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Simulation-based testing is the standard practice for assessing the reliability of self-driving car software before
deployment on public roads. Many automated testing techniques generate challenging simulation scenarios
to maximize failure detection. However, these techniques require executing a large number of test cases to
expose realistic failures. Yet, failure-free test cases may still contain segments where the autonomous driving
system was close to a failure. These near misses are often overlooked, reducing testing effectiveness.

This paper focuses on enhancing the efficiency and effectiveness of automated testing for autonomous
driving systems by focusing on near misses observed during simulation-based testing. Our approach, imple-
mented in a tool called Foresee, identifies potential near misses using a misbehavior forecaster that computes
possible future states of the ego-vehicle under test. Foresee performs local fuzzing in the neighborhood of
each candidate near miss to surface previously unknown failures. In our empirical study, we evaluate the
effectiveness of different configurations of Foresee using several scenarios provided in the CARLA simulator.
Our results show that Foresee is both more effective and more efficient than the baselines. Foresee exposes
124.14% and 63.87% more failures than a random approach and a state-of-the-art failure predictor while being
2.62x and 1.44x faster, respectively.
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1 INTRODUCTION

Autonomous driving systems (ADS) are cyber-physical systems engineered to reduce human
intervention in the operation of a vehicle. ADS have been attracting tremendous societal interest
given their potential to mitigate transportation problems, including enhancing road safety and
alleviating issues such as traffic congestion and commuting time [41]. Despite notable strides in
autonomous driving software, concerns about ADS safety persist [8, 61]. For instance, in 2020, data
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2 Naziri et al.

from California’s public roads revealed 43 collisions involving self-driving cars, leading to property
damage, bodily injury, or fatalities [15].
Real-world physical testing of ADS, albeit important, has severe time, resource, and legal limi-

tations [50]. For this reason, simulation-based testing [30, 35] has become the de-facto approach
for ADS testing [53]. Simulators enable developers to assess the reliability of the ADS before
deployment as they consist of virtual simulation platforms in which developers “plug” their ADS
and test it against challenging conditions. A test describes a route that an ADS must complete
within a map representing an urban environment containing static and dynamic objects (e.g., traffic
signs and other vehicles). Researchers have used various open-source ADS simulators, including
CARLA [16], LGSVL [45], BeamNG [3], and Udacity [58]. A plethora of commercial close-source
solutions exist, such as Siemens PreScan [48], ESI Pro-SiVIC [20], and PTV VISSIM [62].

Prior work has been proposed to generate test cases for ADS, particularly leveraging search-based
optimization [1, 4, 5, 19, 35, 36, 40, 44] and fuzzing [11, 26, 32, 34, 66], which are characterized by
drawbacks in terms of effectiveness and efficiency. Concerning the former, these solutions require
the exploration of a vast multi-dimensional search space to pinpoint critical conditions. This is
problematic due to the significant time and resource overhead, as running a single test case on a
driving simulation platform can take several minutes. About the latter, existing testing techniques
either apply mutations at the scenario level in the initial state of a simulation, e.g., the number
and position of the vehicles at the beginning of the simulation or guide the search relying on
the global ADS behavior during the entire simulation or static features of test cases such as the
number of bends of a road [6]. As a consequence, these techniques are oblivious to near misses, i.e.,
circumstances where a failure would occur with minimal modifications to certain intermediate
states of a simulation in which the ADS was close to failure. Overlooking near misses limits the
potential of test generators to reveal failures and potentially inflates the safety perception of ADS.
This paper aims to improve simulation-based testing of ADS in terms of effectiveness and

efficiency by investigating the problem of detecting and exploiting near misses during virtual
simulations. Instead of relying on global or initial states of a scenario-based test, we target focused
testing of intermediate states occurring during failure-free simulations. We leverage the insight
that critical scenarios may exist within driving simulations, where even minor modifications, such
as slight speed adjustments at an intersection, could expose failures.
We propose Foresee (FOREcasting unSafe Events and Emergency situations) a focused system

testing technique for ADS. Foresee uses a monitor to measure risk during the simulation of a
given test case. It uses risk data to derive, classify, and prioritize short-running test cases. Foresee
fuzzes the inputs of these local and seemingly relevant test cases to find failures. More specifically,
Foresee uses telemetry data—obtained during simulation—to automatically identify conditions in
which the system is close to a failure. This paper focuses on the identification of collisions, being
the primary acceptance criteria for safe deployment of ADS. We show that telemetry data offers
clues about the failure likelihood of the ADS. Foresee uses telemetry data to forecast potential
failing conditions, such as the identification of vehicles or pedestrians that are crossing the future
trajectory of the vehicle under test. Hazardous driving conditions are detected when the failure
likelihood increases in a future state of the simulation, as predicted by Foresee.
We evaluated the effectiveness of Foresee in the CARLA simulator [16], using ADS available

from the literature and a diverse set of complex urban scenarios in which we observed many
near-miss situations [55]. In our experiments on +1648 simulations accounting for more than 195
individual failures, Foresee was able to surface up to 11.83% additional failures from near misses, a
63.87% increase with respect to SelfOracle [52], a state-of-the-art misbehavior predictor based on
autoencoders, and a 124.14% increase with respect to a random assessment of risk. Foresee also
demonstrates its efficiency against all the other baselines by discovering collisions 1.44x faster than
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Misbehavior Forecasting for Focused Autonomous Driving Systems Testing 3

SelfOracle and 2.62x faster than Random. We also observed a 318.29% more efficient discovery of
failures with the best-performing configuration of Foresee relative to a ground truth generated
from an exhaustive search.

Our paper makes the following contributions:
Technique. A technique for ADS misbehavior forecasting based on ego vehicle kinetics. Our
approach is implemented in the publicly available tool Foresee [57]. To the best of our knowledge,
this is the first solution that uses vehicle kinetics to estimate the future states of a DNN-based
ADS, surfacing potential failing situations from near misses. Foresee is complementary to existing,
non-local, fuzzing techniques that ignore near misses.
Evaluation. An empirical study showing that Foresee outperforms a random and a black-box
approach SelfOracle [52].
Dataset. A dataset of ADS failures in the CARLA simulator. The dataset can be used to evaluate
the performance of failure prediction systems and test generators for ADS. The tool and evaluation
data are publicly available [57].

2 BACKGROUND

2.1 Autonomous Driving Systems

ADS are software systems developed with increasing capabilities to drive vehicles autonomously.
From an architectural point of view, ADS can be mainly divided into two categories: single-module
ADS (a.k.a. end-to-end driving models) and multi-module ADS. The first category is based on
advanced deep neural networks (DNNs) that are trained on massive driving datasets gathered
by sensors, cameras, and GPS to perceive the environment. Once trained, models like NVIDIA’s
DAVE-2 [7] are capable of predicting the vehicle’s controls (i.e., steer, brake, acceleration). The
second category is comprised of ADS organized into four modules [2, 29, 64]: perception, prediction,
planning, and control. The perception module receives as input various sources of sensory data,
such as images of the front camera or proximity sensors to detect objects in the surroundings of
the vehicle. The prediction module predicts the moving trajectories of these objects, which are
used by the planning module to decide a safe route. The control module translates the planned
route into vehicle driving commands, e.g., a sequence of steering angles.

