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In learning-enabled autonomous systems, safety monitoring of learned components is crucial to ensure
their outputs do not lead to system safety violations, given the operational context of the system. However,
developing a safety monitor for practical deployment in real-world applications is challenging. This is due to
limited access to internal workings and training data of the learned component. Furthermore, safety monitors
should predict safety violations with low latency, while consuming a reasonable computation resource amount.

To address the challenges, we propose a safety monitoring method based on probabilistic time series
forecasting. Given the learned component outputs and an operational context, we empirically investigate
different Deep Learning (DL)-based probabilistic forecasting to predict the objective measure capturing the
satisfaction or violation of a safety requirement (safety metric). We empirically evaluate safety metric and
violation prediction accuracy, and inference latency and resource usage of four state-of-the-art models, with
varying horizons, using autonomous aviation and autonomous driving case studies. Our results suggest that
probabilistic forecasting of safety metrics, given learned component outputs and scenarios, is effective for
safety monitoring. Furthermore, for both case studies, the Temporal Fusion Transformer (TFT) was the most
accurate model for predicting imminent safety violations, with acceptable latency and resource consumption.

CCS Concepts: • Software and its engineering → Software safety; • Computing methodologies →
Artificial intelligence; • Computer systems organization→ Robotics.
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1 INTRODUCTION
Autonomous systems are increasingly being empowered using learned components to perform
perception, prediction, planning, and control tasks [81]. Since such components’ behaviour is
learned through training, as opposed to being expressed in source code or specification, ensuring
the reliability of such systems through conventional software engineering practices is inadequate.
These risks are particularly acute when autonomous systems are employed in safety-critical
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2 Sharifi et al.

applications, e.g., autonomous driving [14], autonomous aviation [38], medical diagnosis [98] or
disease prediction [99], as failures could directly jeopardize human safety. Recently, methods have
been proposed to make reliable, robust, and accurate learned components through novel testing
methods [31, 95]. Nevertheless, such components are never perfect and even systems comprised
of reliable components are still prone to accidents [47]. For instance, some accidents are caused
by unsafe component interactions [2, 47]. Thus, the impact of ML components on safety can
only be studied in the context of the system they are integrated into and in a specific operational
context [12, 47].

The specialized nature of learned components, i.e., trained on necessarily limited training data,
necessitates the use of runtime assurance mechanisms [80], i.e., safety monitors [77]. Runtime safety
monitors observe the system, its operational context, and the inputs and outputs of a component
that cannot be fully trusted, such as a learned component, predicting if its outputs may lead the
system toward a safety requirement violation. In such cases, a warning is raised by the safety
monitor to prevent the outputs of the learned component from propagating to the rest of the system.
For example, safety recovery measures include falling back on a less efficient but trustworthy
component [80] or taking pre-designed safety recovery measures, such as an emergency stop in
autonomous vehicles (AVs). Safety monitors must know the operational context of the system to
determine whether the component might contribute to a hazard. For instance, a misclassification
by an AV object detection component can lead to non-hazardous outcomes under certain system
contexts, e.g., when an AV misidentifies a horse-drawn carriage in its front as a truck and maintains
a safe distance from it. Thus, runtime monitoring of both the operational context and the learned
components outputs is crucial in developing effective safety monitors that can identify transitions
of the system from safe to hazard states, which can lead to safety requirement violations.

However, monitoring the impact of a learned component on learning-enabled system safety poses
several significant challenges. First, many safety-critical learning-enabled autonomous systems
are developed by system integrators who are developing the system using various components,
including learned components, many of which are developed by third parties. Thus, system in-
tegrators often do not have access to the training or test data of the learned component, nor to
white-box information such as their architecture or neuron weights. Second, safety monitors should
be able to monitor not only the outputs of the learned component over time but also the operational
context, which typically includes static parameters such as weather, and may also include dynamic
parameters such as the trajectory of other vehicles in proximity to an AV. Third, in a safety-critical
context, the safety monitor must predict a safety violation early enough to allow the system or
a user sufficient time to mitigate it. As such, efficiency is a key requisite, which translates to the
necessity of developing monitors that exhibit a low reaction latency and do not exceed the practical
limits of onboard computing units, as opposed to cloud-based alternatives.
Currently, existing methods fail to address all of the above challenges as they monitor for

learned component mispredicitons, as opposed to system safety violations [25, 27, 29, 83, 85, 90, 96].
Furthermore, many of the proposed methods rely on internal information sources from the learned
component [28, 63, 83].
To address the above challenges, we propose a safety monitoring method based on the idea of

predicting the near-future values of a safety metric, i.e., the objective measure used to determine
the satisfaction or violation of a safety requirement [8], given the history of learned component
outputs and the operational context of the system.
Given the safety-criticality of learning-enabled autonomous systems, where the cost of not

predicting safety violations at runtime is very high, instead of relying on single forecast values for
each timestep, our method predicts the probability distribution of the safety metric and relies on its
tail-end values to conservatively predict safety violations. We leverage Deep Learning (DL) based
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probabilistic time series forecasters and empirically evaluate state-of-the-art models in terms of
prediction accuracy as well as average inference latency and runtime computation resource usage.

Contributions. The contributions of this paper are as follows:
• A safety monitoring method that leverages time series forecasting of a safety metric to
identify learned component behavior and system context that lead to system safety violations
at runtime.

• An application of the safety monitoring method to widely used case studies in autonomous
aviation [6, 7, 40, 42, 66], i.e., Autonomous Centerline Tracking (ACT), and in autonomous
driving, i.e., an Autonomous Driving System (ADS) [83], including a dataset generated from
system-in-the-loop simulations.

• A large-scale empirical evaluation (7500+ GPU hours and 42 calendar days of computation)
with state-of-the-art DL-based probabilistic forecasting models targeting safety metric and
safety violation prediction accuracy, inference latency, and runtime resource usage.

Key Findings. The key findings of our empirical evaluation as follows:
• Overall, the results of our study suggest that probabilistic forecasting of safety metrics, given
learned component outputs and scenarios, is effective for safety monitoring.

• For our ACT case study, DL-based probabilistic forecasting methods, especially those with
sequence-to-sequence architecture, yield low inference latency while consuming feasible
computing resources in terms of model size and peak memory usage during inference.

• Using Temporal Fusion Transformers (TFT) for predicting imminent safety violations—where
the hazard forecast horizon is equal to the minimum reaction time, for all lookback horizons—
leads to the most accurate predictions with acceptable inference latency and reasonable
computational resource usage.

Paper Structure. Section 2 provides the necessary background on time series forecasting models
and the main DL-based architectures. Section 3 formally defines the safety metric forecasting
problem and details its challenges. Section 4 discusses related work. Section 5 presents our proposed
safety monitoring method in detail. Section 6 provides an empirical evaluation of our method and
discusses the results. Section 7 concludes the paper and suggests future directions for research and
improvement.

2 BACKGROUND
In this section, we discuss the main characteristics of time series forecasting methods as well as the
main Deep Learning (DL)-based time series forecasting architectures.

2.1 Time-series Forecasting
Time series forecasting aims at predicting the future values of a time series. As described in
Januschowski et al. [37], we can distinguish among forecasting methods along a number of di-
mensions such as global vs. local, probablistic vs. point, computational complexity and costs, and
data-driven vs. model-based.

Global vs. Local Forecasting. Local methods involve estimating model parameters independently
for each time series, while global methods estimate parameters jointly using all available time
series [11, 37]. This distinction is concerned with how model parameters are estimated and does not
necessarily imply a specific dependency structure between the time series. For instance, a global
model can still assume independence between forecasts for different time series for computational
efficiency reasons, even though it estimates parameters jointly [37]. While traditional statistical
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methods often adopt local approaches, global methods have been utilized in both the statistics and
machine learning (ML) communities. Recent trends show that Deep Neural Networks (DNNs) which
are trained as global models, surpass all forecasting models when used as local models [11, 57].

Probabilistic vs. Point Forecasting. Forecasting techniques can also be broadly categorized into
probabilistic and point forecasting methods. While point forecasts offer a single best prediction,
probabilistic forecasting methods quantify predictive uncertainty, allowing decision-makers to
consider this uncertainty when using the forecast [37]. For a safety-critical application, e.g.,
predicting whether a system will experience a safety violation in the future and taking recovery
actions, it is vital to be able to take the uncertainty associated with the forecasts into account.
For instance, one can use the tail-end values of the predicted probability distribution to take into
account the worst-case predictions as a basis for decision making.
Methods for handling uncertainty include Bayesian approaches and frequentist approaches

like model ensembles and bootstrap sampling [11]. The use of Bayesian approaches in estimating
parameter and model uncertainty are well studied inML literature (for introductory and recent work
references refer to the study by Januschowski et al. [37]). The predictive uncertainty for a time series
is fully described by the predictive distribution, but probabilistic forecasting methods differ in how
they enable users to access this distribution, often providing pointwise predictive intervals or Monte
Carlo sample paths [11]. Some methods assume a parametric form of the distribution and return
its parameters [11, 75]. Modern ML methods handle uncertainty by estimating quantile functions
directly [37]. The results of the M4 competition have demonstrated the accuracy of prediction
intervals obtained from ML methods, even though they may lack theoretical underpinnings [37, 56].
This highlights the effectiveness of ML approaches in handling uncertainty in forecasting.

Data-driven vs. Model-based Forecasting. Methods commonly associated with machine learning,
such as deep neural networks, are characterized by their data-driven nature. These approaches
excel at capturing intricate patterns from data without relying on strong structural assumptions.
However, their flexibility comes at the cost of requiring large amounts of data to effectively tune the
multitude of parameters they possess. For instance, recurrent neural networks (RNNs) can discern
complex nonlinear patterns from data, as exemplified by their ability to predict time series with
oscillating variance amplitudes [37]. Nevertheless, the risk of overfitting arises due to their capacity
to memorize patterns, a challenge that regularization techniques like Dropout [82], aim to mitigate.
In contrast, statistical models like AutoRegressive Integrated Moving Average (ARIMA) models
and Generalized Linear Models (GLMs) are characterized by their parsimonious parameterization
and reliance on assumptions to model patterns [16]. These models require less data to accurately
estimate their parameters but are inherently more rigid due to the limitations imposed by their
structural assumptions [37]. Furthermore, a study by Kolassa [45] shows that simpler models can
sometimes outperform complex, correctly specified ones, showcasing the intricacies of model-driven
approaches [37]. Furthermore, model-driven approaches require meticulous feature engineering
and model specification. Conversely, data-driven models are often preferred for forecasting tasks
that involve a large number of time series, from which complex patterns can be extracted [57].
Moreover, DL-based forecasting models can often be trained on large datasets without the need for
problem-specific feature engineering [37].

2.2 DL-based Forecasting Architectures
DL-based forecasting models can be categorized into two main categories of architectures, namely
iterative and sequence-to-sequence. The iterative architecture generates forecasts step by step,
where the model predicts a one-time step based on the previous hidden state and current available
information [11]. The process is repeated until the desired forecast horizon is reached. Iterative
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models can easily be applied to any forecast horizon length. However, since the generated forecast
at each time step has an error, the recursive structure of iterative models can potentially lead to large
errors being accumulated over long forecast horizons [49]. RNN models such as long short-term
memory networks (LSTMs) and gated recurrent units (GRUs) are commonly employed in iterative
architectures [11]. On the other hand, sequence-to-sequence architectures operate by mapping an
input sequence to an output sequence, potentially of different lengths. This architecture consists of
two main components: an encoder and a decoder. The encoder transforms the input sequence into
a fixed-size context vector, which is then used by the decoder to generate the output sequence of a
predetermined length. A typical training instance in this approach includes the target and covariate
(static and time-series features or embeddings [49]) values up to a specific time point t as input,
while the neural network generates a set number of target values beyond time t.

3 PROBLEM AND CHALLENGES
In this section we cast the learned component safety monitoring problem as a safety metric
forecasting problem and discuss its challenges.

3.1 Problem Definition
Safety-critical systems such as autonomous vehicles (AVs) or Unmanned Aircraft Systems (UASs)
use learned components such as Deep Neural Networks (DNNs) to automate and inform perception,
localization, and planning tasks. In this paper, we use as a running example an Autonomous
Centerline Tracking (ACT) software, which is used to ensure accurate and safe UAS taxiing on a
runway, by detecting and following certain reference points or a designated path without human
intervention. The distance between the system position to such reference point or centerline is
called Centerline Track Error (𝑐𝑡𝑒). The ACT uses a DNN to estimate the 𝑐𝑡𝑒 from camera images
and steer the physical system, e.g., a vehicle or an aircraft, towards the centerline where 𝑐𝑡𝑒 = 0.
During its operation, the system must satisfy certain safety requirements such as “the system

shall stay within 5 meters of the centerline”. Although the learned component and the system have
to be thoroughly tested and validated before going into operation, during certain challenging or
unexpected execution scenarios, the learned component could contribute to the system violating the
safety requirement, with potentially life-critical consequences. Therefore, early run-time prediction
of a safety violation is an important endeavor and a prerequisite for developing fallback measures
and mitigation strategies [80], that include blocking the output of the learned component from
being broadcast throughout the rest of the system. To measure the degree of satisfaction or violation
of a safety requirement, safety metrics are used. For example, from the above requirement, the
safety metric can be defined as the difference between the actual 𝑐𝑡𝑒 (measured by calculating the
difference between the system and centerline GPS locations) of the system and a maximum safe
𝑐𝑡𝑒 threshold of 5m. Note that the safety metric value varies over time and is therefore calculated
at each time step.

More concretely, let 𝑠 be the ACT system including the learned component𝑚 for image-based 𝑐𝑡𝑒
estimation, operating in its environment under an operational scenario 𝑥 . The latter is represented
by static and dynamic properties that exist during system operation, e.g., the angle of the sun, cloud
cover, runway properties, or the initial position of the aircraft. For each time step 𝑡 , the system
takes an input 𝑖𝑛𝑠,𝑡 from the camera, thus capturing the state of the environment, and provides a
pre-processed (e.g., by drivers or information fusion) image 𝑖𝑛𝑚,𝑡 ready to be consumed by𝑚.𝑚
produces a real number 𝑜𝑢𝑡𝑚,𝑡 which represents the 𝑐𝑡𝑒 estimate. 𝑠 processes 𝑜𝑢𝑡𝑚,𝑡 , generates a
steering command 𝑜𝑢𝑡𝑠,𝑡 , and applies it to the system. The state of the environment relative to 𝑠
changes based on 𝑜𝑢𝑡𝑠,𝑡 , and the entire process repeats during the operation of 𝑠 , whereas the next
learned component inputs are partially determined by previously learned component outputs.
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6 Sharifi et al.

For a safety requirement 𝑟 (e.g., “the system shall not deviate from the centerline more than 5m” ),
we can measure the degree of safety violation of 𝑠 at time 𝑡 , denoted by 𝑦𝑟,𝑡 , with a continuous
function 𝑓𝑟 (𝑡) which determines at time 𝑡 whether 𝑟 has been violated (𝑦𝑟,𝑡 = 𝑓𝑟 (𝑡) ≥ 0) or how close
it has come to violating it (𝑦𝑟,𝑡 = 𝑓𝑟 (𝑡) < 0). Note, that the exact definition of 𝑓𝑟 is context-dependent
and varies based on the system and the safety requirement of interest. For the ACT system and the
safety requirement above, we define 𝑓𝑟 as denoted in Equation 1.

𝑦𝑟,𝑡 = 𝑓𝑟 (𝑡) B |𝑐𝑡𝑒𝑎𝑐𝑡 | − |𝑐𝑡𝑒𝑡ℎ𝑟 | (1)

Whereas, 𝑐𝑡𝑒𝑎𝑐𝑡 and 𝑐𝑡𝑒𝑡ℎ𝑟 are the actual and safety violation threshold values of the centerline
track error, respectively. Based on the above context, let 𝑥 (𝑛) be a given set of environmental
conditions in the space of all possible conditions, also referred to as operational scenarios. Let
𝑜
(𝑛)
𝑚,𝑡−𝑘 :𝑡 and 𝑦

(𝑛)
𝑡−𝑘 :𝑡 be the sequence of observed𝑚’s outputs and safety metric values from time 𝑡 −𝑘

to 𝑡 (where 𝑘 denotes the lookback horizon), given 𝑥 (𝑛) .
Given a hazard forecast horizon ℎ1 , we want to predict the sequence of safety metric values from

time 𝑡 + 1 to 𝑡 +ℎ, i.e., 𝑦 (𝑛)
𝑡+1:𝑡+ℎ , using a prediction model 𝑔, as expressed in Equation 2, as accurately

as possible.

𝑦
(𝑛)
𝑡+1:𝑡+ℎ = 𝑔(ℎ,𝑦 (𝑛)

𝑡−𝑘 :𝑡 , 𝑜
(𝑛)
𝑚,𝑡−𝑘 :𝑡 , 𝑥

(𝑛) ) (2)

As mentioned in Section 1, aside from the ACT system mentioned above, this paper additionally
targets a second cases study, i.e., an Autonomous Driving System (ADS) which performs the lane
keeping functionality autonomously, while relying only on image inputs from the camera. The
formal problem definition of the problem provided in this section, especially Equation 2, equally
apply to the ADS case study. We provide, in Section 6.1, complete details for both the ACT and
ADS case studies evaluated in this paper.

3.2 Challenges
Given the context and the problem definition provided in Section 3.1, we observemultiple challenges.
First, the development of learned components is often outsourced to third parties [30, 71], which
are later integrated into the main autonomous system. Thus, the limited or lack of access to the
learned component details inhibits the application of white-box methods for safety monitoring [85].
Such details include the training data and the model’s architecture, weights, activation patterns, or
gradients during the feed-forward pass.
Second, as mentioned in Section 1, evaluating the safety of a learning-enabled autonomous

system relies both on the static operational context data (scenario) and dynamic time-series data
related to the behavior of the learned component and the history of safety metric values over time.
Thus, the safety monitor should be able to utilize both types of data to provide an accurate forecast
of the safety metric values over the hazard forecast horizon.

Third, safety monitors are often developed for safety-critical cyber-physical systems with limited
computation capabilities. Thus, it is paramount that the safety monitor introduces low latency and
memory overhead to the system. Although many safety monitoring methods that rely on white-box
confidence estimation techniques [25, 83] are more accurate than their black-box counterparts,
their memory and computing overhead makes their adoption in resource-constrained settings
impractical [84].

1Hazard forecast horizon is the number of timesteps in the future [26], over which we want to predict the values of a safety
metric such that safety violations (hazards) can be predicted and mitigated or avoided.
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To address the above challenges, henceforth denoted C1 through C3, respectively, in this paper
we evaluate time series forecasting methods, especially the ones based on DL, to forecast the safety
metric values of a learning-enabled system over the hazard forecast horizon. DL methods have
been shown to provide accurate forecasts while being amenable to multiple data types (static and
time series) and a large number of samples [11, 37, 57]. In Section 5, we provide further details on
the proposed safety metric forecasting solutions, whereas in Section 6 we discuss the experimental
evaluation of different state-of-the-art forecasting models for the ACT case study.

