
Benchmarking Image Perturbations for Testing
Automated Driving Assistance Systems

Stefano Carlo Lambertenghi
Technical University of Munich, fortiss

Munich, Germany
stefanocarlo.lambertenghi@tum.de,

lambertenghi@fortiss.org

Hannes Leonhard
Technical University of Munich

Munich, Germany
hannes.leonhard@tum.de

Andrea Stocco
Technical University of Munich, fortiss

Munich, Germany
andrea.stocco@tum.de,

stocco@fortiss.org

Abstract—Advanced Driver Assistance Systems (ADAS) based
on deep neural networks (DNNs) are widely used in autonomous
vehicles for critical perception tasks such as object detection,
semantic segmentation, and lane recognition. However, these
systems are highly sensitive to input variations, such as noise and
changes in lighting, which can compromise their effectiveness and
potentially lead to safety-critical failures.

This study offers a comprehensive empirical evaluation of
image perturbations, techniques commonly used to assess the
robustness of DNNs, to validate and improve the robustness and
generalization of ADAS perception systems. We first conducted
a systematic review of the literature, identifying 38 categories of
perturbations. Next, we evaluated their effectiveness in revealing
failures in two different ADAS, both at the component and at the
system level. Finally, we explored the use of perturbation-based
data augmentation and continuous learning strategies to improve
ADAS adaptation to new operational design domains. Our
results demonstrate that all categories of image perturbations
successfully expose robustness issues in ADAS and that the use
of dataset augmentation and continuous learning significantly
improves ADAS performance in novel, unseen environments.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) heavily rely
on perception systems (e.g., cameras, LiDAR, and other
sensors) to perceive complex, dynamic environments in real-
time. These systems adopt deep neural networks (DNNs) for
interpreting sensor data to assist tasks such as object detection,
image classification, semantic segmentation, and regression, to
enable accurate real-time driving functions [1], [2], [3], [4].

Despite their effectiveness in driving image understanding,
these systems are expected to operate reliably across a large
group of domain environments and operational domains. How-
ever, it is still infeasible to collect all representative scenarios
during data collection and training campaigns. Thus, after
deployment and in-field operation, the ADAS is likely to
encounter inputs that significantly differ from the training data.
Particularly, DNN-based ADAS perception systems are highly
sensitive to input variations, such as lighting, environmental
changes, noise, changes in lighting, or minor shifts in per-
spective [3]. These factors can lead to significant prediction
errors [5], [6], misclassifications, or inaccurate segmentations.
Such errors can propagate to the vehicle’s decision-making
modules, potentially resulting in safety-critical failures.

In literature, synthetic image perturbations have been pro-
posed and utilised to assess and enhance the robustness of
DNNs [7], [8], [9], [10], [11], [12]. Image perturbations intro-
duce controlled distortions to input images (e.g., by reducing
the brightness or by blackening certain pixels), and have been
used to simulate out-of-distribution conditions that challenge
the robustness of the DNN to slight input variations [7], [8],
[13], [14]. Additionally, image perturbations have been used
for robustness/adversarial training, e.g., as a data augmentation
strategy to enrich the training dataset with perturbed versions
of the original, unperturbed images. This increases the diver-
sity of the training set and helps the DNN to be invariant to
various types of distortions, thereby improving its robustness.

In the context of ADAS testing, image perturbations
have been employed by solutions such as DeepXplore [15],
DeepTest [16] and DeepBillboard [17], using input transfor-
mations such as lighting changes and occlusions, real-world
inspired synthetic perturbations like rain and fog, or synthetic
adversarial billboards. These works target offline ADAS testing
of perception systems, which has been shown to be inadequate
at revealing system-level failures [18], [19], [20]. Among
the online approaches for system-level ADAS testing, most
research has focused on test generation to assess generalizabil-
ity [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], while fewer studies have addressed robustness
testing at the system level. Some work proposed real-time
adversarial attacks [13], [35], [36], state-aware billboards [37],
or generic sets of perturbations for runtime anomaly detec-
tion [14], [38]. Although these solutions have shown great
potential in exposing many failures, a comprehensive empirical
evaluation of different image perturbations is still missing
in the literature. Additionally, an in-depth analysis of their
effectiveness, particularly in relation to their latency when used
at a system level and their tuning in terms of intensity, remains
an open area of investigation.