End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization
for perception and planning [10]. On the other hand, critical challenges exist regarding multi-
modality, interpretability, and robustness, which motivated the development of multi-module ADS
such as Pylot [43], Transfuser [12] or Interfuser [46]. As of now, the two approaches coexist [10, 64]
and it is not clear if one approach will prevail over the other. In this paper, we consider testing
multi-module ADS, while we left the investigation of end-to-end ADS for future work.

2.2 Simulation-based Testing of ADS

Driving simulation platforms are the de-facto choice in the industry for developing and testing
ADS before real-world testing on roads [21, 22, 50]. High-fidelity simulators, such as CARLA [16]
or LGSVL [45], replicate complex urban and highway driving scenarios using existing graphic
assets representing buildings, pedestrians, and vehicles. These simulators generate a stream of
simulated sensor data at regular intervals, such as data from cameras, that are fed to the ADS to
enable motion within the simulated environment. The simulator relies on a model of physics that
resembles real-world vehicle dynamics, allowing an accurate replication of vehicle behaviors and
their corresponding trajectories. In the remainder of this section, we describe the nomenclature
used in this paper.
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Scenario. Scenarios are high-level characterization of vehicle movements and dynamics that are
critical for testing. They often originate from transportation agencies, such as the US NHTSA
(National Highway Traffic Safety Administration), which document such “pre-crash” circumstances
from police reports. These scenarios provide a foundation for public and private organizations
to test ADS and allow researchers to determine realistic safety issues to develop crash-avoidance
systems [41]. A scenario describes the events that should happen throughout the simulation. These
events include relevant actors, such as a pedestrian crossing a street outside of a crosswalk or
a vehicle running a red light at an intersection, and the need for obstacle avoidance maneuvers
involving pedestrians or other vehicles during driving. Scenarios differentiate static and dynamic
objects. Static objects include traffic lights, crosswalks, and other urban infrastructure elements
(e.g., trees). The placement of these objects is determined by maps, which define the topology of
the streets. Dynamic objects include an ego vehicle, which is the vehicle controlled by an ADS–
subject under test in this paper–and Non-Playable Characters (NPCs), which are objects within the
simulation whose actions and behaviors are governed by predefined rules and behaviors.
Test Case. Given a scenario, a simulation-based test case is characterized by an initial state and a
route. The initial state outlines the conditions of both static and dynamic objects at the beginning of
the simulation, including the positions, velocities, and states of all objects in the scenario. The route
specifies the path that the ego vehicle is expected to follow during the simulation. It is typically
defined in terms of a starting and ending point or as a sequence of waypoints within the map that
the ego vehicle should navigate through. To sum up, a route establishes a possible ground truth
trajectory the ego vehicle should follow in the simulation. Together, these components establish
the foundation of a simulation-based test case, allowing for the systematic evaluation of how the
ego vehicle and other dynamic entities interact within a scenario.
Failures. ADS are designed to meet several requirements, encompassing factors about passenger
safety and comfort [9]. Driving simulation platforms automatically log any rule violations that
occur during testing. Among these, safety violations are of utmost concern, particularly when it
comes to autonomous driving, as they can potentially lead to vehicle crashes and casualties.
This work focuses on predicting collisions. Collision avoidance is a primary prerequisite to

be met as a self-driving vehicle must stay in its lane and prevent collisions to gain public trust
and acceptance for production use. Our categories of failures include collisions involving the ego
vehicle with elements beyond the road, such as pavements or poles, pedestrians, or other vehicles
(Section 4.4).

3 APPROACH

Foresee aims to detect the occurrence of unexposed system failures during simulation-based testing
of ADS. It builds on the observation that infractions are relatively rare compared to near misses. For
example, on average, DriveFuzz [32] exposed 19 violations in 360 minutes (≈19 minutes per failure),
whereas AV-Fuzzer [34] exposed on average 50 failures in 1000 simulations (20 simulations per
failure) [66]. The unique aspect of Foresee is that it exploits near misses observed during simulations

to detect failures.
A test suite TS consists of test cases associated with scenarios that are challenging for an

autonomous vehicle (Section 2.2). For example, Scenario 4 of the CARLA leaderboard [55] deals
with situations where the ego vehicle finds an obstacle on the road while performing a maneuver
and it must perform an emergency brake or an avoidance maneuver.

Foresee focuses on failure-free test cases. More precisely, it focuses on finding potentially missed

failures in near-critical conditions. It has to be noted that our technique could also be used to find
further critical situations in failing test cases. We focus on failure-free scenarios because the high
cost of simulation-based testing demands strategies that can reuse the simulation time required to
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Misbehaviour 
Forecaster

Possible 
infraction 
points

Scenario 
Clipper

Scenario 
Mutator Infractions

Failure-free 
test case

Clipped 
test case

Clipped and 
mutated test case

Fig. 1. An overview of Foresee.

produce near-critical circumstances and leverage them. It is also important to note that any failure-
free simulation could, in principle, be turned into a failing simulation if aggressive or unrealistic
mutations are applied, e.g., increasing the speed of the NPCs above the traffic limits by a large
extent. It is critically important to retain the realism and intent of the original test scenarios. As
such, Foresee makes small mutations to intermediate states of the simulation and applies several
sanity checks to check if mutations are realistic.

3.1 Overview

Foresee takes as input a test case that does not reveal failures in nominal conditions (i.e., a failure-
free test case) and reports infractions as output. Figure 1 illustrates the Foresee pipeline, consisting
of three tasks, highlighted with numbers in the figure.

The Misbehavior Forecaster ❶ is responsible for identifying risky conditions during a simulation
by tracking the position, speed, and steering angle of the NPCs at each time frame. Using the
information in the collected execution traces, it then predicts what parts of the simulation are
more likely to cause infractions. This component reports a ranked list of risky points sorted by a
criticality score. Foresee attempts to find potential modifications in the original simulation around
these risky points to reveal previously unforeseen failures. For that, it uses the Scenario Clipper ❷
to re-construct a feasible simulation in the neighborhood of a risky point. For each risky point,
Foresee computes feasible start and end points from the original simulation that include the given
likely infraction-inducing point. Then, it computes the NPCs that are relevant for that subset of
the simulation. Finally, the Scenario Mutator ❸ introduces mutations in the initial states of the
new simulations, effectively creating small variations on the intermediate states of the original
simulation. At the end of the process, Foresee runs the derived (short) simulations and reports test
cases revealing infractions.

To sum up, Foresee uses a combination of misbehavior forecasting, scenario clipping, and local
scenario-level mutation to find unforeseen failures. It reports failure-revealing test cases without
executing expensive fuzzing campaigns.

3.2 The Foresee pseudocode

Algorithm 1 shows the Foresee pseudocode. The algorithm takes as input a non-failing test case
𝑡𝑐 , the maximum number of risky points 𝑛𝑟𝑝 to detect in a run of 𝑡𝑐 , the number of child tests 𝐶
to create per risky point found in 𝑡𝑐’s run, and the offsets 𝑜𝑎 and 𝑜𝑏 , defining the boundaries of
the route for the tests derived from 𝑡𝑐 . Foresee reports a set of infractions 𝑂 that the simulator
observes with the execution of such derived (shorter) test cases.