4 RELATEDWORK
This section discusses existing studies related to the problem of learned component safety moni-
toring. Some surveys [13, 53, 60, 70], distinguish between Out-Of-Distribution (OOD) detection
and uncertainty estimation (quantification) methods. The former focuses on identifying learned
component inputs that are not within its training distribution, while the latter estimates the uncer-
tainty associated with the learned component outputs. Since these methods aim, at a high level, at
a similar goal, i.e., identifying inputs that lead to uncertain and thus untrustworthy outputs, they
should therefore be discussed here. Next, we discuss the main safety monitoring techniques in
the literature, primarily categorized based on the type of system information access they assume,
namely black-box and white-box approaches.

4.1 Black-box Methods
Black-box methods use information such as learned component inputs and outputs, as well as its
training and test datasets,2 to identify the shift in the distribution of inputs observed during opera-
tion from the training input distribution, which can lead to mispredictions during operation [101].
For example, Zhang et al. [97] proposed DeepRoad which was mainly designed for testing AV

learned components by validating single input images according to their minimum distance from the
training set based on the embeddings generated according to VGGNet [78] features. SelfOracle [85]
is a black-box failure predictor that uses an autoencoder and time series-based anomaly detection
to reconstruct the input images observed by the learned component and to use reconstruction loss
to detect OOD inputs. Similar methods that utilize variational autoencoders (VAEs) to measure
an anomaly score have also been proposed by other studies [15, 27, 33]. DeepGuard, proposed by
Hussain et al. [33], uses the VAE reconstruction error to prevent roadside collisions with other
vehicles, Borg et al. [15] proposed an OOD detector based on VAEs combined with object detection
for an automated emergency braking system.

Moreover, some black-box methods quantify the uncertainty of the learned component outputs,
to help practitioners identify the learned component inputs leading to unreliable outputs, by
estimating probability distributions of the outputs given past system executions. These methods
leverage Bayesian networks or their approximations [7, 24, 55], allowing them to incorporate
expert domain knowledge in their Bayesian network models. In the context of autonomous aviation
systems (similar to our ACT example), Asaadi et al. [7] used a non-parametric Bayesian-based
uncertainty quantifier, i.e., Gaussian Process (GP) regressor, trained on a subset of the learned
component training data, to estimate the uncertainty in learned component outputs given its inputs.

2The survey conducted by Riccio et al. [73] categorizes the methods that require access to learned component train and test
dataset as data-box methods. However, to avoid confusion, we categorize them as black-box methods here as they do not
use any internal information from the model itself.
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4.2 White-box Methods
Unlike black-box methods, white-box methods take advantage of internal information sources from
the learned component, e.g., model confidence [28], neuron activation patterns [94] or gradients [83],
comparing their observations at runtime (during the learned component operation) against design-
time (during the learned component training).

For example, Lakshminarayanan et al. [46] proposed the use of an ensemble of neural networks
(Deep Ensembles), to effectively predict the uncertainty of perception component outputs at runtime.
Kendall and Gal [43] proposed a Bayesian deep learning framework that captures uncertainties
associated with both the learned component inputs, also referred to as aleatoric uncertainty, as
well as the model itself, also known as epistemic uncertainty, for a perception component (image
segmentation and depth regression). In the context of autonomous driving, Grewal et al. [25]
evaluate different uncertainty quantification methods for the misbehavior prediction of failures.
Hendrycks and Gimpel [28] used the learned component’s own confidence, i.e., its softmax proba-
bility distributions, to measure uncertainty in learned component outputs. However, since learned
components are prone to generating incorrect outputs (misprediction) with high confidence [63],
many methods have leveraged other information sources to estimate uncertainty. ThirdEye [83]
uses an eXplainable AI (XAI) technique, namely attention maps, to generate a confidence score for
the learned component (in this case a DNN) based on input images and gradients of the DNN. The
generated confidence score is then used to predict a failure by comparing it with a failure threshold
learned from past system executions (simulations).

4.3 Limitations of Existing Methods
Although the white-box and black-box methods mentioned above are effective at evaluating the
inputs to the learned component, they do not consider the effect of learned component outputs on
system safety. Learned component inputs that can lead to inaccurate outputs (i.e., mispredictions)
may not lead to system safety violations, depending on the system’s operational context. As
discussed in Section 3.2, a safety monitoring method must be able to predict the combinations of
system context and learned component outputs that can lead to system-level safety violations.

In terms of information requirements, methods such as DeepRoad [97] and the Bayesian method
proposed by Asaadi et al. [7], require access to training and test datasets. Furthermore, as mentioned
in Section 4.2, to identify safety-violating inputs, white-box methods rely on internal information
of the model [28, 83, 94]. As discussed in Section 3.2, system integrators often do not have access to
such information, nor training and test datasets, as they are frequently developed by third parties.

Finally, both the black-box and white-box methods discussed in Sections 4.1 and 4.2, respectively,
were not evaluated in terms of their inference latency and computation resource usage at runtime [7,
24, 55, 83, 85, 94, 97].

Different from the described black-box andwhite approaches, we evaluate time-series DLmethods
for safety monitoring, a previously unexplored topic. We empirically evaluate the effectiveness
of such methods when using both the operational context of the system and learned component
behavior while being computationally feasible for runtime monitoring. We then predict when
system context and learned component behavior together lead to system-level safety violations.

5 TEMPORAL FORECASTING OF SAFETY METRICS
In this work, as mentioned in Section 3, we have cast the safety metric prediction problem as
a safety metric forecasting problem. Recall that, as described in Section 3.1 and Equation 2, the
inputs to the forecasting model are static operational scenario data (𝑥 ), dynamic (time-dependent)
learned component behavior (𝑜𝑚,𝑡−𝑘 :𝑡 ), and past safety metric data of learning-enabled autonomous
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systems (𝑦𝑡−𝑘 :𝑡 ). While the output of the forecasting model 3 is the safety metric forecasts over
the hazard forecast horizon (𝑦𝑡+1:𝑡+ℎ). In the rest of this section, we evaluate existing time-series
forecasting methods and propose potentially suitable candidates for the problem of predicting the
value of the safety metric of a learning-enabled autonomous system over a hazard forecast horizon,
as introduced in Section 3.1. Note that the hazard forecast horizon is set by the system developers
and safety engineers according to the system properties, its intended mission and its corresponding
set of operational contexts, also referred to as its Operational Design Domain (ODD) [19, 77].
We assume that for training the forecasting model, a dataset containing numerous samples

from historical system executions under various scenarios has been collected through simulation
testing, a common practice for learning-enabled autonomous systems deployed in safety-critical
contexts [4, 52]. As mentioned in Section 2, model-based time-series forecasting models such as
fitting ARIMA models are not suitable for forecasting when the dataset is large, highly dimensional,
or contains non-linear relationships (between features and target), as the time required to fit
them to data considerably increases and their prediction performance degrades. Classical machine
learning (ML) models, especially tree-based methods (e.g., gradient-boosted tree methods), have
been used widely in time series forecasting as they provide superior prediction performance to
their statistical counterparts [11]. While they can be trained on a large number of samples, these
models require substantial feature engineering, thus requiring expert knowledge of the system [11],
which consumes significant time and effort.

Recently, deep learning time-series forecasting models (DL forecasters) have shown great po-
tential for challenging forecasting problems. As discussed in Section 2, DL forecasters can be
trained as global models on large time-series samples without requiring white-box knowledge of
the system under test, or specific feature engineering. Thus, addressing challenge C1 described in
Section 3.2 by relying only on black-box information related to the system under test. Moreover,
as survery by Benidis et al. [11], some DL forecasters can handle samples that contain both static
and dynamic data types with complex and non-linear relationships [11], addressing challenge C2
stated in Section 3.2. Last, DL forecasters, given real-valued times series inputs, consume limited
computation resources and enable low inference latency, addressing challenge C3 discussed in
Section 3.2 4.

Finally, due to the safety-critical nature of learning-enabled systems, it is important to account for
the uncertainty associated with predicted safety metric values. As discussed in Section 2, DL-based
probabilistic forecasting methods account for such uncertainty by predicting the values of the safety
metric probability distribution. Knowing the values at the tail-end of the predicted probability
distribution of the safety metric allows us to rely on such values for worst-case metric predictions.

Thus, to address the challenges outlined in Section 3, we propose training a DL-based probabilistic
forecaster, given historical execution data of the system and its safety metric, such that it provides
forecasts of the safety metric value over the hazard forecast horizon. Note that the weights of the
DL model are selected and remain the same for all the different scenarios and time-series data that
is used for training, i.e., it is a global model. Concretely, the DL-based probabilistic forecaster takes
the times series of the safety metric values and learned component outputs, as well as scenario
parameters as input, and returns time series predictions of the safety metric probability distribution.
Note that the duration of the input time series is equal to the lookback horizon, while the duration
of the predicted time series is equal to the forecast horizon.

3Also referred to as target variable in time series forecasting literature [11].
4We will empirically measure the inference latency as well as the computation resource usage of state-of-the-art DL
forecasters in Section 6.
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Fig. 1. The overall process for training the temporal safety metric forecaster for safety monitoring.

Safety Violation Prediction. As discussed earlier in Section 3.2, one of the main goals, aside
from knowing the value of the safety metric at each timestep, which is crucial for safety-critical
decision-making, is to predict safety violations that might occur in the near future, i.e., over the
hazard forecast horizon. Therefore, we further describe how a safety metric forecaster can be used
to predict safety violations.

Recall that a safety metric forecaster, at timestep 𝑡 , provides predictions of the safety metric value
from timestep 𝑡 + 1 to 𝑡 + ℎ. Further recall that we have assumed that the function measuring the
safety metric is defined such that non-negative values imply safety violation, similar to Equation 1.
Thus, if the maximum of the predicted safety metric values over the hazard forecast horizon is
non-negative, we can say that a safety violation has been predicted.
More specifically, given predicted safety metric values and a hazard forecast horizon ℎ, we can

define the safety violation function 𝑣 (ℎ) as detailed in Equation 3.

𝑣 (ℎ) = sign
(
𝑚𝑎𝑥{𝑦𝑡+1:𝑡+ℎ}

)
(3)

Note that the sign function sign(𝑖) used in Equation 3 returns +1 when 𝑖 ≥ 0 and returns −1
otherwise [10, 20]. Based on the definition provided in Equation 3, a safety violation is detected
over the hazard forecast horizon, i.e., from timestep 𝑡 + 1 to 𝑡 + ℎ, if 𝑣 (ℎ) = 1.
Figure 1 depicts the overall process for training and deploying the safety monitor. The process

starts with data generation using System-in-the-Loop (SITL) simulation where the required data to
train the safety monitor, as discussed above, is generated. Then, in the training stage, we preprocess
the execution history, tune the hyperparameters of the safety metric prediction model, and train the
best model on the complete dataset. Finally, the trained model is deployed during system operation
where the future values of the safety metric are predicted, which is in turn used for safety violation
prediction.
As surveyed by Benidis et al. [11], various DL models with different architectures have been

proposed and applied to time-series forecasting. The number and variety of the proposed models
make the problem of selecting the appropriate DL model for safety metric and violation prediction
an important challenge, which can only be addressed through empirical investigation. To this end,
we have empirically evaluated state-of-the-art DL-based time-series forecasting models in our
specific application context.

6 EMPIRICAL EVALUATION
In this section, we report the empirical evaluation of time series-based safety monitors applied to
an ACT and an ADS system. We aim to answer the following research questions:
RQ1 (Safety Metric Prediction Accuracy) How do different forecasting models score and com-

pare in terms of safety metric prediction accuracy?

, Vol. 1, No. 1, Article . Publication date: October 2024.



System Safety Monitoring of Learned Components Using Temporal Metric Forecasting 11

RQ2 (Safety Violation Prediction Accuracy) How do different forecasting models perform and
compare in terms of safety violation prediction accuracy?

RQ3 (Accuracy Sensitivity Analysis) What is the impact of varying lookback and hazard hori-
zon window sizes on safety metrics and safety violation prediction accuracy?

RQ4 (Resource Overhead Sensitivity Analysis) How do different forecasting models compare
in terms of the memory and time overhead of making predictions?

RQ1 and RQ2 aremotivated by thewide variety of potentially applicable forecastingmodels, which
raises the need for experimental evaluation to determine which one scores best in terms of safety
metric forecast and safety violation prediction accuracy, respectively. RQ2 is particularly relevant
in scenarios where a safety monitor does not have a particularly high accuracy in predicting safety
metric values, yet its predictions sufficiently contribute to accurate safety violation predictions.
Note that hazard forecast horizon and lookback window sizes are design choices for system

developers. Increasing the hazard forecast horizon is expected to decrease safety metric predic-
tion accuracy, as indicated by previous studies [17]. Conversely, increasing the lookback window
size is expected to enhance accuracy. However, we also expect such changes to impact mod-
els’ runtime performance, as they impact the number of model parameters, influencing factors
like latency and memory overhead. Given that the forecasters are destined for deployment in
resource-constrained safety-critical systems, understanding the consequences of altering window
configurations—specified by hazard forecast horizon window size and lookback to forecast window
size ratio parameters—on prediction accuracy and runtime performance is crucial for system devel-
opers in practice. Consequently, our evaluation further explores the effects of different window
configurations on prediction accuracy (RQ3) and runtime performance (RQ4).

6.1 Evaluation Subjects
We evaluate the DL-based forecasting models by applying them to two case studies related to an
autonomous centerline tracking system for autonomous taxiing (ACT), and an autonomous driving
systems (ADS) focused on lane keeping. In this section, we provide for each case study, an overview
of the subject system, explain the details of the evaluation dataset and the simulation workflow
used to generate it.

6.1.1 ACT Case Study.

Subject System and Simulation Platform. We used an open-source ACT system [41], similar to
previous studies that had ACT-related case studies [8, 18, 65]. Note that the ACT system is crucial
for safe taxiing operation of autonomous aviation systems. As reported by the U.S. Department of
Transportation, National Transportation Safety Board (NTSB) [61], as well as major commercial
aircraft manufacturers [1, 87], fatalities, loss of aircraft, and other substantial damages have occurred
during the taxi stage of flight.
As illustrated in Figure 2a, the ACT system consists of a camera, a learned component (i.e., a

DNN estimator that outputs cross-track error 𝑐𝑡𝑒 and heading error ℎ𝑒 estimates given an image
input), and a proportional controller that generates control commands steering the aircraft.
Previous studies that used ACT as a case study used the TaxiNet model [8, 18, 65], a DNN

developed by Boeing for ACT applications, as their learned component. Since we were not granted
access to TaxiNet, we relied on the open source version called TinyTaxiNet [41],5 which has a
lower number of deep layers and input vector size. We used X-Plane 11 [93], a high-fidelity flight
simulator— which is used for training pilots [93] in all flight phases including taxiing—to control
various aircraft and environmental parameters. Based on the simulator’s controllable elements,

5To the best of our knowledge, this is the only open-source DNN model trained for ACT.
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Fig. 2. System-in-the-loop simulation of the ACT system and the X-Plane simulator (a), and the ADS system
and the Udacity simulator (b).

in line with previous studies [41], we considered the following four scenario elements: period of
the day, cloud cover, starting cross-track error, and starting heading error. A detailed explanation
of the scenario elements and their value ranges, and the TinyTaxiNet model can be found in the
supporting material (see Section 6.9).
Considering the capability of X-Plane in controlling environmental parameters and the major

functionality of our target learned component (i.e., ACT), we focus on the following two safety
requirements: (1) “The aircraft should have a distance (|𝑐𝑡𝑒𝑎𝑐𝑡 |) no more than 𝑐𝑡𝑒𝑡ℎ𝑟 from the centerline,
while taxiing on the runway.” (2) “The aircraft should have a heading angle (|ℎ𝑒𝑎𝑐𝑡 |) no more than
ℎ𝑒𝑡ℎ𝑟 from the centerline, while taxiing on the runway.” To compute the safety metric related to
the above requirements, we measure the actual distance of the center of the aircraft from the
centerline (|𝑐𝑡𝑒𝑎𝑐𝑡 |), as well as the actual angle between the longitudinal axis of the aircraft and
the centerline (|ℎ𝑒𝑎𝑐𝑡 |), at every time step. Given our definition of the safety metric provided in
Section 3.1 (Equation 1), negative values of the computed safety metric (|𝑐𝑡𝑒𝑎𝑐𝑡 | < 𝑐𝑡𝑒𝑡ℎ𝑟 ) imply
that the 𝑐𝑡𝑒 safety requirement is not violated, whereas zero and positive values (|𝑐𝑡𝑒𝑎𝑐𝑡 | ≥ 𝑐𝑡𝑒𝑡ℎ𝑟 )
indicate a safety violation. Note that the same applies to the ℎ𝑒 safety requirement. Based on the
size of the aircraft and its taxiing speed, we set 𝑐𝑡𝑒𝑡ℎ𝑟 to 5m and ℎ𝑒𝑡ℎ𝑟 to 5◦, in line with other
ACT-related studies [5, 7, 65].

Evaluation Dataset. Given the input and output of the safety metric forecaster, discussed in
Section 5, the dataset used to train and evaluate the DL-based forecasters must contain time series
values of the learned component’s output and the safety metric, given a specific scenario. Thus, we
generated a dataset based on the autonomous taxiing aircraft case study (Section 6.1.1, inspired by
the simulation setup proposed by [41]).
Concretely, we used the Latin Hypercube Sampling (LHS) method to generate 1,996 unique

scenarios to ensure coverage of the scenario parameter search space [54]. LHS is a sampling method
that is used to generate near-random samples from a multidimensional distribution, while ensuring
uniform coverage of the simulation input space (i.e., scenario space) by stratifying each input
dimension [54, 76]. Given that the high-fidelity simulations that we require to generate the dataset
are computationally expensive, LHS allows us to obtain diverse scenarios with a limited number
(1996) of simulations. We executed each scenario using the ACT simulation stack until the aircraft
reaches to its destination on the runway (taking an average duration of 200 s), whereby time series
data of TinyTaxiNet outputs (𝑐𝑡𝑒𝑒𝑠𝑡 , ℎ𝑒𝑒𝑠𝑡 ) are recorded, as well as the safety metrics (computed
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based on Equation 1, with 𝑐𝑡𝑒𝑡ℎ𝑟 = 5m and ℎ𝑒𝑡ℎ𝑟 = 5◦, as discussed in Section 6.1.1). Thanks to our
sampling strategy, 52% and 21.9% of the scenarios recorded in the dataset for the 𝑐𝑡𝑒 and ℎ𝑒 safety
requirements, respectively, include safety violations in their test set (the division of the dataset
is discussed in Section 6.3.1). We therefore generate a large number of diverse 𝑐𝑡𝑒 and ℎ𝑒 safety
violations in the test sets. In many simulations, the ACT system misidentifies an imaginary line,
which is a parallel offset of the runway centerline by more than 5m, as the actual centerline and
continues taxiing along it. This can explain why the dataset includes more 𝑐𝑡𝑒 safety violations
than ℎ𝑒 safety violations.

Finally, following best practice, similar to the guidelines provided by previous studies on training
and evaluating DL-based time series forecasting models [48, 75, 91], we normalized the time
series data, i.e., 𝑐𝑡𝑒𝑒𝑠𝑡 , ℎ𝑒𝑒𝑠𝑡 and the safety metrics values using Z-score normalization, thereby
reducing model bias caused by differences in time series magnitudes among various parameters
and scenarios [50]. Further details regarding our generated dataset can be found in the supporting
material (see Section 6.9).

