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Abstract—Simulation-based testing is a cornerstone of Au-
tonomous Driving System (ADS) development, offering safe and
scalable evaluation across diverse driving scenarios. However,
discrepancies between simulated and real-world behavior, known
as the reality gap, challenge the transferability of test results
to deployed systems. In this paper, we present a comprehensive
empirical study comparing four representative testing modalities:
Software-in-the-Loop (SiL), Vehicle-in-the-Loop (ViL), Mixed-
Reality (MR), and full real-world testing. Using a small-scale
physical vehicle equipped with real sensors (camera and LiDAR)
and its digital twin, we implement each setup and evaluate
two ADS architectures (modular and end-to-end) across diverse
indoor driving scenarios involving real obstacles, road topologies,
and indoor environments. We systematically assess the impact of
each testing modality along three dimensions of the reality gap:
actuation, perception, and behavioral fidelity. Our results show
that while SiLL and ViL setups simplify critical aspects of real-
world dynamics and sensing, MR testing improves perceptual
realism without compromising safety or control. Importantly,
we identify the conditions under which failures do not transfer
across testing modalities and isolate the underlying dimensions
of the gap responsible for these discrepancies. Our findings offer
actionable insights into the respective strengths and limitations
of each modality and outline a path toward more robust and
transferable validation of autonomous driving systems.

Index Terms—autonomous driving; reality gap; virtual testing;
real-world testing; vehicle-in-the-loop; mixed-reality.

I. INTRODUCTION

To ensure the safety and reliability of autonomous driving
systems (ADS) before deployment in public environments, rig-
orous system-level testing is indispensable [1]-[3]]. A common
industrial practice for ADS validation follows a two-phase
testing pipeline. First, ADS components-such as perception
and planning modules-are trained using real-world driving
data and evaluated within virtual environments via simulation-
based testing, also known as simulation-in-the-loop (SiL).
Subsequently, the ADS undergoes real-world testing on real
vehicles on closed tracks up to public roads [4]—[7]. Real-
world testing, while more faithful, is costly, time-consuming,
and constrained in scope and safety. Despite their scalability,
simulations cannot fully replicate real-world physical phenom-
ena, such as sensor noise, actuator delays, and environmental
complexity. The resulting mismatch is known as the reality
gap [1]] and hinders the transferability of findings to real-world
ADS, undermining their trustworthiness [§].

Mirena Flores Valdez
Technical University of Munich
Munich, Germany
mirena.flores@tum.de

Andrea Stocco
Technical University of Munich, fortiss
Munich, Germany
andrea.stocco@tum.de

Various strategies have been proposed to mitigate the reality
gap. Some aim to increase simulation fidelity through high-
precision modeling (digital twins [9]-[11]]), other address spe-
cific gap dimensions, such as the perception gap, by translating
simulated sensor outputs into more realistic versions using
generative models [8], [[12]-[15]. However, these methods are
limited to model-level testing [[16f, [[17] and do not capture
the system-level interactions between perception, planning,
and control modules that govern vehicle motion. As a result,
they are susceptible to actuation gaps and often miss critical
system-level failures [14], [16]], [[18]]. Other strategies involve
vehicle-in-the-loop (ViL) and mixed reality (MR) testing [19],
by integrating physical components such as ECUs, small-
scale robots, or full vehicles-into simulation loops. While Vil
provides closed-loop evaluation, it remains partially virtual-
ized and fails to capture real-world imperfections, such as
sensor noise and lighting variability (perception gap) [20].
MR partially mitigates this by injecting virtual elements (e.g.,
obstacles) into real sensor data, enriching scenario realism.
Prior system-level studies using small-scale robots investi-
gating failure transferability [8[, [21]-[25] have primarily
documented the existence of the reality gap, without isolating
their root causes or comparing how different test modalities
influence gap reduction.

To this aim, in this paper, we conduct an empirical study
of the reality gap in autonomous driving by comparing four
representative testing modalities: SiL, ViL, MR, and full
real-world execution (RW). Our goal is to characterize the
dimensions of the reality gap-specifically along actuation,
perception, and behavioral fidelity-and to assess the degree
to which each testing setup retains ADS behavior relative
to real-world ground truth behavior. While prior work has
evaluated or mitigated specific aspects of the reality gap, a
broader evaluation spanning multiple testing modalities and
ADS architectures remains unaddressed.

To investigate the impact of different testing modalities,
we implemented a modular ROS-based evaluation framework
that supports direct comparisons across synthetic, hybrid, and
physical testing conditions. Our setup integrates both modular
and end-to-end ADS architectures on a small-scale platform
equipped with real sensors (camera and LiDAR) and its digital
twin. We conduct hundreds of tests across matched driving
scenarios with shared road layouts, obstacle placements, and
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Fig. 1: System-level testing modalities for ADS.

environmental conditions, allowing direct attribution of per-
formance differences to the testing modality.

Our findings reveal that: (i) SiL underestimates real-world
variability due to idealized dynamics; (ii) Vil improves ac-
tuation realism but retains perception limitations; (iii) MR
offers the best perceptual fidelity by blending virtual elements
into real sensor data. By isolating the effects of actuation,
perception, and behavior on the reality gap, we find that crit-
ical failures often manifest differently across configurations,
with the perception gap playing a greater role in behavioral
divergence than actuation discrepancies. This underscores the
importance of testing methods that retain real-world sensor
complexity. Our results reveal the limitations of conventional
simulation and point to MR as a practical middle ground
between fidelity and scalability.

Our paper makes the following contributions:

Evaluation Framework. We provide a ROS framework for
comparing SiL, ViL, MR, and RW testing for E2E and
modular ADS, which is available [26].

Empirical Study of the Reality Gap. We present a system-
atic analysis of the reality gap in ADS testing across be-
havior, actuation, and perception fidelity, isolating which
failures transfer across test modalities. We show that
MR testing uniquely replicates real-world system failures,
outperforming SilL and ViL across all metrics.

II. BACKGROUND

A. Autonomous Driving Systems

Architecturally, ADS can be divided into two categories:
end-to-end (E2E) systems and modular systems. E2E systems
rely on deep neural networks (DNNs) that directly map camera
inputs to driving commands such as steering, throttle, and
braking. Once trained, models like NVIDIA’s Dave-2 [27] or
InterFuser [28] infer vehicle control actions from raw sensor
data without intermediate representations. In contrast, modular
ADS architectures such as Pylot [29], Transfuser [30], and
Autoware [31] decompose the driving task into distinct com-
ponents such as perception, planning, and control [32]. The
perception module processes raw sensor data (e.g., LiDAR)
to detect relevant objects and position them in the perceived
environment map. The planning module uses this map to select
a safe and feasible route, which the control module executes
through low-level actuation commands. As both architectures
are actively used and researched [32], [33]], we include both in
our evaluation to ensure broader applicability of our findings.

B. Reality Gap Dimensions in ADS Testing

depicts the various system-level testing modalities
for ADS. Real-world (RW) testing, conducted on closed-loop

tracks or public roads, remains the gold standard for final
validation. It exposes the ADS to real-life conditions [4]], [6],
but is expensive, logistically complex, and time-consuming.