Foresee runs a given test case 𝑡𝑐 and uses theMisbehavior Forecaster (Section 3.3) to retrieve
a list of risky points RP (Line 1), revealing the parts of 𝑡𝑐 when risk was higher than a threshold.
Each risky point in RP contains information about the simulation timestep1 and the riskiness
score theMisbehaviorForecaster reports. Intuitively, the higher the score the higher the risk.

1Simulation or game time is insensitive to the changes in resource availability during the execution of a simulation.
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Algorithm 1: Foresee.
Input :𝑡𝑐 : a non-failing test case

𝑛𝑟𝑝 : maximum number of risky points to detect in 𝑡𝑐

𝐶 : number of children (i.e., tests derived from 𝑡𝑐) per risky point
𝑜𝑏 : offset before a risky point
𝑜𝑎 : offset after a risky point

Output :O: A set of infractions
1 RP ←MisbehaviourForecaster(𝑡𝑐) (??)
2 relevantRP ← first 𝑛𝑟𝑝 frames of RP
3 for rp in 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑅𝑃 do

4 𝑛𝑒𝑤 = ClipScenario(tc.route, 𝑟𝑝 − 𝑜𝑏 , 𝑟𝑝 + 𝑜𝑎 ) (Section 3.4)
5 for i in 1..𝐶 do

6 𝑡𝑐′ =Mutate(GetRelevantNPCs(𝑟𝑝−𝑜𝑏 ), tc.scenario, new) (Section 3.5)
7 𝑂 =𝑂 ∪ run(tc’).failures

The risky points in 𝑅𝑃 are ranked by the riskiness score and a maximum of 𝑛𝑟𝑝 risky points are
kept in 𝑅𝑃 while the rest are discarded. For each risky point 𝑟𝑝 (Lines 2-7), Foresee proceeds as
follows. The function ClipScenario (Line 4) determines the segment of the original route (field
tc.route) that the ego vehicle should follow, i.e., it looks for the waypoints in the time period
[𝑟𝑝 − 𝑜𝑏 , 𝑟𝑝 + 𝑜𝑏] (Section 3.4). Each iteration of the inner loop (Lines 5-7) runs a test case tc

′

trying to expose new infractions. The function GetRelevantNPCs (Line 6) determines the NPCs
that are near the ego vehicle (Section 3.5) and produces a state, which is passed as an input to the
function mutate (Line 6). mutate defines a new state of a simulation by fuzzing the state from
GetRelevantNPCs, e.g., it modifies the steering angle and the model of vehicles relevant to the
ego vehicle (Section 3.5). Finally, Foresee executes the newly constructed test case (Line 7) and
adds observed failures to the output list. Foresee uses the built-in oracles of the simulator to detect
an infraction, e.g., collision with pedestrians (Section 2.2).

The following sections elaborate on each of the numbered steps of our approach.

3.3 Misbehavior Forecaster

Intuitively, any misbehavior predictor or anomaly detector from the literature can be used within
Foresee, such as those based on camera-frame image analysis with autoencoders [52] or cluster-
ing [11]. In this paper, we propose a novel type of predictor in which risk is assessed using telemetry
data to forecast potential failing conditions, such as vehicles or pedestrians that are crossing the
future trajectory of the vehicle under test.

The misbehavior forecaster takes a test case 𝑡𝑐 as input and returns a list of risky points ranked
by their likelihood of causing an infraction. Figure 2 illustrates the four-step workflow of Foresee
to obtain the ranked list of NPCs, which we explain next.
Step 1: Proximity NPC identification. This step identifies the NPCs that approach the ego
vehicle within a certain radius during the original simulation. For that, Foresee computes the set
close_NPCs describing the circumstance when NPCs are closest to the ego vehicle considering that
radius. The set contains pairs with the simulation frame of the close encounter and the simulation
ID of the corresponding NPC. Additionally, NPCs that are not within the radius are not considered
(Discarded NPCs).
Step 2: Crossing NPC identification. For each NPC identified in the previous step, Foresee
retains those that cross the ego vehicle trajectory for further categorization. This filtering process
yields two groups of NPCs: Crossing_NPCs contains NPCs that intersect with the ego vehicle path
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EGO

NPC

Failure-
free 

scenario

Close NPCs

Discarded NPCs

Proximity  
NPC identification

Non-crossing NPCs

Crossing NPCs

Crossing 
NPC identification

Critical NPCs

Non-critical NPCs

Non-crossing 
 NPC identification

Rank NPCs

Possible infractions

1. (NPC ID,frame) 
2. (NPC ID,frame) 
3. (NPC ID,frame) 
4. (NPC ID,frame) 

…. 
n. (NPC ID,frame)

RANK: 
1. Crossing NPCs 
2. Critical NPCs 
3. Non-critical NPCs

Fig. 2. Illustration of the logic of the Misbehavior Forecaster to produce a ranked list of NPCs that are likely

involved in a risky condition with the ego vehicle under test.

during any simulation frame, and its subset, Critical_crossing_NPCs, includes NPCs that cross the
ego vehicle but only within a limited distance from it.
Step 3: Non-crossing NPC identification. Algorithm 2 illustrates the logic that Foresee uses
to identify vehicle trajectories that could possibly result in collisions with the ego vehicle. The
set close_non_crossing_NPCs ={𝑥 | 𝑥 ∈ close_NPCs and 𝑥 ∉ Crossing_NPCs} includes a list of NPCs
that do not cross the path of the ego vehicle but come close to it. For each NPC in this set, the
algorithm generates 𝑁 perturbations of the original ego vehicle trajectory by introducing a small
error in the velocity and yaw rate values. It then evaluates if any of the newly generated ego
vehicle trajectories is below a distance 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to the NPC. If so, Foresee saves the NPC in the
set Critical_NPCs. All close_non_crossing_NPCs ids that do not meet this distance requirement are
saved in Non-critical_NPCs. The goal of this procedure is to account for the randomicity of the
self-driving system under test, which could behave in a slightly different manner between different
runs of the same scenario, therefore producing an unforeseen dangerous situation.
Step 4: Rank NPCs. In this step, Foresee ranks the risky points associated with the NPCs in the
aforementioned groups according to their risk (see Table 1) of causing a collision with the ego
vehicle. If multiple NPCs are associated with the same risk level, Foresee gives a higher score to
NPCs that come closer to the ego vehicle trajectory during the simulation. For each of the ranked
NPCs, our approach collects the simulation frame at which the actor comes closest to the ego
vehicle during the nominal simulation.

3.4 Scenario Clipper

The scenario clipper component of Foresee is responsible for creating a scenario reflecting solely
the risky conditions observed during the execution of the original scenario. We use the term “clip”
to indicate that only a subset of the original scenario is retained.

