
A Multi-Year Grey Literature Review on AI-assisted Test Automation
Filippo Riccaa,∗, Alessandro Marchettob and Andrea Stoccoc,d

aUniversity of Genoa, Via Balbi 5, Genova, 16126, Italy
bUniversity of Trento, Via Sommarive 9, Trento, 38123, Italy
cTechnical University of Munich, Boltzmannstraße 3, Munich, 85748, Germany
dfortiss GmbH, Guerickestraße 25, Munich, 80805, Germany

A R T I C L E I N F O

Keywords:
Test Automation
Artificial Intelligence
AI-assisted Test Automation
Grey Literature
Automated Test Generation
Self-Healing Test Scripts

A B S T R A C T

Context: Test Automation (TA) techniques are crucial for quality assurance in software engineering
but face limitations such as high test suite maintenance costs and the need for extensive programming
skills. Artificial Intelligence (AI) offers new opportunities to address these issues through automation
and improved practices.
Objectives: This study surveys grey literature to explore how AI is adopted in TA, focusing on the
problems it solves, its solutions, and the available tools. Additionally, the study gather expert insights
to understand AI’s current and future role in TA.
Methods: We reviewed over 3,600 grey literature sources over five years, including blogs, white
papers, and user manuals, and finally filtered 342 documents to develop taxonomies of TA problems
and AI solutions. We also cataloged 100 AI-driven TA tools and interviewed five expert software
testers to gain insights into AI’s current and future role in TA.
Results: The study found that manual test code development and maintenance are the main challenges
in TA. In contrast, automated test generation and self-healing test scripts are the most common AI
solutions. We identified 100 AI-based TA tools, with Applitools, Testim, Functionize, AccelQ, and
Mabl being the most adopted in practice.
Conclusion: This paper offers a detailed overview of AI’s impact on TA through grey literature
analysis and expert interviews. It presents new taxonomies of TA problems and AI solutions, provides
a catalog of AI-driven tools, and relates solutions to problems and tools to solutions. Interview insights
further revealed the state and future potential of AI in TA. Our findings support practitioners in
selecting TA tools and guide future research directions.

1. Introduction
The development of Test Automation (TA) techniques [41]

is meant to advance the quality assurance (QA) processes
for software engineers [24, 46]. TA supports a wide range
of testing tasks, including automated code analysis, unit
testing, integration testing, acceptance testing, and perfor-
mance testing, applicable to various software products such
as web and mobile applications. However, the limitations
of TA frameworks like, e.g., Selenium WebDriver [52] and
Selenium IDE [46] have become evident when creating com-
plex test suites. These tools still demand substantial testing
knowledge and programming skills, providing limited assis-
tance in producing high-quality test scripts. Activities like
developing robust locators [28] and deterministic test scripts
are still predominantly manual processes [24]. Additionally,
maintaining automated test scripts becomes laborious and
challenging due to constantly changing requirements and
software evolution, resulting in issues like flaky or fragile
tests that make test scripts costly to maintain [4, 49].

The integration of Artificial Intelligence (AI) and Ma-
chine Learning (ML) into TA is getting significant atten-
tion from researchers and practitioners, recognizing AI’s

∗Corresponding author
filippo.ricca@unige.it (F. Ricca)
https://person.dibris.unige.it/ricca-filippo/ (F. Ricca)

ORCID(s): 0000-0002-3928-5408 (F. Ricca); 0000-0002-6833-896X (A.
Marchetto); 0000-0001-8956-3894 (A. Stocco)

potential to bridge the gap between human and machine-
assisted testing activities [15]. In this paper, we refer to these
techniques as Artificial Intelligence assisted Test Automa-
tion (AIaTA). AI holds the promise of transforming TA by
simplifying or automating various testing activities, includ-
ing test planning, authoring, development, and maintenance.
Despite the growing adoption of AIaTA by companies [47],
there remains a limited understanding of the challenges it
addresses, the solutions it offers, and the existing tools and
their integration with the software development process.

Several secondary studies have reviewed existing work
on AIaTA [18, 21, 30, 39, 56]. This paper is a secondary
study that specifically focuses on the grey literature [11]
to capture practitioners’ perspectives on the adoption of
AIaTA. The main goal of our work is to understand the
available AIaTA tools, the problems they address, and the
innovative solutions they offer. Therefore, we conducted
a survey of the grey literature to collect, consolidate, and
organize existing AI practices for TA. This paper builds
upon the grey literature reviews by Ricca et al. [47, 48]
by incorporating more recent sources, thus presenting an
extended, multi-year grey literature review. This compre-
hensive review spans several years, demonstrating the gen-
eralizability of the results and examining the underlying
relationships among TA problems, AI-based solutions, and
existing tools. To gather further insights on the application
of AIaTA, we conducted interviews with five researchers and
practitioners to collect their experience. These interviews
were recorded, transcribed, and analyzed to identify the key

Ricca et al.: Preprint submitted to Elsevier Page 1 of 20

ar
X

iv
:2

40
8.

06
22

4v
1 

 [
cs

.S
E

] 
 1

2 
A

ug
 2

02
4

https://person.dibris.unige.it/ricca-filippo/


A Multi-Year Grey Literature Review on AI-assisted Test Automation

problems, solutions, and tools discussed by the interviewees.
Thus, the main contribution of this extended paper is a set
of taxonomies of problems, solutions, and tools regarding
AIaTA, which are validated by experts. To our knowledge,
this is the first work that includes interviews with developers
on the usage of AI related to E2E testing of web apps.

Our experience shows that grey literature is a valuable
yet underutilized resource for AI practices in TA, containing
insights that practitioners may not have the time or scientific
expertise to rigorously extract. Our goal is to surface these
valuable insights, often found in scattered documentation or
within the knowledge of professionals, stakeholders, devel-
opers, and end-users. We believe our work can help practi-
tioners understand the current state and practices in AIaTA,
aiding in the selection of appropriate tools for their testing
needs. Additionally, our findings can guide researchers in
identifying issues that need further investigation and new
research directions.

This paper is organized as follows: Section 2 provides
essential background information to help comprehend the
rest of the paper. This includes an overview of the current
limitations of TA and an introduction to an AI-based mech-
anism, self-healing test scripts, which addresses the well-
known issue of fragile tests. Section 3 reports research ques-
tions, adopted procedure, document selection phase, and
data analysis of our multi-year grey literature review. The
results are detailed in Section 4, and Section 5 explores these
findings in relation to the threats to validity and empirical
evidence collected. Section 6, on the other hand, briefly
presents the design and results of the interviews conducted
with five expert software testers. Finally, Section 7 summa-
rizes related works, and Section 8 concludes the paper.

2. Background
In this section, background information is provided to

understand the content of the paper. Specifically, a brief
explanation is given of what test automation is, along with
the known practical benefits and drawbacks as described
in both practice and literature. Subsequently, the rationale
behind the utilization of AI and ML in this context is
explained, along with the associated benefits. Finally, to
provide a more concrete understanding, the process of self-
healing test scripts is detailed. This process utilizes ML to
automatically adjust failing test scripts due to the evolution
of the application under test.

2.1. Test Automation
Test automation is the practice of using specialized soft-

ware tools or frameworks to control the execution of tests
and compare actual outcomes with predicted outcomes [10].
It encompasses the entire testing process within an organi-
zation, aiming to improve efficiency, accuracy, and coverage
in software testing [13]. The primary component driving
test automation is the use of test scripts—i.e., programs that
run specific portions of the software being tested. These test
scripts perform a sequence of predefined actions against the
Application Under Test (AUT), consisting of commands and

inputs. The expected results of test scripts are typically de-
scribed by assertions, which are specific statements provided
by a testing framework, e.g., JUnit [33]. Assertions check
values, e.g., the result of the call under test, or the final status
of some part of the system, against given conditions and raise
an exception in case of failure. The testing framework detects
these exceptions and marks the tests as failed.

Automated test scripts can target various levels of soft-
ware [37], addressing different aspects of the system to
ensure comprehensive testing coverage. At the most granular
level, unit tests focus on individual components or functions
within the AUT, verifying that each unit behaves as expected
in isolation. This level of testing is crucial for identifying and
fixing bugs early in the development process.

Moving up the hierarchy, automated tests can target
APIs (Application Programming Interfaces). API testing
ensures that the interactions between different software com-
ponents, as well as with external services, are functioning
correctly [19]. This involves sending requests to the API
endpoints and validating the responses, including data for-
mats, status codes, and content. API testing is essential for
verifying the integrity and reliability of the communication
paths within the AUT.

At the highest level, automated test scripts can perform
system-wide testing in an end-to-end, user-focused manner.
End-to-end (E2E) testing simulates real user scenarios and
interactions with the software, covering the entire applica-
tion flow from start to finish [24]. This approach ensures that
all components and subsystems work together seamlessly to
deliver the intended user experience. E2E tests are particu-
larly prevalent in web and mobile environments, where user
interactions span multiple layers of the application, includ-
ing the user, back-end services, and databases. This approach
is especially important in these kind of environments due
to the complexity and variability of these platforms. For
example, web applications must be tested across different
browsers [36] and devices to ensure consistent performance
and user experience. Similarly, mobile applications must
be tested on various operating systems, screen sizes, and
hardware configurations. Automated end-to-end tests help
identify issues that may arise from these variations, ensur-
ing that the application remains working and user-friendly
across different environments.

By targeting different levels of the software, from indi-
vidual units to entire systems, automated test scripts provide
a comprehensive and scalable testing solution. This multi-
level approach [7] helps ensure that all aspects of the soft-
ware are thoroughly tested, contributing to the overall quality
and reliability of the final product.

Test automation offers numerous benefits [43], includ-
ing increased testing efficiency, higher test coverage, and
improved accuracy by reducing human error. It enables
repetitive and regression testing [61], where tests are run
frequently to ensure that new changes do not negatively
impact existing functionality. This is crucial for maintaining
software quality over time.

Ricca et al.: Preprint submitted to Elsevier Page 2 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

However, test automation also presents well-known chal-
lenges, in particular in the context of web and mobile appli-
cations [38, 25]. Traditional automation testing faces issues
such as slow test execution and the persistent problem of
maintaining test scripts. Slow test execution is a primary
reason for delays in testing, often caused by a focus on GUI
automation, poorly designed test scripts, and insufficient test
case sequencing.

Excessive test maintenance is another major issue, as test
scripts are highly sensitive to the application’s UI and struc-
ture. Any minor change in the UI necessitates corresponding
changes in the test script, leading to a significant portion of
automation effort being dedicated to test script maintenance.

Additionally, the test script can break due to small
changes in the code (test script fragility problem), such as
renaming or relocating a GUI component on the screen [55].
Managing and maintaining test data adds another layer of
complexity, requiring testers to create test data generation
scripts and use version control effectively. Finally, traditional
automation testing is complex and code-intensive, and a
lack of skilled resources often leads to the failure of test
automation projects due to inadequate planning.