To address this, in this paper, we provide the most com-
prehensive evaluation of image perturbations, benchmarking
numerous perturbation techniques from the literature, across
two popular ADAS tasks with increasing complexity. We first
reviewed the literature on existing DNN image perturbations,
identifying the most commonly used techniques for robustness
evaluation. Then, we selected perturbations based on their



feasibility and relevance to autonomous driving scenarios,
retaining 32 types. To ensure a more thorough assessment,
we evaluated the perturbations according to different intensity
levels, enabling fine-grained control over their severity while
ensuring that the original image semantics are preserved.

We systematically evaluate the performance of these pertur-
bations in terms of their ability to generate robustness failure
inputs in two ADAS, considering factors such as efficiency
and effectiveness. Our findings confirm that all image pertur-
bations expose ADAS failures, at different levels of severity,
both at a component and a system level. Moreover, despite
some of these image perturbations reflecting specific corner-
case operational conditions (e.g., extreme lighting or camera
occlusion), many do not represent naturalistic perturbations
(i.e., weather effects) that can occur during real-world driving.
Thus, we have investigated the usefulness of existing common
image perturbations for domain adaptation and generalizability
during robustness retraining. Our findings reveal that adver-
sarial retraining and continuous learning with common image
perturbations allow ADAS to adapt to new environmental and
naturalistic perturbations, thereby enhancing their robustness
in real-world scenarios.

This paper makes the following main contributions:
• An empirical study comparing 32 image perturbations on

two ADAS tasks, both at a component and at a system
level. Our study identifies perturbation categories and
intensities that are most effective for robustness failure
exposure and retraining for domain adaptation.

• A library for ADAS robustness testing, called
PerturbationDrive, which integrates several dozens
of image perturbations for both offline and online
robustness ADAS testing. PerturbationDrive can be used
as a standalone library for offline testing, providing
perturbations that can be applied to input images. It
also offers APIs that integrate seamlessly into different
driving simulators without requiring modifications to
existing infrastructures, and it is designed to be highly
modular and extensible. To encourage open research, we
made our library and experimental data available [39].

II. DNN IMAGE PERTURBATIONS

A. Literature Review

We performed a systematic review of papers mined from
Scopus [40] and arXiv [41]. Scopus was selected for its com-
prehensive archive of peer-reviewed articles, while arXiv al-
lowed us to include grey literature and preprints in our review.
These platforms helped us systematically search for papers
that mentioned the keywords “DNN”, “image perturbation”
and “ADAS” within their abstract. This search found 2,943
papers, of which 1,814 in Scopus and 1,129 in arXiv. The
search results from Scopus and arXiv were each ranked based
on the number of citations and the publication year, with more
recent papers prioritized, producing a list of ranked studies,
which we reviewed starting from the highest-ranked paper. For
each source, we identified all proposed image perturbations

and added them to a catalogue of perturbations. If the paper
referenced any additional sources related to perturbations,
these were also ranked similarly and added to the study list for
further review. We continued this process, moving through the
ranked studies until the catalogue of perturbations remained
unchanged for ten consecutive studies.

B. List of DNN Image Perturbations

Table I presents the list of 38 perturbations obtained with
our review of the literature, and their sources. We evaluated
perturbations based on visual similarities or computational
techniques and assigned them to eight main categories: noise,
blur, focus, weather-related changes, affine transformations,
graphic patterns, colour and tone adjustments, and generative-
based. In the following, we briefly describe each category.

1) Noise Perturbations (A): This category includes random
variations in pixel values or image graininess, typically re-
sulting from electronic noise. This category includes: (A-I-
II) Gaussian noise and Poisson noise, which consist in the
addition of statistical noise to an image, using the probability
density functions of the Normal distribution or the Poisson
distribution, respectively. (A-III) Impulse noise, which consists
of random, sharp and sudden disturbances, taking the form of
scattered bright or dark pixels. (A-IV) JPEG artifacts, which
perturbs an image in the same manner as JPEG compression
artifacts would. (A-V) Speckle Noise, which adds granular
noise textures to the image.

2) Blur and Focus Perturbations (B): These perturbations
cause a reduction in image sharpness or clarity, often stem-
ming from improper camera settings. A key characteristic of
these perturbations is the use of kernels, which calculate the
perturbation by averaging or smoothing pixel values in specific
areas of the image. Adjustments to the size of the kernel
matrix or changes to its values can modify the intensity of
these perturbations. We have identified the following types: (B-
I) Defocus blur, which simulates the effects of the camera lens
being out of focus via disc-shaped kernels. (B-II) Motion blur,
which mimics the streaking effects caused by moving objects.
(B-III) Zoom blur, which simulates a radial blur that emanates
from a central point of the image. (B-IV) Gaussian blur, which
blurs the image by applying the Gaussian function on the
image. (B-V) Low-pass filter, which calculates the average of
each pixel to its neighbours.