The top nrp risky points of the list RP (Section 3.3) from relevantRP determine the timestamps to
be clipped at, where nrp is a hyperparameter that determines how many risky points should be
considered for clipping. The parameters 𝑜𝑏 and 𝑜𝑎 indicate the length of the clip. For each risky
point rp in relevantRP , Foresee clips the scenario from timestamp rp − ob to timestamp rp + oa.
To restore the state of the original simulation at timestamp 𝑟𝑝 − 𝑜𝑏 , Foresee saves the location,
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Algorithm 2: Critical non-crossing NPCs detector.
Input : close_non_crossing_NPCs: list of actor ids

close_frames: matched list of frames
close_non_crossing_NPCs: a list of 𝑥, 𝑦 and 𝑦𝑎𝑤

𝑑𝑡 : time between two simulation frames
𝑁 : population size
𝑇 : time-range
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : distance threshold
𝑀𝐴𝑋𝑦𝑎𝑤 , 𝑀𝐴𝑋𝑣 : minimum-maximum error ranges

Output :Critical_NPCs and Non_critical_NPCs: Two lists of actor ids
1 def computeYawRate() // yaw rate for each point in a trajectory
2 def computeVelocity() // velocity for each point in a trajectory
3 def computeNextPose() // given pose, yaw rate and velocity, returns the next pose
4 def computeDistance() // returns the closest point between two trajectories
5 for id in close_non_crossing_NPCs do

6 𝑡𝑠𝑡𝑎𝑟𝑡 = close_frames[𝑖𝑑] -𝑇
7 𝑡𝑒𝑛𝑑 = close_frames[𝑖𝑑] +𝑇
8 ego_trajectory = trajectory𝑒𝑔𝑜 [𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 ]
9 yaws = computeYawRate(ego_trajectory)

10 vels = computeVelocity(ego_trajectory)
11 for id child in range(0, N) do

12 ego_trajectories[𝑖𝑑][𝑐ℎ𝑖𝑙𝑑] = [trajectory𝑒𝑔𝑜 [0]]
13 for frame in in range(1, range(1,𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 )) do
14 (𝑥, 𝑦, 𝑦𝑎𝑤 ) = new_ego_trajectories[𝑖𝑑][𝑐ℎ𝑖𝑙𝑑][−1]
15 𝑣_𝑒𝑟𝑟𝑜𝑟 = random(−𝑀𝐴𝑋𝑣, 𝑀𝐴𝑋𝑣 )
16 𝑦𝑎𝑤_𝑒𝑟𝑟𝑜𝑟 = random(−𝑀𝐴𝑋𝑦𝑎𝑤 , 𝑀𝐴𝑋𝑦𝑎𝑤 ) 𝑦𝑎𝑤 = 𝑦𝑎𝑤 +𝑌𝑎𝑤𝑠 [ 𝑓 𝑟𝑎𝑚𝑒 ] ∗ 𝑑𝑡 + 𝑦𝑎𝑤_𝑒𝑟𝑟𝑜𝑟
17 𝑥 = 𝑥 + (𝑉𝑒𝑙𝑠 [ 𝑓 𝑟𝑎𝑚𝑒 ] + 𝑣_𝑒𝑟𝑟𝑜𝑟 ∗ 𝑑𝑡 ∗ 𝑐𝑜𝑠 (𝑦𝑎𝑤 )
18 𝑦 = 𝑦 + (𝑉𝑒𝑙𝑠 [ 𝑓 𝑟𝑎𝑚𝑒 ] + 𝑣_𝑒𝑟𝑟𝑜𝑟 ∗ 𝑑𝑡 ∗ 𝑠𝑖𝑛 (𝑦𝑎𝑤 )
19 ego_trajectories[𝑖𝑑][𝑐ℎ𝑖𝑙𝑑].append(𝑥, 𝑦, 𝑦𝑎𝑤)
20 𝑑𝑖𝑠𝑡 [𝑖𝑑 ] = computeDistance(ego_trajectories[𝑖𝑑][𝑐ℎ𝑖𝑙𝑑], trajectory[id])
21 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 [𝑖𝑑 ] = min(𝑑𝑖𝑠𝑡 [𝑖𝑑 ],𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 [𝑖𝑑 ])

22 if𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 [𝑖𝑑 ] < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

23 Critical_NPCs.append(𝑖𝑑)
24 else

25 Non-critical_NPCs.append(𝑖𝑑)

Table 1. Trajectory-based critical frames ranking.

Type Data Origin Risk Level

High risk crossing pedestrian Critical_crossing_NPCs ∧ id=pedestrian 1
High risk crossing vehicle Critical_crossing_NPCs ∧ id ≠ pedestrian 2
Medium risk crossing pedestrian Crossing_NPCs ∧ id=pedestrian 3
Medium risk crossing vehicle Crossing_NPCs ∧ id ≠ pedestrian 4
Medium risk non-crossing vehicle Critical_NPCs 5
Low risk non-crossing vehicle Non_critical_NPCs 6

direction, and model of each NPC. In this way, the clipped scenario is “centered around” the risky
point rp. For timestamp rp − ob, our approach stores the exact location of the ego vehicle at that
timestamp. This information is useful to set the starting waypoint swp for the clipped scenario.
Concerning the ending waypoint ewp, the selection is more challenging. Indeed, we observed that
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the location of the ego vehicle at timestamp rp + oa often results in invalid simulations in CARLA,
because the simulator maintains specific sets of waypoints that can be used as a route in a scenario.
As a working solution, our approach retrieves, from the log of the original simulation, a list of valid
waypoints and uses the closest waypoint to the location of the ego vehicle at timestamp rp + oa as
the ending waypoint ewp. Finally, a new route XML file in which the clipped scenario starts at swp
and ends at ewp.

3.5 Scenario Mutator

For each clipped scenario, Foresee applies several scenario-level focused mutations. The rationale
is to assess whether the ego vehicle can cope with situations that are analogous to the one observed
during the riskiest parts of the original simulation, yet they are slightly different and are expected
to be more challenging. To maintain the validity and realism of the original simulation, the Scenario
Mutator produces new short-lived simulations introducing modifications of the existing NPCs
within the domain model and constraints of the CARLA simulator. This ensures that the resulting
mutations are valid and realistic by design, as they operate within the NPC and kinematic space
allowed in the CARLA simulator.

Specifically, our approach retains the original number of NPCs, while varying certain properties.
First, the Scenario Mutator replaces the vehicle models for an NPC; for instance, a bicycle may
be substituted with a car, which also affects the kinematic characteristics of the modified vehicle
(i.e., the car is faster). The replacements are limited to the “relevant” NPCs in the neighborhood of
the ego vehicle. To identify these relevant NPCs, the misbehavior forecaster reports a ranked list
of NPCs that approached the ego vehicle along with the time frame in which they were closest
(GetRelevantNPCs, Line 6 of Algorithm 1). Foresee uses this information to select the NPCs for
which their time frame lies within the interval [rp − ob, rp + oa], where 𝑟𝑝 denotes riskiest point
selected from the ranked list (Line 2 of Algorithm 1) and ob and oa denote, respectively, the offsets
before and after the risky point delimiting the period of a new simulation.