To support earlier development stages, simulation-based
testing (SiL) offers a scalable and safe environment for
experimenting across diverse scenarios. However, simulation
introduces a reality gap, a mismatch between simulated and
real-world behavior, largely due to limitations in replicating
physical sensing and actuation with high ﬁdelity We refer to
the former as the perception gap, i.e., the inability of simulated
sensors to accurately replicate the real-world sensors. The
latter, the actuation gap, reflects discrepancies between the
vehicle dynamics modeled in simulation and those exhibited
by physical vehicles. Together, these issues contribute to the
behavior gap, where the actions of the ADS in simulation
diverge from its behavior in real-world scenarios.

To reduce this gap, vehicle-in-the-loop (ViL) methods em-
bed a real vehicle into a simulated environment, enabling
realistic actuation and closed-loop evaluation. While ViL helps
address the actuation gap, it typically relies on synthetic
sensor inputs and thus remains vulnerable to perception in-
accuracies [12]], [13]]. Mixed reality (MR) testing extends
ViL by blending simulated elements directly into real-world
sensor streams (e.g., camera images, LiDAR point clouds).
This approach preserves the physical characteristics of sensor
signals and vehicle dynamics, aiming to jointly mitigate both
the perception and actuation gaps.

III. REALITY GAP EVALUATION FRAMEWORK FOR ADS

To date, a systematic assessment of the various dimensions
of the reality gap, or the relative importance of the mitigation
strategies, is missing, possibly due to the lack of a standardized
evaluation framework. To address this, in this section, we
introduce a framework designed to evaluate the transferability
of system-level tests across different execution modalities,
including SiL, ViL, MR, and real-world (RW) closed-loop
testing. Our evaluation targets both E2E and modular ADS
configurations for lane-keeping and obstacle-avoidance tasks.

A. Real-World Setup

1) Small-Scale Vehicle: For our RW experiments, we use
a small-scale vehicle based on the Donkey Car'™ open-source
framework [35]], a widely adopted testbed for ADS research
in both simulation and field settings [36[]-[38]]. The vehicle is
equipped with a front-facing SMP Sony IMX219 RGB camera
and a Time-of-Flight (ToF) sensor providing LiDAR-based
depth at 256 x 192 resolution and up to 5 m range.

'While the term reality gap is also used in the literature to refer to
the realism or real-world likelihood of test scenarios in scenario-based
testing [34], this aspect is beyond the scope of our work.
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Fig. 2: Data flow and processing steps for ViL and MR.

2) Testing Tracks: We conduct experiments in two indoor
environments. Room Nominal is a dedicated 6 x 6 m robotics
lab with minimal background objects, providing a controlled
setting. Its 4 x4 m closed-loop track includes five right and two
left curves (10°-90°), marked by 10 cm white lane margins
and a central dotted line. In contrast, Room Generalization is
a larger, triangular multi-purpose room (20 x 10 x 10 m) with
visually complex backgrounds. Its 6 x 5 m stadium-shaped
track has two semi-circular curves connected by straights,
bounded by narrower 3 cm lane markings and no central line.
The floor color also differs, adding perceptual variability.

3) Tracking system: The tracking module determines the
position of the vehicle and obstacles within the environment
using a high-precision motion capture system. It utilizes four
Vicon Bonita 10 cameras placed at the corners of each track
with an extra margin of 1 m (both for Room Nominal and
Generalization), which emit infrared light and detect reflec-
tions from retro-reflective markers attached to the vehicle and
obstacles. Each object is uniquely identified based on the
spatial configuration of its markers at 100 Hz. The Vicon
tracker software manages the cameras, computes object poses,
and broadcasts them as UDP messages. These messages are
received by our framework, which integrates the data into the
rest of the system.

B. Software setup

1) Simulator: The Donkey Car framework provides a high-
fidelity Unity3D simulator that models the physical vehicle
using the Nvidia PhysX engine. We extended the simulator by
developing a new Unity scene that procedurally generates track
layouts using Catmull-Rom splines [39]], based on real-world
lane margin data from Room Nominal and Generalization.
To replicate the physical environments, we applied high-
resolution (48 MP) floor images as textures and configured the
lane markings to match each sandbox. In addition, we modified
the simulator to support a virtual depth sensor that mimics
the behavior of the ToF system used in our real-world setup.
The virtual sensor produces depth data at the same resolution
and provides intrinsic matrix parameters consistent with those
retrieved by ToF system.

2) Testing Framework: To support SilL, ViL, MR, and
RW experimentation in a consistent setup, we integrate the
simulator and physical platform into a ROS-based software
framework [40]. ROS is chosen for its modular, platform-
agnostic architecture, which allows the framework to be
adapted across different hardware platforms, ADS designs, and

simulation tools without major structural changes. Core func-
tionalities are implemented in dedicated ROS nodes. These
nodes communicate via standard topics, enabling modular
configuration and straightforward component replacement.

In the SilL modality, both the sensor stream and vehicle
dynamics are handled entirely in simulation. The simulator
provides perception data to the ADS, and control outputs are
executed directly within the game engine, with no involvement
of physical hardware or tracking. The framework simply
interfaces the simulator with the ADS, routing image data in
and receiving control commands back, and receiving telemetry
data for modular positioning and experiments monitoring.

In the RW modality, perception data originates exclusively
from the physical sensors onboard the vehicle. No simulated
data is used. The tracking system is used only to monitor the
vehicle’s position and does not interact with the simulator. The
framework sends the real sensor data to the ADS and routes
the predicted driving commands to the vehicle.

For the ViL and MR modalities, shows how the
framework manages data flow between the simulator, the phys-
ical vehicle, and the ADS. Simulated data is first generated
by the simulator. In the ViL setting, the full simulated sensor
stream (e.g., camera or LiDAR) is used as input @. In the
MR setting, only selected features or objects are rendered and
extracted @(b), then merged with real sensor data from the
physical vehicle @ to form mixed-reality inputs. The resulting
sensor data-fully simulated in ViL or blended in MR-is pro-
cessed by the ADS @, which outputs control commands for
the physical vehicle @. The vehicle’s motion is tracked in real
time @, and its pose is fed back to the simulator ® to maintain
alignment between virtual and real environments. This forms a
closed-loop system in which the ADS continuously perceives
and acts on synchronized sensor data and vehicle dynamics.

In the rest of this section, we describe the main functional-
ities necessary to enable these testing procedures.

Control Modules. For all testing levels, when using a modular
ADS, the waypoint and speed commands produced by the
ADS must be converted into actuation primitives. This is
handled by two interfaces. The Waypoint Follower computes
steering and throttle commands to reach target (x,y) way-
points using a pure pursuit algorithm. A brake command is
issued when the target is reached. It outputs commands in
the format [throttle, steering, brake]. The PID
Speed Controller receives the target, current speed, and the
control commands. It modifies the throttle command compo-
nent to maintain the target speed.

Simulator Interface. This component can retrieve rendered
sensor outputs such as RGB and depth images. When testing in
SiL, it accepts control commands (throttle, steering, brake) and
optionally a throttle multiplier to drive the simulated vehicle.
Finally, the interface publishes feedback (pose, velocity, ob-
stacle positions) to be used by ADSs that require localization
or monitoring behavior.