2.2. AI-assisted Test Automation
Artificial Intelligence involves enabling computer pro-

grams to execute tasks that would typically necessitate hu-
man intelligence. Within this broad definition, we find ma-
chine learning (ML), which involves pattern recognition
and learning from data to solve classification or regression
problems [3]. Additionally, Computer Vision (CV) provides
techniques for analyzing and understanding images, much
like how humans perceive them, with popular applications
including pattern recognition, image analysis, and optical
character recognition. Finally, Natural Language Processing
(NLP) enables computers to analyze and understand human
language. In the last ten years, the availability of large bench-
marks of labeled data and unprecedented computing power
has enabled the application of Deep Learning techniques
such as deep neural networks (e.g., convolutional neural
networks and recurrent neural networks) to complex vision
and spatiotemporal problems. More recently, transformer
architectures have enabled the exploitation of language em-
bedding that is at the basis of large language models (LLMs),
i.e., novel types of AI that achieved unprecedented perfor-
mance in NLP and coding tasks.

Traditionally, AI methods and models have been widely
applied to various phases of the software development life-
cycle, including software testing. The application of AI to
support software testing is a well-established and increas-
ingly popular research topic, as evidenced by several recent
studies in the literature [1, 8, 16, 20].

In the context of Test Automation, AI is also employed
for various purposes [39, 56]. For example, AI and ML
algorithms are used to analyze application behavior and
user interactions to automatically generate test scripts. This
reduces the manual effort required for test script creation and
improves test coverage. Another example is self-healing test

scripts, in which test constructs are automatically maintained
when the test code becomes obsolete or loses sync with the
AUT during software evolution. This is meant to diminish
the maintenance overhead associated with test automation.
Additionally, AI techniques can generate additional test data
by analyzing patterns observed in production data. This
facilitates the creation of diverse test scenarios, for more
comprehensive testing of the AUT. Lastly, ML algorithms
can detect anomalies in test results, including unexpected
behavior or performance issues. This allows for early de-
tection of defects, mitigating their impact on the production
environment. Additionally, AI can enhance test execution
by intelligently scheduling tests, considering factors such as
code changes, risk profiles, and resource availability.

3. Empirical Study
Our research centers on the grey literature that discusses

the application of AIaTA. We consider the following re-
search questions:
RQ1 (Issues/problems). How does AI contribute to mitigat-
ing challenges in TA?
RQ2 (Solutions/approaches). In what ways does AI provide
solutions to enhance TA?
RQ3 (Tools and Platforms). Which AI tools/platforms are
widely used in the context of software testing?
RQ4 (Generalizability). How generalizable are the tax-
onomies related to issues, solutions, and tools constructed
to address the previous RQs?
RQ5 (Problems vs. Solutions). What is the relationship
between TA problems and solutions in AIaTA?
RQ6 (Tools vs. Solutions). How are AIaTA tools and solu-
tions interconnected?

RQ1 identifies the main TA problems and issues that are
supported by AI-based solutions, i.e., AI-enhanced testing
techniques and tools. To answer RQ1, we manually built a
taxonomy of TA issues and problems addressed by AI-based
solutions, considering the sources of grey literature.

RQ2 analyzes the solutions proposed for TA problems
and issues that are based on AI algorithms and tools. To
answer RQ2, we built a taxonomy of AI-based solutions used
to address TA issues and problems identified in RQ1. In
this case, as well, the information was inferred using grey
literature sources.

RQ3 identifies the existing tools and platforms that assist
in the testing phase with AI-based solutions presented in the
literature. To answer RQ3, we extracted from grey literature
existing tools that implement the AI-based solutions identi-
fied in RQ2.

RQ4 assesses the degree of generalizability of the built
taxonomies by validating them on a set of studies that were
not used during its development.

RQ5 maps TA problems and issues with proposed AI-
based solutions. To answer RQ5, we mapped the problems
and issues identified in RQ1 with their proposed AI-based
solution identified in RQ2.

Ricca et al.: Preprint submitted to Elsevier Page 3 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Start Google 
Search

Document 
Selection

Data 
Extraction

Taxonomy 
Creation

Data 
Analysis

Datasheets

Taxonomies

Graphs &
Diagrams

Iteration for refinement

Query execution

Multiple 
documents

Multiple 
selected

documents

Figure 1: Overview of the procedure adopted in each iteration of the grey literature.

Finally, the last research question RQ6 maps such pro-
posed AI-based solutions towards existing tools that imple-
ment them. To answer RQ6, we mapped the proposed AI-
based solution identified in RQ2 with the implemented tools
supporting them, as listed in RQ3.

3.1. Procedure
To review the grey literature relevant to our research

questions, we iterated the five-step procedure defined in our
initial publication [47] three times, with an approximately
one-year interval between each iteration, and further refined
it in our extended study [48]. Figure 1 shows these five steps:

1. Google search: by using a string query, we searched
for potentially interesting documents.

2. Document selection: by applying inclusion/exclusion
criteria, we checked the initial set of potentially inter-
esting documents, thus identifying a reduced number
of documents of interest, to be further analyzed.

3. Data extraction: we read and analyzed each document
of interest to extract information concerning TA prob-
lems, AI-based solutions, and tools.

4. Taxonomies creation: we created taxonomies of prob-
lems, solutions, and available tools.

5. Data analysis: we further analyzed the collected in-
formation using Sankey diagrams [50] and manual in-
depth analysis for discovering relationships.

In the rest of the section, we present each step in detail.

3.1.1. Google Search
The Google search was intentionally broad to gather a

large pool of documents. This approach was intended to
maximize the retrieval of all relevant documents, at the cost
of including documents that were not directly relevant to our
study. Thus, we established specific inclusion and exclusion
criteria to filter out the irrelevant documents and ensure that
the remaining ones align with the study’s scope. We used
Google in incognito mode to conduct our searches, to ensure
that our search results were not influenced by previous search

histories or personalized algorithms. For our Google search,
we used the following query string:

((“artificial intelligence” OR “AI” OR “machine
learning” OR “ML”)

AND (“test automation” OR “automated testing”))

The first part of the query string is characterized by
words related to artificial intelligence and machine learning,
whereas the second part is related to automated testing. All
relevant documents contained an instance of each keyword
from each part of the string (AND operator), whereas key-
words within the same part were ORed. For each query, the
first 15 pages of results were scraped, each having 10 doc-
uments. We conducted eight queries, which accounted for
1,200 documents that were analyzed overall (150 documents
for each query). The output of this step is a list of candidate
web documents potentially regarding TA conducted with AI-
based solutions. Table 1 (column “# Date”) reports the date
on which the search was conducted.

3.1.2. Document Selection
The list of candidate web documents has been analyzed

according to a set of inclusion and exclusion criteria, for
filtering out irrelevant documents. We mainly considered
three inclusion criteria: (i) the document needs to investigate
AI or ML tools or methods that can support TA; (ii) the doc-
ument should apply to either capture-replay, programmable
(or script-based), visual, or combinations of these testing ap-
proaches; (iii) tools’ websites and presentations are included
as long as they specify useful information, and (iv) presen-
tations and slide decks are included only if in scope. We
mainly excluded documents (exclusion criteria) if: (i) they
are scientific peer-reviewed papers; (ii) they are not written
in the English language; (iii) they provide guidelines for
using AI within manual testing; (iv) they are videos or books;
(v) they are part of the website that requires registration; and
(vi) they contain only generic information on AI or software
testing, without relating the two concepts. These criteria
have been applied by analyzing each document obtained
in the initial search on Google, thus only those documents
that provide direct evidence about the study’s objective were
retained. The output of this step is a list of relevant candidate

Ricca et al.: Preprint submitted to Elsevier Page 4 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Figure 2: A screenshot of the publicly available Google Docs spreadsheet featuring the data extracted from the documents.

Table 1
Summary of data related to the taxonomies.

Iteration Date # Analyzed # Problems # Solutions # Tools

First [47] Sept. 2020 156 35 35 50
Second [48] Febr. 2023 95 (251) 5 (40) 9 (44) 17 (67)
Third April 2024 91 (342) 7 (47) 15 (59) 33 (100)

documents regarding TA conducted with AI-based solu-
tions. Table 1 (column “# Analyzed”) reports the number of
documents selected and then analyzed in this step for each
iteration. In parentheses, we have reported the cumulative
total value across the various iterations.

3.1.3. Data Extraction
In this step, each relevant candidate document has been

read and analyzed in detail and the following information
has been collected: (1) web link to the document, (2) name
and surname, if any, about the author(s) of the document,
(3) the publication date of the document (if available), (4) the
type of the document (e.g., blog post, interview transcript),
(5) the test automation tool(s) investigated or described in
the document, (6) the testing level discussed (e.g., unit,
integration, system, acceptance), (7) the test automation
problems and issues addressed, and (8) the solution offered.
For each iteration, the authors conducted a pilot study by
labeling a randomly selected sample of 10 documents. The
consensus on the labels was high in all the cases, allowing
the authors to proceed with the analysis independently on
separate sets of documents for the subsequent phases. In
detail, we build a tabular representation of the data extracted
from the documents implemented as an online spreadsheet
on Google Docs. Figure 2 shows an image of the online
spreadsheet on Google Docs we used to gather data, which
details the contribution aspects. Each row of the table reports
the information collected for a document and an individual
problem or solution. Hence, more rows can be used to
detail several TA problem-solution tuples found in a single
document. During the mapping process, the authors reused
existing labels whenever applicable to avoid introducing
nearly identical labels for the same TA problem/solution
and to maintain consistent naming conventions. We recall

that the set of TA problems and TA solutions considered
has been defined iteratively by starting from a small set of
documents (as documented in [47]). Each newly identified
problem and/or solution was incrementally considered, and
the document was re-analyzed if needed.

3.1.4. Taxonomy Creation
By collecting the identified tuples of test automation

problems and solutions, as well as the list of existing tools,
two taxonomies have been constructed to answer RQ1 and
RQ2, following a systematic process [14], while the list of
tools has been used to answer RQ3. To build the taxonomies,
we clustered related TA problems and/or TA solutions, thus
identifying categories of problems and solutions. Then, par-
ent categories have been created, by following a special-
ization relationship between categories and subcategories.
Especially, at the beginning of the process, some iterations
between this step and the previous one, related to Data
extraction, were needed to clearly identify the relevant infor-
mation. The remaining columns of Table 1 report, for each
iteration, the number of identified categories of problems
(column “# Problems”) and solutions (“# Solutions”) in
the two taxonomies and the number of identified tools (“#
Tools”). In parentheses, we have reported the cumulative
total value across the various iterations.