3) Weather Perturbations (C): These perturbations simulate
weather conditions such as snow, rain, or fog. Such conditions
are influenced by specific times of the day or seasons; for
instance, images taken at sunrise or sunset might exhibit
enhanced brightness or contrast, while winter could naturally
bring about snowfall. This category includes: (C-I) Frosted
glass, which simulates the effects of frosting on a camera lens.
(C-II) Snow, that simulates the presence of snow crystals. (C-
III) Fog, that reduces the image’s contrast and saturation to
simulate the presence of fog. (C-IV) Brightness, that changes
the image’s brightness intensity, to simulate changes of envi-
ronment lighting. (C-V) Contrast, that increases the difference
of luminance on the image.

2



TABLE I: DNN image perturbation types identified in this study and their sources.

Noise Perturba-
tions (A)

Blur
Perturbations
(B)

Focus Perturba-
tions (C)

Weather Pertur-
bations (D)

Affine Transfor-
mations (E)

Graphic Patterns
(F)

Color/Tone Ad-
justments(G)

Generative-based
(H)

Gaussian Noise
[5], [6], [7], [9],
[10], [11], [14],
[38], [42]
Poisson Noise
[7], [9], [14], [43]
Impulse Noise
[7], [9], [14], [43],
[42]
JPEG [5], [6], [7],
[9], [10], [14],
[38], [42]
Speckle Noise
[9], [11], [14]

Defocus Blur
[7], [9], [14], [42]
Motion Blur
[7], [9], [38], [43],
[42]
Zoom Blur
[7], [9], [38], [42]
Gaussian Blur
[14], [16], [38]
Low Pass Filter
[6]

Frosted Glass [7],
[9], [38], [42]
Snow [7], [38],
[42]
Fog [7], [9], [14],
[38], [42]
Brightness [7],
[14], [15], [16],
[43], [42], [44],
[45]
Contrast [5], [6],
[7], [9], [12], [14],
[16], [42], [44],
[45]

Elastic [7], [9],
[42]
Pixelate [7], [9],
[42]
Sample Pairing
[8], [14], [44]
Sharpen [12],
[44], [45]

Shear Mapping
[8], [12], [16],
[43], [44], [45]
Scale [10], [12],
[16]
Translate [8],
[10], [16], [44],
[45]
Rotate [6], [8],
[10], [12], [16],
[44], [45]
Reflection [12]

Splatter [14], [43]
Dotted Lines [43]
ZigZag [43]
Canny Edges [43]
Cutout [8], [15],
[44]

False color [6],
[45]
Phase scrambling[6]
Histogram
equalization
[6], [12], [44],
[45]
White balance
[12]
Greyscale [46]
Saturation [14],
[42]
Posterize [8], [44]

Cycle-consistent
[47], [48], [49]
Style-transfer
[35], [42], [46]

4) Distortion Perturbations (D): Distortion perturbations
randomly displace or overlap image pixels, leading to distorted
figures and shapes in the visuals. We identify the following
perturbations: (D-I) Elastic moves each image’s pixel by
a random offset derived from a Gaussian distribution. (D-
II) Pixelate divides the image in a set of pixel regions and
sets the average pixel value of the region to all pixels in it.
(D-III) Sample pairing randomly samples two regions of the
image and blends them together with a varying alpha value.
(D-IV) Sharpen removes blurring by using the sharpen kernel.

5) Affine Transformations (E): These transformations pre-
serve the collinearity and parallelism of lines within the image,
meaning that straight lines remain straight, and sets of parallel
lines remain parallel after the transformation. However, the
actual distances between points and the angles between lines
can change. This allows for transformations such as rotation,
scaling, translation, and shearing, fundamentally altering the
image’s appearance while maintaining a level of geometric
consistency. These include: (E-I) Shear mapping shifts each
point in an image horizontally. The shift’s direction and
magnitude are based on each point’s perpendicular distance
from a reference line parallel to the shift direction, resulting
in a slanted or skewed appearance of the image. (E-II) Scale
increases or decreases the size of the image by a certain factor.
(E-III) Translate moves all the pixels of an image in a certain
direction. (E-IV) Rotate rotates the image by a certain angle in
the Euclidean space. (E-V) Reflection, creates a mirror effect
by appending a flipped version of the image at a certain height.