Tracking Interface. This interface continuously tracks the
vehicle and any physical obstacles using the external motion
capture system. It publishes the vehicle pose, obstacle array,
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Fig. 3: Perception inputs across testing modalities (SiL-ViL,

MR, RW) for an obstacle positioned 120 cm in front of the
vehicle, using the camera (top) and LiDAR (bottom) sensors.

and vehicle speed estimated from pose deltas. This data is used
by the modular ADS for localization, by the control modules
for actuation, for synchronizing simulation, for evaluating
control accuracy, and to provide ground-truth information.
Sensors Interfaces. These components stream raw sensor data
from the physical vehicle. The camera interface provides RGB
frames, while the LiDAR interface streams single-channel
depth maps and publishes the intrinsic camera matrix for
depth-to-3D conversion used in the perception pipeline.
LiDAR Pointcloud Generator. This node converts depth
maps from the ToF sensor into 3D point clouds using a
standard pinhole camera projection model. Each pixel in the
depth image is reprojected into 3D space according to:
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where (fy, f,) are the focal lengths and (¢, ¢,) the principal
point from the sensor’s intrinsic matrix, which is published
every frame by the sensor interface. Depth values are scaled
and filtered using a minimum range threshold to suppress
noise, and valid points are compiled into a point cloud.
Transformations are published from the vehicle pose, whether
from simulation or a real platform, to the LiDAR center frame,
which is aligned with the actual center of the ToF sensor. This
ensures spatial consistency of the projected point cloud within
the vehicle’s coordinate system.

3) Vehicle-in-the-Loop: To enable ViL, we extended the
simulator interface to accept and apply the real vehicle’s pose
in simulation. This pose, received from the Tracking Interface,
is used to update the state of the simulated vehicle, ensuring
spatial alignment between the virtual and physical worlds.
In addition to the vehicle’s pose, the simulator can receive
the positions of tracked physical obstacles, each identified by
a label and rendered in simulation using corresponding 3D
models. This mirroring of real-world elements within the vir-
tual environment is especially useful for maintaining consistent
scenarios with RW for controlled experimental comparisons.

4) Mixed-Reality: To enable MR, we extended the simula-
tor interface to produce sensor outputs that render only certain
components of the scene, in line with the approach by Shen
et al. [41]]. In this way, we can inject these rendered objects
into the real sensor input. As for ViL, the vehicle is mapped to

the real-world pose, and in this case, this adds the benefit of
having the same sensor position in simulation and real world,
so that merging data does not require spatial transforms.
Sensor Mixing Nodes. These nodes produce mixed-reality
inputs by blending simulated data into real sensor streams.
For RGB, the node subscribes to both real camera feeds and
simulator-generated RGBA images. Using the alpha channel
as a per-pixel transparency mask, simulated RGB content
is composited over the real feed via alpha blending. This
yields a coherent visual stream that embeds virtual elements
while preserving real-world context. For depth, the node fuses
grayscale depth images from real LiDAR and the simulator.
At each pixel, the closer of the two depth values is selected,
assuming virtual objects may occlude real ones.

Both pipelines run at 50 Hz and publish image messages
that mimic native sensor output but include simulated features.
illustrates an example of sensor-mixing on SiL/ViL,
MR, and RW outputs, demonstrating spatial consistency across
sensor types.

5) Inference Location: In both ViL and MR, sensor data
are generated directly on the workstation; to minimize latency,
we run E2E inference and the modular pipeline locally. For
fairness, inference in SiLL and RW is also executed on the
workstation, ensuring a uniform environment and comparable
latency across domains.

IV. EMPIRICAL EVALUATION
A. Research Questions

RQ; (behavior gap): How large is the behavior gap between
SiL, VIiL, MR, and real-world system testing?

RQ; (actuation gap): How large is the actuation gap between
SiL, ViL, and RW system testing?

RQ;3 (input alignment and perception gap): Are MR inputs
aligned with RW? How much do they reduce the perception
gap between ViL and RW system testing?

In RQq, we aim to quantify the overall behavioral gap
by comparing two representative ADS architectures across
simulated (SiL), hybrid (ViL and MR), and RW modalities.

RQ; focuses on the actuation gap by comparing real and
simulated vehicle responses to identical control inputs, focus-
ing on the expected gap reduction thanks to the Vil modality.

In RQs3, we investigate the perception gap by evaluating
perceptual fidelity to the real world of the MR modality,
focusing on the alignment and realism between original and
sensor-mixed data and, consequently, the expected gap reduc-
tion thanks to the MR modality.

B. Testing Scenarios

We define three evaluation scenarios across the two physical
environments described in A visual represen-
tation is shown in In Room Nominal, we create
two testing scenarios. As creating multiple real-world tracks
manually is impractical, we design a single layout for N1 and
N2 with turns reaching the vehicle’s steering limit, verified
via the waypoint follower, and additional curves of varying
curvature. In Scenario N1, two static obstacles are placed on
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Fig. 4: Testing scenarios used to answer RQ);.

straight segments shortly after turns, providing clear visibility
and sufficient reaction time. This low complexity setup serves
as a baseline for evaluating basic lane keeping and obstacle
avoidance. Scenario N2 increases difficulty by placing one
obstacle directly on a turn and another immediately after it,
within the vehicle’s expected path. This configuration reduces
visibility windows and imposes tighter spatial constraints,
challenging both perception and planning.

In Room Generalization, for generalization (G), we reuse a
printed track featuring turns and straight sections absent from
the nominal layout. This new location introduces a perception
shift by exposing the camera to unseen background regions.
One obstacle is placed on a straight segment (fully visible)
and another on a curve (partially occluded). This setup is
designed to test the generalization of reality gap mitigation
techniques (ViL and MR) on an unseen environment, visual
characteristics, and object placements.

C. Automated Driving Systems

1) End-to-End: The end-to-end ADS is a Dave-2 [27]] im-
itation learner trained on real-world camera data to follow the
center lane and shift laterally to avoid obstacles with a 0.8m
buffer. We recorded 50 laps in Room Nominal at 50 FPS with
varying obstacle placements, applied horizontal flipping, and
obtained nearly 180k samples. Some laps included recovery
from off-track behavior. The training was performed using
existing guidelines [27]], with a batch size of 64, and a learning
rate of 0.0001 for 500 epochs, and the Adam [42] optimizer
to minimize the MSE loss, with early stopping (patience 30,
A MSE < 0.05). The final model achieved 0.02 MSE.

2) Modular: The modular ADS features a LiDAR-based
perception module, a lattice planner, and a control stack with
waypoint following and PID speed regulation. This archi-
tecture reflects the modular principles adopted in real-world
stacks such as Apollo [43]] and Autoware [31]], albeit simplified
for a small-scale testbed. In particular, the perception module
adopts a LiDAR DBSCAN clustering approach for obstacle
detection [44], a technique widely used in autonomous driving
systems [45]-[47]. The planning module uses a Frénet-frame
lattice planner, in line with established motion planning meth-
ods employed in research and industrial pipelines [48]-[50].