The Scenario Mutator also ensures that the newly mutated vehicle model avoids collisions with
other NPC vehicles upon spawning at the beginning of the simulation, potentially due to the
increased length of the new model. To achieve this, our approach computes the distances between
each pair of NPC vehicles and retains only the valid vehicle models. A valid vehicle model fits
within the gap between two adjacent NPCs and does not cause immediate collisions. Additionally,
certain sensors on the map at the initial point of a simulation can be placed as invisible objects,
causing collisions with NPC vehicles if placed directly on the road. To avoid inflating the number
of collisions with these phantom objects, we increment the z-axis value of the locations by a small
constant value, denoted as z_offset, when saving the location. Since the simulator accounts for
gravity, these vehicles are automatically positioned on the ground upon spawning.
Secondly, Foresee adjusts the initial steering angle of the closest NPC to the ego vehicle as

another form of mutation. To introduce variations in the steering angle, Foresee tracks the closest
vehicle to the ego vehicle npcclosest in a test case at the beginning of the risky interval, i.e., at rp − ob.
Afterwards, for each child simulation, the Scenario Mutator applies a random steering angle to
𝑛𝑝𝑐𝑐𝑙𝑜𝑠𝑒𝑠𝑡 . The simulator accepts scalar values within the range of [−1.0, 1.0], a value within this
range is randomly selected for the steering angle. Subsequently, Foresee proceeds to generate 𝐶
mutated children (Section 3.4), executing them, and reporting the number of collisions.

3.6 Example

Figure 3 shows an illustrative example of Foresee. The images A and B display consecutive
snapshots of a nominal failure-free simulation. Note that the (future) trajectory of the ego vehicle
and the trajectory of the NPC vehicle would eventually cross. However, due to the low speed of the
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Fig. 3. Illustrative example showing a near miss from a failure-free simulation (top frames) and collision from

a mutated simulation (bottom frames).

NPC, the two vehicles do not collide (image B). We refer to such missed cases from the original
simulations as “near misses”.

Images C and D display a failure condition that Foresee reports. Foresee identifies the segment
of the simulation at which the vehicles would have eventually intersected as a risky point. Then, it
“clips” the risky segment from the original simulation and creates new focused simulations derived
from the clipped segment. In this example, the new simulation is obtained by mutating the model
of the NPC vehicle (image C). The new simulation results in a collision between the ego vehicle
and the mutated NPC, which is faster than the NPC from the original simulation (image D).

4 EVALUATION

4.1 ResearchQuestions

We consider the following research questions.
RQ1 (Effectiveness): How effective is Foresee in exposing misbehaviors in near-miss scenarios

relative to an exhaustive search? How does effectiveness vary with different clip sizes and number of

child tests?

RQ2 (Comparison): How does Foresee compare with alternativemisbehavior prediction techniques

(Random and SelfOracle)?

RQ3 (Efficiency): How efficient is Foresee in exposing misbehaviors in near-critical situations?

The first research question evaluates the ability of Foresee to detect near misses and generate
failures. We evaluate effectiveness when varying two important parameters: the size of the clipped
scenarios (as per 𝑜𝑎+𝑜𝑏 ) and the number of near misses to exploit in each test (as per 𝑛𝑟𝑝 ). Intuitively,
longer clips and a higher number of risky points may reduce the tool’s efficacy as the technique is
tailored for targeted risk selection. We also compare the precision of Foresee against an impractical
Exhaustive approach that approximates an upper bound on the possible number of failures by
applying fuzzing at each timestamp (excluding the first 𝑜𝑏 seconds).
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Table 2. Characterization of scenarios of Town10.

Id Description # tests

3 Obstacle avoidance without prior action 16
4 Obstacle avoidance with prior action 46
7 Crossing traffic running a red light at an intersection 19
8 Unprotected left turn at an intersection with oncoming traffic 19
9 Right turn at an intersection with crossing traffic 20

The goal of the second research question is to measure the ability of Foresee’s misbehavior
forecaster component (Section 3.3) to detect risky points. We compare Foresee against two baseline
approaches, namely Random and SelfOracle. The Random baseline selects a waypoint for local
fuzzing at random, clips the simulation around that waypoint, and mutates its corresponding initial
state. The second approach replaces the kinetics-driven misbehavior forecaster of Foresee with
SelfOracle [52], a data-driven misbehavior predictor for ADS based on autoencoders.

The third research question evaluates how fast Foresee exposes misbehaviors. We hypothesize
that Foresee exposes failures faster because only parts of the original simulation are used and
executed. This research question evaluates this hypothesis.

4.2 Objects: Simulator, Scenarios, and ADS

4.2.1 Simulator. We used the CARLA simulator for self-driving cars [16] (v. 0.9.10.1), a driving
simulator developedwith the Unreal Engine 4 [17] used in previous ADS testing literature [32, 36, 66].
We chose CARLA as it supports complex urban scenarios with many configurations of static and
dynamic objects, and provides a rich set of sensors (e.g., cameras, LiDAR, GPS, and radar) to enable
the observation of the status of the ADS throughout the simulation.

4.2.2 Scenarios. CARLA supports various closed-loop urban maps for testing ADS. This paper
considers Town10, one of the default maps provided by CARLA, with its default environmental
configuration (e.g., sunny weather). Each map is covered by driving scenarios and each scenario
is covered by different test cases. Within Town10, we consider five scenarios (see Section 2.2).
Scenario 3 involves instances where non-player characters (NPCs) like pedestrians cross the road
in front of the ego vehicle, which must execute avoidance maneuvers, such as emergency braking.
Scenario 4 involves obstacles, such as crossing pedestrians, appearing on the road immediately after
the ego vehicle has executed a maneuver, like a left turn. The ego vehicle must then take action to
avoid collisions. Scenario 7 deals with situations where NPCs disregard traffic signals, specifically
running a red light. The ego vehicle must maneuver to avoid potential collisions. Scenario 8 includes
the ego vehicle executing a left turn at an intersection, yielding to oncoming traffic. Scenario 9
involves the ego vehicle making a right turn at an intersection while yielding to crossing traffic.
Table 2 summarizes the scenarios and test cases for Town10.

4.2.3 ADS under Test. We use InterFuser [46], a reference model which sustains one of the highest
scores in the CARLA leaderboard [54] and was used as the state-of-the-art in prior work [25, 27, 28].
InterFuser is an ADS model based on a multi-modal fusion transformer designed to operate
in challenging scenarios with dense traffic. InterFuser uses images from three camera sensors
(front-facing, left, and right) and LiDAR sensor data as input and generates driving commands such
as steering, throttle, and brake. In addition, they use interpretable intermediate features (e.g. ego
vehicle’s trajectory, traffic signals) to keep the driving commands under a certain safety threshold.
Architecturally, it uses ResNet34 and ResNet18 [23] to extract features from the input data and uses
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transformers [60] to fuse them. This representation is processed by a single-layer Gated Recurrent
Unit (GRU) [13] to predict the ego vehicle trajectory. Passing this representation through multi-layer
and single-layer perceptrons respectively reveals the object density map and state of the traffic
signal. Finally, the safety controller takes the trajectory, object-density map and the traffic signal
states to determine low-level driving commands within a safe set.