6.1.2 ADS Case Study. For the ADS case study, we relied on the artifacts available in the paper
by Stocco et al. [83], where the authors tested a lane-keeping ADS in a driving simulator [83].
The dataset includes not only the time series of the learned component outputs and the scenario
parameters but also the time series of the safety metric, which is crucial for our safety monitoring
method. Over the rest of this section, we provide an overview of the ADS subject system and the
simulation platform used to generate the dataset. We then discuss the details of the raw dataset, as
well as our preprocessing steps leading to the final dataset used by our study.

Subject System and Simulation Platform. The ADS case study involves a lane keeping ADS widely
used in previous studies [32, 36, 73, 83, 85, 85]. Note that the lane keeping ADS is critical for safe
operation of AVs. As described in the original paper, in the U.S., run-off-road crashes are one the
most important types of road accidents in terms of frequency and cost.

As depicted in Figure 2b, the ADS consists of a camera, a learned component (i.e., a DNN which
estimates the required steering angle 𝑠𝑎𝑒𝑠𝑡 to keep the vehicle within the lane given an image input),
and a controller that issues the control commands to the vehicle. The learning component is based
on the NVIDIA Dave-2 model architecture [14], a DNN-based steering angle estimator that is
trained with a set of images collected while a human driver is driving a vehicle. The simulator
used to evaluate the ADS case study was the Udacity simulator for self-driving cars [88], a driving
simulator which has been widely used in the ADS testing literature [32, 36, 36, 83–85]. Udacity
provides close-loop tracks to simulate an ADS driving under various scenario conditions. Based on
the controllable elements of the Udacity simulator, the original paper considered the following two
scenario elements: weather conditions (i.e., clear, fog, rain, and snow), and weather intensity.6 Since
the authors record the time series of 𝑐𝑡𝑒𝑎𝑐𝑡 , we use the recorded value at the beginning of each
episode as our third scenario element, i.e., the starting cross-track error, which indicates the initial
position of the vehicle. A detailed explanation of the value ranges for the scenario parameters can
be found in the supporting material (Section 6.9).
Considering the main functionality of the target learned component, i.e., lane keeping, the

following safety requirement is considered: “The vehicle should have a distance (|𝑐𝑡𝑒𝑎𝑐𝑡 |) no more
than 𝑐𝑡𝑒𝑡ℎ𝑟 from the centerline, while driving on track”. To calculate the safety metric, it is necessary
to obtain measurements of 𝑐𝑡𝑒𝑎𝑐𝑡 , which are provided in the original dataset. Similar to the 𝑐𝑡𝑒
safety requirement for the ACT case study, the safety requirement is violated when |𝑐𝑡𝑒𝑎𝑐𝑡 | ≥ 𝑐𝑡𝑒𝑡ℎ𝑟

6Note that we are only mentioning the parts of the study conducted by Stocco et al. [83] that are relevant to our study. We
refer the reader to the study itself for comprehensive details on all the evaluations conducted by the authors.
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and not violated otherwise. Given that the total width of the track set in the simulator, the size and
the speed of the vehicle, we set 𝑐𝑡𝑒𝑡ℎ𝑟 to 5m, which is reasonable as it provides the vehicle less
than 0.5m of side clearance from the edge of the track.

Evaluation Dataset. The dataset generated by Stocco et al. [83] contains a time series of the
Dave-2 outputs (estimated steering angles), a time series of 𝑐𝑡𝑒𝑎𝑐𝑡 (which we used to compute the
time series of the safety metric, as described above), and the scenario parameters.
Concretely, the authors executed the ADS in the Udacity simulator, i.e., let it drive for one lap

around the track under various weather conditions with intensity increments of 10%. Therefore, to
cover a diverse range of the scenario space, the authors recorded 31 one-lap simulations (1× clear+
10 × fog + 10 × rain + 10 × snow = 31) which include the time series of 𝑐𝑡𝑒𝑎𝑐𝑡 measurements [83].
Note that in some scenarios, the ADS drives the car out of the track, in which case the car is
reset on the next waypoint on the track. This reset during the execution of the scenario leads
to a discontinuity during the execution of the learned component output and safety metric time
series. Therefore, we divide the executions at the points where the vehicle has gone out of the track
completely into separate episodes, to handle the discontinuity in the time series data. However,
this has led to having diverse execution lengths, e.g., from 5 s to more than 100 s. To make the size
of the episodes more uniform, we discarded the very short episodes, i.e., less than 15 s, as they
do not contain the minimum number of timesteps required to train and test the DL-forecasting
models, and divided the larger episodes into shorter chunks. The resulting dataset contains 175
episodes with an average duration of 17.5 s. Note that the size of the ADS dataset is a fraction of
(approximately 0.8%) the size of the dataset we generated for the ACT case study. As we will see,
this will have an impact on our results and conclusions. Despite the ADS dataset size, we observe
that 33.7% of the episodes include safety violations in their test set. Therefore, the ADS dataset
includes a considerable number of diverse safety violations thanks to the sampling strategy used to
search the scenario space, as discussed above.
Finally, similar to the ACT case study (Section 6.1.1), we normalized the time series data, i.e.,

estimated steering angle and the safety metric values using Z-score normalization.We have included
more details about the raw and the preprocessed datasets in our supporting material (Section 6.9).

6.2 Models Under Evaluation
In this section, we outline the chosen forecasting models for evaluation and discuss the hyperpa-
rameter tuning process applied to optimize the selected models.

As discussed in Section 5, we are interested in global univariate probabilistic forecasting models
that take in input both dynamic time series and static scenario data and provide probabilistic
forecasts of the safety metric. We selected the models for evaluation from the GluonTS library [3],
a widely used probabilistic DL-based forecasting Python library, containing the implementations
of many state-of-the-art models. From the list of available models in the library, we selected four
models, three of which satisfy all the requirements of the safety metric forecasting problem (i.e., a
global univariate probabilistic forecasting model capable of processing both static and dynamic
inputs), whereas the fourth model acts as a competitive baseline, even though it does not fully
satisfy all requirements.

• MQCNN: a sequence-to-sequence model which is the CNN-based variant of Multi Quantile
Recurrent Forecaster, using a CNN encoder instead of an RNN [91].

• Temporal Fusion Transformer (TFT): a sequence-to-sequence transformer-based model [48].
• Seq2Seq: a vanilla sequence-to-sequence model with a CNN encoder and an MLP decoder [3].
• DeepAR: an iterative model which utilizes both RNNs and autoregressive techniques to
iteratively capture temporal dependencies [75]. Due to DeepAR’s architecture, it only takes
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as input the static scenario parameters and time series of the target variable, i.e., safety
metric. Despite DeepAR architecture’s lack of ability to process the time series of the learned
component output, we have included it in our evaluation as a competitive baseline, due to its
high performance in the forecasting benchmarks [57] and wide use in industry [11].

Hyperparameter Tuning. We fine-tuned the hyperparameters of each considered model before
answering the research questions, considering the values (fixed or range) retrieved from the original
publications. We have tuned the hyperparameters for each safety requirement separately, as they
lead to different datasets for the models to be trained and tested on. The relevant hyperparameters
and their value ranges for each model are as follows:

• MQCNN [91]. Number of layers in the MLP decoder (or dim) was selected in the range {2, 4,
8}. Number of neurons in the hidden layer was selected in the range {20, 40, 80}. Number of
channels per layer of the CNN encoder was chosen in the range {20, 40, 80}.

• TFT [48]. We set the dropout rate to values ranging from 0.1 to 0.3 in steps of 0.1. We took
the values of number of attention heads and state size in the ranges {1, 4} and {80, 160, 320},
respectively. We kept the loss function the same as the original paper, i.e., quantile (pinball)
loss [48].

• Seq2Seq. Number of layers was chosen from {2, 4, 8}. Number of neurons per layer was selected
from {10, 20, 40}.

• DeepAR [75]. The number of RNN layers was set to 3 as in the original study [75]. The number
of RNN nodes per layer was selected in the range {40, 100}. We selected the type of RNN nodes
in each layer as being one among {LSTM, GRU}. We selected the dropout rate in the range
{0.1, 0.2, 0.3}. The loss function negative log likelihood was used, in line with the original
study [75].

• DL Training. For all the deep learning models above, we selected the hyper-parameters related
to training as follows. We chose learning rate in the range {0.0001, 0.001, 0.01}. We selected
max gradient norm in the range {0.01, 1.0, 100.0}. We evaluated batch size in the range {64,
128, 256}. The Adam optimizer [44] was used for training all the models, as per the original
paper implementations or that of the GluonTS library.

For other hyperparameters, we relied on the suggested values used in the original studies or the
default value in their implementation (additional details on the parameter settings are available in
the supporting material in Section 6.9).
We trained each model configuration (defined by a combination of hyperparameters) on the

training set (i.e., 70% of the dataset) and evaluated it on the validation dataset (i.e., 10% of the
dataset), 5 times, to account for randomness, for example, due to random seeds. Similar to RQ1, we
compared the models based on their q-Risk (Equation 4) values at quantiles considered in RQ1. The
details of the evaluation metric, i.e., q-Risk and the quantiles under consideration, are presented
in Section 6.3.1. Table 1 summarizes the hyperparameters for each model, their possible values,
and the selected hyperparameters, for 𝑐𝑡𝑒 (ACT𝑐𝑡𝑒 ) and ℎ𝑒 (ACTℎ𝑒 ) safety requirements of the ACT
case study and the 𝑐𝑡𝑒 (ADS𝑐𝑡𝑒 ) safety requirement of the ADS case study, respectively.

Evaluation Hardware. To train each configuration of the models under investigation on the
evaluation dataset and evaluate them, we used the following compute resources: 1x NVIDIA V100
GPU with 32GB HBM2 memory, 16 cores of Intel Silver 4216 Cascade Lake 2.1GHz CPU, and 128GB
of RAM.
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Table 1. Hyperparameters of the models under evaluation, for 𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the ACT
case study, and the 𝑐𝑡𝑒 requirement of the ADS case study.

Hyperparameter Value Range ACT𝑐𝑡𝑒 ACTℎ𝑒 ADS𝑐𝑡𝑒
Seq2Seq

Batch Size 64, 128, 256 128 64 64
Learning Rate 1e-4, 1e-3, 1e-2 1e-3 1e-4 1e-4

Gradient Clipping Value 1e-2, 1.0, 1e+2 1.0 1e-2 1e+2
Number of MLP Decoder Layers 1, 2, 4 2 2 2

Number of Neurons per MLP Layer 20, 80 80 20 80

DeepAR

Batch Size 64, 128, 256 64 64 64
Learning Rate 1e-4, 1e-3, 1e-2 1e-2 1e-3 1e-3

Gradient Clipping Value 1e-2, 1.0, 1e+2 1e-2 1.0 1.0
RNN Node Type LSTM, GRU GRU GRU LSTM

Number of RNN Nodes 40, 100 40 40 100
Dropout Rate 0.1, 0.2, 0.3 0.1 0.1 0.1

TFT

Batch Size 64, 128, 256 256 256 128
Learning Rate 1e-4, 1e-3, 1e-2 1e-3 1e-3 1e-2

Gradient Clipping Value 1e-2, 1.0, 1e+2 1e-2 1.0 1e+2
State Size 40 , 80, 160 160 160 160

Number of Attention Heads 1, 4 4 4 4
Dropout Rate 0.1, 0.2, 0.3 0.1 0.1 0.1

MQCNN

Batch Size 64, 128, 256 256 64 128
Learning Rate 1e-4, 1e-3, 1e-2 1e-3 1e-4 le-4

Gradient Clipping Value 1e-2, 1.0, 1e+2 1.0 1e-2 1.0
Number of MLP Decoder Layers 1, 2, 4 2 2 2

Number of Neurons per MLP Layer 20, 80 20 20 80
Number of Channels 20, 40 20 20 20

6.3 RQ1: Safety Metric Forecast Accuracy
In this section, first we provide the details of our evaluation methodology to answer RQ1 (Sec-
tion 6.3.1). Then, we present the results for the autonomous taxiing (ACT) case study (Section 6.3.2),
followed by the results of the autonomous driving (ADS) case study (Section 6.3.3). Finally, we
draw conclusions from both case studies (Section 6.3.4) and present our answer to RQ1.

6.3.1 Methodology. To answer RQ1, we divide each dataset (detailed in Section 6.1.1 and Sec-
tion 6.1.2) into training, validation, and test datasets, which correspond to 70%, 10% and 20% of the
dataset, respectively. The training set is used to train the time series forecasting models, whereas
the validation dataset is used for hyper-parameter tuning (Section 6.2). Finally, we generated
predictions using the trained models on the test dataset, which is disjoint from the training and
validation datasets. To avoid look-ahead bias [35], we used time-based splitting [11, 49, 67], such
that all the samples in the test dataset occur after the validation dataset, whose samples occur
after the training dataset. Our evaluation method, also referred to as rolling-horizon out-of-sample
testing [86], provides an evaluation of the model forecasting accuracy on multiple rolling-window
samples in each time series that are not seen by the model during training, and aggregates them
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over all time series in the dataset (see Equation 4) 7. Note that, the evaluation of the model is
conducted over multiple subsequent samples in the test set of each time series, thus providing an
accuracy measure of the forecasting model over time.
The most accurate model resulting from the hyper-parameter tuning phase, in terms of the

loss function, was selected and retrained on the union of training and validation datasets. The
hyper-parameters for each optimized model selected for evaluation, are listed in Table 1. The
retrained model was evaluated against the test dataset and its corresponding evaluation metric was
computed. To account for randomness (in the training process), we repeated the above process,
i.e., training the best model on the joint training and validation set and evaluating it on the test
set, 30 times and reported descriptive statistics of the evaluation metric. To evaluate the statistical
significance of the difference in accuracy metrics of different DL-based safety metric forecasters,
we used the Mann-Whitney U test [58]. To measure the effect size of the differences, we measured
Vargha and Delaney’s 𝐴𝐴𝐵 , where 0 ≤ 𝐴𝐴𝐵 ≤ 1 [89]. Generally, the value of 𝐴𝐴𝐵 indicates a small,
medium, and large difference (effect size) between populations 𝐴 and 𝐵 when it is higher than 0.56,
0.64, and 0.71, respectively.

We investigated RQ1 while considering, as the window size for the hazard forecast horizon, the
minimum reaction time required for a human to take over control of the system in case of a hazard.
Considering that each time step in the ACT dataset corresponds to one second and the minimum
reaction time for a human with vehicles traveling at 30mi/h is 3 s [83], we set the minimum hazard
forecast horizon to 3 timesteps. Furthermore, the lookback to forecast horizon ratio was set to 3
times, since it has been frequently considered in previous studies [48, 75].
Similarly, for the ADS dataset, we selected the hazard forecast horizon of 3 timesteps equaling

to 3 s, which is in line with the minimum reaction time suggested by the original study [83].
However, due to the small size of the dataset, as described in Section 6.1.2, we could only select the
lookback to a forecast horizon ratio of 1, i.e., 3 s. Note that larger lookbacks to forecast horizon
ratios significantly increase the total window size and reduce the number of samples available to
train and test the model.

Evaluation Metric. As discussed in Section 5, a probabilistic forecast is better suited than a
point forecast for critical applications, such as predicting a safety violation, as it provides forecast
intervals with attached probabilities. Similar to previous studies in other application domains,
where the performance of probabilistic forecasting models has been reported [48, 75], we report the
q-Risk metric at multiple quantiles. Equation 4 provides the definition of q-Risk. Intuitively, q-Risk
measures the quantile loss [91] (Equation 5) across the entire hazard forecast horizon, normalized
over the length of the horizon and over all samples in the test set. Thus, it allows us to compare the
safety metric prediction accuracy of models under evaluation at each prediction quantile. Formally,
q-Risk is defined as follows:

𝑞-Risk =
2
∑

yt ∈Ω̃
∑𝜏max

𝜏=1 QL
(
yt, ŷ(𝑞, 𝑡 − 𝜏, 𝜏), 𝑞

)∑
yt ∈Ω̃

∑𝜏𝑚𝑎𝑥

𝜏=1 |yt |
, (4)

where Ω̃ is the test set, 𝑞 is the quantile, 𝜏 = 1, . . . , 𝜏max is the time step counter of the hazard
forecast horizon8 and QL is the quantile loss function, which is defined in Equation 5.

QL(y, ŷ, 𝑞) = 𝑞(y − ŷ)+ + (1 − 𝑞) (ŷ − y)+, (5)

7This method is also in line with the evaluation method used by the reference studies of the models evaluated in paper [11,
48, 75, 91]
8𝜏 = 1 and 𝜏 = 𝜏max correspond to t + 1 and t + ℎ in Equation 2, respectively.
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Table 2. q-Risk values for different models and quantiles, for the 𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the ACT
case study and the 𝑐𝑡𝑒 safety requirement of the ADS case study, respectively.

Model Average q-Risk ± 0.5 ×𝐶𝐼0.95

𝑞 = 0.005 𝑞 = 0.025 𝑞 = 0.05 𝑞 = 0.5 𝑞 = 0.95 𝑞 = 0.975 𝑞 = 0.995

ACT𝑐𝑡𝑒
Seq2Seq 0.038 ± 0.0076 0.046 ± 0.0056 0.052 ± 0.0028 0.040 ± 0.0013 0.026 ± 0.0014 0.024 ± 0.0019 0.020 ± 0.0026
DeepAR 0.004 ± 0.0006 0.012 ± 0.0012 0.020 ± 0.0019 0.062 ± 0.0035 0.016 ± 0.0008 0.009 ± 0.0005 0.003 ± 0.0002
MQCNN 0.012 ± 0.0015 0.015 ± 0.0011 0.018 ± 0.0016 0.030 ± 0.0010 0.026 ± 0.0025 0.023 ± 0.0022 0.017 ± 0.0026
TFT 0.001 ± 0.0001 0.003 ± 0.0001 0.004 ± 0.0002 0.012 ± 0.0002 0.005 ± 0.0001 0.003 ± 0.0001 0.001 ± 0.0001

ACTℎ𝑒
Seq2Seq 0.208 ± 0.0420 0.300 ± 0.0363 0.420 ± 0.0370 0.841 ± 0.0204 0.541 ± 0.0390 0.458 ± 0.0314 0.330 ± 0.0351
DeepAR 0.041 ± 0.0022 0.118 ± 0.0040 0.199 ± 0.0056 0.732 ± 0.0119 0.296 ± 0.0092 0.196 ± 0.0077 0.086 ± 0.0053
MQCNN 0.092 ± 0.0197 0.171 ± 0.0161 0.260 ± 0.0151 0.705 ± 0.0170 0.418 ± 0.0372 0.316 ± 0.0215 0.180 ± 0.0273
TFT 0.041 ± 0.0026 0.096 ± 0.0037 0.140 ± 0.0041 0.379 ± 0.0025 0.158 ± 0.0036 0.112 ± 0.0034 0.049 ± 0.0025

ADS𝑐𝑡𝑒
Seq2Seq 0.019 ± 0.0025 0.056 ± 0.0064 0.074 ± 0.0065 0.222 ± 0.0033 0.137 ± 0.0073 0.097 ± 0.0089 0.045 ± 0.0127
DeepAR 0.007 ± 0.0004 0.023 ± 0.0008 0.042 ± 0.0011 0.204 ± 0.0031 0.124 ± 0.0049 0.090 ± 0.0045 0.048 ± 0.0041
MQCNN 0.015 ± 0.0021 0.052 ± 0.0076 0.070 ± 0.0080 0.214 ± 0.0031 0.119 ± 0.0068 0.077 ± 0.0060 0.028 ± 0.0068
TFT 0.023 ± 0.0040 0.045 ± 0.0023 0.069 ± 0.0035 0.226 ± 0.0066 0.098 ± 0.0049 0.065 ± 0.0039 0.023 ± 0.0006

where (.)+ = max (0, .).
Given the safety-critical nature of the decisions that need to be made based on the predicted

safety metric values, we reported the q-risk at quantiles that correspond to tail-end values of the
prediction interval, namely 90% (q=0.05, 0.95), 95% (q=0.025, 0.975), 99% (q=0.005, 0.995), as well as
the median (q=0.5) of the prediction distribution.9 Recall that, according the safety metric function
defined in Section 3.1 (Equation 110), negative values of the safety metric imply no violation of the
safety requirement while non-negative safety metric values imply a violation. Further, the higher
the negative values, the closer the system is to a safety violation. Moreover, note that safety metric
values predicted at higher prediction quantiles (𝑞 > 0.5) provide the upper bounds of the predicted
safety metric value, which are more conservative estimates based on the definition of the safety
metric function. Therefore, given their safety-critical application, we expect the predictions that
our proposed safety monitors generate at quantiles 𝑞 > 0.5 to be more useful for predicting safety
violations, than predictions for other quantiles.