D. Experimental Setup Validation

For ViL and MR, the real vehicle’s motion must be
continuously mapped into the simulation, requiring real-time

execution to keep the simulated state and generated sensor data
synchronized with the physical vehicle. Across all domains,
the E2E or modular pipeline must execute fast enough to
deliver control commands (simulated or real) without latency,
as delays could distort the observed behavior. To verify this,
we benchmarked the framework over 5000 samples, measuring
execution time for every component. All modalities (SiL, ViL,
MR, RW) ran in real time: the simulator achieved ~ 80 FPS
(= 12.5 ms per frame) on our workstation (AMD Ryzen 5, 16
GB RAM, NVIDIA RTX 2060). The tracking system has been
measured (at the simulator-level) to provide state updates at
~ 99.93 Hz (= 10.01 ms). Since the onboard camera and
LiDAR sensors operate at 20 FPS (50 ms per frame), we
configure the simulator to run its camera at 20 FPS and to
avoid unnecessary system load, we cap the global simulation
frame-rate at 60 FPS. The E2E ADS executed in ~ 15 ms on
average, and the modular ADAS in ~ 20 ms. Inference begins
as soon as a new sensor message arrives and can run in parallel
if needed, though both pipelines consistently completed before
the next frame. Control commands, measured at the vehicle-
level, were issued every ~ 50.5 ms, remaining stable across
all experiments.

To avoid packet loss, we use a dedicated TP-Link Archer C6
dual-band gigabit WLAN router (867 Mbit/s 5 GHz +
300 Mbit/s 2.4 GHz, 4 Gigabit LAN ports) configured as
a local-only network. Vehicle—workstation communication
uses TCP over the 5 GHz link (Intel-8265AC, 867 Mbit/s),
while tracking—workstation communication is performed via
wired Gigabit Ethernet. JPEG-compressed camera images
(= 800 kB) and compact control commands (< 30 bytes)
were observed to fit within each 20 Hz cycle, allowing
~ 50 image transmissions and thousands of control messages
without observed packet loss.

We also validated the accuracy of the tracking system using
a calibrated reference object with five retro-reflective markers
mounted in a fixed, non-coplanar geometry. The employed
Vicon system performs tracking by matching such known
geometries to objects in space, allowing it to estimate a
unique 6-DoF pose (position and three-axis orientation) for
each tracked object. To verify accuracy, we measured the
distance between two markers of the calibration object with a
known spacing of 240 mm, repeating the measurement five
times at 30s intervals in both Room Nominal and Room
Generalization. The mean measured distance was 240 mm,
with a mean absolute error of 0.40 mm and a standard devia-
tion of 0.0253 mm, confirming sub-millimeter position accu-
racy. Because orientation is derived from the same geometry
matching process, a correct match of the marker configuration
also guarantees accurate three-axis orientation. These results
demonstrate accurate vehicle localization and synchronization
for ViL and MR experiments.

E. Procedure and Metrics

1) RQ; (behaviour gap): To address RQq, we evaluate both
ADS architectures (E2E and modular) across four domain
configurations: the real world (ground truth), SiL. (baseline),



ViL, and MR. Experiments are conducted for scenarios N1,
N2 (for nominal), and G (for generalization).

In the nominal setting, for each ADS, we run the RW testing
modality on scenarios N1 and N2 at least five times and
continue until we obtain at least four successful executions.
Then, for the SiL, ViL, and MR testing modalities, we run the
same number of tests as in RW and quantified the differences
in trajectory fidelity, task completion, lane-keeping, and ob-
stacle avoidance. More in detail, we assess system behavior
using two categories of metrics. First, we measure trajectory
similarity using the Fréchet distance [S1]] between each run
and its real-world counterpart. The Fréchet distance accounts
for both spatial proximity and the order of points along
the trajectory, making it well-suited for autonomous driving
where both path shape and sequence matter. We compute it
between each SiL, ViL, or MR run and the corresponding
RW run to quantify trajectory deviation. This metric has been
widely adopted in prior work [[13[], [51]] to assess behavioral
similarity in autonomous systems. Second, we evaluate task
performance through several sub-metrics. The failure rate is
defined as the proportion of runs resulting in either a collision
with an obstacle or a lane departure. We also report the
absolute number of obstacle crashes and out-of-road events.
To characterize failures, we compute the completion rate as
the percentage of the track driven before a failure. For SiL,
ViL, and MR, the completion rate is reported relative to the
RW execution. This setting resulted in 92 executions.

In Scenario G, we only evaluate RW, SiL., and MR modal-
ities, omitting ViL, as the room’s features are expected to
mainly affect perception. Each configuration is executed three
times, and the same set of metrics, trajectory similarity, failure
rate, completion rate, and driving quality, are used to assess
behavioral consistency across domains. This setting results in
18 executions.

Finally, for the modular ADS, which separates perception
and control, we conduct an ablation study. In this configura-
tion, we bypass the perception module and provide ground-
truth obstacle locations directly to the planner in both the
SiLL and RW modalities. This isolates the impact of actuation
by removing the perception gap, an analysis not possible for
the E2E system, where perception and control are coupled
together. By re-purposing the results of the RW and SiL
models in scenarios N1 and N2, this setting results in 16 new
executions (8 runs x 2 domains).

2) RQ; (actuation gap): To address RQ;, we quantify the
actuation gap by comparing the physical response of the real
vehicle to that of a simulated vehicle under identical control
inputs. We limit the evaluation to SiL, ViL, and RW, omitting
MR as this modality does not change actuation fidelity be-
yond what is already captured by ViL. Each experiment was
repeated five times to capture variability, and data were logged
at 100 Hz, yielding large frame-level sample sizes. Statistical
analysis is applied only to per-frame metrics, where sample
sizes support meaningful significance testing. We design five
test scenarios spanning both low-level actuation and high-level
control, described next. Forward Motion. Constant throttle

is applied with steering fixed at zero and braking disabled.
Throttle commands are taken directly from the RW-recorded
ROS messages with matched timestamps. Trials run for three
seconds using throttle values of 0.34, 0.365, and 0.39, which
represent the lowest throttle at which the vehicle starts moving,
to the highest throttle at which the vehicle can perform the
experiment whilst remaining in the tracking area. We compute
the total distance traveled, average speed, and trajectory, and
compare both speed and trajectory distributions. This setup
results in 15 executions (3 speed values x 5 repetitions).
Steering Motion. With the throttle fixed at 0.365 and brak-
ing disabled, selected based on the medium throttle value
identified in Forward Motion experiments. Steering commands
are issued across six values: {—1.0, —0.6,—0.3,0.3,0.6, 1.0},
representing the full steering range, from full left to full right.
As with throttle, steering inputs are replayed from recorded
ROS messages to ensure the same timing across domains. We
compare turning radius via circle fitting, raw trajectories, and
trajectory distributions. This setup results in 30 executions (6
steering values x 5 repetitions).

Braking Motion. Following forward motion, braking is trig-
gered 35 cm before a 2.0 m goal. Steering remains at zero,
and throttle inputs match those from the forward motion test.
Braking events are triggered based on each domain’s local pose
estimate, so that stopping occurs at the same physical location
in RW, SiL, and ViL. We measure braking distance, approach
speed, and deceleration. This setup results in 15 executions (3
throttle values x 5 repetitions).

PID Speed Control. This scenario evaluates closed-loop speed
regulation. The throttle is fixed at 1.0 while a PID controller
adjusts output via a throttle multiplier. We replay the exact
RW speed requests for each phase to maintain identical target
profiles across domains. The vehicle drives in a circular path
(steering at 0.6) across four 10-second speed phases: 0.4, 0.8,
0.6, and 0 m/s. We report comparisons of per-phase and overall
speed errors. Trajectory similarity is not computed due to the
fixed path. This setup results in 5 executions.