3.1.5. Data Analysis
We answered the first three research questions (RQ1,

RQ2 and RQ3) by analyzing the two taxonomies of problems
and solutions and the list of tools. In order to answer RQ4,
about the generalizability of the built taxonomies, we ana-
lyzed the set of categories, sub-categories, and values added
in each of the three iterations. Each row in Table 1 reports
the data concerning a specific iteration of the experiment.
Further analysis has been conducted after the construction
of the taxonomies by considering the information related to
the tuples of TA problems, solutions, and tools. In particular,
several Sankey diagrams [50] have been constructed aiming
at visualizing the possible interconnections between AI-
based solutions and TA problems (to answer RQ5), and
AI-based tools and AI-based solutions (to answer RQ6). In
a Sankey diagram, the relations between nodes are shown

Ricca et al.: Preprint submitted to Elsevier Page 5 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Table 2
Taxonomy of test automation problems identified in the first [47], second [48] (in green), and third iteration (in light blue).

PROBLEM [47] [48] # PROBLEM [47] [48] #

Test Planning 22 32 52 Test Execution 71 103 118
Critical paths identification 13 13 19 Untested code 29 34 40
Planning what to test 7 9 11 Flakiness 18 22 22
Planning long release cycles 2 2 2 Slow execution time 14 16 23
Test process management - 8 20 Useless test re-execution 4 7 9

Scalability 2 3 13
Test Design 8 22 55 Parallelization 2 3 5

Programming skills required 5 11 25 Low user responsiveness 1 1 1
Domain knowledge required 3 9 12 Platform independence 1 1 5
Designing effective Testcases - 1 17
Adherence to coding standards - 1 1

Test Closure 47 59 96
Test Authoring 110 133 220 Manual debugging overhead 18 22 26

Manual code development 52 58 108 Costly result inspection 10 11 23
Manual API test development 7 11 13 Visual analysis 19 25 39
Manual data creation 19 24 37 Data Quality - 1 1
Test object identification 13 13 19 Code Quality - - 7
Cross-platform testing 10 15 26
Mimic geo-location testing 1 1 2
Costly exploratory testing 5 5 6 Test Maintenance 82 102 184
Locators for highly dynamic elements 1 1 1 Manual test code migration 3 3 4
Test code modularity 1 1 1 Bug prediction 11 13 17
Accessibility testing 1 1 1 Fragile test script 10 12 27
Adequacy-focus on faulty-areas - 3 5 Regression faults 2 7 7
Optimize test strategies - - 2 Costly visual GUI regression 8 10 19

Maintenance overhead 48 57 100
Test Type - - 3 Change Requirements - - 1

Conducting thorough security testing - - 2 Communication developers-testers - - 5
Testing-AI-generated-code - - 1 Troubleshooting and root cause analysis - - 4

Unspecified 60 77 133 Generic 23 33 55

Total 423 545 917

by links that connect input and output nodes (in our case,
respectively, solutions–problems and tools–solutions), while
the width of a link indicates the relevance or magnitude of
the relationship. By using the Sankey diagrams, we identi-
fied trends and patterns in the relations among TA solutions,
problems, and tools, thus being able to answer RQ5 and RQ6.
More specifically, we employed pandas data-frames [34] to
filter information related to the problems addressed and
solutions provided (RQ5), as well as the tools used (RQ6).
We excluded entries where the problem, solution, or tool was
either unspecified or too generic. For the relevant entries, we
counted each pairwise combination of <problem, solution>

and <tool, solution>, treating each instance of a problem-
solution pair or tool-solution pair as a unique connection. We
utilized the plotly library [17] to generate the Sankey dia-
grams [50], though it is important to note that the diagrams
presented in this paper focus only on the most prominent
connections for the sake of space and readability, while the
complete set of diagrams encompasses all collected sources.

3.2. Iterations
As previously mentioned, we conducted three iterations

of the described procedure. The first search was conducted
in September 2020 while the second search was conducted
in February 2023. These iterations have been documented in
our previous published studies [47, 48]. The third iteration
search was conducted in April 2024 and it is presented in
this paper. In each iteration, we started from the previously
built taxonomies and refined them by adding new categories
and values if needed.

4. Results
4.1. RQ1 (Issues/problems)

Table 2 reports the existing TA problems and issues and
the number of individual occurrences. The table reports the
data collected in the first [47] and in the second [48] (in
green) iteration, as well as the updated version related to the
third iteration (in light blue).

Overall, in the three iterations, we identified 917 indi-
vidual occurrences into the seven main categories: (1) test
planning, 5.6% of occurrences; (2) test design, 5.9% of oc-
currences; (3) test authoring, 24.1% of occurrences; (4) test
type, 0.3% of occurrences; (5) test execution, 12.8% of oc-
currences; (6) test closure, 10.4% of occurrences; and (7) test
maintenance, 20% of occurrences. Other two categories such
as Unspecified and Generic collected respectively 14.5% and
5.9% of occurrences.

The most represented subcategory is Manual code de-
velopment (11.6%), which was not surprising since it is well
known [23, 26] that the development of test cases and scripts
is a complex task that requires non-trivial domain knowledge
and appropriate testing and programming skills.

The second most mentioned subcategory is related to
Maintenance overhead (10.9%). Nowadays, software ap-
plications evolve continuously, in particular, in fields such
as web and mobile. This continuous evolution of software
applications requires continuous maintenance and evolution
also of corresponding test suites, thus being aligned with
the applications. Existing research [23, 26] shows that test
maintenance is a highly expensive and time-consuming task,

Ricca et al.: Preprint submitted to Elsevier Page 6 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Table 3
Taxonomy of test automation solutions identified in the first [47], second [48] (in green), and third iteration (in light blue).

SOLUTION [47] [48] # SOLUTION [47] [48] #

Test Generation 125 192 302 Debugging 62 82 149
Aut. test generation 29 48 74 Intelligent test analytics 17 22 27

Aut. generation using machine translation 11 13 25 Automated coverage report 14 22 28
Aut. generation from user behaviour 11 22 29 Noticeable code changes identification 12 13 23
Aut. test generation from API calls 6 6 13 Runtime monitoring 10 11 12
Aut. test generation from mockups 3 3 3 Flaky test identification 7 8 9
Aut. test generation using crawling 2 11 16 Bad smell identification 1 1 1
Aut. test generation using GenAI - - 18 Intelligent log analysis - - 5
Codeless test generation - - 11 Intelligent test reporting - - 6

Declarative testing - 2 3 Decoupling test framework from host 1 1 7
Predict faulty-areas - 4 4 Root-cause-analysis 1 10 10
Aut. data generation 22 22 32 Prediction of failures - 3 21
Robust element localization 13 13 14
Dynamic user-behaviour properties recognition 8 8 8 Maintenance 81 141 201
Automated exploratory testing 7 10 12 Self-healing mechanisms 43 43 63
Object recognition engine 6 13 19 Self-healing test scripts 24 32 55
Mock generation 3 3 3 Smart locators 19 21 24
Self-learning 2 3 7 Intelligent fault prediction 12 13 13
Automated API generation 1 9 9 Intelligent selective test re-execution 12 12 12
Page object recognition 1 2 2 Intelligent waiting sync 5 5 5

Intelligent test prioritization 4 6 11
Test Optimization - - 12 Aut. identification environment 3 6 6Improve test quality - - 8 configurations

Static (AI) Code Analysis - - 2 Pattern recognition 1 1 3
Improve test scalability - - 1 Remove unnecessary test cases 1 1 6
Anonymous test data - - 1 Reduce UI testing - 1 3

Test Execution - 8 40 Test Process - - 33
Cloud execution - 2 11 AI data-driven test decisions - - 13
Decoupling test framework from host - 2 8 AI (Chat-bots) for communication - - 4
Smart test execution - 3 19 Shift Left Testing - - 2
Anomaly detection - 1 1 Hyper Automation Testing - - 1
Headless execution - - 1

Test type - - 4
IOT testing - - 2
Blockchain testing - - 2

Oracle 38 46 70 Unspecified 91 99 119
Visual testing 38 46 70 Generic 25 30 55

Total 466 607 972

and in some cases, it can even be the most costly test
automation activity [43].

Other representative subcategories, even if less numer-
ous, are: Untested code (4.3%), Visual analysis (4.2%), and
Manual data creation (4%).

Untested code and Manual data creation are key aspects
to optimize the generation of effective test cases. On the
one side, in fact, it is impossible to test everything in a
software application, so strategies and techniques to identify
the less tested portion of the application are fundamental
for reducing the overall effort by focusing on where it is
needed. For instance, it has been demonstrated that test suites
with low coverage of the app code have a lower chance of
detecting bugs [5]. On the other side, the use of high-quality
test data is a critical part of testing [49], but producing such
high-quality test data can be time-consuming.

Validating the visual correctness of a GUI (Visual anal-
ysis subcategory) is a particularly challenging task. When
done manually, testers must visually inspect all elements
of the application to ensure they appear as intended, often
across multiple devices and platforms. This process gener-
ally involves comparing screenshots of the current applica-
tion against a previously established baseline, or “golden
master”, and reporting any significant visual discrepancies.

Another significant challenge in test automation is test
flakiness (Flakiness subcategory). A test script is considered
flaky if its execution on the same application results in in-
consistent outcomes due to environmental factors like screen
size, browser version, or network conditions [22, 31]. This
issue undermines the reliability of test automation, as flaky
tests are more prone to missing defects (false negatives) or
reporting incorrect errors (false positives).

4.2. RQ2 (Solutions/approaches)
Table 3 reports the existing AI-based solutions to the

evidenced TA problems and issues (RQ1). The table reports
the data collected in the first [47] and in the second [48] (in
green) iteration, as well as the updated version related to the
third iteration (in light blue).

The solutions have been grouped into eight main cat-
egories. In the table, TA solutions and their occurrences
are listed for iterations. Overall, in the three iterations, we
identified 972 individual occurrences into the eight main
categories: (1) test generation, 31% of occurrences; (2) test
oracles, 7.2% of occurrences; (3) debugging, 15.3% of occur-
rences; (4) test maintenance, 20.6% of occurrences; (5) test
process, 2% of occurrences; (6) test execution, 4.1% of
occurrences; (7) test optimization, 1.2% of occurrences; and

Ricca et al.: Preprint submitted to Elsevier Page 7 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Table 4
The most popular AI-based tools used in the context of software testing, as identified in the first [47], second [48] (in green),
and third iteration (in light blue).