6.3.2 ACT Case Study Results. Table 2 reports the achieved q-Risk values for Seq2Seq, DeepAR,
MQCNN, and TFT over 30 repetitions at different quantiles, where the best value for each quantile
is written in bold.

Overall, we observe that TFT consistently outperforms the other models at all reported quantiles,
except in the case of the ℎ𝑒 safety requirement when 𝑞 < 0.025, where TFT and DeepAR both have
the lowest q-Risk value. Furthermore, for the 𝑐𝑡𝑒 safety requirement, DeepAR is the second best at
very high and low ends of the quantile spectrum (specifically, when 𝑞 < 0.025 or 𝑞 ≥ 0.95), while
yielding the worst accuracy at the median of the forecast probability distribution (𝑞 = 0.5). Similarly,
for the ℎ𝑒 safety requirement, DeepAR is the second best at the ends of the quantile spectrum
(except when 𝑞 < 0.025, as mentioned above), while being second to last at the median (𝑞 = 0.5).
We suspect that the fact that DeepAR is an iterative forecasting model, as opposed to the other three

9Note that the median of the predicted probability distribution often corresponds to the single value predicted by point
forecasting methods [11].
10As mentioned in Section 6.1.1, substituting 𝑐𝑡𝑒 withℎ𝑒 in Equation 3, provides us with the safety metric function definition
for the ℎ𝑒 safety requirement.
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Fig. 3. Average q-Risk values and their corresponding 95% confidence interval (CI0.95) for all models over all
reported quantiles, for the 𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the autonomous taxiing (ACT) case study and
the 𝑐𝑡𝑒 safety requirement of the autonomous driving (ADS) case study, respectively. Note that the x-axis is
not drawn to scale, in favor of a more readable presentation.

models which are sequence-to-sequence forecasting models, could explain the large variability in
q-Risk values over quantiles. Since iterative forecasting models, such as DeepAR, only predict the
target value for the next timestep and use the predicted value to predict the timestep after that (as
explained in Section 2), they are prone to accumulating forecasting errors from previous forecast
timesteps. DeepAR’s error accumulation is more extreme when predicting at quantiles closer to the
median (q = 0.5), where other models also have higher q-Risk values than for other quantiles.

Figure 3a, which depicts the q-Risk average values and their 95% confidence interval for different
models at all measured quantiles, illustrates the large change in performance (average q-Risk values)
of DeepAR.
Our visual observations are supported by the statistical comparison results reported in Table 3.

Columns𝐴 and 𝐵 indicate the DL-forecasting models being compared. Columns 𝑝 and𝐴𝐴𝐵 indicate
statistical significance and effect size (as described in Section 6.3.1), respectively, when comparing
A and B in terms of q-Risk at different quantiles q. Given a significance level of 𝛼 = 0.01, for the 𝑐𝑡𝑒
safety requirement, we observe that the differences between the best model (TFT) in all quantiles,
and the other models are significant. Furthermore, for all quantiles, 𝐴𝐴𝐵 is greater than 0.71 when
𝐵 = TFT, indicating that the difference between TFT and other models is large. For the ℎ𝑒 safety
requirement, TFT and DeepAR are equally the best models, when 𝑞 < 0.025. In this case, we observe
that TFT is significantly better than the second-best model, i.e., MQCNN, with a large difference,
though that is not the case for DeepAR.
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Table 3. Statistical comparison of q-Risk values for different DL-based forecasters at different quantiles q.

Comparison q-Risk

𝐴 𝐵
𝑞 = 0.005 𝑞 = 0.025 𝑞 = 0.05 𝑞 = 0.5 𝑞 = 0.95 𝑞 = 0.975 𝑞 = 0.995

𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵

ACT𝑐𝑡𝑒
Seq2Seq DeepAR 8.15 × 10−11 0.99 6.72 × 10−10 0.96 3.34 × 10−11 1.00 3.02 × 10−11 0.00 1.33 × 10−10 0.98 3.34 × 10−11 1.00 3.02 × 10−11 1.00
Seq2Seq MQCNN 2.00 × 10−5 0.82 1.56 × 10−8 0.93 3.02 × 10−11 1.00 7.39 × 10−11 0.99 4.04 × 10−1 0.56 9.33 × 10−2 0.63 4.51 × 10−2 0.65
Seq2Seq TFT 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
DeepAR MQCNN 2.87 × 10−10 0.03 1.41 × 10−4 0.21 7.48 × 10−2 0.63 3.02 × 10−11 1.00 3.20 × 10−9 0.05 3.02 × 10−11 0.00 3.02 × 10−11 0.00
DeepAR TFT 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
MQCNN TFT 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00

ACTℎ𝑒
Seq2Seq DeepAR 8.48 × 10−9 0.93 4.50 × 10−11 1.00 3.02 × 10−11 1.00 4.62 × 10−10 0.97 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
Seq2Seq MQCNN 2.60 × 10−5 0.82 1.60 × 10−7 0.89 1.29 × 10−9 0.96 9.92 × 10−11 0.99 4.64 × 10−5 0.81 1.56 × 10−8 0.93 1.87 × 10−7 0.89
Seq2Seq TFT 8.48 × 10−9 0.93 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
DeepAR MQCNN 8.15 × 10−5 0.20 8.20 × 10−7 0.13 8.48 × 10−9 0.07 1.70 × 10−2 0.68 3.08 × 10−8 0.08 6.72 × 10−10 0.04 2.44 × 10−9 0.05
DeepAR TFT 8.77 × 10−1 0.49 4.18 × 10−9 0.94 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.69 × 10−11 1.00
MQCNN TFT 8.66 × 10−5 0.80 3.16 × 10−10 0.97 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00

ADS𝑐𝑡𝑒
Seq2Seq DeepAR 4.98 × 10−11 0.99 3.02 × 10−11 1.00 3.02 × 10−11 1.00 2.39 × 10−8 0.92 3.67 × 10−3 0.72 5.40 × 10−1 0.55 3.39 × 10−2 0.34
Seq2Seq MQCNN 4.36 × 10−2 0.65 2.12 × 10−1 0.59 9.05 × 10−2 0.63 1.25 × 10−4 0.79 5.56 × 10−4 0.76 1.17 × 10−3 0.74 2.50 × 10−3 0.73
Seq2Seq TFT 2.06 × 10−1 0.40 2.07 × 10−2 0.67 5.79 × 10−1 0.54 8.53 × 10−1 0.49 2.44 × 10−9 0.95 3.96 × 10−8 0.91 1.58 × 10−1 0.61
DeepAR MQCNN 8.99 × 10−11 0.01 3.02 × 10−11 0.00 3.02 × 10−11 0.00 2.01 × 10−4 0.22 6.35 × 10−2 0.64 5.56 × 10−4 0.76 1.75 × 10−5 0.82
DeepAR TFT 3.02 × 10−11 0.00 3.02 × 10−11 0.00 3.02 × 10−11 0.00 2.38 × 10−7 0.11 9.26 × 10−9 0.93 7.12 × 10−9 0.94 3.34 × 10−11 1.00
MQCNN TFT 1.77 × 10−3 0.26 6.00 × 10−1 0.54 1.54 × 10−1 0.39 1.24 × 10−3 0.26 2.88 × 10−6 0.85 1.17 × 10−3 0.74 7.73 × 10−2 0.37

6.3.3 ADS Case Study Results. The q-Risk values achieved by Seq2Seq, DeepAR, MQCNN, and
TFT over 30 repetitions at different quantiles are reported in Table 2. Note that the best value for
each quantile is written in bold.
Overall, we observe that at each quantile, the difference between the most accurate and least

accurate models are less than what is observed for the ACT case study results at similar quantiles
(compare Figure 3c vs Figure 3a and Figure 3b). We believe that this is due to the sample size of
the ADS dataset which is significantly lower than the size of the ACT dataset, as discussed in
Section 6.1.1, where a model like TFT is expected to suffer the most, as it is a transformer-based
model, which has been shown to require significantly more training data than other DL-based
models such as CNNs in vision tasks [21]. Nonetheless, we observe that TFT achieves the lowest
q-Risk values (most accurate predictions) when 𝑞 > 0.5. Whereas, for 𝑞 ≤ 0.5, DeepAR outperforms
other models.
Our statistical test results (Table 3), confirm that TFT significantly outperforms other models

when 0.5 < 𝑞 < 0.995, with a large effect size as the corresponding 𝐴𝐴𝐵 values are greater than
0.71. However, at 𝑞 = 0.995, using the Mann-Whitney U-test, when 𝐴 ∈ {Seq2Seq,MQCNN} and
𝐵 ∈ {TFT}, indicate that their difference is not statistically significant (with a confidence level
of 95%), as p-values are larger than 0.05. Therefore, at 𝑞 = 0.995, we conclude that sequence-to-
sequence models, i.e., TFT, MQCNN and Seq2Seq, all equally yield the best safety metric prediction
accuracy. Finally, we observe that for 𝑞 ≤ 0.5, DeepAR consistently outperforms other models with
a large effect size.

6.3.4 Discussion. Given the results of the ACT case study (Section 6.3.2), we observed that, for
probabilistic prediction of both 𝑐𝑡𝑒 andℎ𝑒 safety metrics, at all measured quantiles 𝑞, with a practical
window configuration, i.e., hazard forecast horizon of 3 s (which correlates to the minimum reaction
time, as discussed in Section 6.3.1) and lookback to forecast horizon ratio of three (which is similar
to the ratio used by the literature in multiple forecasting problems [48, 75]), TFT yields significantly
more accurate quantile forecasts than Seq2Seq, DeepAR, and MQCNN. Our observations for the
ℎ𝑒 safety requirement is the same as 𝑐𝑡𝑒 , for 𝑞 ≥ 0.025. Whereas, for 𝑞 < 0.025, TFT and DeepAR
both yield the highest time series prediction accuracy. Therefore, we can conclude that for the ACT

, Vol. 1, No. 1, Article . Publication date: October 2024.



System Safety Monitoring of Learned Components Using Temporal Metric Forecasting 21

dataset, where the dataset size is large and contains numerous safety violations, TFT is the best
model or one of the best models to be used for probabilistic forecasting of the safety metric values
at all quantiles, given a practical window configuration.
For the ADS case study results (Section 6.3.3), we observed that for probabilistic safety metric

prediction, again with a practical window configuration, i.e., hazard forecast horizon of 3 s and
a lookback to forecast horizon ratio of one, as discussed in Section 6.3.1, TFT yields significantly
more accurate predictions when 0.5 < 𝑞 < 0.995. At 𝑞 = 0.995, all sequence-to-sequence models,
i.e., TFT, MQCNN and Seq2Seq, yield the lowest q-Risk value. Finally, DeepAR yields significantly
more accurate predictions when 𝑞 ≤ 0.5. Therefore, for the ADS case study, where the size of the
dataset is a fraction of the ACT dataset, as discussed in Section 6.1.2, TFT is the best or one of the
best models to be used for safety metric forecasting when 𝑞 > 0.5. Though DeepAR is the most
accurate model when 𝑞 ≤ 0.5, as discussed in Section 6.3.1, given the definition of the safety metric
(Equation 1), forecasts for quantiles 𝑞 > 0.5 are more important for safety violation prediction.

For the ACT case study, where the size of the dataset is large, given a practical window
configuration, i.e., hazard forecast horizon of 3 s and lookback to forecast horizon ratio of 3,
TFT is more suitable than Seq2Seq, DeepAR and MQCNN, for probabilistic safety metric
forecasting over all reported quantiles, for both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements.
For the ADS case study, where the size of the dataset is small, given a practical window
configuration of ℎ = 3 s and 𝑐𝑚 = 1, DeepAR is significantly more accurate than TFT,
MQCNN, and Seq2Seq, for 𝑞 ≤ 0.5. However, TFT is the most accurate model, among the
evaluated models, when 𝑞 > 0.5, which is a more important quantile range in a safety
monitoring context, as discussed in Section 6.3.1.
Therefore, TFT is the most accurate model, when 𝑞 > 0.5, for both case studies.

6.4 RQ2: Safety Violation Prediction Accuracy
In this section, similar to Section 6.3, first we provide the details of our evaluation methodology
to answer RQ2 (Section 6.4.1). Then, we present the results for the ACT and ADS case studies
(Section 6.4.2 and Section 6.4.3, respectively). Finally, we draw conclusions from the results of both
case studies (Section 6.4.4) and present our answer to RQ2.

6.4.1 Methodology. To answer RQ2, we reuse the models trained to answer RQ1 with the aim of
predicting safety violations. To do so, we applied the safety violation function (Equation 3) to the
safety metric values predicted by the forecasting models, as reported in RQ1. A non-negative safety
function value implies a safety violation. We compared the predicted safety violations with the true
safety violation value of the test samples used in RQ1. True safety violation values are calculated
by applying the safety violation function to the true safety metric values of the test samples.

Evaluation Metric. To report the safety violation prediction accuracy of the models, we report
Precision (Pr=TP/(TP+FP)) and Recall (Re=TP/(TP+FN)), where true positives (TP), false positive (FP),
and false negatives (FN) are the correct, false, and missed safety violation predictions, respectively.
Note that Precision measures the fraction of correct warnings that a safety monitor raises, whereas
Recall measures the fraction of safety violations that a safety monitor can successfully predict [83].
We further compute and report the F𝛽 score [9] as a weighted balance between precision and recall,
with 𝛽 = 3.0 (F3 = 10· Precision×Recall

9·Precision+Recall ), granting higher importance to Recall as compared to Precision,
as false negatives have severe consequences for safety-critical systems [25, 83]. We recall that false
negatives, in the context of safety-critical systems, are safety violations that were not predicted by
the safety monitor and thus could lead to system hazards. In contrast, false positives, although an
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important consideration for the design of the safety monitor, lead to inconvenience or inefficiencies
for the users, which are less harmful than safety violations. For the ACT system specifically, false
positives could lead to the disengagement of the autonomous taxiing operation or emergency stops,
which could lead to delayed flight operations and schedules.

Recall that the predictions for quantiles 𝑞 > 0.5 are more important than lower quantiles, as they
provide more conservative estimates of the safety metric, as discussed in Section 6.3.1.

6.4.2 ACT Case Study Results. Figure 4a and Figure 4b illustrate the False Negative (FN) and False
Positive (FP) values for all the models at the reported quantiles, respectively.11 Overall, we observe
that with an increase in the prediction quantile, the FN value decreases while the FP value increases.
This is expected based on the definitions of the safety metric and the safety violation function
(Equation 1 and Equation 3, respectively). Recall that, as mentioned in Section 6.4.1, the predictions
at quantiles 𝑞 > 0.5 provide more conservative estimates of the safety metric values. Therefore, the
higher the prediction quantile, the higher the probability of the safety monitor correctly predicting
safety violations (lower FN) and raising false alarms (higher FP).
As mentioned in Section 6.4.1, the priority in safety-critical applications is having the lowest

FN value possible (since FNs lead to system hazards), while having a reasonably low FP value
(since FPs lead to inefficiencies) is the second priority. Therefore, for the ACT and ADS case studies
targeted in this paper, hereafter we focus on the results for prediction quantiles 𝑞 ≥ 0.5, for which
the FN and FP values are reported in Table 4. We have provided the values at other quantiles in the
supporting material (Section 6.9). Table 4 reports the averages and their 95% confidence intervals
for the evaluation metrics, namely Pr, Re, and F3.
Overall, Precision for all models drops as q increases, whereas Recall increases, for both 𝑐𝑡𝑒

and ℎ𝑒 safety requirements. This general trend is in line with the FN and FP trends above. Since
estimates become more conservative, more safety violations are correctly predicted (Recall ↑) while
the proportion of false alarms increases (Precision ↓). For the ℎ𝑒 safety requirement, since the
proportion of time steps including a safety violation is lower than that of the 𝑐𝑡𝑒 safety requirement
(Section 6.1.1), we expect and observe that the precision scores of the models recorded for ℎ𝑒 are
lower than the scores recorded for 𝑐𝑡𝑒 . In the case of the 𝑐𝑡𝑒 safety requirement, note that TFT and
DeepAR reach a Recall value of 1.0 at a q = 0.995, thus indicating all of the safety violations are
correctly predicted, which is also confirmed by the low corresponding FN values; Seq2Seq and
MQCNN, on the other hand, yield the lowest Recall scores (high FN values). However, we observe
that DeepAR has the lowest Precision among the models for q ≥ 0.5, indicating a higher fraction
of false alarms, which is also confirmed by the fact that the FP value for DeepAR is an order of
magnitude greater than that of other models. In contrast, TFT has a precision above 0.92, for q ≥ 0.5,
which makes it a more suitable choice for safety monitoring than DeepAR. In the case of the ℎ𝑒
safety requirement, we observe that TFT consistently yields the highest Precision and Recall scores
for q ≥ 0.5, whereas the Recall of other models is 20− 40% lower. The superiority of TFT over other
models is further confirmed by the reported F3 scores, where TFT consistently has the highest F3
scores for q ≥ 0.5, for both the 𝑐𝑡𝑒 and ℎ𝑒 safety requirements. Note that the highest F3 scores
for each quantile are highlighted in bold. Our visual observations are supported by the statistical
comparison results reported in Table 6. Columns 𝐴 and 𝐵 indicate the DL-forecasting models being
compared. Given a significance level of 𝛼 = 0.01, we observe that the differences between TFT and
the other models are significant for all quantiles. Furthermore, for all quantiles, 𝐴𝐴𝐵 is greater than
0.71 when 𝐵 = TFT, indicating that the difference between TFT and other models is large.

11Note that the x-axis, i.e., quantile 𝑞, is not drawn up to scale for better readability.
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Fig. 4. False Negatives (FN) and False Positives (FP) at different prediction quantiles (q), for 𝑐𝑡𝑒 and ℎ𝑒 safety
requirements of the ACT case study and the 𝑐𝑡𝑒 safety requirement of the ADS case study, respectively. Note
that the x-axis is not drawn to scale, in favor of a more readable presentation.

6.4.3 ADS Case Study Results. Similar to the ACT case study results (Section 6.4.2), Figure 4e and
Figure 4f, indicate that FN decreases and FP increases with increase in prediction quantile. As
explained in Section 6.4.2, we will focus on the results for prediction quantiles 𝑞 ≥ 0.5. We report
the averages and 95% confidence intervals of the FN, FP, Precision, Recall and F3 score values in
Table 5.