4.3 Comparison Baselines

We compare Foresee with three variations of our approach. These baselines use the previously de-
fined Scenario Clipper (Section 3.4) and Scenario Mutator (Section 3.5), but replace the misbehavior
forecaster with different alternatives, described below.
Exhaustive. The Exhaustive comparison baseline approximates an upper bound on the number
of failures that our approach can observe if enough time and resources were available to explore the
search space exhaustively. It is worth noting that Exhaustive is very expensive and impractical in
real-world scenarios. The Exhaustive approach considers each second of the original simulation
as the center of a clip regardless of its risk score, and constructs mutated sub-simulations from
these clipped scenario segments. For example, with 𝑜𝑏 = 𝑜𝑎 = 3 (i.e., a 6s clip), a 48s simulation
would be split into 45 points (first 𝑜𝑏 seconds of the simulation omitted to ensure the validity of the
constructed simulations), generating 45 clips of 6s each. It is worth noting that these simulations
may have plenty of overlapping regions, contributing to an impractically large overhead in resource
consumption. However, mutations can modify these overlapping states differently depending on
the starting time of the clip. A comparison with this baseline demonstrates how far a technique is
from revealing all possible failures, i.e., the Exhaustive baseline constitutes an approximation of
the ground truth in terms of near misses.
Random. This approach randomly selects waypoints from the original route and uses them as focal
points for clipping and fuzzing. For this baseline, instead of using a score from the misbehavior
forecaster to determine which waypoints in the original route are risky, we randomly select
waypoints from the original route and apply clipping and mutation around them. A comparison
with this baseline aims to show how Foresee compares against a technique that does not use any
guidance to select segments for local fuzzing.
SelfOracle. SelfOracle [52] is a black-box ADSmisbehavior predictor [52]. Even if SelfOracle
was not proposed for test generation, this baseline is relevant because SelfOracle is designed to
detect risky situations that result in failures of ADS. Thus, in this paper, we use it as a baseline to
detect near misses for local fuzzing.
Although SelfOracle was originally developed, integrated, and experimented on the Udacity

simulator [58], the approach is simulator agnostic. SelfOracle requires images captured by the
front-facing camera for training and inference. We use the best configuration of SelfOracle
presented in the original paper, i.e., a variational autoencoder (VAE) that reconstructs driving
images and uses the reconstruction loss as a measure of confidence. The VAE has a latent size of two
and it is trained to minimize the mean squared error (MSE) between the original and reconstructed
images. For training SelfOracle, we collected 151 images at 20 FPS from the map of “Town10”
since this map is used in all of our experiments.2 The autoencoder uses the Adam optimizer [33] to
minimize the mean squared error (MSE) loss over 10 epochs, using a learning rate of 0.001. During
inference, each frame of the simulation produces a front-camera image captured by the RGB camera
sensor placed at the front of the ego vehicle. SelfOracle takes these images as input and computes
2We could not obtain the original training set from the InterFuser [46] paper; thus we collected several images that are in
line with what described in the paper, i.e., 125k for “Town10” at 2 FPS. We reduced the cardinality of the training set for
SelfOracle to avoid overfitting the autoencoder. Indeed, if an excessive number of images are provided, the autoencoder
generalizes to risky situations, losing its predictive power, which is also acknowledged in the literature [51].
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Table 3. RQ1: Effectiveness of Foresee. Breakdown of collisions per scenario and configuration. #RP=Number

of risky points. #Colls. = Number of collisions.

clip dur.=6s # risky points

1 2 4 Exhaustive

#RPs #Colls. #RPs #Colls. #RPs #Colls. #Colls.

Scenario3 15 2.67 30 6 59 13.33 51
Scenario4 36 3 68.33 13 97.33 31.33 128.33
Scenario7 12 7.33 26 14 40 16.33 66.33
Scenario8 14 0 30 4.67 44 7 18
Scenario9 14 3.33 25 3.33 35 5 7.33

Σ 91 16.33 179.33 41 275.33 73 271

clip dur.=10s # risky points

1 2 4 Exhaustive

#RPs #Colls. #RPs #Colls. #RPs #Colls. #Colls.

Scenario3 15 5.67 30 8.33 59 13.33 34.67
Scenario4 35 11.33 66 26 95 39 77.67
Scenario7 11 0.67 25 6.67 41 21.67 68
Scenario8 13 2.33 28 12 42 14.33 46.33
Scenario9 14 4 25 4 37 5.33 6.67

Σ 88 24 174 57 274 93.67 233.33

a reconstruction error for each frame. Since each route used by the simulation is a set of waypoints,
we divide each route into segments, each consisting of a pair of waypoints. For each segment, we
compute the average of the reconstruction errors within that segment. This average value indicates
the risk of the segment and we rank simulation segments by this risk value. We set a threshold
𝛾 = 0.95 for the expected false alarm rate in nominal conditions to identify risky conditions. A
comparison with this baseline helps to demonstrate the effectiveness of Foresee’s misbehavior
forecaster relative to a state-of-the-art anomaly detector.
4.4 Experimental Setup

To answer RQ1, we execute various configurations on the scenarios from Table 2 and their cor-
responding test cases. We also compare the results of Foresee against Exhaustive (Section 4.3).
To identify NPCs in the proximity of the ego vehicle, we used the thresholds 𝑡ℎ1 = 10𝑚 and
𝑡ℎ2 = 50𝑚 for vehicles and pedestrians, respectively. For non-crossing NPC identification, we use
the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2𝑚. These values were tuned during preliminary pilot experiments which are
not reported for the sake of space. For each near miss, we clipped the test case in a way that the
near miss is contained within the offsets 𝑜𝑏 and 𝑜𝑎 . For simplicity, we considered 𝑜𝑏 = 𝑜𝑎 . For
each clipped test case, we generate 𝐶 = 4 mutated test cases by injecting mutations according to
Section 3.5 and execute the clipped and mutated test cases. We determine the number of risky
points to analyze as follows. For each simulation, we identify risky points and consider the top 𝑛𝑟𝑝
risky points from the ranked list that the misbehavior forecaster (Section 3.3) reports, unless the
number of risky points identified is less than 𝑛𝑟𝑝 , in which case we consider all identified risky
points. We obtain the number of risky points 𝑛𝑟𝑝 from the set {1, 2, 4}. Considering the length
of the generated test cases, we consider 𝑜𝑏 = 𝑜𝑎 ∈ {3, 5}, thus enabling sub-simulations 6s and
10s long. For Exhaustive, we extract all possible 6s and 10s clips from the original test cases by
treating each second of the simulations as risky points, i.e. taking 𝑜𝑎 + 𝑜𝑏 seconds long cuts around
each second of the original simulation. We use the number of collisions as the key performance
metric for this research question (Section 2.2). We apply mutation operators on these clips and run
the experiments with the same mutation count (𝐶), compute and report the number of collisions
for comparison. Overall, our experiment evaluates 6 configurations of Foresee (i.e., 3 risky points
× 2 simulation lengths). We empirically observed that shorter times are likely to produce invalid
simulations whereas longer times jeopardize the benefits of local fuzzing and simulation reuse.
To answer RQ2, we execute Random and SelfOracle with the same experimental setup from

RQ1. More precisely, we use the same set of scenarios and tests (Table 2), the same set of mutation
operators (Section 3.5), and the same configurations of Foresee (i.e., combinations of clip size and
offsets).
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Fig. 4. RQ1: Effectiveness of Foresee on different configurations, i.e., choice of clip duration (𝑜𝑏 +𝑜𝑎 ∈ {6, 10})
and number of risky points (𝑛𝑟𝑝 ∈ {1, 2, 4}).