Waypoint Following. We test tracking performance on pre-
defined waypoint paths (throttle fixed at 0.365), ranging
from simple (single point) to complex (wide turns, sharp
turns, S-shapes). The same actuation module and waypoint-
following logic are used in all domains, running closed-loop
control on local pose estimates. All waypoint-following tests
were performed before adding lane markings in Nominal, as
perception is not involved in this experiment. We compute
Fréchet distances among trajectories. This setup results in 30
executions (6 paths x 5 repetitions).

3) RQj; (perception validity and gap): To evaluate percep-
tion input validity, we used two test scenarios. All experiments
are repeated five times from a fixed initial pose in each domain
to capture variability.

Obstacle Placement. Static obstacles are placed at 0.4-1.6
m distances, either centrally (single) or symmetrically (dual)
within the sensor FoV. For cameras, we compute IoU be-
tween manually annotated real and mixed bounding boxes (10
samples/modality). For LiDAR, we calculate the Euclidean



TABLE I: RQ;: Behavior gap results. Trajectory A reports the Fréchet distance between the trajectory in each domain and
the RW trajectory (lower is better). Completion%A is relative to RW, where negative/higher values indicate lower/higher track
completion than RW. FR = failure rate. Ablation obstacles: GT = ground truth, P = perception-detected.

Nominal Generalization (G) Ablation (N2)
E2E Modular E2E Modular Modular

RW SiL ViL MR RW SiL ViL MR RW SiL MR RW SiL MR RW SiL

Nl N2 NI N2 NI N2 NI N2 NI N2 NI N2 NIl N2 NIl N2 G G G G G G GTr P GT P
Trajectory A - - 053325043 355027030 - - 031137032149 0.19 084 - 373040 - 037015 - - 025137
Completion%A 100 100 0 -56 0 -57 0 0 100 62 0 +38 0 431 0 +13 37 +63 0 100 O 0 100 62 0 +38
# Offroad 0O 0 O 5 0 5 0 0 o 2 0 0 O 1 0 2 30 3 0 0 0 0o 2 0 0
# Crashes 0O 0 0 o 0 O 0 0 0o 2 0 0 O 1 0 2 o 0 0 0 o0 0 0o 2 0 0
FR 0/5 0/5 0/5 5/5 0/5 5/5 0/5 0/5 0/5 48 05 0/8 0/5 2/8 0/5 48 3/3 0/3 3/3 0/3 0/3 03 0/8 4/8 0/8 0/8

distance between cluster centroids. This experiment consists
of 40 executions (8 obstacle configurations x 5 repetitions)

Lane Placement. Using a real trajectory on Room Nominal,
lane overlays are rendered in mixed reality with partial trans-
parency. The vehicle runs in both directions with five lateral
behaviors (center, margins, halves). The data is collected five
times per configuration, to capture variability. An independent
human annotator marked five vertical anchor points per image;
Catmull-Rom splines are fitted, and alignment is evaluated via
Euclidean distance between 100 sampled points per spline.
This experiment consists of 50 vehicle runs (5 lane displace-
ments x 2 directions X 5 repetitions).

Concerning the perception gap, we compare sensor outputs
from ViL, MR, and RW runs using pixel-level and geometric
similarity metrics. We exclude SiL. from this analysis, as
it uses the same simulated perception as Vil but does not
include real-world vehicle and obstacle mapping. Our analysis
uses 100 synchronized samples collected during the obstacle
placement experiments, spanning 8 configuration variants for
both camera and LiDAR (800 images or point clouds/domain).

Camera. We apply twelve image similarity metrics, identified
from previous literature [13]], to assess realism and alignment:
correlation coefficient, histogram intersection, Local Binary
Pattern (LBP) histogram similarity, Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), nor-
malized mutual information (NMI), image fractal dimension
(IFD), Kullback-Leibler (KL) divergence, Mean Squared Er-
ror (MSE), perceptual distance derived from deep features
using VGGI16 [52f, texture similarity based on gray-level
co-occurrence matrix (GLCM) properties, and Wasserstein
distance (WD). These metrics collectively capture pixel-level,
structural, and perceptual fidelity. Improved scores in MR
relative to ViL would indicate perception gap reduction.
LiDAR. We compare 3D point clouds from the same matching
poses as for the camera, across ViL, MR, and RW domains
by computing the mean, maximum, and standard deviation of
Euclidean distances between corresponding points.

4) Summary: Our experiments comprise over 311 test exe-

cutions: 126 ADS runs evaluated with four behavioral metrics
in RQ; (92 for N1/N2, 18 for G, and 16 for ablation), 95

actuation tests across three domains with an average of three
metrics per domain (RQ,), and 90 perception runs assessed
with 12 camera and 3 LiDAR metrics (RQj3). In total, the study
covers more than 1.9 million ADS predictions and over 20
hours of RW execution. Including SiL, ViL, and MR domains,
the total experimental runtime exceeds 185 hours.

V. RESULTS
A. RQ; (behaviour gap)

shows the results for the behavior gap. For each
scenario and testing modality, the table reports the trajectory’s
Frechet distance to RW (TrajectoryA), the difference in com-
pletion rate compared to RW (Completion% A), the number
of out-of-road and crash episodes, and the failure rate (FR).
Reported results, with the exception of FR, are averaged across
the multiple repeated executions of each configuration.

The trajectory gap between Sil. and RW is especially
pronounced for the E2E system in scenario N2, with a Frechet
distance of 3.25m. In N1, the gap is smaller (0.53m). For the
modular system, the gap is more modest across both scenarios:
0.31m (N1) and 1.37m (N2). ViL has a mixed impact on
trajectory alignment. For E2E, the gap reduces slightly to
0.43m in N1 but worsens to 3.55m in N2. For modular, the
change is negligible-0.32m in N1 and 1.49m in N2. In contrast,
MR significantly improves trajectory alignment. For E2E, MR
reduces the gap to 0.27m in N1 and 0.30 in N2, achieving
over 90% reduction from SiL. For modular, MR reduces the
gap to 0.19m in N1 and 0.84m in N2, representing a 39%
improvement over SiL.

Task success reveals distinct patterns across scenarios. In
N1, both ADS architectures succeed in all runs across all
modalities. In contrast, in scenario N2, the E2E system fails all
SiL. and ViL runs, due to off-road departures during obstacle
avoidance. MR fully restores correct behavior, with no failures
and a perfect completion rate, closing the gap.

The Modular system also completes all N1 runs success-
fully. In N2, the RW configuration fails in 4 out of 8 runs,
two due to off-road departures and two due to obstacle colli-
sions. SiL, however, shows no failures, overestimating system
robustness. Vil partially reintroduces realistic failures (2/8),



MR RW

Fig. 5: Trajectory traces from the nominal experiment in
scenario N2 (RQ;) for E2E (top) and modular ADS (bottom).
Obstacles: red rectangles, failures: red dots.

SiL

while MR closely matches RW outcomes with 4/8 failures of
the same type and location (Figure 3).

For the E2E ADS, both SiLL and ViL. consistently fail
during obstacle avoidance, resulting in lane departures. The
plot makes clear that MR and RW produce highly similar
trajectories, with no failures. For the Modular ADS, MR,
and RW again show strong alignment, exhibiting obstacle
collisions at the same location, though lane departures differ
slightly in timing and position. In contrast, Vil fails at a
different obstacle and shows a lane departure in a distinct area,
highlighting its partial but inconsistent realism.