Overall, in line FP and FN trends, Precision for all models drops when 𝑞 increases, while Recall
increases, as discussed in Section 6.4.2. Note that TFT and MQCNN yield the highest Recall score
of 0.985 at 𝑞 = 0.995, while for the same quantile, MQCNN yields the lowest Precision score. We
further observe for 𝑞 ≥ 0.5, TFT is the second best performing model in terms of Precision score
while yielding the highest Recall score. This results in TFT achieving the highest F3 score over all
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Table 4. Various safety violation prediction accuracy metric values for different models and quantiles, for 𝑐𝑡𝑒
and ℎ𝑒 (rows highlighted in gray ) safety requirements.

Model Average Metric Value ± 0.5 ×𝐶𝐼0.95

𝑞 = 0.5 𝑞 = 0.95 𝑞 = 0.975 𝑞 = 0.995

FN

Seq2Seq 2062.9 ± 111.5 2022.0 ± 114.5 1949.7 ± 142.3 1669.6 ± 198.9
1400.9 ± 32.9 1138.8 ± 43.8 1073.4 ± 42.0 989.4 ± 44.7

DeepAR 2236.5 ± 329.5 124.5 ± 73.9 46.0 ± 31.1 10.3 ± 7.6
1658.8 ± 20.3 1130.5 ± 40.0 934.1 ± 45.2 577.7 ± 46.2

MQCNN 2128.0 ± 199.9 1531.2 ± 201.6 1372.3 ± 174.0 1037.6 ± 211.2
1344.7 ± 40.3 961.7 ± 65.9 826.2 ± 67.1 594.6 ± 73.2

TFT 729.2 ± 27.2 131.4 ± 17.6 78.1 ± 11.6 16.8 ± 2.5
866.9 ± 20.4 420.0 ± 24.3 325.7 ± 22.3 153.9 ± 15.6

FP

Seq2Seq 1073.4 ± 129.0 1108.9 ± 150.6 1191.4 ± 175.6 1642.5 ± 291.9
958.8 ± 165.1 2395.2 ± 402.2 2953.1 ± 460.7 3982.8 ± 528.9

DeepAR 3311.0 ± 684.6 14501.4 ± 1113.0 16781.9 ± 998.2 19858.7 ± 842.3
276.4 ± 24.8 2337.9 ± 240.0 4420.1 ± 455.4 13203.1 ± 1093.1

MQCNN 732.8 ± 110.2 1243.0 ± 160.6 1457.3 ± 186.4 2224.9 ± 336.1
533.7 ± 76.3 2032.3 ± 363.5 3118.9 ± 522.3 6069.3 ± 1018.0

TFT 348.4 ± 13.3 1677.3 ± 61.3 2190.1 ± 78.9 4026.0 ± 138.0
344.6 ± 19.1 1752.8 ± 73.0 2385.5 ± 102.9 4808.9 ± 221.0

Precision

Seq2Seq 0.978 ± 0.0026 0.977 ± 0.0030 0.975 ± 0.0035 0.967 ± 0.0056
0.496 ± 0.0304 0.343 ± 0.0254 0.309 ± 0.0237 0.261 ± 0.0233

DeepAR 0.936 ± 0.0120 0.773 ± 0.0138 0.746 ± 0.0116 0.712 ± 0.0089
0.693 ± 0.0156 0.338 ± 0.0186 0.242 ± 0.0162 0.118 ± 0.0082

MQCNN 0.985 ± 0.0022 0.975 ± 0.0031 0.970 ± 0.0036 0.956 ± 0.0062
0.646 ± 0.0261 0.422 ± 0.0330 0.343 ± 0.0304 0.249 ± 0.0335

TFT 0.993 ± 0.0003 0.967 ± 0.0012 0.957 ± 0.0015 0.924 ± 0.0024
0.804 ± 0.0081 0.515 ± 0.0085 0.451 ± 0.0087 0.308 ± 0.0086

Recall

Seq2Seq 0.958 ± 0.0023 0.959 ± 0.0023 0.960 ± 0.0029 0.966 ± 0.0041
0.383 ± 0.0145 0.499 ± 0.0193 0.527 ± 0.0185 0.564 ± 0.0197

DeepAR 0.954 ± 0.0067 0.997 ± 0.0015 0.999 ± 0.0006 1.000 ± 0.0002
0.270 ± 0.0089 0.502 ± 0.0176 0.589 ± 0.0199 0.746 ± 0.0203

MQCNN 0.956 ± 0.0041 0.969 ± 0.0041 0.972 ± 0.0036 0.979 ± 0.0043
0.408 ± 0.0178 0.577 ± 0.0290 0.636 ± 0.0295 0.738 ± 0.0322

TFT 0.985 ± 0.0006 0.997 ± 0.0004 0.998 ± 0.0002 1.000 ± 0.0001
0.618 ± 0.0090 0.815 ± 0.0107 0.857 ± 0.0098 0.932 ± 0.0069

F3

Seq2Seq 0.960 ± 0.0019 0.960 ± 0.0020 0.962 ± 0.0024 0.966 ± 0.0032
0.390 ± 0.0125 0.472 ± 0.0122 0.486 ± 0.0107 0.498 ± 0.0103

DeepAR 0.952 ± 0.0049 0.969 ± 0.0012 0.966 ± 0.0015 0.961 ± 0.0015
0.287 ± 0.0090 0.476 ± 0.0135 0.510 ± 0.0129 0.481 ± 0.0146

MQCNN 0.959 ± 0.0036 0.969 ± 0.0035 0.972 ± 0.0030 0.976 ± 0.0034
0.423 ± 0.0170 0.549 ± 0.0212 0.576 ± 0.0182 0.595 ± 0.0159

TFT 0.986 ± 0.0005 0.994 ± 0.0002 0.994 ± 0.0001 0.992 ± 0.0003
0.633 ± 0.0084 0.770 ± 0.0079 0.785 ± 0.0064 0.774 ± 0.0048

quantiles 𝑞 ≥ 0.5. Moreover, we observe that DeepAR yields the lowest Recall and F3 score over all
quantiles 𝑞 ≥ 0.5.

This case study thus confirms the superiority of TFT over Seq2Seq, MQCNN, and DeepAR, when
𝑞 > 0.5, in terms of F3 score, based on the results of our statistical analysis, reported in Table 6.
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Table 5. Various safety violation prediction accuracy metric values for different models and quantiles, for the
ADS case study.

Model Average Metric Value ± 0.5 ×𝐶𝐼0.95

𝑞 = 0.5 𝑞 = 0.95 𝑞 = 0.975 𝑞 = 0.995

FN

Seq2Seq 56.8 ± 1.4 31.0 ± 3.7 19.5 ± 4.9 6.6 ± 4.3
DeepAR 61.4 ± 0.7 30.6 ± 1.2 23.5 ± 1.5 13.2 ± 1.8
MQCNN 59.3 ± 2.0 20.0 ± 3.7 8.4 ± 3.2 2.2 ± 1.8
TFT 55.6 ± 1.8 12.3 ± 1.6 7.7 ± 1.2 2.2 ± 0.3

FP

Seq2Seq 22.0 ± 1.9 45.5 ± 5.5 80.1 ± 18.7 158.0 ± 23.5
DeepAR 2.9 ± 0.3 48.5 ± 3.1 64.1 ± 3.2 87.4 ± 4.4
MQCNN 14.4 ± 2.5 67.7 ± 14.0 126.0 ± 21.7 180.7 ± 16.4
TFT 12.9 ± 1.5 55.1 ± 3.1 67.1 ± 3.0 97.1 ± 6.0

Precision

Seq2Seq 0.810 ± 0.0128 0.728 ± 0.0153 0.649 ± 0.0380 0.505 ± 0.0449
DeepAR 0.968 ± 0.0035 0.711 ± 0.0120 0.663 ± 0.0101 0.610 ± 0.0113
MQCNN 0.867 ± 0.0179 0.676 ± 0.0311 0.555 ± 0.0405 0.460 ± 0.0282
TFT 0.880 ± 0.0105 0.714 ± 0.0101 0.679 ± 0.0085 0.605 ± 0.0142

Recall

Seq2Seq 0.619 ± 0.0092 0.792 ± 0.0246 0.869 ± 0.0329 0.955 ± 0.0289
DeepAR 0.588 ± 0.0047 0.795 ± 0.0079 0.842 ± 0.0097 0.911 ± 0.0121
MQCNN 0.602 ± 0.0131 0.866 ± 0.0248 0.943 ± 0.0216 0.985 ± 0.0122
TFT 0.627 ± 0.0121 0.918 ± 0.0109 0.949 ± 0.0080 0.985 ± 0.0022

F3
Seq2Seq 0.634 ± 0.0084 0.784 ± 0.0197 0.833 ± 0.0215 0.866 ± 0.0144
DeepAR 0.612 ± 0.0046 0.785 ± 0.0062 0.820 ± 0.0079 0.868 ± 0.0096
MQCNN 0.620 ± 0.0119 0.838 ± 0.0169 0.874 ± 0.0099 0.880 ± 0.0028
TFT 0.645 ± 0.0113 0.892 ± 0.0086 0.912 ± 0.0057 0.927 ± 0.0031

We further observe that, when 𝑞 > 0.5, TFT is significantly better than other models with a high
effect size. However, for 𝑞 = 0.5, we observe that TFT is not significantly better than Seq2Seq,
though it is still outperforming DeepAR and MQCNN significantly. Moreover, the effect size of the
difference between the F3 scores of TFT and MQCNN when 𝑞 = 0.5, i.e., 𝐴𝐴𝐵 , when 𝐴 = TFT and
𝐵 = MQCNN, is 0.64 < 𝐴𝐴𝐵 = 0.69 < 0.71, indicating a medium effect size.

6.4.4 Discussion. Based on the results of the ACT case study (Section 6.4.2), where the dataset
is large and includes numerous safety violations, we conclude that, for probabilistic prediction of
the safety violation, at all measured quantiles q, with again a hazard forecast horizon of 3 s and
a lookback to forecast horizon ratio of 3, as discussed in Section 6.3.2, TFT is significantly more
accurate than Seq2Seq, DeepAR, and MQCNN, for both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements.

Based on the ADS case study results (Section 6.4.3), where the size of the dataset is much smaller
than the ACT dataset, we observe that, given the hazard forecast horizon of 3 s (equal to the
minimum reaction time) and a lookback to forecast horizon ratio of 1, as discussed in Section 6.3.1,
TFT is significantly more accurate that Seq2Seq, DeepAR, and MQCNNwith a large effect size, when
𝑞 > 0.5. At 𝑞 = 0.5, TFT and Seq2Seq both yield the most accurate predictions, while significantly
outperforming DeepAR and MQCNN with a large and medium effect size, respectively. Therefore,
we conclude that TFT is the most suitable model, among all evaluated models, for safety metric
forecasting, for all reported quantiles 𝑞 ≥ 0.5. Predictions for 𝑞 ≤ 0.5 are in any case not sufficiently
accurate regardless of the model employed and therefore comparisons for such q values are not of
practical utility.
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Table 6. Statistical comparison of F3 score values for different DL-based forecasters at quantiles q≥ 0.5, for
𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the ACT case study and the 𝑐𝑡𝑒 safety requirement of the ADS case study,
respectively.

Comparison F3 score

𝐴 𝐵
𝑞 = 0.5 𝑞 = 0.95 𝑞 = 0.975 𝑞 = 0.995

𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵 𝑝 𝐴𝐴𝐵

TFT Seq2Seq 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
TFT DeepAR 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
TFT MQCNN 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00

Seq2Seq DeepAR 1.84 × 10−2 0.68 1.16 × 10−7 0.10 1.60 × 10−3 0.26 3.39 × 10−2 0.66
Seq2Seq MQCNN 7.62 × 10−1 0.48 2.28 × 10−5 0.18 1.25 × 10−5 0.17 3.37 × 10−5 0.19
DeepAR MQCNN 3.64 × 10−2 0.34 1.37 × 10−1 0.39 4.71 × 10−4 0.24 7.69 × 10−8 0.10

ACTℎ𝑒
TFT Seq2Seq 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
TFT DeepAR 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00
TFT MQCNN 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00 3.02 × 10−11 1.00

Seq2Seq DeepAR 8.99 × 10−11 0.99 5.59 × 10−1 0.46 5.26 × 10−4 0.24 3.64 × 10−2 0.66
Seq2Seq MQCNN 3.34 × 10−3 0.28 3.01 × 10−7 0.11 1.55 × 10−9 0.05 1.96 × 10−10 0.02
DeepAR MQCNN 6.70 × 10−11 0.01 8.20 × 10−7 0.13 6.53 × 10−7 0.13 7.39 × 10−11 0.01

ADS𝑐𝑡𝑒
TFT Seq2Seq 1.41 × 10−1 0.61 2.92 × 10−9 0.95 2.19 × 10−8 0.92 1.61 × 10−11 1.00
TFT DeepAR 2.58 × 10−5 0.82 3.01 × 10−11 1.00 3.01 × 10−11 1.00 4.96 × 10−11 0.99
TFT MQCNN 9.88 × 10−3 0.69 4.98 × 10−7 0.88 1.98 × 10−8 0.92 7.85 × 10−12 1.00

Seq2Seq DeepAR 2.12 × 10−4 0.78 5.89 × 10−1 0.46 2.77 × 10−1 0.58 1.52 × 10−1 0.61
Seq2Seq MQCNN 6.25 × 10−2 0.64 9.79 × 10−5 0.21 3.25 × 10−2 0.34 6.87 × 10−1 0.47
DeepAR MQCNN 2.97 × 10−1 0.42 1.49 × 10−6 0.14 1.74 × 10−8 0.08 6.60 × 10−3 0.30

For the ACT case study, where the size of the dataset is large, given a hazard forecast
horizon of 3 s and a lookback to a forecast horizon ratio of 3 for safety violation prediction
(minimum reaction time), TFT is significantly more accurate, with a large effect size, than
Seq2Seq, DeepAR, and MQCNN for all quantiles q ≥ 0.5, for both the 𝑐𝑡𝑒 and ℎ𝑒 safety
requirements.
For the ADS case study, where the datset size is much smaller, given a practical window
configuration, i.e., ℎ = 3 s and 𝑐𝑚 = 1, TFT is the most suitable model, among all evaluated
models, for probabilistic safety metric forecasting, for all quantiles 𝑞 ≥ 0.5. Predictions for
𝑞 ≤ 0.5 are poor for all models.
Therefore, when 𝑞 > 0.5, TFT is consistently the best model for both case studies.

6.5 RQ3: Prediction Accuracy Sensitivity Analysis
In Section 6.5.1, we provide the details of our evaluation methodology as it relates to answering
RQ3. As discussed in Section 6.3.1, due to the low number of samples available in the dataset of
the ADS case study, we were only able to study the effect of varying window sizes on prediction
accuracy for the two safety requirements of the ACT case study, for which we report the results in
Section 6.5.2. Finally, we present our answer to RQ3, based on the results presented in Section 6.5.2.

6.5.1 Methodology. We have answered RQ1 and RQ2 based on the minimum reaction time (3 s) for
hazard forecast horizon and a commonly used lookback horizon that is three times longer (12 s).
However, the size of the hazard forecast and lookback horizons are design choices of the system
developers. To investigate the impact of window configuration, for each forecasting model, in terms
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of safety metric and violation accuracy, inference latency, and computations resource usage, we
also assessed the tuned models with different hazard forecast horizons and lookback-to-forecast
horizon values.
Particularly, we selected the hazard forecast horizon from {3, 12} and the ratio of lookback to

forecast horizon window size, also known as context multiplier (𝑐𝑚), from {1, 3, 9}. Thus, we studied
the following forecast horizon window size and context multiplier combinations (ℎ, 𝑐𝑚): (3, 1),
(3, 3), (3, 9), (12, 1), (12, 3), and (12, 9). Note that the smallest total window size12 is 3 + 1 × 3 = 6 s,
whereas the largest total window size is 12 + 9 × 12 = 120 s. In our preliminary experiments, we
observed that increasing the forecast horizon increases the likelihood that samples include safety
violations. We further observed that for forecast horizons longer than 12 s, the distribution of test
samples becomes highly imbalanced, leading to biased comparisons of safety violation prediction
accuracy metrics between short (ℎ = 3 s) and very long (ℎ > 12 s) forecast horizons. Furthermore,
we would not have been able to study the effect of varying 𝑐𝑚 on very large forecast horizons since
their total window size on higher 𝑐𝑚 values would become longer than the maximum training
sample length. Thus, for the evaluation of RQ3, we did not include forecast horizons larger than
12 s. The results for a representative instance of our preliminary experiments with long forecast
horizons, i.e., a forecast horizon of 36 s and context multiplier of 1, are included in our supporting
material (see Section 6.9).

6.5.2 Results. As discussed in Section 6.4.2, we are interested in the predictions at quantiles that
primarily detect as many hazards as possible while having a low number of false alarms. Due to
the safety-critical nature of our problem, we only focus here on predictions at q = 0.995 since it is
the most conservative measured prediction quantile (Section 6.4.2). Recall that when comparing
models, a lower q-Risk value implies a more accurate model at predicting safety metric values.

From Figure 5a, we observe that for the 𝑐𝑡𝑒 safety requirement, given a fixed 𝑐𝑚 value, increasing
the forecast horizon ℎ leads to higher q-Risk values and thus lower accuracy. Further, we can also
see that, in contrast, for a fixed forecast horizon, increasing 𝑐𝑚 does not significantly improve
q-Risk. We observe that TFT outperforms all models (i.e., has the lowest q-Risk value) at the forecast
horizon of 3, across all 𝑐𝑚 values. At longer forecast horizons (ℎ = 12), DeepAR outperforms all
other models. Moreover, note that due to the iterative forecasting architecture of DeepAR, it is
prone to accumulating forecasting errors. Thus, its confidence interval increases significantly with
the increase in forecast horizon. For instance, at 𝑐𝑚 = 3, the confidence interval of DeepAR includes
the q-Risk values for both TFT and MQCNN.

For the ℎ𝑒 safety requirement, similar to 𝑐𝑡𝑒 , we observe that given a fixed 𝑐𝑚 value, increasing
ℎ leads to higher q-Risk values, except for MQCNN at 𝑐𝑚 = 9, where q-Risk decreases when
increasing the forecast horizon.

