulative error

scoring function over time. This approach assumes that these

scores contain valuable information for assessing the behavior

of DNNs and, by extension, of the autonomous driving systems

that rely on them.

Our approach relies on the efficacy of uncertainty scores

as a technique for assessing the nominal driving behavior of

ADS. A well-trained DNN would excel in capturing relevant

structures in an image, such as road lanes, resulting in more

precise uncertainty scores compared to inadequately trained

DNNs. Furthermore, methods for quantifying uncertainty pro-

vide a more transparent and efficient means of evaluating

ADS behavior than opaque data- or black-box techniques.

Our findings confirm that UQ methods outperform existing

techniques in both out-of-distribution and mutation testing

scenarios.

B. Discussing UQ Configurations

In our benchmarks, UQ using MC-Dropout exhibited supe-

rior performance on the Mutants dataset compared to both

OODmoderate and OODextreme. It demonstrated the capability

to predict 95% failures with an acceptable precision, up

to 3 seconds in advance. This observation underscores the

effectiveness of MC-Dropout as a reliable metric for un-

derstanding internal model uncertainty. Conversely, UQ with

Deep Ensembles consistently delivered remarkable prediction

results across all benchmarks. Even for different confidence

levels (Figure 4), Deep Ensembles consistently outperformed

alternative methods. Our findings confirm that Deep Ensem-

bles excel at capturing uncertainty from diverse sources and

outshines MC-Dropout [11].

While the theoretical best ensemble with 50 models may

not be practical for real-world applications in ADS, our

Deep Ensembles with only 5 models outperformed all other

techniques and exhibited robust uncertainty estimates, with

performance similar to DE50. Taking into account computa-

tional runtime, we found that smaller Deep Ensembles were

more efficient than MC-Dropout. This advantage stems from

the ability to load and run multiple models concurrently,

provided the hardware can support the model sizes. In contrast,

MC-Dropout requires less memory but still needs to run the

inference multiple times (32-128), making it less competitive

than DE5 or DE10. Furthermore, implementing MC-Dropout

necessitates modifications to the ADS model. Considering all
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these factors, our comprehensive evaluation identifies UQ with

Deep Ensembles as the optimal configuration, delivering the

best results in our study.

C. Comparison with Other Approaches

As a baseline for our experiment, we used SelfOracle and

ThirdEye from previous literature. In contrast to the previous

experiment, we modified the evaluation as described in Sec-

tion IV-B4 by implementing a dynamic window calculation

for the OODextreme benchmark. This allowed us to compare

the benchmark scores more objectively. However, this caused

the magnitude of the results for SelfOracle and ThirdEye

to change [18], [23]. UQ with Deep Ensembles is a clear

improvement over the baselines in terms of effectiveness and

computation time. While each of the two baselines performed

well in a specific benchmark (SelfOracle in OODextreme and

ThirdEye in Mutants), UQ with Deep Ensembles performs

well across all benchmarks. Notably, even hybrid approaches

with MCD + SelfOracle or MCD + ThirdEye are not expected

to achieve higher scores than DE as they require more com-

putational resources than Deep Ensembles.

VI. RELATED WORK

A. Anomaly Detection in Autonomous Driving

We already discussed SelfOracle [18] and ThirdEye [23],

for which we performed an explicit empirical comparison in

this work. Similarly to SelfOracle, DeepGuard [20] uses the

reconstruction error by VAEs to prevent collisions of vehicles

with the roadside. DeepRoad [16] uses embeddings created

from features extracted by VGGNet [65] to validate driving

images based on the distance to the training set. In other

works [36], [51], continual learning is used to minimize the

false positives of a black-box failure predictor. Hell et al. [19]

evaluate VAEs, Likelihood Regret, and the generative mod-

elling SSD, for ADS testing on OOD detection in the CARLA

simulator. Michelmore et al. [29], [30] use Bayesian inference

methods for probabilistic safety estimation. Henriksson et

al. [13] use the negative of the log-likelihood as a black-box

anomaly score. Borg et al. [66] propose to pair OOD detection

with VAEs with object detection for an automated emergency

braking system. Strickland et al. [67] use an LSTM solution

with multiple metrics to predict collisions with vehicles at

crossroads. Ayerdi et al. [68] propose the use of metamorphic

oracles to supervise a DNN-based ADS.

Our approach reports extensive simulation-based testing

results for both the effectiveness and efficiency of uncertainty

quantification methods. For a broad overview of anomaly

detection techniques in autonomous driving, we refer the

reader to the survey by Bogdoll et. al [69].

B. Uses of Uncertainty in Software Engineering

Uncertainty quantification is also popular in software engi-

neering, especially in the context of cyber-physical systems.

Hu et al. [70] used uncertainty quantification to improve the

performance of transfer learning for evolving digital twins of

industrial elevators. Similarly, the PPT method [71] proposes

uncertainty-aware transfer learning for digital twins. PPT is

evaluated on cyber-physical systems and ADS, with positive

results in terms of the effectiveness of uncertainty quantifica-

tion for reducing the Huber loss in both case studies.

Weiss et al. [12] report an empirical study of uncertainty

quantification methods that are used to implement supervisors

for DNNs. The evaluation is done at the model-level, for

four classification classification datasets. Results show that

the uncertainty monitors were able to increase the accuracy

of the DNNs when supervised. Differently, in this paper, we

use uncertainty quantification to inform a system-level failure

predictor for ADS.

C. Generic OOD Detectors

Generic detectors of out-of-distribution samples have

been proposed, which we describe for completeness. Auto-

Trainer [72] analyzes the training process of a DNN to auto-

matically repair when metrics such as accuracy used during

training degrade. In contrast, UQ operates at testing time, not

at training time, to recognize uncertain execution conditions

of an ADS, whereas AutoTrainer operates at training time.

Zhang et al. [73] propose an algorithm for the automatic

detection of OOD inputs based on the notion of relative

activation and deactivation states of a DNN. The use of this

technique raises some challenges, such as which and how

many layers should be selected, and how the different layers

should be aggregated. SelfChecker [15] helps answer these

questions, but the evaluation of the DNN prediction is per-

formed for individual samples. UQ works with normal feed-

forward passes, making them computationally more efficient

and easier to integrate into the ADS development process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we describe and evaluate white-box failure

predictors based on uncertainty quantification methods. We

use them to estimate the confidence of a DNN-based ADS in

response to unseen execution contexts. Our results show that

UQ methods can anticipate many potentially safety-critical

failures by several seconds, with a low or zero false alarm rate

in anomalous conditions, and a fixed negligible expected false

alarm rate in nominal conditions, outperforming two existing

solutions from the literature.

Future work includes extending the comparison to other

benchmarks, multi-module ADS, simulators, and ADS case

studies such as urban driving for which revisions of the

existing methods would be necessary, or alternative confidence

score synthesis methods. Furthermore, we intend to broaden

our scope by enhancing the detection of more subtle forms of

driving quality degradation, such as erratic driving behavior.

Additionally, we will explore the implementation of self-

healing mechanisms within the simulator and extend our

evaluation on physical driving testbeds.
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