Concerning generalization, E2E fails in all three RW runs
(completion 0.37), while it succeeds in all SiLL runs. This
likely results from Sil’s static visuals, which obscure real-
world domain shifts. MR corrects this mismatch, producing
3/3 failures (matching RW) and reducing trajectory error from
3.73 m (SiL) to 0.40 m. The modular system performs robustly
in G across RW, SiL, and MR with 100% success, highlighting
its insensitivity to visual domain shift due to its LiDAR-based
perception, as observed for scenario N1.

Finally, we isolate the cause of failure in modular N2
by bypassing perception and feeding ground-truth obstacle
positions to the planner. With perception enabled (columns
P), the RW system fails in 4 out of 8 runs, while SiL. shows
none, overestimating robustness by masking perception errors.
With ground-truth inputs (columns GT), both RW and SiL
succeed in all runs, confirming perception as the failure source
and showing that SiLL hides these issues due to ideal inputs.
Notably, SiL’s trajectory error also drops from 1.37 m to
0.25 m, closely matching RW behavior, indicating that once
perception is removed, actuation in SiL aligns well with reality.

RQq: Simulation-in-the-loop (SiL) often fails to reflect
real-world (RW) outcomes, producing both false positives
and false negatives;, Mixed-Reality (MR) consistently aligns
best with RW behavior across scenarios and architectures,
reproducing real failures and improving trajectory fidelity.

B. RQ; (actuation gap)

[Table II| shows the actuation gap results across Sil., ViL,
and real-world domains. For throttle and braking, we report

TABLE II: RQ,: Actuation gap results.

Real SiLA ViLA
Throttle
Distance travelled 2.87 0.87 £ 0.23 -0.01 + 0.85
Average speed 0.61 -0.43 £ 0.01 -0.07 = 0.13
Trajectory diff. - 0.25 £0.12 0.001 + 0.00
Trajectory eff. size - -0.22 0.00
Steering L R L R L R
Radius 1.79 1.14  -0.81 -0.16 0.00 0.00
Radius (std) 0.07 -0.02 -0.07 +0.02 0 0
Trajectory diff. - 0.58 0.15 0.002  0.007
Trajectory eff. size - 0.50 -0.06 0.00 0.003
Braking
Braking dist. 0.18 -0.02 + 0.06 0.05 £ 0.02
Speed 0.43 -0.14 £ 0.04 -0.01 + 0.003
Acceleration (e-2) -0.006 0.82 + 0.06 0.06 £ 0.07
Speed eff. size - 0.514 0.054
PID control
Avg. Speed € 0.26 0.07 £ 0.24 0.04 + 0.23
T. Speed 0.4 € 0.38 0.01 + 0.004 -0.05 = 0.03
T. Speed 0.8 € 0.45 0.00 £ 0.19 -0.00 = 0.15
T. Speed 0.6 € 0.14 -0.04 £ 0.05 0.02 = 0.07
T. Speed 0.0 € 0.23 0.14 £ 0.25 0.06 = 0.26
Speed eff. size - -0.30 -0.17
Waypoint control Trajectories
Straight - 0.07 £ 0.04 0.008 + 0.003
Close - 0.08 + 0.03 0.008 + 0.001
Far - 0.11 £ 0.04 0.01 + 0.004
Sharp - 0.38 £ 0.02 0.01 + 0.005
Curve - 0.13 £ 0.05 0.01 + 0.004

the average across our three predefined throttle values, while
for steering, we aggregate profiles with positive steering angles
as right turns and negative angles as left turns. Across all tests,
we assessed the statistical significance of the differences across
modalities using the non-parametric Mann-Whitney U test [53]]
(with @ = 0.05) and the magnitude of the differences using
Cohen’s d effect size [54]. Statistical tests are presented by
effect size, with an underline representing significance.

Concerning throttle, SiLL overestimates the traveled distance
by 30.3% (0.87 m over 2.87 m) and underestimates speed
error by 70.5% (—0.43 m/s error over 0.61 m/s). ViL nearly
eliminates the distance error (—0.01 m) and reduces the speed
error to 11.5% (—0.07 m/s). The Fréchet distance improves
from 0.25 in SiL to 0.001 in ViL.

Concerning steering, SiLL underestimates the turning radius
by —0.81 m for left turns (45.3% of the real radius) and
—0.16 m for right turns, while ViL eliminates both errors
(0.00 m). The Fréchet distance drops from 0.58 (left) and
0.15 (right) in SiL to 0.002 and 0.007 in ViL. For the left
turn, statistical tests confirm a significant deviation in SiL
with a medium effect size (d = 0.50), whereas no significant
difference is found for ViL. For the right turn, the results
are not statistically significant. Together with the smaller SiL
error in right turns, this suggests asymmetric real-vehicle
steering behavior: the digital twin, likely calibrated on right
turns, replicates those dynamics accurately but fails to capture



the left-turn deviation, underscoring the impact of unmodeled
steering dynamics.

Concerning braking, SiL underestimates braking distance by
12.2% (—0.02 m over 0.18 m real) and introduces a deceler-
ation error of 0.0082 m/s>. ViL slightly overshoots braking
distance (+5.1 cm) but reduces deceleration error to 0.0006
m/s2. The speed profile similarity shows statistical significance
for both cases, with medium (d = 0.514) and negligible
(d = 0.054) effect sizes for SiL and ViL, respectively. The
smaller effect size in ViL confirms improved alignment.

Concerning PID speed control, SiL shows an average track-
ing error of 0.074 m/s (28% of the real 0.267 m/s), while
ViL reduces this to 0.040 m/s (15%). At individual control
points, Vil consistently improves accuracy—for example, at
0.4 m/s, SiL yields a +0.01 m/s error versus —0.05 m/s for
ViL. Statistical tests confirm significance, with small effect
sizes for SiL. (d = 0.30) and ViL (d = 0.17).

Concerning waypoint following, SiL shows its largest devi-
ation in sharp turns (0.385 m), with smaller deviations in close
(0.08 m), far (0.11 m), curve (0.13 m), and straight (0.07 m)
paths. ViL reduces deviations across all path types, down to
0.008 m on straights and 0.01 m on sharp turns, achieving
over 90% error reduction.

RQs: SiL exhibits significant actuation mismatches in throt-
tle, steering, and braking, with errors exceeding 30-70%,
while ViL drastically reduces these gaps, achieving over
90% improvement in trajectory alignment and more accurate
speed and braking responses.

C. RQj; (perception validity and gap)

presents the results for perception validity and gap.
Concerning obstacle alignment, at 40 cm, IoU is high (0.81

for one obstacle, 0.75 for two), and LiDAR error remains
low (0.03 m and 0.08 m, respectively), indicating accurate
mapping near the vehicle. As distance increases, alignment
degrades: at 160 cm, IoU for a single obstacle drops to 0.68
(a 16% decrease), and LiDAR error rises to 0.12 m, nearly
4 x higher. For two obstacles, degradation is more severe: loU
falls to 0.29 (61% reduction), and LiDAR error reaches 0.14
m (75% increase). These trends reflect how distance amplifies
projection errors and how FoV edge positioning, especially
with lateral placement, affects visual alignment, likely due to
lens distortion and radial calibration mismatch.