[47] [48] Third Iteration

Tool # Tool # Tool #

1 Testim 14 Applitools 24 Applitools 50
2 Applitools 12 Testim 20 Testim 38
3 Functionize 11 Functionize 16 Functionize 35
4 Mabl 7 Mabl 14 AcceIQ 32
5 LambdaTest 6 TestCraft 9 Mabl 29
6 Laucnhable 5 Parasoft SOA test’s Smart 8 TestCraft 21

API Test Generator 8
7 Parasoft SOA test’s Smart 5 SauceLabs 8 Testsigma 18

API Test Generator 8
8 QMetry Digital 5 TestComplete 8 Katalon 15

Quality Platform 5
9 Testsigma 5 UiPath Test Suite 8 ChatGPT 14
10 UiPath Test Suite 5 AcceIQ 7 TestComplete 12
11 Test.AI 4 ChatGPT 7 Parasoft SOA test’s Smart 10

API Test Generator
12 Tricentis Tosca 4 LambdaTest 7 UiPath Test Suite 10
13 AcceIQ 3 Testsigma 7 LambdaTest 9
14 Appium 3 Test.AI 6 SauceLabs 9
15 Google OSS-Fuzz 3 Eggplant AI 5 Aqua 8
16 Kobiton 3 Katalon 5 Test.AI 7
17 Percy 3 Laucnhable 5 Testrigor 7
18 SauceLabs 3 Parasoft Selenic 5 Appium 6
19 TestCraft 3 QMetry Digital 5 Eggplant 6

Quality Platform
20 TestProject 3 Tricentis Tosca 5 Parasoft Selenic 6
21 Appvance IQ 2 Appium 4 pCloudy 6
22 Browsershots 2 BrowserStack 4 Tricentis Tosca 6

50 67 100

(8) test type, 0.4% of occurrences. Other two categories such
as Unspecified and Generic collected respectively 12.2% and
5.6% of occurrences.

The most represented subcategory is Automatic test gen-
eration (189 occurrences out of 972, 19.4%, by considering
all automatic test generation subcategories). Automatic test
case generation, however, remains an ambitious task, even
when AI-based technologies are used. We could observe that
7.6% of the occurrences related to automatic test generation
did not give any indication about how automated test code
generation is implemented. Existing works generate tests
automatically by: (i) starting from the analysis of the real
users’ behaviors (2.9%); (ii) by applying machine translation
techniques (2.5%), for example, natural language process-
ing techniques that develop test scripts starting from test
requirements descriptions written in natural language; and
(iii) recently, by adopting generative AI strategies (1.8%).

The second most mentioned subcategory is related to
Visual testing (7.2%). To implement visual testing strategies
different computer vision solutions are applied to automati-
cally identify functional and visual problems in the applica-
tion GUI, in particular, by applying image-recognition and
OCR techniques to identify graphical elements and detect
changes among the different tested versions.

Another representative subcategory, even if less nu-
merous, is related to test maintenance, i.e., Self-healing
mechanisms (6.4%). Self-healing refers to the capability of
automatically applying corrective actions when a test script
is broken, for instance, after an application maintenance
or evolution task, without human intervention. In fact, the

continuous evolution of modern applications breaks test
scripts, thus requiring a large effort to repair such test scripts.
Following the analysis of the documents, we further split
this subcategory into two distinct categories: Self-healing
test script (5.6%) and Smart Locators (2.4%). The adoption
of smart locators can be relevant to prevent the need for
repairing interventions. By using multiple constructs that
can be updated dynamically as the application evolves, in
fact, smart locators tend to be resilient to test breakages. In
detail, by using multiple attributes per web element to locate,
smart locators improve the robustness of test scripts.

4.3. RQ3 (Tools and Platforms)
Table 4 shows that we identified in total 100 tools that

support the TA solutions strategies (RQ2) and that were
discussed in the analyzed documents in the three iterations.
Among these tools, the table lists the twenty-two most
frequently cited and discussed ones. Considering the third
iteration, the top-5 tools are: Applitools,1 Testim,2 Function-
ize,3 AccelQ,4 and Mabl.5

Applitools focuses on GUI testing by applying auto-
mated visual testing strategies based on different computer
vision technologies and algorithms. Testim applies intelli-
gent capture-replay approaches and GPT-based technology
for automatic test generation and adopts smart locators to
prevent test breaking. Testim also supports AI data-driven

1https://applitools.com
2https://www.testim.io
3https://www.functionize.com
4https://www.accelq.com
5https://www.mabl.com

Ricca et al.: Preprint submitted to Elsevier Page 8 of 20

https://applitools.com
https://www.testim.io
https://www.functionize.com
https://www.accelq.com
https://www.mabl.com


A Multi-Year Grey Literature Review on AI-assisted Test Automation

testing decision strategies. Functionize uses advanced NLP
technologies for automatic test generation and adopts AI-
based strategies for applying self-healing maintenance, in
particular, for dynamically updating test scripts based on the
application changes. Mabl uses a crawler for exploring a web
application aiming at automatically generating test scripts
by covering all reachable parts of the application under
test. Mabl offers also a self-healing test script solution and
supports AI data-driven testing decision strategies. Finally,
AccelQ uses generative AI to automatically generate tests
and offers self-healing test scripts, as well as an efficient
cloud-based test execution.

4.4. RQ4 (Generalizability)
Table 2, Table 3, and Table 4 report TA problems, solu-

tions, and existing tools/platforms that we have identified in
the three iterations of the conducted grey literature analysis:
first [47], second [48] (in green), and third iteration (in light
blue) documented for the first time in this work. In the
first iteration, we analyzed 156 documents (see Table 1),
in the second one we additionally considered 95 documents
(+60.8% to the initial set of 156 documents of [47]), and in
this third iteration, we additionally considered 91 documents
(+36.2% concerning the total number of documents, that is,
251 found in the first two iterations).

The three different iterations allow us to: (i) built a
taxonomy of TA problems composed of 47 subcategories
(40 after the second iteration, and 35 after the first one),
grouped into 7 main categories (6 after the first and the
second iterations), and in which 917 individual occurrences
have been distributed (545 after the second iteration, and
423 after the first one); (ii) built a taxonomy of TA solutions
composed of 59 subcategories (44 after the second iteration,
and 35 after the first one), grouped into 8 main categories
(5 after the second iteration, and 4 after the first one), and
in which 972 individual occurrences have been distributed
(607 after the second iteration, and 466 after the first one);
and (iii) identified a list of 100 tools and platforms (67 after
the second iteration, and 50 after the first one).

With respect to the two initial taxonomies, in detail, we
have only partially extended the taxonomy related to TA
problems, leaving it almost stable with respect to the one
defined initially in [47]. In fact, during the second iteration,
we only introduced 5 new subcategories of TA problems,
resulting in a total of 44 individual occurrences out of 545.
In the third iteration, we added 7 additional subcategories,
which accounted for 25 individual occurrences out of 917.
We also made only partial progress in extending the tax-
onomy related to AI-based solutions. Specifically, during
the second iteration, we introduced one new category (i.e.,
Test Execution) and 9 subcategories, which accounted for
80 individual occurrences out of 607. In the third iteration,
we added 3 additional categories (i.e., Test Optimization,
Test Process, and Test Type) along with 15 subcategories,
resulting in 77 individual occurrences out of 972.

Regarding tools and platforms, however, the situation is
completely different. In a short time, their number has grown

significantly, and new options have appeared on the market.
Among the new tools and platforms, we find ChatGPT,
Aqua, TestRigor, and pCloudy. ChatGPT, an advanced lan-
guage model from OpenAI that generates human-like text, is
primarily used for creating test scripts in software testing and
was the most frequently mentioned tool in the documents
we reviewed, with 14 total occurrences. Following that, we
have Aqua, TestRigor, and pCloudy. Aqua is a test manage-
ment platform that leverages AI to optimize test planning,
execution, and tracking. Offering cloud-based solutions for
both manual and automated testing, it integrates with var-
ious tools to improve testing efficiency and effectiveness.
TestRigor is an automated testing tool designed for creating
and running end-to-end tests using plain English commands.
It simplifies test creation and maintenance. pCloudy is a
unified app testing platform that ensures app quality across
various devices and browsers. It offers cloud-based manual
and automated testing with access to thousands of real
devices. Leveraging AI, pCloudy enhances integration, ef-
ficiency, and effectiveness in testing

In conclusion, regarding the generalizability of the tax-
onomies, we can state that in our analysis, we have only
partially extended the initial taxonomies. The list of prob-
lems and solutions has remained largely consistent with
the previous versions, with only a few minor exceptions.
On the other hand, the list of tools has shown significant
and consistent growth across the iterations, doubling their
number from the first to the third iteration.

4.5. RQ5 (Problems vs. Solutions)
Figure 3 utilizes a Sankey diagram to illustrate the re-

lationships between problems and AI-based solutions in the
test planning phase: problems are shown on the left, while
solutions are shown on the right. In the planning phase, the
most relevant problem (the larger node on the left) identified
by the community is the identification of test paths, i.e.,
a specific sequence of actions that are executed to verify
that a particular feature or functionality of the application
under test is working as expected. This sequence can involve
clicking on links, filling out forms, submitting data, and
interacting with various elements on the web pages. In
particular, testers are interested in identifying the critical
paths in the app to test them thoroughly. In terms of solutions
adopted, automatic test generation based on crawling and
user behaviors are the most frequently discussed. However,
as shown in the diagram, other solutions for identifying
critical paths are: predict faulty areas in the application under
test and intelligent test analytics. It is worth noting that test
process management has become an increasingly relevant
issue over the years. In fact, there has been a noticeable rise
in individual discussions on this topic within the community.
As shown in Table 2, there were no occurrences of this
issue identified in the first iteration, eight occurrences in the
second iteration, and twenty occurrences in the most recent
iteration. The most commonly used solution for this problem
is using AI and data analytics to guide the software testing
lifecycle. This approach leverages various technologies and

Ricca et al.: Preprint submitted to Elsevier Page 9 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Figure 3: Problems vs Solutions: Test planning Sankey diagram.

Figure 4: Problems vs Solutions: Test design Sankey diagram.

methods to make informed decisions based on data rather
than relying solely on manual processes or intuition.

Similarly, Figure 4 shows that the most relevant test
problem when designing tests, concerns the programming
skills required to develop test scripts (the larger node on
the left), thus as expected, several different strategies and
technologies are proposed (we can see in the diagram differ-
ent output nodes for programming skills) for automatically

generating test scripts and test data, e.g., the adoption of gen-
erative AI, NLP, codeless test scripts (e.g., by visual testing
mechanisms). The second most important problem we can
note is the design of test cases, which involves determining
what to test, the steps to take to create a test case, and what
the oracle is. We can see from the diagram that various
solutions are proposed for this problem, ranging from using
automated exploratory testing to automatic generation, for
example by using generative AI.

Ricca et al.: Preprint submitted to Elsevier Page 10 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Figure 5: Problems vs Solutions: Test authoring Sankey diagram.