In terms of precision for the 𝑐𝑡𝑒 safety requirement (Figure 6a), we observe that when increasing
forecast horizon, given a constant 𝑐𝑚 value, the precision of models with a sequence-to-sequence
architecture (TFT, MQCNN, and Seq2Seq) drops while DeepAR’s precision increases, most partic-
ularly at 𝑐𝑚 = 1. A similar trend is observed for the ℎ𝑒 safety requirement (Figure 6b) with the
difference that the models reach a lower precision score than similar models evaluated on the 𝑐𝑡𝑒
safety requirement data. This can be explained by the lower proportion of samples including safety
violations for ℎ𝑒 , when compared to 𝑐𝑡𝑒 (as discussed in Section 6.3.2). Further note that, for both
𝑐𝑡𝑒 and ℎ𝑒 , given a constant forecast horizon, increasing 𝑐𝑚 can slightly improve the precision of
the model, most particularly for DeepAR.
In terms of recall for the 𝑐𝑡𝑒 safety requirement (Figure 7a), we observe that all models yield a

lower recall when increasing forecast horizon while increasing 𝑐𝑚 does not significantly improve
12Total window size = ℎ + (𝑐𝑚 × ℎ)
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Fig. 5. Safety metric prediction accuracy metrics for various window configurations of DeepAR, MQCNN,
Seq2Seq and TFT, for the 𝑐𝑡𝑒 and ℎ𝑒 safety requirements, respectively.

recall given the same forecast horizon. Note that TFT and DeepAR similarly reach the highest
recall at ℎ = 3. Whereas, at ℎ = 12, TFT experiences a larger drop in recall and is outperformed by
DeepAR. Concerning the effect of 𝑐𝑚, we observe that MQCNN experiences the most improvement
when 𝑐𝑚 changes from 3 to 9. At the same time, we observe that the recall score of DeepAR and
Seq2Seq drops when 𝑐𝑚 increases given a fixed forecast horizon. Finally, the recall score of TFT is
not significantly affected by changes in 𝑐𝑚 values. Similarly, for the ℎ𝑒 safety requirement, TFT
reaches the highest recall score at ℎ = 3. However, instead of all models experiencing a drop in
recall score with increases in forecast horizon, the recall score for DeepAR increases in all 𝑐𝑚.
MQCNN also experiences a recall score increase with an increase in ℎ at 𝑐𝑚 = 9. To conclude, the
effect of 𝑐𝑚 is similar to that observed for the 𝑐𝑡𝑒 safety requirement, with the exception of the
differences mentioned above.
In terms of overall safety violation prediction accuracy, i.e., F3 (Figure 8), for both 𝑐𝑡𝑒 and ℎ𝑒

safety requirements, we observe that TFT yields the highest F3 score when ℎ = 3 for all values of 𝑐𝑚,
except for ℎ𝑒 when 𝑐𝑚 = 1. However, we observe that F3 is much lower than the scores reached for
other 𝑐𝑚 values, suggesting that the small lookback horizon does not contain sufficient information
for the models to generate accurate forecasts. Note that for the same window configuration, DeepAR
yields the lowest F3 score, which is mainly due to its very low precision. Nevertheless, given the
increase in precision and a smaller decrease in recall for 𝑐𝑡𝑒 , as well as an increase for ℎ𝑒), the F3
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Fig. 6. Precision score measurements for DeepAR, MQCNN, Seq2Seq, and TFT, in various window configura-
tions, for the 𝑐𝑡𝑒 (a) and ℎ𝑒 (b) safety requirements.

score of DeepAR for configurations with ℎ = 12 at any 𝑐𝑚 value rises to become the best model.
However, note that the highest F3 score at ℎ = 12 is still lower than the highest F3 score reached
by TFT at ℎ = 3, suggesting that increasing the forecast horizon ℎ leads to lower safety violation
prediction accuracy in general.

Given a hazard forecast horizon of 3 s, for both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the ACT
case study, TFT yields the most accurate safety metric and safety violation predictions,
with an improving accuracy when the lookback horizon length increases (𝑐𝑚 × ℎ). For
the ℎ𝑒 safety requirement at 𝑐𝑚 = 1, the lookback horizon does not contain sufficient
information for any model to generate accurate forecasts. We further conclude that for
prediction horizons longer than the minimum reaction time, i.e., ℎ = 12 s), regardless of the
𝑐𝑚 value, DeepAR yields the most accurate predictions.

6.6 RQ4: Latency and Memory Overhead
In section Section 6.6.1, we provide the details of our evaluation methodology for answering RQ4.
As discussed in the beginning of Section 6.5, we were only able to evaluate the effect of varying
window sizes, on runtime performance, for the two safety requirements of the ACT case study (we
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Fig. 7. Recall score measurements for DeepAR, MQCNN, Seq2Seq, and TFT, in various window configurations,
for the 𝑐𝑡𝑒 (a) and ℎ𝑒 (b) safety requirements.

present the results in Section 6.6.2). We also measured the runtime performance of the ADS case
study, when ℎ = 3 s and 𝑐𝑚 = 1, which is also discussed in Section 6.6.2. We finally provide our
answer to RQ4 based on the results discussed in Section 6.6.2.

6.6.1 Methodology. To answer RQ4, we queried each of the models trained in RQ3 over the whole
test set for both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements of the ACT case study, and collected the average
latency (in milliseconds ms) and peak GPU memory13 usage during inference (in megabytes, MB).
Furthermore, we measure the model size in terms of GPU memory usage (in megabytes, MB), by
measuring the difference in GPU memory usage before and after a model is loaded to the GPU.
Note that the base ML libraries are preloaded in the GPU and their GPU memory usage is not
reported. For the ADS case study, we applied the above process to the models that were trained in
RQ1 (ℎ = 3 s and 𝑐𝑚 = 1).

6.6.2 Results. The RQ4 evaluation results for the 𝑐𝑡𝑒 safety requirement of the ACT case study
are similar to those for its ℎ𝑒 safety requirement. This is to be expected, as the size of the input
and output vectors for the same model do not change between the two safety requirements. The
only difference between them is due to differences in the hyperparameter values selected to best

13Recall that, as mentioned in Section 6.2, we use a GPU to train the models and generate predictions.
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Fig. 8. F3 score measurements for DeepAR, MQCNN, Seq2Seq, and TFT, in various window configurations,
for the 𝑐𝑡𝑒 (a) and ℎ𝑒 (b) safety requirements.

address each safety requirement, which in turn can change the number of learnable parameters in
the model. However, as observed, such change has not substantially changed the results. Therefore,
although we present the results for the 𝑐𝑡𝑒 safety requirement of the ACT case study (Figure 9) in
the paper, our discussion of the results and conclusions similarly hold for the ℎ𝑒 safety requirement.
Moreover, we have observed that the ADS case study results, are not substantially different from
the ACT case study results for the same window configuration, i.e., when ℎ = 3 s and 𝑐𝑚 = 1. Thus,
the discussion of the results and conclusions for the 𝑐𝑡𝑒 safety requirement of the ACT case study,
given a similar window configuration, i.e., when ℎ = 3 s and 𝑐𝑚 = 1, similarly holds for the ADS
case study. The figures and results for the ADS case study, and the ℎ𝑒 safety requirement of the
ACT case study, are available in our replication package (Section 6.9).

As shown in Figure 9a, all models in all window configurations have low GPU memory usage.
TFT, which has the highest usage of all, only consumes around 175 MB. We further observe that an
increase in context multiplier does not lead to a significant increase in model memory usage, while
an increase in forecast horizon leads to slight increases in MQCNN and Seq2Seq model memory
usage.

From Figure 9b, we observe that an increase in forecast horizon leads to increased peak memory
usage during inference. When increasing 𝑐𝑚, the peak memory usage of the models does not
increase significantly for the same forecast horizon, except for TFT where the rate of increase in
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peak memory usage with increasing forecast horizon grows at higher 𝑐𝑚 values. Nevertheless, the
largest peak memory usage during inference, which we observe for TFT when ℎ = 12 s and 𝑐𝑚 = 9,
is 700 MB, only consuming 17.5% of the available memory of an NVIDIA Jetson Nano GPU, the
least powerful embedded GPU made by NVIDIA. Therefore, we conclude that all the evaluated
models, for all ℎ and 𝑐𝑚 combinations, yield practical GPU memory usage in terms of model size
and peak inference memory usage.

Finally, Figure 9c suggests that the average inference latency for sequence-to-sequence forecasting
models (MQCNN, Seq2Seq, and TFT) does not significantly change when increasing the forecast
horizon or context multiplier. However, as expected, DeepAR’s inference latency linearly increases
with forecast horizon. Furthermore, when increasing 𝑐𝑚, DeepAR’s prediction latency increases
for the same forecast horizon. Thus, for longer prediction horizons or higher context multipliers,
DeepAR is prone to having a high inference latency which could render its use prohibitive in the
context of safety-critical systems. In general, for a safety monitor to be effective it should be able
to predict safety violations and raise an alarm before the planning or control modules update their
command. In our ACT example, the system does not include a planner and the controller directly
generates control commands based on the perception system outputs. Thus, in our ACT case study,
the use of a safety monitor is only meaningful if its average inference latency is less than the
controller cycle time, i.e., the time period between two generated control commands. For practical
reference, the design requirement for the maximum cycle time of planning and control modules at
the Indy Autonomous Challenge [34], is 10ms [39].14 In autonomous aviation, Paredes-Vallés et al.
[64] and Navardi et al. [62] report an average vision cycle latency of 12ms and 13ms, respectively
on an NVIDIA Jetson GPU. In another example, for a real-time vision-based drone system developed
by Farrukh and West [22], the authors empirically measure and report that the average latency for
the vision pipeline, where the safety monitor should have an average 16ms or less to be useful.
Note that DeepAR with a forecast horizon of 12, reaches the maximum latency of 10ms at 𝑐𝑚 = 3
and largely exceeds it at 𝑐𝑚 = 9. In contrast, sequence-to-sequence models maintain a constant
average inference latency of approximately 2ms for all ℎ and 𝑐𝑚 values. This is expected since
sequence-to-sequence models generate their forecast for all forecast horizon timesteps at once.

For both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements in the ACT case study, all models in all configura-
tions yield practical model size and peak inference memory usage. Furthermore, although
MQCNN, Seq2Seq, and TFT exhibit a constant and very low inference latency, DeepAR’s
inference latency significantly increases with the forecast horizon and context multiplier,
which can render DeepAR impractical for longer forecast horizons at 𝑐𝑚 > 1.
For the ADS case study, all models, in a practical window configuration of ℎ = 3 s and
𝑐𝑚 = 1, yield practical model size, peak inference memory usage and inference latency.

6.7 Discussion
Safety Monitoring via Safety Metric Forecasting. Overall, the results of our study suggest that

safety metric forecasting, given learned component outputs and scenarios, is effective for safety
monitoring. Indeed, the models, when evaluated on a dataset with a balanced distribution of safety
violations, i.e., the 𝑐𝑡𝑒 safety requirement of the ACT case study, have yielded F3 scores above

14The Indy Autonomous Challenge is an international challenge where teams from universities develop autonomous racing
vehicles with the ultimate goal of improving the safety and performance of autonomous driving technology [34].
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Fig. 9. The plot for a) model memory usage, b) peak inference memory usage, and c) average inference
latency for DeepAR, MQCNN, Seq2Seq, and TFT models at different window configurations, for the 𝑐𝑡𝑒 safety
requirement of the ACT case study, which is similar to the results for the ℎ𝑒 safety requirement. The above
results at forecast horizon of 3 s and 𝑐𝑚 = 1 are also similar to the results for the ADS case study.
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95% for all 𝑐𝑚 and ℎ combinations, except for Seq2Seq at ℎ = 12 s.15 However, the fact that all the
evaluated models have high F3 scores, for the 𝑐𝑡𝑒 safety requirement in the ACT case study, does
not mean that all of them are equally accurate in predicting safety violations. This is highlighted
in Table 4, where 1-2% differences in F3 scores, for the 𝑐𝑡𝑒 safety requirement, translate into two
orders of magnitude increase in the number of false negatives (FN). Furthermore, for both the
ℎ𝑒 safety requirement of the ACT case study, where the distribution of safety violations in the
dataset contains less safety violations compared to 𝑐𝑡𝑒 , and the ADS case study, where the size of
the dataset is substantially smaller than that of the ACT case study, we observe that at least one
model yields an F3 score of 77% or more, for 𝑞 > 0.5. This suggests that training the DL-forecasting
models to achieve high safety violation prediction accuracy, collecting a large number of diverse
safety violations in the dataset is crucial.
Moreover, we observe that the ranking of evaluated models in terms of safety metric accuracy

(q-Risk) matches the ranking of models in terms of recall scores, suggesting that q-Risk values could
be indicators of the recall scores for safety violation prediction (compare Figure 5 with Figure 7).
However, we observe that the same order does not hold for precision and F3 scores. For instance,
MQCNN and Seq2Seq have higher (q-Risk) values than DeepAR for ℎ = 3 s (Figure 5), whereas
their precision and F3 scores (Figure 6 and Figure 8, respectively) are significantly higher. Thus,
we conclude that although q-Risk values, which are readily available after training the models
and testing them on the test dataset, might be an indicator of the recall score for safety violation
prediction, they are not indicators of precision and overall accuracy (F3) scores for safety violation
prediction. Thus, in practice, one needs to compute precision and F3 scores before choosing a model
for runtime deployment, and not only rely on q-Risk scores.

Our results further illustrate that the use of DL-based probabilistic forecasting methods, especially
those with sequence-to-sequence architecture, leads to low inference latency while consuming
feasible computing resources in terms of model size and peak memory usage during inference.

Furthermore, the results confirm the superiority of probabilistic forecasting over point forecasting
for use in safetymonitoring. This conclusion is drawn based on our empirical results and the fact that
point forecast predictions correspond to the median (𝑞 = 0.5) value of the probability distribution
predicted by probabilistic forecasting methods [11]. Our empirical results show that using values
from the tail-end of the forecast probability distribution (𝑞 ≥ 0.95 in our case) leads to more accurate
safety metric and safety violation predictions than predictions for 𝑞 = 0.5.

Window Configurations. We explored the effect of different combinations of varying hazard
forecast horizons and context multipliers (window configurations), on prediction accuracy (RQ3) and
runtime performance (RQ4), on the ACT case study only, due to the limited size of the dataset used
for the ADS case study (as discussed in Section 6.3.1). Given all the results discussed in Section 6.5.2
and Section 6.6.2, we conclude that for both 𝑐𝑡𝑒 and ℎ𝑒 safety requirements in the ACT safety
monitoring problem, TFT is the best model to be used for predicting imminent safety violations, i.e.,
ℎ = 3 s, for all 𝑐𝑚 values. We further suggest that high 𝑐𝑚 values (𝑐𝑚 = 9) be used as they improve
overall safety violation accuracy. Nevertheless, as the peak inference memory of TFT increases with
the increase in 𝑐𝑚, a lower 𝑐𝑚 might also be considered depending on the available GPU memory
onboard the learning-enabled autonomous system. The results for ℎ = 12 s further highlight that,
although DeepAR has superior prediction accuracy than other models, it is not as accurate as TFT
for ℎ = 3 s. Furthermore, the high average inference latency of DeepAR at ℎ = 12 s prohibits it from
being used as a safety monitor of the learned component, as discussed in Section 6.6.2. However, if

15Recall that by safety monitoring, we refer to runtime monitoring of learned components and the system operational
context to predict a system safety requirement violation, which is, different from predicting when a learned component
might mispredict.
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model optimizations and specialized inference hardware can reduce the DeepAR’s inference latency
to an acceptable range, it can be considered for predicting longer horizon safety violations given
its good prediction accuracy. Nevertheless, considering both accuracy and inference latency, using
TFT on shorter forecast horizons than 12 s, is a better option.

Challenging Scenarios. Although the trained safety metric forecasters yield high overall accuracy
in predicting safety violations, it is important to identify the scenarios during which the safety
monitor is more likely to mispredict safety violations. Characterizing such scenarios will allow the
developers to generate more relevant execution data which can be used to train the safety monitors
further and increase their safety violation prediction accuracy. Moreover, knowing the scenarios
under which the safety monitor is expected to yield lower safety violation prediction accuracy
would allow a system to be vigilant during the run-time of such scenarios and intervene in the
automated operation of the system, if necessary.
One potential method relies on fitting a regression tree [51] to the safety violation prediction

results (such as the ones provided in Section 6.4.2 and Section 6.4.3). Concretely, a regression tree
is fitted to a dataset whose features are the scenario parameters, and target variable is the F3 score
that the safety monitor yields for the corresponding scenario. A notable benefit of a regression tree
is that it allows the extraction of explainable rules that specify the part of the scenario space where
the safety monitor yields a lower accuracy.
As an example, to explore the feasibility of explaining variation in safety violation prediction

accuracy, we have fitted a regression tree to the safety violation prediction accuracy results of
the safety monitor based on the TFT forecasting model, at the prediction quantile 𝑞 = 0.995, for
the 𝑐𝑡𝑒 safety requirement of the ACT case study (Section 6.4.2). Therefore, the features of the
regression tree are the ACT scenario parameters, i.e., time of day, cloud cover, and starting 𝑐𝑡𝑒 and ℎ𝑒
of the aircraft 16, while the target variable is the F3 score of the TFT model at 𝑞 = 0.995. Using grid
search, we fitted regression trees by exploring combinations of of values for its hyperparameters,
i.e., maximum depth and minimum number of samples per leaf node. We computed the average
mean squared error (MSE) for each model using 10-fold cross validation [23] and selected the most
accurate tree, i.e., the one with the lowest average MSE over all ten folds (𝑀𝑆𝐸 = 3 × 10−4). The
computed measure of determination (𝑅2) for the most accurate model is 0.68, indicating that most
of the variance in F3 is explained by the tree. We have provided the dataset used to the train the
regression tree, its preprocessing details, the model selection and cross validation script, as well
as the selected regression tree (with detailed accuracy metrics) in our replication package (see
Section 6.9).

Based on the most accurate regression tree, we observe that the following three rules characterize
part of the scenario space where the safety monitor yields its lowest F3 score:

• time_of_day ∈ {afternoon} ∧ cloud_cover ∈ {moderate, high} =⇒ 𝐹3 = 0.952
• time_of_day ∈ {afternoon} ∧ cloud_cover ∈ {none, low} =⇒ 𝐹3 = 0.973
• time_of_day ∈ {morning} ∧ hestart ∈ [−10◦,−7.5◦] =⇒ 𝐹3 = 0.984

Given the above rules, we observe that time of day, cloud cover conditions and starting ℎ𝑒

values are the most important features explaining variations in safety violation prediction ac-
curacy across scenarios. We further conclude, based on the above rules, that the lowest accu-
racy scores are observed during the afternoon, when the sky is moderately or highly cloudy
(cloud_cover ∈ {moderate, high}). As mentioned earlier, knowing the scenario subspace where
prediction is challenging, specified by the above rules, can help the developer understand where

16The detailed description and value ranges for the scenario parameters are provided in our replication package (Section 6.9).
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more scenarios can be generated to re-train the safety monitor and potentially increase its predic-
tion accuracy for low-accuracy scenarios. Moreover, the user can take the uncertainty of the safety
monitor predictions into account at runtime, e.g., by being vigilant during scenarios where safety
violation prediction accuracy is low and intervening when necessary.

6.8 Threats to Validity
In this section, we discuss potential threats to the validity of our study, namely internal, external,
conclusion, and construct validity [79, 92, 100].

Internal Validity. Internal validity is concerned with the accuracy of the cause-and-effect rela-
tionships established by the experiments. Due to the limitations of the GluonTS library at the time
of our evaluation, we had to use models for evaluation that were implemented in different ML
frameworks. Concretely, DeepAR, MQCNN, and Seq2Seq models were implemented in MXNet
while the TFT model was implemented in PyTorch, as the MXNet implementation of the TFT
model was faulty and the MXNet models for MQCNN and Seq2Seq were not available. The use of
different ML frameworks could impact the internal validity of the results. However, we conducted
preliminary experiments on a model implemented in both frameworks17 to compare the impact
of differences in ML framework on safety metric forecasting accuracy and runtime performance
(memory and time overhead). We found that the differences in accuracy and runtime performance
metrics were less than the standard deviation of the measurements and negligible.