Interestingly, IoU is not strictly monotonic with distance:
for single obstacles, it peaks at 120 cm (0.90), suggesting
optimal perception when objects are centered and fully within
the frame. In contrast, lateral placement consistently worsens
results, even when close (e.g., 0.75 at 40 cm vs. 0.59 at 80
cm, 0.42 at 120 cm). These effects are mostly observed at pe-
ripheral placements or near-range extremes. Within the typical
operating range (40—120 cm with centered FoV), IoU remains
above 0.73 and the LiDAR error is below 6 cm, confirming
perception accuracy under correct driving conditions.

Concerning lane alignment, lane perception is most accurate
in the left lane during counter-clockwise (CCW) runs (1.03

TABLE III: RQj3: Perception input validity and gap results.

Obstacles Validity Camera IoU Lidar Dist (m)

1 obs. 2 obs. 1 obs. 2 obs.
40cm 0.81 0.75 0.03 0.08
80cm 0.73 0.59 0.03 0.05
120cm 0.90 0.42 0.06 0.04
160cm 0.68 0.29 0.12 0.14
Lane Validity Lanes Distance (pixels)

CwW CCW

center lane 9.71 £ 6.62 540 £ 3.24
left lane 5.08 + 5.81 1.03 + 1.32
left margin 6.05 = 7.09 5.32 +4.02
right lane 17.16 £ 27.18 6.46 + 3.71
right margin 12.09 + 7.78 12.97 + 4.18
Perception Gap SiLA MRA
Camera Obs. Lanes Obs. Lanes
Corr. Coeff. (1) -0.38 0.26 0.91 0.76
Hist. Int. (T e-02) 0.34 0.40 7.50 6.90
LBP(T e+04) 428 4.49 7.55 7.30
PSNR (1 e-01) 2.78 2.81 3.99 3.57
SSIM (1) 0.21 0.23 0.93 0.81
NMI (1) 0.86 0.81 0.94 0.89
IFD (}) 1.74 1.70 1.69 1.58
KL Div. () 2.62 2.12 0.01 0.48
MSE ({) 106.20 98.76 9.12 21.94
Perceptual D. ({) 17.39 19.57 4.56 8.83
GLCM () 465.65 533.19 9.12 181.80
WD ({ e-3) 1.34 2.09 0.18 0.31
Lidar Obstacles Obstacles
Max Distancee (m ) 1.06 = 0.39 0.71 = 0.43
Mean Distancee (m ) 0.10 £ 0.03 0.03 = 0.03
Std Distancee (m |) 0.17 £ 0.06 0.09 + 0.08

pixels) and least accurate in the right lane during clockwise
(CW) runs (17.16 pixels). Center and left-margin lanes show
consistent performance across both directions, while right-
side lanes degrade more sharply, likely due to imperfect
camera placement representation. For example, center-lane
error remains moderate at 5.40 pixels (CCW), while right-
margin error increases to 12.09 pixels (CW) and 12.97 pixels
(CCW). These patterns show that alignment is best near the
image center and deteriorates significantly with lateral offset.
Even so, within functional bounds, centered and mid-FoV-
pixel-level alignment remains within usable error margins,
supporting reliable lane detection under typical operation.
Concerning camera perception, Sil. shows poor alignment
with real-world input. SSIM is low, 0.21 for obstacles and 0.23
for lanes, indicating a mismatch with the E2E model’s training
distribution and explaining its degraded behavior in nominal
scenarios (RQp). MR significantly improves visual fidelity:
SSIM increases to 0.93 (obstacles) and 0.81 (lanes), with cor-
relations of 0.91 and 0.76. Perceptual distance drops by 74%
(obstacles) and 55% (lanes), LBP similarity nearly doubles,
and KL divergence falls from 2.62 to 0.01 (obstacles) and 2.12
to 0.48 (lanes). Across all evaluated metrics, MR consistently
reduces the perception gap and aligns more closely with real-
world input, reflecting the observed behavioral improvements.



Concerning LiDAR perception, MR also outperforms SiL.
For obstacle detection, Sil. shows a mean depth error of
0.108 m, a maximum of 1.068 m, and a standard deviation
of 0.179 m. MR reduces these to 0.039 m (-64%), 0.713 m
(=33%), and 0.090 m, respectively, yielding higher accuracy.

Overall, these results confirm that SiL. introduces substantial
perception gaps, particularly for camera input, which con-
tribute to behavior failures. MR narrows these gaps, better
aligning sensor inputs with real-world distributions and en-
abling more accurate behavior replication.

RQs: MR significantly reduces perceptual discrepancies
compared to SiL, improving camera SSIM from 0.21 to 0.93
and reducing LiDAR error by over 60%, resulting in realistic
sensor inputs that closely match real-world data and enable
accurate system behavior replication.

D. Threats to Validity

1) Internal validity: We compared all ADS under identical
parameter settings. One threat to internal validity concerns
our custom implementation. However, this was unavoidable
as no similar evaluation frameworks are available, to the best
of our knowledge. Another threat may be due to our data
collection phase and training of ADS, which may exhibit a
large number of misbehaviors if trained inadequately or with
poor quality data. We mitigated this threat by training and
fine-tuning the best publicly available driving models, which
performed consistently in nominal RW conditions. The RW-
trained E2E model completed scenarios N1 and N2 in all five
RW runs without failure (Table 1, Nominal-E2E—-Real), indi-
cating adequate training. The LiDAR-based modular pipeline
failed in N2 due to late-appearing obstacles, as its perception
relies on deterministic clustering rather than learned models;
however, the ablation study shows the planning module oper-
ates correctly when decoupled from LiDAR inputs. Failures in
scenario G stem from domain shift rather than poor training:
the E2E ADS succeeds in SiL but fails in RW, which would not
occur if the model were fundamentally incapable of solving
the task. Overall, these results confirm that our comparisons
are not confounded by under-trained or low-quality models.

2) External validity: We used a limited number of ADS
architecture models in our evaluation, which we mitigated by
covering representative ADS architectures. We considered only
two physical tracks and a scaled-down platform, which may
not capture all real-world physics (e.g., suspension dynamics
or vehicle mass distribution). However, our goal is not to
model absolute performance but to assess relative fidelity
across modalities. Donkey Car was used as a proxy for full-
size ADS also in previous studies [8]], [[14]], [2 1]-[23]], [55]] and
uniquely satisfies our requirements for studying transferability
between simulated and real-world testing of ADS. Other
platforms, such as DeepPiCar [56] and JetRacer [57], lack
integrated simulators; Roboracer [58] offer only low-fidelity
physical simulations that do not realistically capture real-world
driving dynamics. AWS DeepRacer [59] is tightly integrated

with AWS infrastructure and is primarily designed for rein-
forcement learning use cases, which are outside the scope
of this work. In contrast, Donkey Car has been successfully
adopted in numerous real-vehicle autonomous driving stud-
ies [8], [14], [21]-[23], [36]-[38], [55]l, making it a practical
and cost-effective experimentation platform.