Figure 6: Problems vs Solutions: Test execution Sankey diagram.

Figure 5 represents the Sankey diagram problems/solutions
in the authoring phase and shows that the most relevant
problems in this phase are related to the manual effort
needed to develop/implement test cases in test scripts and
creating effective test data (see the two larger nodes on
the left). Among the solutions to limit the manual effort
in implementing test cases, we find that the predominant
category, as we would expect, is automatic generation. The
subcategories include all the automatic generation methods

found, such as using screen mockups as a starting point,
employing a web crawler, and even utilizing generative
AI tools/platforms. Regarding the problem of generating
effective test data, the main solution is to rely on AI-based
tools capable of generating it. It is interesting to note that test
object identification—the ability of testing tools/platforms to
correctly recognize and interact with various elements (ob-
jects) on a web page, e.g. dynamic or modal elements, and
cross-platform problems—cross-platform testing involves

Ricca et al.: Preprint submitted to Elsevier Page 11 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Figure 7: Problems vs Solutions: Test closure Sankey diagram.

verifying that a software application functions correctly
across different environments, including various operating
systems, browsers, and devices. Planning cross-platform
testing presents unique challenges due to the diversity and
complexity of environments on which the application must
be tested—remain among the most relevant problems, in all
the three considered iterations. In particular, the identifica-
tion of test objects is faced with several strategies such as
(i) object recognition engines (i.e., identification of testing
elements in the GUI); (ii) robust element localization (e.g.,
use of multiple sources to localize elements in the GUI);
(iii) visual testing (i.e., automated visual checks of the
GUI by using of computer vision); and (iv) intelligent fault
prediction strategies.

The Sankey diagram represented in Figure 6 shows that
several different problems seem to affect the test execution
phase. Among the various problems, the most significant
and those that attract the community’s attention seem to be
flakiness and untested code. In the last iteration (see Ta-
ble 2), flakiness—flakiness in tests occurs when test results
are unreliable, showing varying outcomes across multiple
runs even though the application state remains unchanged—
appears to be recognized as less relevant compared to the
first and second iteration. Conversely, the problem of identi-
fying the untested code is becoming more and more relevant
with the second and third iteration. A multitude of intelligent
mechanisms (e.g., fault prediction, code change analysis,
smart locators, API generation, exploratory testing, and test
generation) are adopted to increase code coverage during
testing. In particular, the automatic generation of coverage
reports is a key aspect for keeping developers and testers
continuously informed about coverage information, enabling
them to take compensatory actions if necessary. Another

notable issue in this phase is the lengthy execution time of
test suites, which can be quite significant in some cases. The
grey literature presents a variety of solutions for this prob-
lem, including ’smart’ test execution approaches—smart
test execution scans your application for code changes and
runs tests specifically to validate those changes—, runtime
monitoring, and the exclusion of non-essential test cases.

Figure 7 and Figure 8 respectively depict the relevant
problems and the adopted solutions for test closure and
maintenance using Sankey diagrams. Regarding test clo-
sure, the most relevant problem is still the manual overhead
needed to debug the code. Two strategies can be identified
among the provided solutions. On the one side, solutions
such as root-cause analysis and automatic identification of
code changes are proposed to identify and fix the issues
by considering multiple information sources. On the other
side, self-healing and intelligent analytic mechanisms are
applied to avoid and predict issues, thus reducing the man-
ual debugging overhead. Concerning test closure, in the
three iterations, we also observed an increasing interest
in techniques related to failure prediction and static code
analysis, aiming at improving the code and data quality.
The most significant problem in test maintenance is still the
overhead involved. The strategies proposed in the solutions
fall into three categories: (i) the development of self-healing
test scripts and mechanisms to avoid costly maintenance
interventions; (ii) the application of fault prediction and code
change detection techniques to better target and minimize
maintenance efforts; and (iii) the implementation of smart
locators and robust element localization methods to prevent
test maintenance activities. Other issues affecting test main-
tenance are automatically validating the visual correctness
of the application and the fragility of tests. A solution to the

Ricca et al.: Preprint submitted to Elsevier Page 12 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Figure 8: Problems vs Solutions: Test maintenance Sankey diagram.

Figure 9: Tools vs Solutions: Sankey diagram.

problem of automatically validating the visual correctness of
the application is automated visual verification of the web
app GUI using computer vision techniques. Test fragility,
defined as the tendency of tests to break easily due to
minor changes in the application, can be addressed with
various solutions, ranging from self-healing mechanisms to
improving test script quality.

4.6. RQ6 (Tools vs. Solutions)
Figure 9 presents a Sankey diagram featuring the five

most frequently cited tools in the third iteration—Applitools,
Testim, Mabl, Functionize, and AccelQ—as listed in Ta-
ble 4. Each flow in the diagram represents a relationship
identified in the analyzed documents between a tool (left
node in the diagram) and the AI-based solutions (right node
in the diagram) it supports, as listed in Table 3. We empha-
size that, in our case, the size of the flows and nodes in the

Ricca et al.: Preprint submitted to Elsevier Page 13 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

diagram indicates relationships that are more comprehen-
sively addressed in the analyzed documents. In the figure,
it is evident that Functionize demonstrates notable strengths
and diverse capabilities. Specifically, Functionize excels in
using NLP and AI for automatic test generation and employs
advanced techniques for self-healing test maintenance (see
Figure 9). Similarly, Applitools provides flexibility and a
comprehensive set of features. Notably, Applitools excels
in visual testing and employs advanced strategies for auto-
mated test generation, including object recognition systems,
user behavior observation, and generative AI mechanisms.
Applitools provides also test maintenance (e.g., self-healing
mechanisms, code change identification capability) and de-
bugging features (e.g., root-cause analysis, and intelligent
test analytics). In general, as we can also see from the figure,
testing tools, and platforms are very flexible and support
a wider range of solutions to different problems. However,
there are exceptions, such as Appium and Testsigma (not
present in the figure), which are more specialized and target
a narrower set of capabilities.

5. Discussion
Observations and Evidences. By analyzing the results col-
lected in the three iterations of our study, we derived the
following observations and evidence.

O1: We can identify TA problems for which AI-enhanced
existing solutions seem to be promising and largely
studied. In particular, we observed that test authoring
(i.e., test creation) is the most investigated TA prob-
lems. We identified 34 tools (e.g, Applitools, Func-
tionize, Testim, Testrigor) that use AI-based technol-
ogy for automatically generating test cases using dif-
ferent technologies, such as NLP techniques or GUI-
based capture and reply techniques to automatically
generate test scripts, aiming at limiting the manual
human intervention. O1 is of interest, in particular,
for practitioners who could easily identify the prob-
lems better supported by existing tools, and also for
researchers to identify unexplored problems for which
propose innovative solutions.

O2: We can identify TA problems that could be faced by
AI-enhanced existing solutions implemented in AI-
based tools. For instance, a well-known challenge in
GUI testing is the creation of effective oracles [35].
The use of oracles based on visual testing, using AI
and computer vision approaches, is suggested in the
grey literature as one of the possible ways to face this
challenge. Furthermore, 13 tools that support oracle
visual testing have been identified, e.g., Applitools, AI
Testbot, Mabl, Sealights, Testim, and Test.ai. O2 is
of interest, in particular, for practitioners for quickly
selecting the most appropriate solutions for their TA
problems and the most adequate tools that support the
solutions to their TA problems.

O3: We can identify TA problems that require solutions
involving several phases of TA. For instance, in the
test planning phase, we defined problems such as
planning what to test, identifying critical paths in
the application under test, and managing the entire
test process, among others. We observe that the latter
problem raised attention only recently (in the third
iteration of our study), and it is faced by mainly ap-
plying AI data-driven decision strategies. The second
problem is mainly faced with automatic test creation
solutions, ranging from crawling the application under
test to the creation of test scripts using user behaviors.
The first problem instead is faced by solutions involv-
ing test script creation (e.g., automatic test creations
by focusing on application areas that are predicted
as more buggy), test selection (e.g., based on fault
prediction), test execution (e.g., adoption of intelligent
test re-execution strategies), and, finally, test debug-
ging approaches (e.g., adoption of test analytics). O3
is of interest, in particular, for researchers that can
better highlight as some TA problems are addressed
from different perspectives, i.e., for some problems,
specific ad-hoc solutions can be adequate while, for
other problems, more complex solutions need to be
studied.

O4: We identified solutions presented in the grey literature
that are not supported by existing available tools. For
instance, nevertheless, test generation with mockups
and dynamic properties identified from observed user
behaviors are listed among possible solutions sup-
ported by AI, for automatically generating tests, we
did not identify any existing tools that provided such
capabilities. However, it is important to keep in mind
that the absence of a tool does not necessarily indicate
a lack of existing solutions for a particular problem.
It could simply mean that the specific tooling solu-
tions were not mentioned in the literature due to the
incompleteness of our analysis. For instance, decou-
pling the test framework from the host environment
is referenced, in the grey literature, as one possible
solution for facilitating cross-platform testing. How-
ever, it seems that this solution is not adequately sup-
ported by the existing AI-enhanced tools, that mainly
provide approaches that allow the identification of
different environmental configurations, to face cross-
platform testing. Another solution that seems to be not
adequately supported by tools concerns the execution
of test cases with mock responses: no tools support
the construction of mock objects that can be used in
TA. Concerning the test selection and optimization,
solutions aiming at prioritizing test cases, removing
unnecessary test cases and GUI-based testing seem to
be not adequately supported by existing AI-enhanced
tools. O4 is of interest to both professionals and re-
searchers to develop innovative tools and technologies
capable of supporting the identified solutions.

Ricca et al.: Preprint submitted to Elsevier Page 14 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

O5: In general, we identified tools that support solutions
across various phases of test automation and address
multiple test automation problems. However, there
are also, though less common, tools that are specific
to a particular phase or problem. For instance, tools
such as Applitools, Functionize, and Mabl are able
to support different TA phases, e.g., test creation,
maintenance, execution. Conversely, tools such as Ap-
pium, Testsigma, and TestComplete seem to be more
specific, thus mainly supporting a given testing phase,
e.g., Appium and Testsigma focus on test creation,
while TestComplete focuses on visual testing. O5 is
of interest for practitioners for selecting the most ap-
propriate tools to use in their business, by taking into
account the problems they have to face and also other
aspects such as specificity and flexibility of tools.

5.1. Threats to validity
This section discusses the limitations of this research

and the validity of the results presented. The primary issues
related to the validity of this grey literature review involve
inaccuracies in data extraction, an incomplete set of studies
due to the limitations of search terms and search engines, and
potential researcher bias concerning the criteria for study
inclusion and exclusion. In this section, we discuss four
types of validity threats plus reproducibility according to a
standard validity checklist [60].