External Validity. External validity is concerned with the generalizability of our results. One
notable factor to consider is that in this study, we relied only on a specific ACT system (TinyTaxiNet)
and simulation platform (X-Plane), for the ACT case study, and relied on a specific ADS system
(Dave-2) and a simulation platform (Udacity simulator). However, X-Plane is a widely used high-
fidelity simulator, and TinyTaxiNet was the best open-source ACT available at the time of our
evaluation. Through preliminary experiments, we confirmed the superior 𝑐𝑡𝑒 estimation accuracy
of TinyTaxiNet against two other pre-trained models that were available on the NASA ULI X-
Plane Simulator project repository on GitHub [41]. Regarding the ADS case study, Dave-2 is a
widely used lane keeping ADS, and Udacity is a popular simulator used for closed-track simulation
of ADS. Nonetheless, further studies involving other learning-enabled autonomous systems in
aviation and autonomous driving, as well as other domains, such as autonomous agriculture,
and manufacturing, are required. We should however keep in mind that experiments such as the
ones reported here entail substantial computations and extensive calendar time, i.e., 7500+ hours
of GPU computation which were performed over 42 calendar days, thanks to having access to
multiple GPUs on the Digital Research Alliance of Canada compute clusters. Another relevant
factor is that due to X-Plane’s capabilities, we were only able to set the weather statically, i.e.,
without sudden changes that rarely happen. The same static weather has been used in the ADS
simulation used by our study [83]. Nevertheless, both X-Plane and Udacity simulator are widely
used high-fidelity simulators, as mentioned above. Moreover, given that the maximum duration
of a scenario execution, in both the ACT and ADS cases studies, are less than 4min and 2min,
respectively, assuming a static weather over the execution is not unreasonable. An additional factor
potentially impacting our proposed method’s generalizability, is the fact that we assume that the
monitored safety metrics are directly measurable (e.g., 𝑐𝑡𝑒𝑎𝑐𝑡 can be measured directly using a GPS)
or can be estimated during the system operation (e.g., Time-To-Collision or TTC in the case of
autonomous driving is estimated based the relative distance and velocity between the ADS and
the object in front of it [59], which can be measured using a front radar on the ADS). However,

17At the time of our evaluation, only similar DeepAR implementations were available in both frameworks.
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this is not a restrictive assumption as safety requirements, similar to any type of requirement,
should have already been defined by the system developers and safety engineers, such that they
are measurable [72]. Therefore, the safety requirements are expected to rely on metrics that can be
measured or estimated to assess their satisfaction or violation. Another factor that could impact
the generalizability of our results relates to the fact that we have not evaluated the performance
results of our models on embedded hardware similar to the one that might be used during the
operation of real ACT and ADS systems. Nevertheless, our analysis revealed that the memory
demand by the models is quite low and in line with what is reported in resource-constrained
environments. Regarding the average inference latency measurements, model optimizations such as
model quantization [74], can potentially improve the average inference latency of models, especially
DeepAR such that its latency falls below runtime constraints. However, we have performed our
latency measurements using cloud-based NVIDIA V100 GPUs, in an inference setting, e.g., disabling
gradient calculations [68, 69], where the inference latency is expected to be comparable to or lower
than that of embedded GPUs.

Conclusion Validity. Conclusion validity relates to the conclusions that can be drawn from the
collected data and their statistical significance. We followed the widely accepted rule-of-thumb of
30 repetitions for the experiments and we report every statistical value with its confidence interval.

Construct Validity. Construct validity is concerned with the degree to which the measured
variables in the study represent the underlying concept being studied. As discussed in Section 6.3.1,
q-Risk is a widely used metric to measure the accuracy of time series predictions (forecast safety
metric values in our case) for a specific prediction quantile [11, 48, 49, 75], since it provides a
summation of quantile loss (QL) over the forecast horizon for all predictions, normalized over all
samples in the test set. As discussed in Section 6.4.1, we have used precision and recall which are
widely used as metrics to capture the accuracy of the models in terms of missed safety violations and
false prediction, respectively. Furthermore, similar to [83], we have used F3 score as an aggregate
metric to compare the overall safety violation prediction accuracy of safetymonitors while capturing
the relative importance of false negatives and false positives. As discussed in Section 6.6.1, the
performance overhead introduced by the safety monitor can be refined to space and time overheads.
Since models are loaded in the GPU, GPU memory usage is a metric that successfully captures the
space overhead of the models as model size and peak memory usage during inference. Whereas,
average prediction latency effectively captures the time overhead of the model at runtime.

6.9 Data Availability
The evaluated DL-based probabilistic forecasting models have been implemented in Python. We
made the aforementioned implementations, the instructions to set up the ACT case study, the
detailed description of the scenario parameters used to generate data, the generated ACT dataset,
the raw and preprocessed ADS dataset, and the detailed evaluation results, for both the ACT and
ADS case studies, will be made available online, once the paper is accepted.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a method for safety monitoring of learned components in autonomous
systems via probabilistic safety metric forecasting. We address the practical challenges of lacking
access to internal information of the learned component and the system having limited operational
resources, by using state-of-the-art DL-based probabilistic time series forecasters. They rely on sce-
narios and learned component output values to provide predictions of the safety metric probability
distribution with acceptable inference latency and memory usage. We apply these forecasters to
widely used case studies in autonomous aviation and autonomous driving, namely ACT and lane
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keeping ADS, respectively, where we run extensive experiments to evaluate the safety metric and
violation prediction accuracy, inference latency, and computation resource usage of state-of-the-art
models, with a varying lookback and hazard forecast horizons while comparing them against a
very competitive baseline (DeepAR). Our evaluation results suggest that probabilistic forecasting of
safety metrics, given learned component outputs and scenarios, is effective for safety monitoring.
Moreover, the evaluation results show that using Temporal Fusion Transformer (TFT) for predicting
imminent safety violations (ℎ = 3 s), for all lookback horizons, leads to the most accurate predictions
with acceptable inference latency while consuming reasonable computational resources.

As part of future work, we plan to apply our proposed safety monitoring method to other
learning-enabled autonomous systems in various domains such as automated driving, agriculture,
and manufacturing. Furthermore, we plan to investigate whether using search-based methods that
identify the hazard boundary of a learned component, e.g., MLCSHE [77], reduces the size of the
dataset required to train an accurate safety monitor. Finally, in the future, we plan to further inves-
tigate the impact of re-training the safety monitor, using additional scenario generated according
the regression tree analysis results (Section 6.7), on its safety violation prediction accuracy.

ACKNOWLEDGMENTS
We thank Corina Păsăreanu for her feedback in the early stages of the work and her pointer to
the TinyTaxiNet model. We would also like to thank Nathan Aschbacher and Frederic Risacher
for their constructive feedback on the work. This work was partially supported by funding from
the Natural Sciences and Engineering Research Council of Canada (NSERC), through the Canada
Research Chairs and discovery programs, the Science Foundation Ireland grant 13/RC/2094-2,
Ontario Graduate Scholarship, Mitacs Accelerate Program, and Auxon Corporation. This research
was enabled in part by support provided by British Columbia Digital Research Infrastructure
(https://www.bc.net), Compute Ontario (https://www.computeontario.ca), and the Digital Research
Alliance of Canada (https://alliancecan.ca). Andrea Stocco was supported by the Bavarian Ministry
of Economic Affairs, Regional Development, and Energy.

REFERENCES
[1] Airbus 2021. A Statistical Analysis of Commercial Aviation Accidents 1958 – 2021. Airbus. Retrieved October 01, 2024

from https://skybrary.aero/sites/default/files/bookshelf/34487.pdf#:~:text=Fourth-generation%20commercial%20jet%
20aircraft%20flew%2054%%20of%20flights%20in%202021.

[2] Arden Albee, Steven Battel, Richard Brace, Garry Burdick, John Casani, Jeffrey Lavell, Charles Leising, Duncan
MacPherson, Peter Burr, and Duane Dipprey. 2000. JPL D-18709: Report on the Loss of the Mars Polar Lander and Deep
Space 2 Missions. Technical Report. Jet Propulsion Laboratory, Pasadena, CA.

[3] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim
Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner
Türkmen, and Yuyang Wang. 2020. GluonTS: Probabilistic and Neural Time Series Modeling in Python. Journal of
Machine Learning Research 21, 116 (2020), 1–6. http://jmlr.org/papers/v21/19-820.html

[4] Hugo Araujo, Mohammad Reza Mousavi, and Mahsa Varshosaz. 2023. Testing, Validation, and Verification of Robotic
and Autonomous Systems: A Systematic Review. ACM Trans. Softw. Eng. Methodol. 32, 2, Article 51 (March 2023),
61 pages. https://doi.org/10.1145/3542945

[5] Erfan Asaadi, Steven Beland, Alexander Chen, Ewen Denney, Dragos Margineantu, Matthew Moser, Ganesh Pai,
James Paunicka, Douglas Stuart, and Huafeng Yu. 2020. Assured Integration of Machine Learning-based Autonomy
on Aviation Platforms. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). IEEE, Institute of Electrical
and Electronics Engineers (IEEE), San Antonio, TX, USA, 1–10.

[6] Erfan Asaadi, Ewen Denney, Jonathan Menzies, Ganesh J. Pai, and Dimo Petroff. 2020. Dynamic Assurance Cases: A
Pathway to Trusted Autonomy. Computer 53, 12 (2020), 35–46. https://doi.org/10.1109/MC.2020.3022030

[7] Erfan Asaadi, Ewen Denney, and Ganesh Pai. 2019. Towards Quantification of Assurance for Learning-Enabled
Components. In 2019 15th European Dependable Computing Conference (EDCC). IEEE, New York, NY, US, 55–62.
https://doi.org/10.1109/EDCC.2019.00021

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://www.bc.net
https://www.computeontario.ca
https://alliancecan.ca
https://skybrary.aero/sites/default/files/bookshelf/34487.pdf#:~:text=Fourth-generation%20commercial%20jet%20aircraft%20flew%2054%%20of%20flights%20in%202021.
https://skybrary.aero/sites/default/files/bookshelf/34487.pdf#:~:text=Fourth-generation%20commercial%20jet%20aircraft%20flew%2054%%20of%20flights%20in%202021.
http://jmlr.org/papers/v21/19-820.html
https://doi.org/10.1145/3542945
https://doi.org/10.1109/MC.2020.3022030
https://doi.org/10.1109/EDCC.2019.00021


System Safety Monitoring of Learned Components Using Temporal Metric Forecasting 39

[8] Erfan Asaadi, Ewen Denney, and Ganesh Pai. 2020. Quantifying Assurance in Learning-Enabled Systems. In Computer
Safety, Reliability, and Security, António Casimiro, Frank Ortmeier, Friedemann Bitsch, and Pedro Ferreira (Eds.).
Springer International Publishing, Cham, 270–286.

[9] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. ACM, New York, NY, USA.
[10] Tony Bellotti, Ilia Nouretdinov, Meng Yang, and Alexander Gammerman. 2014. Chapter 6 - Feature Selection. In

Conformal Prediction for Reliable Machine Learning, Vineeth N. Balasubramanian, Shen-Shyang Ho, and Vladimir
Vovk (Eds.). Morgan Kaufmann, Boston, 115–130. https://doi.org/10.1016/B978-0-12-398537-8.00006-7

[11] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, YuyangWang, Danielle Maddix, Caner Turkmen,
Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella, François-Xavier Aubet, Laurent Callot, and
Tim Januschowski. 2022. Deep Learning for Time Series Forecasting: Tutorial and Literature Survey. ACM Comput.
Surv. 55, 6, Article 121 (dec 2022), 36 pages. https://doi.org/10.1145/3533382

[12] Jennifer Black and Philip Koopman. 2009. System Safety as an Emergent Property in Composite Systems. In 2009
IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE, IEEE, New York, NY, USA, 369–378.

[13] Daniel Bogdoll, Maximilian Nitsche, and J. Marius Zöllner. 2022. Anomaly Detection in Autonomous Driving: A
Survey. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
IEEE, New York, NY, USA, 4488–4499.

[14] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning
for Self-Driving Cars. arXiv:1604.07316 [cs.CV]

[15] Markus Borg, Jens Henriksson, Kasper Socha, Olof Lennartsson, Elias Sonnsjö Lönegren, Thanh Bui, Piotr
Tomaszewski, Sankar Raman Sathyamoorthy, Sebastian Brink, and Mahshid Helali Moghadam. 2023. Ergo, SMIRK is
safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System. Software
Quality Journal 31, 2 (2023), 335–403.

[16] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time series analysis: Forecasting and
Control. John Wiley & Sons, Hoboken, NJ, USA. https://doi.org/10.1002/9781118619193

[17] Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and Artur
Dubrawski. 2023. NHITS: Neural Hierarchical Interpolation for Time Series Forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence 37, 6 (Jun. 2023), 6989–6997. https://doi.org/10.1609/aaai.v37i6.25854

[18] Darren Cofer, Isaac Amundson, Ramachandra Sattigeri, Arjun Passi, Christopher Boggs, Eric Smith, Limei Gilham,
Taejoon Byun, and Sanjai Rayadurgam. 2020. Run-Time Assurance for Learning-Enabled Systems. In NASA Formal
Methods, Ritchie Lee, Susmit Jha, Anastasia Mavridou, and Dimitra Giannakopoulou (Eds.). Springer International
Publishing, Cham, 361–368.

[19] On-Road Automated Driving (ORAD) Committee. 2021. Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles. SAE International. https://doi.org/10.4271/J3016_202104

[20] Nello Cristianini and John Shawe-Taylor. 2000. An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, Cambridge, UK.

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021.
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929 [cs.CV] https:
//arxiv.org/abs/2010.11929

[22] Anam Farrukh and Richard West. 2023. FlyOS: rethinking integrated modular avionics for autonomous multicopters.
Real-Time Systems 59, 2 (2023), 256–301.

[23] Tadayoshi Fushiki. 2011. Estimation of Prediction Error by using K-fold Cross-Validation. Statistics and Computing 21
(2011), 137–146.

[24] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning. In Proceedings of The 33rd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR, New York, NY, USA,
1050–1059. https://proceedings.mlr.press/v48/gal16.html

[25] Ruben Grewal, Paolo Tonella, and Andrea Stocco. 2024. Predicting Safety Misbehaviours in Autonomous Driving
Systems using Uncertainty Quantification. In Proceedings of 17th IEEE International Conference on Software Testing,
Verification and Validation (ICST ’24). IEEE, New York, NY, USA, 12 pages.

[26] Stephen Haben, Marcus Voss, and William Holderbaum. 2023. Time Series Forecasting: Core Concepts and Definitions.
Springer International Publishing, Cham, 55–66. https://doi.org/10.1007/978-3-031-27852-5_5

[27] Franz Hell, Gereon Hinz, Feng Liu, Sakshi Goyal, Ke Pei, Tetiana Lytvynenko, Alois Knoll, and Chen Yiqiang.
2021. Monitoring Perception Reliability in Autonomous Driving: Distributional Shift Detection for Estimating the
Impact of Input Data on Prediction Accuracy. In Proceedings of the 5th ACM Computer Science in Cars Symposium
(Ingolstadt, Germany) (CSCS ’21). Association for Computing Machinery, New York, NY, USA, Article 8, 9 pages.

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1016/B978-0-12-398537-8.00006-7
https://doi.org/10.1145/3533382
https://arxiv.org/abs/1604.07316
https://doi.org/10.1002/9781118619193
https://doi.org/10.1609/aaai.v37i6.25854
https://doi.org/10.4271/J3016_202104
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1007/978-3-031-27852-5_5


40 Sharifi et al.

https://doi.org/10.1145/3488904.3493382
[28] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in

Neural Networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, online, 12 pages. https://openreview.net/forum?id=Hkg4TI9xl

[29] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer Englund, Sankar Raman Sathyamoorthy,
and Stig Ursing. 2019. Towards Structured Evaluation of Deep Neural Network Supervisors. In 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest). IEEE, New York, NY, USA, 27–34. https://doi.org/10.1109/aitest.
2019.00-12

[30] Julia Hoffman and Dev Metha. 2023. Artificial intelligence: in-depth market analysis market insights report. Technical
Report. Statista.

[31] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi.
2020. A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack
and Defence, and Interpretability. Computer Science Review 37 (2020), 100270.

[32] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime: mutation testing of deep learning
systems based on real faults. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY, USA, 67–78.
https://doi.org/10.1145/3460319.3464825

[33] Manzoor Hussain, Nazakat Ali, and Jang-Eui Hong. 2022. DeepGuard: A Framework for Safeguarding Autonomous
Driving Systems from Inconsistent Behaviour. Automated Software Engineering 29, 1 (2022), 1.

[34] Indy Autonomous Challenge 2024. Indy Autonomous Challenge. Indy Autonomous Challenge. Retrieved March 22,
2024 from https://www.indyautonomouschallenge.com/

[35] Anand Iyer and Aditya Prakash. 2019. Controlling Biases. John Wiley & Sons,
Ltd, NY, NY USA, Chapter 10, 77–82. https://doi.org/10.1002/9781119571278.ch10
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119571278.ch10

[36] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality Metrics and Oracles for Autonomous Vehicles
Testing. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, NY, NY USA,
194–204. https://doi.org/10.1109/ICST49551.2021.00030

[37] Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-Schneider, and
Laurent Callot. 2020. Criteria for Classifying Forecasting Methods. International Journal of Forecasting 36, 1 (2020),
167–177. https://doi.org/10.1016/j.ijforecast.2019.05.008 M4 Competition.

[38] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neural Network Compression for Aircraft
Collision Avoidance Systems. arXiv:1810.04240

[39] Chanyoung Jung, Andrea Finazzi, Hyunki Seong, Daegyu Lee, Seungwook Lee, Bosung Kim, Gyuri Gang, Seungil
Han, and David Hyunchul Shim. 2023. An Autonomous System for Head-to-Head Race: Design, Implementation and
Analysis; Team KAIST at the Indy Autonomous Challenge. arXiv:2303.09463 [cs.RO]

[40] Ismet Burak Kadron, Divya Gopinath, Corina S. Păsăreanu, andHuafeng Yu. 2022. Case Study: Analysis of Autonomous
Center Line Tracking Neural Networks. In Software Verification, Roderick Bloem, Rayna Dimitrova, Chuchu Fan, and
Natasha Sharygina (Eds.). Springer International Publishing, Cham, 104–121.

[41] Sydney M. Katz, Anthony Corso, Sandeep Chinchali, Amine Elhafsi, Apoorva Sharma, Mykel J. Kochenderfer, and
Marco Pavone. 2021. NASA ULI X-Plane Simulator. Stanford ASL. Retrieved May 7, 2024 from https://github.com/
StanfordASL/NASA_ULI_Xplane_Simulator

[42] Sydney M Katz, Anthony L Corso, Christopher A Strong, and Mykel J Kochenderfer. 2022. Verification of image-based
neural network controllers using generative models. Journal of Aerospace Information Systems 19, 9 (2022), 574–584.