6) Graphic Patterns (F): This type of perturbation involves
inserting repetitive graphics and patterns randomly across the
image. A pattern in this context is defined as a specific
shape, like a dot or a rectangle, that is systematically repeated
throughout the image. This category includes: (F-I) Splatter
randomly adds black patches of varying size to the image.
(F-II) Dotted lines randomly adds straight dotted lines to the
image. (F-III) ZigZag randomly adds black zig-zagging lines
to the image. (F-IV) Canny edge filter applies canny edge
detection to highlight images and lay them over the images.
(F-V) Cutout inserts black rectangular shapes on the image.

7) Color and Tone Adjustments (G): These perturbations
modify the color and tone characteristics of the image by av-
eraging, increasing, or decreasing specific channels. We have
identified the following perturbations: (G-I) False color filter
swaps color channels, inverts color channels, or averages color
channels with each other. (G-II) Phase scrambling scrambles
image channels using the Fast Fourier Transform. (G-III) His-
togram equalization enhances the image contrast by spreading
the pixel intensities using the image histogram. (G-IV) White
balance globally adjusts the intensity of colors to adjust white
portions of the image. (G-V) Greyscale filter converts the
image to greyscale. (G-VI) Saturation increases or decreases
the saturation of the image by changing the S channel of
the image in HSV (Hue, Saturation, Lightness) representation.
(G-VII) Posterize reduces the number of distinct colors by
quantizing the color channels.

8) Generative-based Perturbations (H): The perturbations
discussed in this section, use generative models to modify
images, with the goal of changing the look of the input domain
into the look of another alternative domain. In this category, we
consider: (H-I) cycle-consistent models enable the generation
of images across two image distributions representing different
domains. (H-II) Style-transfer models apply artistic styles to
images, using pre-trained generative models.

C. Image Perturbations Validity

We manually analyzed each perturbation type with the
aim to keep those that generate images that maintain the
semantic between the original and the augmented image and
that represent valid driving images (e.g., Figure 1(a)). We
implemented these checks to make sure to use perturbations
that do not drastically change the image content (i.e., making
the road no longer visible, or an image in which the road is
flipped horizontally, see Figure 1(b)), thereby exposing failures
that are not relevant.

In particular, we filtered out perturbations such as some
types of affine transformations, rotations, shear mapping,
reflection, and generative based. Affine transformations can
distort the image to the extent that generating a valid driv-
ing command, even for a human, becomes impossible. For
example, shear mapping (E-I) skews and distorts the image,

3



(a) Valid. (b) Invalid.

Fig. 1: Valid and invalid perturbation types.

pushing parts outside the frame and potentially altering the
ADAS’s driving decisions. Rotations (E-IV) can shift im-
ages by an angle θ, with larger angles (e.g., θ = 180◦)
inverting the image, while reflections (E-V) duplicate content,
both of which may confuse DNNs and mislead the ADAS.
Similarly, generative-based perturbations (H) were excluded.
CycleGAN (H-I) relies on the input domain matching the
source domain of its training dataset, making it unsuitable
for general driving scenarios, while style-transfer (H-II) often
introduces unrealistic alterations, such as exaggerated textures
and colour shifts, distorting the visual content to an unrealistic
degree (Figure 1). For the segmentation task, we excluded the
entire Affine Transformations (E) group because validating the
model’s performance would require distorting the pixel-level
ground truth classes to match the transformations, which is
not feasible for accurate evaluation.

To obtain the five intensity levels for the included pertur-
bations, we resort to a visual assessment. Specifically, we
incrementally applied each perturbation until we could no
longer understand the depicted scene. The intensity level right
before this threshold was considered as the maximum intensity.
Then, we discretized the intensity range into five uniform
steps.

D. Implementation

To support our experimental evaluation, we develop an
extensible Python library called PerturbationDrive, which is
available [39]. It systematically enables the application of
a large variety of image perturbations for conducting both
model-level and system-level robustness testing of ADAS.
Architecturally, PerturbationDrive consists of three main com-
ponents: an image perturbation module, a simulator interface
(only for the case of system-level testing), and a benchmarking
controller. The image perturbation component implements all
perturbations described in Section II and applies them to
a given input image. It also supports the addition of new
perturbations by extending an abstract interface.