Threats to internal validity relate to potential biases and
errors in the selection of documents (exclusion criteria) and
the classification of the considered items. The classification
task is particularly challenging in the context of grey liter-
ature because web documents are often informative rather
than technical, and the terminology used can be vague and
ambiguous. To mitigate as much as possible classification
errors, we adhered to a systematic and structured proce-
dure (Section 3.1) with multiple iterations, starting with a
small pilot study for each iteration and ensuring a consistent
approach. Another potential threat to the internal validity
of our grey literature review is the search string used in
the review process. Modifications to the search string could
lead to different results, highlighting a limitation of our
approach. The search string we used was carefully designed,
but any changes to it could yield different sets of documents,
thus affecting the scope and findings of the review. This
underscores the importance of a well-defined search strategy
and acknowledges that our conclusions are based on the
specific search parameters we employed.

The external validity of our study is primarily limited
by our selection of sources. We considered only documents
available on Google within a specific time frame. Conse-
quently, our findings may not be generalizable to documents
from other search engines, repositories, or different time
periods. Future research should expand the scope to in-
clude additional sources and broader time frames to validate
and extend our findings. However, given the number of
documents analyzed and considering that the analysis was
conducted at different times in three separate iterations, we
are quite confident in our results.

Construct validity concerns the extent to which our
methodology accurately captures the constructs of interest,
such as the identification of AI-based solutions for test au-
tomation and their associated issues. The inherent vagueness
and ambiguity in grey literature terminology pose a risk to
construct validity. To address this, we defined clear criteria
for inclusion and exclusion and employed a rigorous pro-
cedure with reliability checks through an initial pilot study
conducted at each iteration.

Conclusion validity pertains to the degree to which our
conclusions are credible and dependable. The iterative na-
ture of our experiment, along with a pilot study conducted at
each iteration, helps to ensure that our conclusions are based
on systematically derived evidence. Nonetheless, the sub-
jective nature of document interpretation in grey literature
reviews remains a potential threat.

To enhance reproducibility, we have made all our re-
sults, including data, plots, and references, available in our
replication package [45]. This transparency allows other
researchers to verify our findings and procedure. However,
the inherent variability in grey literature sources means that
exact replication may be challenging. We encourage future
researchers to apply our procedure in different contexts to
assess its robustness and adaptability.

6. Developers Interviews
While grey literature provided valuable information for

our study, the nature of these sources limits to suggestions on
how to use AI for TA, without presenting concrete evidence
of its practical application or usage details.

To get a more complete picture, we have conducted semi-
structured interviews with five researchers/practitioners with
various backgrounds and levels of expertise, focusing on the
types of problems and solutions found in our taxonomies.

6.1. Interviews Design
We selected five developers/researchers from personal

contacts using convenience sampling and conducted semi-
structured interviews to understand whether they perceive
AI as a valuable asset that aligns with their needs and
objectives in their testing activities.

Table 5 provides details about the interviewees, includ-
ing their position, expertise, and years of experience. Among
the interviewed candidates the lowest value is 6 years and
the highest is 20 years (median=14). Our pool includes
professionals involved in strategic decision-making, as well
as technical personnel and a researcher.

We conducted semi-structured interviews [51], integrat-
ing open-ended questions to gather unexpected insights and
specific questions to maintain focus and assist intervie-
wees. After obtaining background information on the in-
terviewees’ general and AI-specific experiences, we began
our questioning. The first question was deliberately broad:
“What types of AI have you been using in your work?”. This
approach aimed to introduce the topic openly, encouraging
interviewees to discuss their experiences without steering
them toward any particular problems/solutions.

Ricca et al.: Preprint submitted to Elsevier Page 15 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

Table 5
Interview participants details.

Participant # Position # Expertise # Experience

Id1 Q/A Manager Q/A Strategy 17+ years
Id2 Senior Developer Quality Monitoring 6+ years
Id3 Senior Developer Data Science/LLMs 10+ years
Id4 Full Stack Developer TA/DevOps 14+ years
Id5 Researcher QA/Testing 20+ years

We then proceeded to more specific questions covering
a wide range of topics in test automation, including test cre-
ation, maintenance, execution, and the tools used. We asked
interviewees if they had encountered any issues or problems
related to these topics. If they responded affirmatively, we
provided more detailed questions to better understand the
discussed topic.

All interviews were conducted remotely via Teams video
calls, each lasting approximately 60 minutes. The interviews
were transcribed using Teams’ automated speech recogni-
tion tool, which converts audio/video files into text. After
generating the automated transcriptions, we reviewed and
manually corrected transcription errors. Finally, we pro-
ceeded with open coding of the transcribed interviews in
which different parts of the transcribed text were tagged.

6.2. Interviews Results
6.2.1. Problems

The participants highlighted the use of AI to enhance
test execution, specifically through test prioritization and
AI-assisted test refactoring. On a broader picture, AI was
leveraged to analyze existing codebases for predictive main-
tenance and risk assessment. This approach helped reduce
technical debt and maintenance challenges caused by the low
skill levels of consultants that exhibit high turnover.

In end-to-end testing, the interviewees mentioned that a
primary challenge is testability. The lengthy and complex
nature of E2E test cases makes testing at the API level very
difficult, especially without a clear specification. E2E tests
are often fragile due to the lack of an API, the absence of
static checking, synchronization issues, and missing types.
Creating a model for these tests is considered a valuable
investment, as it can result in more maintainable and robust
tests, especially if the web app model creation and mainte-
nance can also be automated.

6.2.2. Solutions
The participants emphasized the use of AI for identifying

dependencies between services and detecting obsolete test
cases due to the lack of domain knowledge in complex code-
bases. Another proposed solution is to implement anomaly
detection using test execution logs to monitor the system and
production data to help anticipate failures before they occur.
An interesting case was the usage of LLMs for mutation
testing: when new test cases were introduced in the test suite,
the web app was modified with artificially generated faults
to assess the quality of the evolved test suite.

Regarding self-healing in practice, the participants were
quite critical, noting that not all issues can be “self-healed”.
They suggested limiting self-healing to bug classes that can
be precisely described, otherwise bugs can go unnoticed.
Some changes, such as updated IDs, can be managed with
hash maps to fix mappings automatically or by rewriting
page objects if there are changes.

Ultimately, the participants see AI as a collaborative
partner in testing, code review, and pair programming. With
accountability resting on the developers, they write the tests
(serving as specifications), while the AI generates the code.
The final message was to use AI to generate boilerplate code
while keeping decision-making a human task.

6.2.3. Tools
The interviewees described employing a diverse collec-

tion of AI algorithms in their work. These range from tradi-
tional machine learning algorithms, such as Support Vector
Machines (SVM) and decision trees. An interview men-
tioned “conventional AI” strategies such as search-based
optimization algorithms, model-based approaches such as
user interaction flows, or Markov Chain Monte Carlo for pri-
oritizing tests and tracking the frequency of test changes. The
participants also mentioned the usage of computer vision
techniques like object recognition to find web elements that
are difficult to find in the DOM, internationalization (I18n)
testing, or automating the visual oracle in tests.

Our participants highlighted their reliance on in-house
tools and existing frameworks, over custom code bases that
are hard to adapt to each specific customer’s need. They
also noted the integration of advanced generative AI models,
such as OpenAI’s ChatGPT and Microsoft’s Copilot, into
their daily activities for code generation and review.

6.2.4. Open Challenges of AIaTA
We questioned whether AI is merely a more sophis-

ticated form of traditional automation or a transformative
technology that is here to stay. The consensus was largely
positive, particularly regarding large language models. How-
ever, these tools require strict guidelines for junior devel-
opers, who might overly depend on their outputs without
proper verification. Indeed, LLMs are prone to hallucina-
tions, where the output appears plausible but is largely
incorrect. For test data generation, the creativity aspect of
large language models can create interesting and useful test
data in situations where optimization methods like fuzzing
are not applicable. However, a clear limitation is AI’s lack
of domain knowledge. While AI can access vast amounts
of data, it lacks specific domain or company-specific knowl-
edge, making the pre-trained models insufficient.

As such, our participants emphasized developing self-
check mechanisms and best practices for using AI in TA.
LLMs often attempt to create solutions rather than acknowl-
edging uncertainty. LLMs have a user-pleasing tendency,
finding workarounds instead of reporting errors (obviating
the oracle problem). This can lead to excessively positive

Ricca et al.: Preprint submitted to Elsevier Page 16 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

results, while testers typically adopt a more cautious, crit-
ical, and pessimistic perspective. Our interviews revealed
that quality is not just about coverage; relevance and better
assertions are crucial to avoid potential risks in production.

Other research areas that deserve attention include human-
computer interaction, focusing on ensuring that the results
of AI are clear and explainable. Additionally, developing
quality metrics to assess the output of AI models is essential,
such as measuring the frequency of hallucinations accurately
or evaluating the quality of the output they produce.

7. Related Work
This section of related works is divided into three sub-

sections: 1) works where AI and ML are applied to TA, 2)
analyses of grey literature in the context of test automation
and multivocal literature reviews, and 3) secondary studies
focused on AIaTA.

7.1. Artificial Intelligence in Test Automation
In the software testing community, AI/ML solutions are

increasingly adopted to automate various testing activities
(e.g., test data generation) and address issues such as test
suite maintenance and test case prioritization, ushering in
a new era of smarter and more efficient QA processes.
Test generation is a significant area where AI/ML has been
explored. Zhang et al. [63] and Walia et al. [58] propose,
using computer vision, approaches to automate GUI test
generation, aiming to reduce human effort. Qian et al. [42]
adopt an OCR-based technique to localize GUI elements
for test generation. Test maintenance, which traditionally
requires significant human effort (e.g., for page object gener-
ation [54]), can also benefit from AI/ML. Computer vision
approaches [2] have been widely used for web test migra-
tion [29, 27, 53] and test repair. Code-less functional test au-
tomation is investigated by Vos et al. [57] and Phuc Nguyen
et al. [40] for test maintenance. The latter paper combines
Selenium and ML techniques to reduce the time testers
spend modifying test code. Other testing issues addressed by
AI/ML include ML-based detection of flaky tests (Camara
et al. [6]), cross-browser incompatibility detection (Mahajan
et al. [32]), test case prioritization (Feng et al. [9]), and
identifying areas of the application under test for increased
test coverage such as the work by Yadav et al. [62]. Unlike
these works, our study does not focus on a specific AI/ML
technique for test automation. Instead, we conduct a multi-
year grey literature review to capture the state-of-the-art
concerning test automation problems, proposed solutions,
and existing tools.