To answer RQ3, we log the time that each failure was observed and report the failure rate over
time as an area under the curve (AUC). In this case, the x-axis of the curve indicates time and the
y-axis of the curve indicates the cumulative number of failures observed. Intuitively, the larger the
area the better the efficiency.
To cope with the non-determinism of the driving platform, we executed all the experiments

3 times and reported averages. Our dataset has a total of 120 routes from 5 scenarios, 17 of
which have infractions when executed. Consequently, we discarded those cases, leaving 103 routes
(i.e., test cases). Each of these test cases is considered seed scenario and from each of these test
cases, we derive a maximum of 4 risky points. We construct clipped and mutated scenarios from
this collection of risky points, which yields a total of 1648 test cases across 6 configurations
(𝑛𝑟𝑝 ∈ {1, 2, 4} × (𝑜𝑏 + 𝑜𝑎) ∈ {6𝑠, 10𝑠}) and 3 repetitions. Overall, considering all configurations, we
executed a total of 19776 test cases (3 techniques × 4 mutations × 1648 routes). It is worth noting
that although test cases derived from the original input test are designed to be short running (i.e., 6s
and 10s long), in practice they tend to take longer than the estimated time because of traffic signals
and vehicles getting stuck during the simulation. In our setting, our simulations took on average
15s for 6s-clips and 30s for 10s-clips. Thus, the average simulation time is 22.5 seconds, with the
estimated total computing time of our experiments being more than 123.6 hours (22.5 ∗ 19776/3600)
or more than five days. For the Exhaustive search, we created clipped and mutated sub-simulations
from each second of each seed scenario (we omit the first 𝑜𝑏 seconds for each seed scenario as it
is not possible to obtain a valid simulation otherwise). In total, this process took around 43 days
across 3 repetitions.

4.5 Results

4.5.1 RQ1. Figure 4 shows distributions of failure rates, defined as the number of collisions detected
per risky point, that Foresee observes for different combinations of clip duration (𝑜𝑏 + 𝑜𝑎 ∈ {6, 10})
and number of risky points (𝑛𝑟𝑝 ∈ {1, 2, 4}). A data point in a distribution consists of the percentage
of failures revealed by test runs of a given scenario (Table 2). Consequently, each distribution has 15
data points (5 scenarios× 3 repetitions). Note that each data point aggregates, as a percentage, results
from several test runs. The figure reports three groups of boxplots with each group representing a
different number of risky points (1, 2, or 4). In each group, we further differentiate between different
clip durations (6s or 10s).

Table 3 details the results. The table reports, for different clip durations (6s or 10s), the number
of risky points (#RP) and collisions (#Colls.) for different numbers of risky points (1, 2, or 4). For
comparison, the column “#Colls.” under Exhaustive represents the maximum number of collisions
detected in an exhaustive search (Section 4.3). Intuitively, as the number of risky points increases,
Foresee exposes more failures over time. For clip duration=6s, the failure rate is 17.95% (16.33/91)
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Fig. 5. RQ2: Comparison of techniques over different configurations.

when one risky point is selected, 22.86% (41/179.33) when two risky points are selected, and 26.51%
(73/275.33) when four risky points are selected. Similar considerations hold for the clip duration=10s
where we observe failure rates of 27.27% (24/88), 32.76% (57/174), 34.19% (93.67/274) for the config-
urations with 1, 2, and 4 risky points selected, respectively. The Exhaustive column demonstrates
the number of collisions discovered by the exhaustive search and acts as the ground truth for
the potential collisions discoverable by Foresee. For 𝑜𝑏 + 𝑜𝑎 = 6 and 𝑛𝑟𝑝 = 4, Foresee discovers
73 collisions compared to 271 collisions discovered by Exhaustive, demonstrating 26.94% coverage
by Foresee at this configuration. Similarly, for 𝑜𝑏 + 𝑜𝑎 = 10 and 𝑛𝑟𝑝 = 4, coverage for Foresee
is 40.14% (93.67x 100 / 233.33), demonstrating the best coverage amongst the 6 configurations of
Foresee.

RQ1: How effective is Foresee in exposing misbehaviors in near-miss scenarios relative

to an exhaustive search? How does effectiveness vary with different clip sizes and

number of child tests?

Foresee exposes many collisions in near misses situations, with failure rates ranging over the
interval 17.95-34.19% (26.94-40.14% near-misses coverage). We find the configuration with clip
duration=10s and a number of risky points=4 to provide the best trade-off, quantified by failure
rate.

4.5.2 RQ2. Figure 5 shows the distributions of number of collisions for Foresee, SelfOracle, and
Random. The left figure shows the results for clip duration=6s whereas the right figure shows the
results for clip duration=10s. Overall, Foresee outperforms the baselines over all configurations.
We measured the statistical significance of the differences using the non-parametric Mann-Whitney
U test [63], with 𝛼 = 0.05, and the magnitude of the differences using the Cohen’s 𝑑 effect size [14].
For most configurations, the differences between Foresee and both baselines are statistically
significant (6x2, 6x4, 10x2, and 10x4), i.e., the 𝑝-value < 0.05 with a medium/large effect size.
For some configurations (6x1 and 10x1), only the differences between Foresee and Random are
statistically significant, with medium/large effect sizes.
We provide detailed comparisons for the configuration 10x4, which is the one with the best

failure rate from RQ1. Table 4 shows the total number of failures for each technique. Column #TCs
shows the number of test cases associated with a given scenario. Columns F1, F2, and F3 show the
different kinds of collisions detected, respectively related to collisions involving the ego vehicle
with elements beyond the road, such as pavements or poles (F1), pedestrians (F2), or other vehicles
(F3). Column Σ shows totals. Results are presented for each scenario separately, as well as an
aggregate. The table reinforces the effectiveness of Foresee over the baselines, across all scenarios
and failure types. Overall, Foresee achieves a failure rate increase of +124.14% and +63.87% with
respect to Random and SelfOracle, respectively. It also achieves a higher diversity of failure kinds
observed, even though failure F3 (collisions with other vehicles) is the most prevalent.
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Fig. 6. RQ3: Efficiency of the techniques.

RQ2: How does Foresee compare with alternative misbehavior prediction techniques

(Random and SelfOracle)?

Foresee outperforms the considered baselines, with a failure rate increase of +124.14% and
+63.87% with respect to Random and SelfOracle, respectively.

4.5.3 RQ3. The Exhaustive search showed the maximum number of collisions discoverable, but
Foresee is more efficient in finding the collisions. For 𝑜𝑏 + 𝑜𝑎 = 6𝑠 and 𝑛𝑟𝑝 = 4, Exhaustive
exposed 4.2 collisions per hour (271/64h) compared to 15.53 collisions per hour (73/4.7h) by
Foresee, resulting in a 269.76% efficiency increase. Similarly, for 𝑜𝑏 + 𝑜𝑎 = 10𝑠 and 𝑛𝑟𝑝 = 4,
Exhaustive discovered 3.5 collisions per hour (233.33/66.5h) compared to 14.64 collisions per hour
(93.67/6.4h) discovered by Foresee, a 318.29% increase.