For online testing, the framework integrates seamlessly with
driving simulators. The initial release supports ADAS models
developed in TensorFlow/Keras and is compatible with two
Unity-based driving simulators: the Udacity Simulator [50]
and the Sdsandbox Donkey Car™ simulator [51]. It enables
the generation of different road layouts, represented as a series
of waypoints in the 3D space, and allows the application of
perturbations in real time.

Finally, the benchmarking controller manages the testing
process. For offline testing, it applies perturbations to ADAS
input images and compares the ADAS responses with either
ground-truth values or its output on unperturbed images.
During online testing, the framework logs various metrics such
as the ADAS actions, perturbed and unperturbed images, and
vehicle speed to determine if the system successfully drives
the scenario or encounters a failure.

III. EMPIRICAL STUDY

A. Research Questions

RQ1 (effectiveness): Which types of image perturbations are
more effective in inducing robustness failures in ADAS?

The first research question investigates how different types
of image perturbations, applied at varying levels of intensity,
impact the reliability of ADAS.
RQ2 (generalization): How effective are common image per-
turbations in enhancing the generalization of ADAS to more
naturalistic perturbations?

The second research question investigates how effectively
common perturbations can improve the generalization ability
of ADAS. By introducing these perturbations during training
or testing, we aim to determine whether the models become
more resilient to real-world environmental scenario changes,
such as weather conditions.

B. Objects of Study

We consider NHTSA [52] Level 2 ADAS that perform
vision-based perception tasks, i.e., from data gathered by
camera sensors of a vehicle. Despite the adoption of Level 2
ADAS in many commercial vehicles, their reliability remains
a concern, as evidenced by numerous recent crash reports [53].
Although Level 3 and 4 ADAS have been proposed [54],
their real-world deployment remains highly constrained. Con-
sequently, addressing the limitations of Level 2 systems is
crucial for advancing to higher levels of autonomy.

We focus on two specific ADAS applications: a system for
semantic segmentation and another designed for lane-keeping
and adaptive cruise control (LK/ACC).

1) Semantic Segmentation: SegFormer [55] is a vision
transformer-based model designed for semantic segmentation,
where each pixel in an input image is classified into one of
several object classes. The model employs a hierarchical trans-
former architecture for feature extraction and a lightweight

4



multi-level feature aggregation network to generate segmen-
tation maps with both fine detail and global context. Unlike
traditional convolutional models, SegFormer omits positional
encodings, enhancing its efficiency and scalability for real-
time applications, including ADAS. Trained on large-scale
datasets like Cityscapes [56], SegFormer has demonstrated
competitive performance in segmenting complex driving envi-
ronments, which made it a reference model for ADAS testing
studies [57], [58], [59], [60], [61].

2) LK/ACC: DAVE-2 is a convolutional neural network
developed for multi-output regression tasks based on imi-
tation learning [62]. The model architecture includes three
convolutional layers for feature extraction, followed by five
fully connected layers. DAVE-2 has been extensively used
in a variety of ADAS testing studies [13], [63], [16], [64],
[65], [66]. The model takes as input an image representing
a road scene, and it is trained to predict vehicle’s actuators
commands. Our implementation includes a DNN with lane-
keeping (LK) and adaptive cruise control (ACC) capabilities,
as DAVE-2 is trained to conduct the vehicle on the right lane
of the road at the maximum possible speed, by predicting
appropriate steering and throttle commands.

C. Experimental Platforms and Benchmarks

1) Semantic Segmentation: We test SegFormer using the
Virtual KITTI dataset (vKITTI) [67], commonly used for au-
tonomous driving research. It provides 21,260 photo-realistic
frames across five of the 20 KITTI real-world scenarios (i.e.
01, 02, 06, 18, and 20) rendered using the Unity engine.
It includes pixel-level segmentation ground truths (GT) and
semantic labels for urban objects such as roads, traffic lights
and vehicles. Each frame is available in six weather conditions:
sunny (nominal), fog, morning, overcast, rain, and sunset. We
divided the scenarios in vKITTI as follows:

• Training set: Scenarios 01, 02, and 06 (nominal weather),
randomly split into 90% and 10% of the samples for
training and validation of the SegFormer model for RQ1;

• Augmentation set: Scenario 18 (nominal weather), split
similarly, used for fine-tuning SegFormer with perturba-
tions for RQ2;

• Testing set (N): Scenario 20 (nominal weather), used
to evaluate perturbation disruptions for RQ1 and as a
baseline for SegFormer variants in RQ2;

• Testing set (W): Scenario 20 (with weather effects), used
to evaluate SegFormer variants for RQ2.