7.2. Grey Literature and Multivocal Literature
Reviews on Test Automation

One of the early works in grey literature analysis on
Test Automation is that of Päivi Raulamo-Jurvanen and
colleagues [44]. In this paper, the researchers investigate
how practitioners address the challenge of selecting the ap-
propriate test automation tool. Their methodology involves
consolidating insights from practitioners through a review

of grey literature sourced from 53 distinct companies. The
findings reveal a shared understanding of important selec-
tion criteria, albeit with inconsistent application. To address
this, the authors distill insights from various sources into a
cohesive 12-step process and identify 14 distinct criteria for
effective tool selection. The study indicates that practition-
ers generally exhibit a keen interest in and are influenced
by related grey literature, as evidenced by the substantial
number of backlinks to the sources. Despite the abundance
of available software testing tools, practitioners tend to grav-
itate towards well-known and widely adopted options (e.g.,
Selenium, QTP/UFT, and TestComple). This work, although
its objective differs from ours, shares similarities.

Another work falling into this category is that of Yuqing
Wang et. al. [59]. In their paper, the authors present a
multivocal literature review aimed at surveying and synthe-
sizing guidelines from existing literature on enhancing test
automation maturity. A multivocal literature review is a type
of systematic literature review that includes both academic
literature and grey literature. They conducted a review of
81 primary studies. From these studies, they extracted 26
test automation best practices and collected various pieces
of advice on how to implement them effectively. The main
observations include: (1) Only 6 best practices have been
empirically evaluated for their positive impact on maturity
improvement; (2) Some technical best practices identified
in the review were not previously included in test maturity
models; (3) Certain best practices correlate with success
factors and maturity impediments identified by other re-
searchers; (4) Many pieces of advice on implementing best
practices are derived from experience studies and require
further empirical evaluation using formal methods; (5) Some
advice on implementing certain best practices conflicts in the
literature. The objective of this work is completely different
from ours, and also the research method is different (multi-
vocal literature review vs. grey literature analysis).

The last work we have selected in this category is that of
Garousi and Mäntylä [12]. The study investigates decision-
making in software test automation within the context of
software development and tries to answer the question: when
and what to automate in software testing? While many orga-
nizations view test automation as a means to cut costs and
expedite development, its effectiveness depends on various
factors like timing, context, and approach. To address this,
the researchers conducted a multivocal literature review
of 78 sources, including formal and grey literature. They
categorized factors influencing automation decisions into
five groups and identified prevalent ones such as regression
testing needs, economic factors, and SUT maturity. The
study concludes that current decision-support in software
test automation offers reasonable advice for the industry.
As a practical outcome, the findings have been synthesized
into a checklist for practitioners. However, there is a rec-
ommendation to develop systematic, empirically validated
decision-support approaches, as existing advice often lacks
systemization and is based on weak empirical evidence. Our
work differs from this one in terms of goals and research

Ricca et al.: Preprint submitted to Elsevier Page 17 of 20



A Multi-Year Grey Literature Review on AI-assisted Test Automation

method, but we share with it the procedure of grey literature
analysis, which we took inspiration from for our study.

7.3. Secondary Studies on AI in Test Automation
In the literature, there are numerous reviews and sur-

veys focusing on Test Automation via AI/ML. For instance,
Trudova et al. [56] conducted a systematic literature review
to explore the role of AI/ML in TA. Their findings based
on 34 primary studies on AI implementation in software
testing reveal that most studies in the literature investigate
the application of ML and computer vision techniques to
reduce manual intervention in software testing and enhance
the effectiveness and reusability of test suites. In particular,
the activities which could be improved by the adoption
of AI techniques are as follows: test case generation, test
oracle generation, test execution, test data generation, test
results reporting, test repair, test case selection, flaky test
prediction, and test order generation. Also in their case, as
in our analysis, the analyzed papers mainly addressed test
case generation.

The study conducted by Lima et al. [30] presents a con-
cise overview of the current state of software testing, with a
specific focus on the integration of ML and AI algorithms.
It evaluates the progress made in AI and ML techniques
for software testing over the last three years, drawing from
databases including Scopus Elsevier, Web of Science, and
Google Scholar. The algorithms are classified into white-
box, grey-box, and black-box testing, with an examination of
their respective application domains. The authors conclude
that black-box testing emerges as the predominant approach
in software testing involving AI. Furthermore, within black-
box testing, all three ML methods—supervised, unsuper-
vised, and reinforcement learning—are commonly utilized.
Notably, techniques such as clustering, Artificial Neural
Networks, and Genetic Algorithms find extensive use in
tasks such as fuzzing and regression testing. Differently from
this study, which aims to infer the AI and ML algorithms
used in software testing, we focused on other aspects as well
because grey literature is more descriptive and often lacks
technical details.

Our work falls within the scope of these secondary stud-
ies. Unlike previous works, we focused on the grey literature
to gain insights into practitioners’ perceptions of AI/ML
adoption in TA. Moreover, we validated and extended our
taxonomies with interviews with industrial professionals.

8. Conclusions and Future Work
Artificial intelligence proposes to revolutionize the way

we develop and test software systems. Novel tools and
testing platforms are being proposed every year, however,
to date, little is still known about AI-based test automation,
what problems it addresses, what solutions it offers, what
tools are available, and for what scope.

To fill this gap, in this paper, we present a multi-year
study of the grey literature concerning AI solutions for test
automation. We manually analyzed several thousands of
documents from which we retrieved many problems about

different aspects of the automated testing process. Moreover,
our taxonomy includes the solutions that are used to mitigate
such problems and the list of the most popular tools avail-
able. Our taxonomies were validated by five interviews with
industrial practitioners, who also provided further insights
about the usage of AI in TA.

Future research directions consist of conducting a multi-
vocal literature review by integrating the findings gathered
from the grey literature with those of the white literature. It
would be also interesting to conduct controlled experiments
with existing AI-enhanced tools, to quantify the benefits they
provide and to validate the observed connections with the TA
problems and the investigated solutions.

9. Acknowledgments
We extend our deepest gratitude to the professionals who

generously took the time to participate in our interviews.

References
[1] Amalfitano, D., Faralli, S., Hauck, J.C.R., Matalonga, S., Distante,

D., 2023. Artificial intelligence applied to software testing: A tertiary
study. ACM Comput. Surv. 56. URL: https://doi.org/10.1145/

3616372, doi:10.1145/3616372.
[2] Bajammal, M., Stocco, A., Mazinanian, D., Mesbah, A., 2020. A Sur-

vey on the Use of Computer Vision to Improve Software Engineering
Tasks. TSE .

[3] Bishop, C.M., 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Hei-
delberg.

[4] Borjesson, E., Feldt, R., 2012. Automated system testing using visual
gui testing tools: A comparative study in industry, in: 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, pp. 350–359. doi:10.1109/ICST.2012.115.

[5] Brader, L., 2013. Testing for Continuous Delivery with Visual Studio
2012 (Microsoft patterns & practices). Microsoft patterns & practices.

[6] Camara, B., Silva, M., Endo, A., Vergilio, S., 2021. On the use of
test smells for prediction of flaky tests, Association for Computing
Machinery. p. 46–54.

[7] Contan, A., Dehelean, C., Miclea, L., 2018. Test automation pyramid
from theory to practice, in: 2018 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), pp. 1–5. doi:10.
1109/AQTR.2018.8402699.

[8] Durelli, V.H.S., Durelli, R.S., Borges, S.S., Endo, A.T., Eler, M.M.,
Dias, D.R.C., Guimarães, M.P., 2019. Machine learning applied to
software testing: A systematic mapping study. IEEE Transactions on
Reliability 68, 1189–1212. doi:10.1109/TR.2019.2892517.

[9] Feng, Y., Jones, J.A., Chen, Z., Fang, C., 2016. Multi-objective test
report prioritization using image understanding, in: Proceedings of
31st IEEE/ACM International Conference on Automated Software
Engineering, ACM, New York, NY, USA. pp. 202–213.

[10] Garousi, V., Elberzhager, F., 2017. Test automation: Not just for test
execution. IEEE Software 34, 90–96. doi:10.1109/MS.2017.34.

[11] Garousi, V., Felderer, M., Mäntylä, M.V., 2019. Guidelines for
including grey literature and conducting multivocal literature reviews
in software engineering. IST 106, 101–121.

[12] Garousi, V., Mäntylä, M.V., 2016. When and what to automate in
software testing? a multi-vocal literature review. IST 76, 92–117.

[13] Graham, D., Fewster, M., 2012. Experiences of Test Automation:
Case Studies of Software Test Automation. 1st ed., Addison-Wesley
Professional.

[14] Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Árpád
Beszédes, Ferenc, R., Mesbah, A., 2020. BugJS: A benchmark and

Ricca et al.: Preprint submitted to Elsevier Page 18 of 20

https://doi.org/10.1145/3616372
https://doi.org/10.1145/3616372
http://dx.doi.org/10.1145/3616372
http://dx.doi.org/10.1109/ICST.2012.115
http://dx.doi.org/10.1109/AQTR.2018.8402699
http://dx.doi.org/10.1109/AQTR.2018.8402699
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/MS.2017.34


A Multi-Year Grey Literature Review on AI-assisted Test Automation

taxonomy of javascript bugs. Software Testing, Verification And
Reliability .

[15] Harman, M., 2012. The role of artificial intelligence in software
engineering, in: 2012 First International Workshop on Realizing AI
Synergies in Software Engineering (RAISE), pp. 1–6. doi:10.1109/
RAISE.2012.6227961.

[16] Hourani, H., Hammad, A., Lafi, M., 2019. The impact of artificial
intelligence on software testing, in: 2019 IEEE Jordan International
Joint Conference on Electrical Engineering and Information Technol-
ogy (JEEIT), pp. 565–570. doi:10.1109/JEEIT.2019.8717439.

[17] Inc., P.T., 2015. Collaborative data science. URL: https://plot.ly.
[18] Jha, N., Popli, R., 2021. Artificial intelligence for software testing-

perspectives and practices, in: CCICT ’21, pp. 377–382.
[19] Kim, M., Xin, Q., Sinha, S., Orso, A., 2022. Automated test

generation for rest apis: no time to rest yet, in: Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, Association for Computing Machinery, New York, NY,
USA. p. 289–301. URL: https://doi.org/10.1145/3533767.3534401,
doi:10.1145/3533767.3534401.

[20] Krichen, M., 2023. How artificial intelligence can revolutionize
software testing techniques, in: Abraham, A., Bajaj, A., Gandhi, N.,
Madureira, A.M., Kahraman, C. (Eds.), Innovations in Bio-Inspired
Computing and Applications, Springer Nature Switzerland, Cham.
pp. 189–198.

[21] Leger, G., Barragan, M.J., 2018. Mixed-signal test automation: Are
we there yet?, in: 2018 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5.