We acknowledge that the availability of multiple and di-
verse tracks and obstacle configurations would be desirable.
However, our selection of scenarios meant to isolate and eval-
uate core ADS capabilities, namely lane-keeping and obstacle
avoidance, under controlled, repeatable conditions. Hence,
generalizability to other physical settings or RC platforms
might not hold or may hold partially. We use a scaled-down
platform, which may not capture all real-world physics (e.g.,
suspension dynamics or vehicle mass distribution). However,
our goal is not to model absolute performance but to assess
relative fidelity across modalities.

3) Reproducibility: All software artifacts and results are
available in our replication package and appendix [26]. To
replicate our study, however, two physical assets are needed,
i.e., a Donkey Car and a tracking system.

VI. DISCUSSION

A. Dissecting and Addressing the ADS Reality Gap

Our study highlights persistent differences between SiL,
ViL, MR, and RW testing, underscoring the need to improve
transferability across these environments. While simulation
remains indispensable for ADS validation, our results show
it is insufficient in isolation. Two major challenges were
observed, namely the perception gap and the actuation gap.

To mitigate the former in SiL, without relying on phys-
ical vehicles, recent neural rendering approaches have been
proposed. Examples include generative Al for translating
simulated into photorealistic images [8|, [12]-[15], [60] and
diffusion models for generating realistic operational design
domains [61]]-[63]]. Some are already integrated in simulators
such as NVIDIA Omniverse. While promising, these methods
still suffer from correctness issues (e.g., artifacts, hallucina-
tions), increase runtime cost, and leave the actuation gap and
simulator unreliability [64], [65] unaddressed.

On the other hand, the actuation gap is better addressed
through hybrid testing. VIL and MR, as evaluated in this
work, virtually eliminate actuation mismatches, with MR
additionally reducing perception errors. However, these setups
are not a substitute for SiL experiments as running tests on real
vehicles and hardware remains costly and resource-intensive,
even if less than RW. Instead, we view ViL and MR as
complementary, highlighting the need to develop strategies to
prioritize which scenarios merit RW execution.

Our results highlight meaningful differences across ADS
types. In SiL, E2E systems appear under-confident while
modular pipelines appear overconfident. Under generalization
scenarios that introduce distribution shifts, the trend reverses,
with E2E failing in RW while modular ADS proves more



robust. To address this, we suggest a staged strategy: SiL. for
early validation and coverage, ViL for refining control, and
MR for perception fidelity. At the same time, MR setups are
more expensive and harder to deploy than SiL, motivating our
release of a modular and well-engineered framework.

Finally, our findings must be interpreted with respect to
the experimental setup: the vehicle is small-scale, tracks and
scenarios are simple, and our open-source simulator, partic-
ularly its rendering, is not fully photorealistic. These factors
may have amplified the transfer gap, especially for perception-
heavy ADS pipelines. Nonetheless, we expect similar issues,
though at different magnitudes, even with industrial-grade
simulators and full-scale vehicles.

B. Implications for testing, debugging, and monitoring

Hybrid testing offers promising opportunities to improve
validation, debugging, and monitoring of ADS. For validation,
we propose the use of Vil and MR to replay critical or failure-
inducing cases originally detected in SiL [66], [67]. This
approach supports more trustworthy assessments of safety and
behavior and enables more representative test generation [[68]].
From a debugging perspective, MR provides a valuable trade-
off. Unlike pure simulation, it avoids artificial failures; unlike
RW testing, it enables repeatable, cost-effective, and versatile
experimentation with physical vehicles. This makes MR par-
ticularly suitable for analyzing rare or complex issues such
as braking delays or occluded pedestrian responses, although
the transferability of such insights to full-scale RW vehicles
remains open. For monitoring, ViL and MR allow evaluation
under realistic latencies, noise, and actuation constraints. Since
many state-of-the-art monitoring tools [69]-[72] are assessed
only in simulators, hybrid environments help bridge this gap
by enabling controlled crash reproduction, evaluation under
adverse conditions, and the training of more robust monitoring
systems. Early steps in this direction include the works of
Ayerdi et al. [73]] and Huang et al. [74].

VII. RELATED WORK
A. Reality Gap Assessment Studies

The reality gap has been subjected to active research in
many fields, including robotics, automotive, and artificial
intelligence. For a comprehensive survey, we refer the reader
to Hu et al. [75], and contributions in the software engineer-
ing community [1]-[3], [8], [64], [76]. Concerning empirical
studies on the reality gap, Stocco et al. [8] compare ADS
lane-keeping models in simulated and physical environments,
highlighting critical shortcomings that contribute to the gap.
In this work, beyond assessing the gap between SiL. and RW,
we also evaluate mitigation strategies such as ViL and MR.
Similarly, Gao et al. [[/7] propose MultiTest, a physically-
aware object insertion framework for testing the robustness
of fusion-based perception systems, while Gao et al. [7§]]
outline key challenges in benchmarking Al-enabled multi-
sensor fusion across diverse conditions. However, prior studies
focus mainly on perception robustness in simulation and stop

short of full-system evaluation. To our knowledge, our work
offers the first unified, system-level assessment of ViL and
MR as reality-gap mitigation strategies, analyzing their impact
on perception, actuation, and behavior during live execution
in SiL, MR, and RW under consistent, controlled conditions.
However, the transferability to real vehicles is not assessed.

B. Reality Gap Mitigation Studies

Concerning solutions to mitigate the gap, researchers have
proposed a variety of strategies. One common approach in-
volves the use of digital twins, which aim to replicate real-
world vehicle dynamics and sensor characteristics with high
fidelity [9]. Alternatively, search-based tuning of simulator
parameters can be employed using real-world logs [25]. An-
other technique is domain randomization, which improves
generalization by varying environmental parameters such as
lighting, weather, or road conditions during training [20], [79].
However, domain randomization and adversarial training are
typically applied to models trained only in simulation. This is
not the case for ADS, as they are trained on real-world data.

To address the perception gap, researchers have explored
the use of generative Al to translate simulated data into
photorealistic images [8]], [[12]-[/15]], LIDAR point clouds [80],
and methods for synthesizing operational design domains
with high visual fidelity [61], [62], [81], [82]. While existing
methods enhance perceptual realism, they typically run offline
at the model level or in SiL, targeting single sensor modalities.
In contrast, our work evaluates perception fidelity during live,
system-level execution across SiL, MR, and RW, directly
comparing how perceptual gaps affect the ADS behavior.

VIII. CONCLUSIONS

This paper presents a comprehensive empirical study of the
reality gap in autonomous driving, analyzing Software-in-the-
Loop (SiL), Vehicle-in-the-Loop (ViL), Mixed-Reality (MR),
and real-world execution across both modular and end-to-end
driving systems. Our goal is to isolate the dimensions of the
reality gap, namely, behavior, actuation, and perception, and
assess how each modality reflects real-world behavior.

Our findings reveal that the reality gap is multifaceted and
modality-dependent. SiLL often misrepresents system behavior,
failing when the real system succeeds, and vice-versa. ViL
mitigates actuation errors but leaves perception gaps unre-
solved. MR, with simulated obstacles and RW perception,
is the only testing approach that more consistently captures
both perceptual and behavioral fidelity, matching real-world
outcomes in both nominal and generalization scenarios.

Our openly available framework and results offer a founda-
tion for the development of next-generation ADS testing and
validation solutions, promoting the adoption of hybrid setups
that combine SiL, ViL, and MR to enable efficient, scalable
ADS evaluation.
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