Figure 6 shows the cumulative number of collisions detected by the techniques over time and
the area under the curve (AUC) associated with the corresponding plots. The result indicates the
superior ability of Foresee over the baselines to efficiently expose failures, as evidenced by the
position of Foresee’s plot relative to the plot of the other techniques (and higher AUC score).
Foresee has an AUC score of 1910171.65, which is 1.44x (1910171.65/1328399.56) higher than
the AUC score of SelfOracle and 2.62x (1910171.65/728429.83) higher than the AUC score of
Random. To sum up, results confirm that Foresee detects more collisions than the baselines (as
RQ2 has shown) and that Foresee detects them faster.

RQ3: How efficient is Foresee in exposing misbehaviors in near-critical situations?

Results indicate that Foresee detects collisions much faster compared to the baselines. The AUC
of Foresee is 1.44x higher than SelfOracle’s and 2.62x higher than Random’s.

Table 4. RQ2: Comparison of Random, SelfOracle, and Foresee. Configuration 10 x 4 (𝑜𝑏 + 𝑜𝑎 = 10, 𝑛𝑟𝑝 = 4).

Random SelfOracle Foresee

#TCs F1 F2 F3 Σ F1 F2 F3 Σ F1 F2 F3 Σ

Scenario3 235 0 5 2.67 7.67 0 2 1.67 3.67 0 9.33 4 13.33
Scenario4 390 0.67 0 13.67 14.33 0 0 40 40 0.67 0 38.33 39
Scenario7 167 0 0 4.67 4.67 0 0 18.67 18.67 0 0 21.67 21.67
Scenario8 179 0.33 0 5.33 5.67 0 0 2.33 2.33 0 0 14.33 14.33
Scenario9 145 0 0 0.33 0.33 0 0 0.33 0.33 0 0 5.33 5.33

Σ 1116 1 5 26.67 32.67 0 2 63 65 0.67 9.33 83.66 93.66
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4.6 Threats to Validity

Internal Validity. All variants of Foresee, SelfOracle, and random were compared under
identical experimental settings and on the same evaluation set. Thus, the main threat to internal
validity concerns our implementation of the test scripts to evaluate the scores, which we tested
thoroughly. Moreover, we could not train SelfOracle with the same training set as InterFuser
and we could not use any pre-trained model as they were developed for another simulator. We
mitigated this threat by training the VAE following the existing guidelines [51, 52]. Indeed, our
version of SelfOracle shows competitive results concerning Random and Foresee. Concerning
the ADS model, which could inflate the results if inappropriate for the task of driving, we used a
publicly available ADS which achieved remarkable results in the CARLA leaderboard. Regarding
the simulation platform, we used the CARLA simulator adopted in analogous failure prediction
studies [59]. However, it is important to note our approach is independent of the chosen simulation
platform. Other open-source propositions are available, such as Udacity [58] and BeamNG [3]
but they mostly deal with lane-keeping ADAS [19, 44] and have no NPCs. We did not consider
commercial close-source solutions such as Siemens PreScan [48], ESI Pro-SiVIC [20], and PTV
VISSIM [62] as they do not allow full replicability of our results.
External Validity. The limited number of self-driving systems in our evaluation constitutes a
threat to the generalizability of our results to other ADS. Moreover, results may not generalize, or
generalize differently, when considering other simulation platforms.

5 RELATEDWORK

5.1 Test Generation for Autonomous Driving

The majority of test generation techniques employ search-based techniques to automate the
construction of test cases for DNN-based ADS [1, 4, 5, 31, 39, 42, 44, 56, 65]. In this domain, test
cases can be either individual driving scenes images, or road topologies that are rendered using a
3D driving simulator. Abdessalem et al. [1, 4, 5] combine genetic algorithms and machine learning
to test a pedestrian detection system. Mullins et al. [40] use Gaussian processes to drive the search-
based test generation towards yet unexplored regions of the input space, whereas Gambi et al. [19]
propose search-based test generation for ADS based on procedural content generation. Fahmy
et al. [18] apply clustering to LRP heatmaps capturing the relevance of the DNN predictions to
automatically support the identification of failure-inducing inputs. Zohdinasab et al. [67] use
illumination search to cover a feature map of external behaviors of an ADS. Lu et al. [36] use
reinforcement learning to learn environment configurations that lead an ADS to crash.
DriveFuzz uses the physical states of the vehicle and oracles based on real-world traffic rules

to guide the fuzzer towards finding misbehaviors [32]. AutoFuzz [66] focuses on fuzzing the test
scenario specification. Before fuzzing, it uses a seed selection mechanism based on a binary classifier
that selects likely traffic-violating seeds. AV-Fuzzer [34] uses a genetic algorithm that is informed
by the positioning of globally monitored NPCs in each scenario in the driving environment. The
NPCs with higher potential of safety potential [26] violation likelihood are selected for evolution.
Cheng et al. [11] propose BehaviorMiner, an unsupervised model that extracts the temporal features
from certain given scenarios and performs a clustering-based abstraction to group behaviors with
similar features into abstract states.

Test generators are designed to maximize the number of failures and consider whole test cases.
While the exploration is guided towards critical regions, the search budget is consumed by running
test cases that do not result in failing conditions. Our approach differentiates itself by forecasting
potential ego vehicle states to predict infractions with NPCs and focuses on local segments within
test cases. Existing fuzzers/test generators do not constitute direct baselines for our approach, as
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they operate at the beginning of each scenario by creating new test scenarios at each iteration to
maximize failure exposure. Thus, no simulation effort is reused as they operate globally, other than
locally. However, they can be used in conjunction with Foresee to improve their effectiveness,
especially for the false negative cases. We leave this exploration for future work.

5.2 Anomaly Detection in Autonomous Driving

We already discussed SelfOracle [52], for which we performed an explicit empirical comparison in
this work. Similarly, DeepGuard [24] uses the reconstruction error by VAEs to prevent collisions of
vehicles with the roadside. ThirdEye [49] uses the attention maps from the explainable AI domain to
predict misbehaviors of self-driving cars, whereas other researchers [37, 38] use Bayesian inference
methods for probabilistic safety estimation. DeepRoad [65] validates single driving images based on
the distance to the training set, using embeddings rooted in the features extracted by VGGNet [47].
Our approach differs from the aforementioned approaches because it uses a risky score of the

system synthesized from a forecasting mechanism of the ego vehicle kinetics.

6 CONCLUSIONS

Simulation-based testing is highly useful in autonomous vehicle testing, but the cost of revealing
faults relative to the time to run simulations is very high. We propose Foresee, an approach to
optimize simulation-based testing by reusing segments of simulations that produce near-failing
situations. Our approach uses a custom misbehavior forecaster to detect near misses and fuzz
the state of the simulation locally (i.e., close to the critical regions) to produce failures quickly.
Our experiments revealed that (1) failure-free scenarios embed many near-failing situations that
Foresee can accurately detect and that (2) many of these cases result in failures when minimal
perturbations are introduced. Foresee provides initial yet strong evidence that guiding fuzzing
with misbehavior forecasting is a promising approach to uncovering hidden failures in ADS.

In the future, we plan to conduct a qualitative analysis of the near misses found in this study
and to evaluate whether they are useful in improving the robustness of the ADS. We also plan
to evaluate additional infraction scenarios, towns, and autopilots to deepen the evaluation of the
hyper-parameters of the misbehavior forecaster and evaluate additional mutation and forecasting
methods, such as the ones based on multi-horizon and multivariate time series.
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