[22] Leinen, F., Elsner, D., Pretschner, A., Stahlbauer, A., Sailer, M.,
Jürgens, E., 2024. Cost of flaky tests in continuous integration: An
industrial case study, in: 2024 IEEE Conference on Software Testing,
Verification and Validation (ICST).

[23] Leotta, M., Clerissi, D., Ricca, F., Tonella, P., 2013. Capture-
replay vs. programmable web testing: An empirical assessment during
test case evolution, in: Proceedings of 20th Working Conference on
Reverse Engineering, IEEE Computer Society. pp. 272–281.

[24] Leotta, M., Clerissi, D., Ricca, F., Tonella, P., 2016a. Approaches and
tools for automated end-to-end web testing. Advances in Computers
101, 193–237.

[25] Leotta, M., Garcia, B., Ricca, F., Whitehead, J., 2023a. Challenges of
end-to-end testing with selenium webdriver and how to face them: A
survey, in: Proceedings of the 16th IEEE International Conference on
Software Testing, Verification and Validation, pp. 339–350.

[26] Leotta, M., Ricca, F., Marchetto, A., Olianas, D., 2023b. An empirical
study to compare three web test automation approaches: Nlp-based,
programmable, and capture&replay. J. Softw. Evol. Process 36. URL:
https://doi.org/10.1002/smr.2606, doi:10.1002/smr.2606.

[27] Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2015. Automated
migration of DOM-based to visual web tests, in: Proceedings of 30th
Symposium on Applied Computing, ACM. pp. 775–782.

[28] Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2016b. ROBULA+:
An algorithm for generating robust XPath locators for web testing.
Journal of Software: Evolution and Process , 28:177–204.

[29] Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2018. PESTO:
Automated migration of DOM-based web tests towards the visual
approach. Software Testing, Verification And Reliability 28.

[30] Lima, R., da Cruz, A.M.R., Ribeiro, J., 2020. Artificial intelligence
applied to software testing: A literature review, in: 2020 15th Iberian
Conference on Information Systems and Technologies (CISTI), pp.
1–6.

[31] Luo, Q., Hariri, F., Eloussi, L., Marinov, D., 2014. An empirical
analysis of flaky tests, in: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
Association for Computing Machinery, New York, NY, USA. p.
643–653.

[32] Mahajan, S., Halfond, W.G.J., 2015. Detection and localization of
HTML presentation failures using computer vision-based techniques,
in: Proceedings of 8th IEEE International Conference on Software
Testing, Verification and Validation, pp. 1–10.

[33] Massol, V., Husted, T., 2003. JUnit in Action. Manning Publications
Co., USA.

[34] McKinney, W., et al., 2010. Data structures for statistical computing
in python, in: Proceedings of the 9th Python in Science Conference,
Austin, TX. pp. 51–56.

[35] Memon, A., Banerjee, I., Nagarajan, A., 2003. What test oracle should
i use for effective gui testing?, in: 18th IEEE International Conference
on Automated Software Engineering, 2003. Proceedings., pp. 164–
173.

[36] Mesbah, A., Prasad, M.R., 2011. Automated cross-browser compati-
bility testing, in: Proceedings of the 33rd International Conference on
Software Engineering, Association for Computing Machinery, New
York, NY, USA. p. 561–570. URL: https://doi.org/10.1145/1985793.
1985870, doi:10.1145/1985793.1985870.

[37] Myers, G.J., Sandler, C., Badgett, T., 2011. The Art of Software
Testing. 3rd ed., Wiley Publishing.

[38] Nass, M., Alégroth, E., Feldt, R., 2021. Why many challenges
with gui test automation (will) remain. Information and Soft-
ware Technology 138, 106625. URL: https://www.sciencedirect.

com/science/article/pii/S0950584921000963, doi:https://doi.org/10.
1016/j.infsof.2021.106625.

[39] Pham, P., Nguyen, V., Nguyen, T., 2023. A review of ai-
augmented end-to-end test automation tools, in: Proceedings of the
37th IEEE/ACM International Conference on Automated Software
Engineering, Association for Computing Machinery, New York, NY,
USA. URL: https://doi.org/10.1145/3551349.3563240, doi:10.1145/
3551349.3563240.

[40] Phuc Nguyen, D., Maag, S., 2020. Codeless web testing using
Selenium and machine learning, in: ICSOFT 2020: 15th International
Conference on Software Technologies, ScitePress, Online, France. pp.
51–60.

[41] Polo, M., Reales, P., Piattini, M., Ebert, C., 2013. Test automation.
IEEE Software 30, 84–89. doi:10.1109/MS.2013.15.

[42] Qian, J., Ma, Y., Lin, C., Chen, L., 2023. Accelerating OCR-
Based Widget Localization for Test Automation of GUI Applications.
Association for Computing Machinery.

[43] Rafi, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M., 2012. Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey. 2012 7th International Workshop on
Automation of Software Test (AST) , 36–42.

[44] Raulamo-Jurvanen, P., Mäntylä, M., Garousi, V., 2017. Choosing
the right test automation tool: A grey literature review of practitioner
sources, in: Proc. of the 21st International Conference on Evaluation
and Assessment in Software Engineering, ACM. p. 21–30.

[45] rep-pack, 2024. Replication Package. https://github.com/riccaF/

grey-literature-review-ai-test-automation.
[46] Ricca, F., Leotta, M., Stocco, A., 2018. Three open problems in

the context of e2e web testing and a vision: Neonate. Advances in
Computers .

[47] Ricca, F., Marchetto, A., Stocco, A., 2021. AI-based Test Automation:
A Grey Literature Analysis, in: Proceedings of 14th IEEE Interna-
tional Conference on Software Testing, Verification and Validation
Workshops, Springer.

[48] Ricca, F., Marchetto, A., Stocco, A., 2023. A retrospective analysis of
grey literature for ai-supported test automation, in: Fernandes, J.M.,
Travassos, G.H., Lenarduzzi, V., Li, X. (Eds.), Quality of Informa-
tion and Communications Technology, Springer Nature Switzerland,
Cham. pp. 90–105.

[49] Ricca, F., Stocco, A., 2021. Web test automation: Insights from
the grey literature, in: Proceedings of 47th International Conference
on Current Trends in Theory and Practice of Computer Science,
Springer.

[50] Schmidt, M., 2008. The sankey diagram in energy and material flow
management. Journal of Industrial Ecology 12, 173–185.

[51] Seaman, C., 1999. Qualitative methods in empirical studies of
software engineering. IEEE Transactions on Software Engineering
25, 557–572. doi:10.1109/32.799955.

[52] Selenium, 2020. SeleniumHQ web browser automation. https:

//www.selenium.dev/. Accessed: 2020-07-22.

Ricca et al.: Preprint submitted to Elsevier Page 19 of 20

http://dx.doi.org/10.1109/RAISE.2012.6227961
http://dx.doi.org/10.1109/RAISE.2012.6227961
http://dx.doi.org/10.1109/JEEIT.2019.8717439
https://plot.ly
https://doi.org/10.1145/3533767.3534401
http://dx.doi.org/10.1145/3533767.3534401
https://doi.org/10.1002/smr.2606
http://dx.doi.org/10.1002/smr.2606
https://doi.org/10.1145/1985793.1985870
https://doi.org/10.1145/1985793.1985870
http://dx.doi.org/10.1145/1985793.1985870
https://www.sciencedirect.com/science/article/pii/S0950584921000963
https://www.sciencedirect.com/science/article/pii/S0950584921000963
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106625
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106625
https://doi.org/10.1145/3551349.3563240
http://dx.doi.org/10.1145/3551349.3563240
http://dx.doi.org/10.1145/3551349.3563240
http://dx.doi.org/10.1109/MS.2013.15
https://github.com/riccaF/grey-literature-review-ai-test-automation
https://github.com/riccaF/grey-literature-review-ai-test-automation
http://dx.doi.org/10.1109/32.799955
https://www.selenium.dev/
https://www.selenium.dev/


A Multi-Year Grey Literature Review on AI-assisted Test Automation

[53] Stocco, A., Leotta, M., Ricca, F., Tonella, P., 2014. PESTO: A tool
for migrating DOM-based to visual web tests, in: Proceedings of
14th International Working Conference on Source Code Analysis and
Manipulation, IEEE Computer Society. pp. 65–70.

[54] Stocco, A., Leotta, M., Ricca, F., Tonella, P., 2017. APOGEN:
Automatic Page Object Generator for Web Testing. Software Quality
Journal 25, 1007–1039.

[55] Stocco, A., Yandrapally, R., Mesbah, A., 2018. Visual web test repair,
in: Proceedings of the 26th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering, ACM.

[56] Trudova., A., Dolezel., M., Buchalcevova., A., 2020. Artificial intel-
ligence in software test automation: A systematic literature review, in:
Proceedings of the 15th Int. Conf. on Evaluation of Novel Approaches
to Software Engineering - Vol. 1: ENASE,, INSTICC. SciTePress. pp.
181–192. doi:10.5220/0009417801810192.

[57] Vos, T.E.J., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., Mulders,
A., 2021. Testar – scriptless testing through graphical user interface.
Software Testing, Verification and Reliability 31, e1771.

[58] Walia, R., 2022. Application of machine learning for gui test au-
tomation, in: 2022 XXVIII International Conference on Information,

Communication and Automation Technologies (ICAT), pp. 1–6.
[59] Wang, Y., Mäntylä, M.V., Liu, Z., Markkula, J., Raulamo-jurvanen,

P., 2022. Improving test automation maturity: A multivocal literature
review. Software Testing, Verification and Reliability 32. URL:
http://dx.doi.org/10.1002/stvr.1804, doi:10.1002/stvr.1804.

[60] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén,
A., 2000. Experimentation in Software Engineering - An Introduc-
tion. Kluwer Academic Publishers.

[61] Wong, W., Horgan, J., London, S., Agrawal, H., 1997. A study of
effective regression testing in practice, in: Proceedings The Eighth
International Symposium on Software Reliability Engineering, pp.
264–274. doi:10.1109/ISSRE.1997.630875.

[62] Yadav, V., Botchway, R.K., Senkerik, R., Kominkova, Z.O., 2021.
Robot testing from a machine learning perspective, in: 2021 Interna-
tional Conference on Electrical, Computer and Energy Technologies
(ICECET), pp. 1–4.

[63] Zhang, C., Cheng, H., Tang, E., Chen, X., Bu, L., Li, X., 2017. Sketch-
guided GUI Test Generation for Mobile Applications, in: Proc. of
ASE ’17, pp. 38–43.

Ricca et al.: Preprint submitted to Elsevier Page 20 of 20

http://dx.doi.org/10.5220/0009417801810192
http://dx.doi.org/10.1002/stvr.1804
http://dx.doi.org/10.1002/stvr.1804
http://dx.doi.org/10.1109/ISSRE.1997.630875