[43] Alex Kendall and Yarin Gal. 2017. What Uncertainties Do We Need in Bayesian Deep Learning for Computer
Vision?. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., New York, NY, USA. https:
//proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

[44] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG]
[45] Stephan Kolassa. 2016. Sometimes It’s Better to Be Simple than Correct. Foresight: The International Journal of

Applied Forecasting 40 (2016), 20 – 26. https://search.ebscohost.com/login.aspx?direct=true&amp;db=bth&amp;AN=
114335722&amp;site=ehost-live

[46] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., New York,
NY, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

[47] Nancy G. Leveson. 2012. Engineering a Safer World. The MIT Press, Boston, MA, USA. 608 pages. https://doi.org/10.
7551/mitpress/8179.001.0001

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1145/3488904.3493382
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.1109/aitest.2019.00-12
https://doi.org/10.1109/aitest.2019.00-12
https://doi.org/10.1145/3460319.3464825
https://www.indyautonomouschallenge.com/
https://doi.org/10.1002/9781119571278.ch10
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119571278.ch10
https://doi.org/10.1109/ICST49551.2021.00030
https://doi.org/10.1016/j.ijforecast.2019.05.008
https://arxiv.org/abs/1810.04240
https://arxiv.org/abs/2303.09463
https://github.com/StanfordASL/NASA_ULI_Xplane_Simulator
https://github.com/StanfordASL/NASA_ULI_Xplane_Simulator
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://arxiv.org/abs/1412.6980
https://search.ebscohost.com/login.aspx?direct=true&amp;db=bth&amp;AN=114335722&amp;site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&amp;db=bth&amp;AN=114335722&amp;site=ehost-live
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.7551/mitpress/8179.001.0001


System Safety Monitoring of Learned Components Using Temporal Metric Forecasting 41

[48] Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal Fusion Transformers for interpretable
multi-horizon time series forecasting. International Journal of Forecasting 37, 4 (2021), 1748–1764. https://doi.org/10.
1016/j.ijforecast.2021.03.012

[49] Bryan Lim and Stefan Zohren. 2021. Time-series Forecasting with Deep Learning: A Survey. Philosophical Transactions
of the Royal Society A 379, 2194 (2021), 20200209.

[50] Felipe Tomazelli Lima and Vinicius M.A. Souza. 2023. A Large Comparison of Normalization Methods on Time Series.
Big Data Research 34 (2023), 100407. https://doi.org/10.1016/j.bdr.2023.100407

[51] Wei-Yin Loh. 2011. Classification and regression trees. WIREs Data Mining and Knowledge Discovery 1, 1 (2011),
14–23. https://doi.org/10.1002/widm.8 arXiv:https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.8

[52] Guannan Lou, Yao Deng, Xi Zheng, Mengshi Zhang, and Tianyi Zhang. 2022. Testing of autonomous driving systems:
where are we and where should we go?. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 31–43. https://doi.org/10.1145/3540250.3549111

[53] Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Danfeng (Daphne) Yao. 2021. Deep Learning-based Anomaly
Detection in Cyber-physical Systems: Progress and Opportunities. ACM Comput. Surv. 54, 5, Article 106 (may 2021),
36 pages. https://doi.org/10.1145/3453155

[54] R. J. Beckman M. D. Mckay and W. J. Conover. 2000. A Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output From a Computer Code. Technometrics 42, 1 (2000), 55–61. https://doi.org/10.
1080/00401706.2000.10485979 arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.2000.10485979

[55] David J. C. MacKay. 1992. A Practical Bayesian Framework for Backpropagation Networks. Neural Computa-
tion 4, 3 (05 1992), 448–472. https://doi.org/10.1162/neco.1992.4.3.448 arXiv:https://direct.mit.edu/neco/article-
pdf/4/3/448/812348/neco.1992.4.3.448.pdf

[56] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2020. The M4 Competition: 100,000 Time
Series and 61 Forecasting Methods. International Journal of Forecasting 36, 1 (2020), 54–74. https://doi.org/10.1016/j.
ijforecast.2019.04.014 M4 Competition.

[57] Spyros Makridakis, Evangelos Spiliotis, Assimakopoulos Vassilios, Artemios-Anargyros Semenoglou, Gary Mulder,
and Konstantinos Nikolopoulos. 2023. Statistical, Machine Learning and Deep Learning Forecasting Methods:
Comparisons and Ways Forward. Journal of the Operational Research Society 74, 3 (2023), 840–859. https://doi.org/10.
1080/01605682.2022.2118629 arXiv:https://doi.org/10.1080/01605682.2022.2118629

[58] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger
than the Other. The Annals of Mathematical Statistics 18, 1 (1947), 50–60. http://www.jstor.org/stable/2236101

[59] Michiel M. Minderhoud and Piet H.L. Bovy. 2001. Extended time-to-collision measures for road traffic safety
assessment. Accident Analysis & Prevention 33, 1 (2001), 89–97. https://doi.org/10.1016/S0001-4575(00)00019-1

[60] Sina Mohseni, Haotao Wang, Chaowei Xiao, Zhiding Yu, Zhangyang Wang, and Jay Yadawa. 2022. Taxonomy
of Machine Learning Safety: A Survey and Primer. ACM Comput. Surv. 55, 8, Article 157 (dec 2022), 38 pages.
https://doi.org/10.1145/3551385

[61] National Transporations Safety Board 2024. General Aviation Accident Dashboard: 2012-2021. National
Transporations Safety Board. Retrieved October 01, 2024 from https://www.ntsb.gov/safety/data/Pages/
GeneralAviationDashboard.aspx#:~:text=Data%20Spreadsheet%20General%20Aviation%20Accidents,%20Findings,
%20and%20Safety%20Recommendations:%202012-2021

[62] Mozhgan Navardi, Aidin Shiri, Edward Humes, Nicholas R.Waytowich, and TinooshMohsenin. 2022. An Optimization
Framework for Efficient Vision-Based Autonomous Drone Navigation. In 2022 IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE, NY, NY USA, 304–307. https://doi.org/10.1109/AICAS54282.
2022.9869975

[63] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lak-
shminarayanan, and Jasper Snoek. 2019. Can You Trust Your Model's Uncertainty? Evaluating Predictive Un-
certainty under Dataset Shift. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc., New York, NY, USA.
https://proceedings.neurips.cc/paper_files/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf

[64] F. Paredes-Vallés, J. J. Hagenaars, J. Dupeyroux, S. Stroobants, Y. Xu, and G. C. H. E. de Croon. 2024. Fully neuromorphic
vision and control for autonomous drone flight. Science Robotics 9, 90 (2024), eadi0591. https://doi.org/10.1126/
scirobotics.adi0591 arXiv:https://www.science.org/doi/pdf/10.1126/scirobotics.adi0591

[65] Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu, and Huafeng
Yu. 2023. Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study. In Computer Aided Verification,
Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, Cham, 289–303.

[66] Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu, and Huafeng
Yu. 2023. Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study. In Computer Aided Verification,

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1016/j.bdr.2023.100407
https://doi.org/10.1002/widm.8
https://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.8
https://doi.org/10.1145/3540250.3549111
https://doi.org/10.1145/3453155
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.1080/00401706.2000.10485979
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.2000.10485979
https://doi.org/10.1162/neco.1992.4.3.448
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/4/3/448/812348/neco.1992.4.3.448.pdf
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/4/3/448/812348/neco.1992.4.3.448.pdf
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1080/01605682.2022.2118629
https://doi.org/10.1080/01605682.2022.2118629
https://arxiv.org/abs/https://doi.org/10.1080/01605682.2022.2118629
http://www.jstor.org/stable/2236101
https://doi.org/10.1016/S0001-4575(00)00019-1
https://doi.org/10.1145/3551385
https://www.ntsb.gov/safety/data/Pages/GeneralAviationDashboard.aspx#:~:text=Data%20Spreadsheet%20General%20Aviation%20Accidents,%20Findings,%20and%20Safety%20Recommendations:%202012-2021
https://www.ntsb.gov/safety/data/Pages/GeneralAviationDashboard.aspx#:~:text=Data%20Spreadsheet%20General%20Aviation%20Accidents,%20Findings,%20and%20Safety%20Recommendations:%202012-2021
https://www.ntsb.gov/safety/data/Pages/GeneralAviationDashboard.aspx#:~:text=Data%20Spreadsheet%20General%20Aviation%20Accidents,%20Findings,%20and%20Safety%20Recommendations:%202012-2021
https://doi.org/10.1109/AICAS54282.2022.9869975
https://doi.org/10.1109/AICAS54282.2022.9869975
https://proceedings.neurips.cc/paper_files/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf
https://doi.org/10.1126/scirobotics.adi0591
https://doi.org/10.1126/scirobotics.adi0591
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scirobotics.adi0591


42 Sharifi et al.

Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, Cham, 289–303.
[67] Marco Peixeiro. 2022. Time Series Forecasting in Python. Simon and Schuster, New York City, NY, USA.
[68] predictMode 2024. MXNet Predict Mode. Retrieved September 18, 2024 from https://mxnet.apache.org/versions/1.6/

api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
[69] Pyt-InferMode 2024. PyTorch Inference Mode. Retrieved September 17, 2024 from https://pytorch.org/docs/stable/

generated/torch.autograd.grad_mode.inference_mode.html
[70] Quazi Marufur Rahman, Peter Corke, and Feras Dayoub. 2021. Run-Time Monitoring of Machine Learning for Robotic

Perception: A Survey of Emerging Trends. IEEE Access 9 (2021), 20067–20075. https://doi.org/10.1109/ACCESS.2021.
3055015

[71] Elizabeth M Renieris, David Kiron, and Steven Mills. 2023. Building robust RAI programs as third-party AI tools
proliferate. MIT Sloan Management Review (2023).

[72] 2018. ISO/IEC/IEEE International Standard - Systems and software engineering – Life cycle processes – Requirements
engineering. ISO/IEC/IEEE 29148:2018(E) (2018), 1–104. https://doi.org/10.1109/IEEESTD.2018.8559686

[73] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and Paolo Tonella. 2020.
TestingMachine Learning based Systems: A Systematic Mapping. Empirical Software Engineering 25 (2020), 5193–5254.

[74] Wolfgang Roth, Günther Schindler, Bernhard Klein, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz
Pernkopf, and Zoubin Ghahramani. 2024. Resource-Efficient Neural Networks for Embedded Systems. Journal of
Machine Learning Research 25, 50 (2024), 1–51. http://jmlr.org/papers/v25/18-566.html

[75] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020), 1181–1191. https://doi.org/10.
1016/j.ijforecast.2019.07.001

[76] S.M. Sanchez. 2005. Work smarter, not harder: guidelines for designing simulation experiments. In Proceedings of the
Winter Simulation Conference, 2005. 14 pp.–. https://doi.org/10.1109/WSC.2005.1574241

[77] Sepehr Sharifi, Donghwan Shin, Lionel C. Briand, and Nathan Aschbacher. 2023. Identifying the Hazard Boundary
of ML-Enabled Autonomous Systems Using Cooperative Coevolutionary Search. IEEE Transactions on Software
Engineering 49, 12 (2023), 5120–5138. https://doi.org/10.1109/TSE.2023.3327575

[78] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[79] Dag I. K. Sjøberg and Gunnar Rye Bergersen. 2023. Construct Validity in Software Engineering. IEEE Transactions on
Software Engineering 49, 3 (2023), 1374–1396. https://doi.org/10.1109/TSE.2022.3176725

[80] Mark A. Skoog, Loyd R. Hook, and Wes Ryan. 2020. Leveraging ASTM Industry Standard F3269-17 for Providing Safe
Operations of a Highly Autonomous Aircraft. In 2020 IEEE Aerospace Conference. Institute of Electrical and Electronics
Engineers (IEEE), Big Sky, Montana, USA, 1–7. https://doi.org/10.1109/AERO47225.2020.9172434

[81] Mohsen Soori, Behrooz Arezoo, and Roza Dastres. 2023. Artificial intelligence, machine learning and deep learning in
advanced robotics, a review. Cognitive Robotics 3 (2023), 54–70. https://doi.org/10.1016/j.cogr.2023.04.001

[82] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. The journal of machine learning research 15, 1 (2014),
1929–1958.

[83] Andrea Stocco, Paulo J. Nunes, Marcelo D’Amorim, and Paolo Tonella. 2023. ThirdEye: Attention Maps for Safe
Autonomous Driving Systems. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering (Rochester, MI, USA) (ASE ’22). Association for Computing Machinery, New York, NY, USA, Article 102,
12 pages. https://doi.org/10.1145/3551349.3556968

[84] Andrea Stocco and Paolo Tonella. 2022. Confidence-driven Weighted Retraining for Predicting Safety-critical
Failures in Autonomous Driving Systems. Journal of Software: Evolution and Process 34, 10 (2022), e2386. https:
//doi.org/10.1002/smr.2386 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2386

[85] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Misbehaviour Prediction for Autonomous
Driving Systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 359–371. https://doi.org/10.1145/
3377811.3380353

[86] Leonard J. Tashman. 2000. Out-of-sample Tests of Forecasting Accuracy: An Analysis and Review. International
Journal of Forecasting 16, 4 (2000), 437–450. https://doi.org/10.1016/S0169-2070(00)00065-0 The M3- Competition.

[87] The Boeing Company 2022. Statistical Summary of Commercial Jet Airplane Accidents: Worldwide Operations |
1959 – 2022. The Boeing Company. Retrieved October 01, 2024 from https://www.faa.gov/sites/faa.gov/files/2023-
10/statsum_summary_2022.pdf#:~:text=In%20this%2054th%20edition%20of%20the%20Statistical%20Summary%
20of%20Commercial

[88] Udacity 2022. Udacity’s Self-Driving Car Simulator. Udacity. Retrieved September 24, 2024 from https://github.com/
udacity/self-driving-car-sim

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://mxnet.apache.org/versions/1.6/api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
https://mxnet.apache.org/versions/1.6/api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
https://pytorch.org/docs/stable/generated/torch.autograd.grad_mode.inference_mode.html
https://pytorch.org/docs/stable/generated/torch.autograd.grad_mode.inference_mode.html
https://doi.org/10.1109/ACCESS.2021.3055015
https://doi.org/10.1109/ACCESS.2021.3055015
https://doi.org/10.1109/IEEESTD.2018.8559686
http://jmlr.org/papers/v25/18-566.html
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1109/WSC.2005.1574241
https://doi.org/10.1109/TSE.2023.3327575
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TSE.2022.3176725
https://doi.org/10.1109/AERO47225.2020.9172434
https://doi.org/10.1016/j.cogr.2023.04.001
https://doi.org/10.1145/3551349.3556968
https://doi.org/10.1002/smr.2386
https://doi.org/10.1002/smr.2386
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2386
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1016/S0169-2070(00)00065-0
https://www.faa.gov/sites/faa.gov/files/2023-10/statsum_summary_2022.pdf#:~:text=In%20this%2054th%20edition%20of%20the%20Statistical%20Summary%20of%20Commercial
https://www.faa.gov/sites/faa.gov/files/2023-10/statsum_summary_2022.pdf#:~:text=In%20this%2054th%20edition%20of%20the%20Statistical%20Summary%20of%20Commercial
https://www.faa.gov/sites/faa.gov/files/2023-10/statsum_summary_2022.pdf#:~:text=In%20this%2054th%20edition%20of%20the%20Statistical%20Summary%20of%20Commercial
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim


System Safety Monitoring of Learned Components Using Temporal Metric Forecasting 43

[89] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Effect
Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https:
//doi.org/10.3102/10769986025002101 arXiv:https://doi.org/10.3102/10769986025002101

[90] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector: Input Validation for Deep Learning
Applications by Crossing-layer Dissection. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 727–738.
https://doi.org/10.1145/3377811.3380379

[91] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. 2018. A Multi-Horizon Quantile
Recurrent Forecaster. arXiv:1711.11053 [stat.ML]

[92] Hyrum K. Wright, Miryung Kim, and Dewayne E. Perry. 2010. Validity Concerns in Software Engineering Research. In
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research (Santa Fe, New Mexico, USA) (FoSER
’10). Association for Computing Machinery, New York, NY, USA, 411–414. https://doi.org/10.1145/1882362.1882446

[93] X-Plane Core Team. 2024. X-Plane 11 Flight Simulator. Laminar Research, Columbia, South Carolina. https://www.x-
plane.com/product/desktop/

[94] Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian Elbaum, Yun Lin, and Jin Song Dong.
2021. Self-Checking Deep Neural Networks in Deployment. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, New York, NY, US, 372–384. https://doi.org/10.1109/ICSE43902.2021.00044

[95] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Testing: Survey, Landscapes and Horizons.
IEEE Transactions on Software Engineering 48, 1 (2022), 1–36. https://doi.org/10.1109/TSE.2019.2962027

[96] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based
Metamorphic Testing and Input Validation Framework for Autonomous Driving Systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE 2018). ACM, New
York, NY, USA, 132–142. https://doi.org/10.1145/3238147.3238187

[97] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based
Metamorphic Testing and Input Validation Framework for Autonomous Driving Systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE ’18). Association
for Computing Machinery, New York, NY, USA, 132–142. https://doi.org/10.1145/3238147.3238187

[98] Qianqian Zhang, Haifeng Wang, Hongya Lu, Daehan Won, and Sang Won Yoon. 2018. Medical image synthesis with
generative adversarial networks for tissue recognition. In 2018 IEEE International Conference on Healthcare Informatics
(ICHI). IEEE, IEEE, New York, NY, US, 199–207.

[99] Juan Zhao, QiPing Feng, Patrick Wu, Roxana A. Lupu, Russell A. Wilke, Quinn S. Wells, Joshua C. Denny, and Wei-Qi
Wei. 2019. Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular
Event Prediction. Scientific Reports 9, 1 (2019), 717. https://doi.org/10.1038/s41598-018-36745-x

[100] Xin Zhou, Yuqin Jin, He Zhang, Shanshan Li, and Xin Huang. 2016. A Map of Threats to Validity of Systematic
Literature Reviews in Software Engineering. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). IEEE,
New York, NY, USA, 153–160. https://doi.org/10.1109/APSEC.2016.031

[101] Amirhossein Zolfagharian, Manel Abdellatif, and Lionel C. Briand. 2023. SMARLA: A Safety Monitoring Approach
for Deep Reinforcement Learning Agents. arXiv:2308.02594

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
https://arxiv.org/abs/https://doi.org/10.3102/10769986025002101
https://doi.org/10.1145/3377811.3380379
https://arxiv.org/abs/1711.11053
https://doi.org/10.1145/1882362.1882446
https://www.x-plane.com/product/desktop/
https://www.x-plane.com/product/desktop/
https://doi.org/10.1109/ICSE43902.2021.00044
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1038/s41598-018-36745-x
https://doi.org/10.1109/APSEC.2016.031
https://arxiv.org/abs/2308.02594

	Abstract
	1 Introduction
	2 Background
	2.1 Time-series Forecasting
	2.2 DL-based Forecasting Architectures

	3 Problem and Challenges
	3.1 Problem Definition
	3.2 Challenges

	4 Related Work
	4.1 Black-box Methods
	4.2 White-box Methods
	4.3 Limitations of Existing Methods

	5 Temporal Forecasting of Safety Metrics
	6 Empirical Evaluation
	6.1 Evaluation Subjects
	6.2 Models Under Evaluation
	6.3 RQ1: Safety Metric Forecast Accuracy
	6.4 RQ2: Safety Violation Prediction Accuracy
	6.5 RQ3: Prediction Accuracy Sensitivity Analysis
	6.6 RQ4: Latency and Memory Overhead
	6.7 Discussion
	6.8 Threats to Validity
	6.9 Data Availability

	7 Conclusion and Future Work
	Acknowledgments
	References