2) LK/ACC: To evaluate the generalizability of our results
across different simulation environments, we conducted exper-
iments on both the Udacity [50] and the Sdsandbox Donkey
Car™ [51] simulators.

Udacity [50] is developed with Unity 3D [68], a popular
cross-platform game engine, based on the Nvidia PhysX en-
gine [69], featuring discrete and continuous collision detection,
ray-casting, and rigid-body dynamics simulation. Udacity also
supports testing under various weather conditions, such as
day/night, rain, snow, and fog, which we refer to as naturalistic
perturbations because they simulate real-world phenomena like

virtual artefacts (e.g., raindrops) and lighting variations (e.g.,
day/night transitions). In addition to these effects, in this study,
we introduce four new weather conditions that are not based
on particle effects but instead focus on lighting changes by
altering the skybox and scene illumination intensity. These
conditions, listed in order of increasing darkness, are named:
dawn, moonshine, starry, and dark/overcast. Donkey Car™

includes a high fidelity digital twin of the Donkey Car, a 1:16
scale radio-controlled car with self-driving capabilities, used
for ADAS testing research in physical environments [13], [70],
[71]. We selected these platforms because they are open-source
and suitable for Level 2 ADAS evaluation. However, this
choice is not exclusive, and other simulators can be integrated
in PerturbationDrive with additional engineering cost.

For both simulators, we use the following scenarios:
• Training roads: These roads are used to train the DAVE-2

model evaluated in both RQ1 and RQ2. The road struc-
tures are randomly generated using PerturbationDrive,
incorporating a variety of curves, lengths, and curvatures
to ensure diversity in the training set.

• Testing roadsRQ1: These manually designed scenarios
consist of 10 road tracks with increasing difficulty, rang-
ing from simple, straight roads to more complex, curvy
paths, used to evaluate the model’s performance in RQ1.

As we evaluate generalizability (RQ2) using only Udacity,
since the Donkey Car simulator lacks weather variations, we
include additional independent test sets:

• Fine-tuning roads: These roads are used to fine-tune
the DAVE-2 model evaluated in RQ2, as such they are
designed to differ from roads used to test the model’s
performance. We use PerturbationDrive to generate ran-
dom roads with specific curvature ranges and road lengths
which differ from the ones found in other road sets.

• Testing roadsRQ2: These roads are used to evaluate both
the nominal and fine-tuned DAVE-2 models in RQ2.
These scenarios include 15 road shapes, with different
degrees of complexity, and the ability to set simulation-
based weather effects. In particular, five of these scenarios
drastically differ from the ones found in Training roads.

D. Procedure

As one of the goals of our study is to evaluate the image per-
turbations for system level testing, we performed a preliminary
analysis to assess their computational overhead. Excessive
processing times could in fact jeopardize the execution of
simulation-based tests and lead to spurious failures that are not
related to the actual robustness of the ADAS. We evaluated the
execution time of 250 iterations for each type of perturbation
across multiple intensity levels, using random RGB images
with a resolution of 240×320 pixels—consistent with the
image dimensions used by the simulators under evaluation.
This experiment was conducted using the Pyperf library [72]
on a machine equipped with an Apple M1 processor. Since
each perturbation must be applied to every simulation frame,
we established an upper time limit for acceptable computation
based on the simulators’ frame rates.

5



Fig. 2: Benchmarking perturbations.

The two simulators in our study, Udacity and Sdsandbox
Donkey Car, operate at frame rates of 20 and 30 frames per
second (fps), respectively, which correspond to frame intervals
of 50 ms and 33.3 ms. To ensure consistency in comparisons,
we adopted the higher frame rate of 30 fps, setting 33.3 ms as
the maximum acceptable computation time per frame for all
perturbations. This upper limit assumes that the time required
for the ADAS system to process each frame is negligible.

Figure 2 reports the average execution time for each pertur-
bation. Our study shows that the majority of perturbations are
feasible for real-time evaluation, with most taking less than 10
ms to execute. Only Zoom blur (B-III) significantly exceeds
the 33.3 ms threshold at 95.6 ms. As a result, Zoom blur is
excluded from further evaluations.

1) RQ1: Semantic Segmentation. We first fine-tune a pre-
trained SegFormer model [73] for 10 epochs using the training
set split of the vKITTI dataset (see Section III-C1) and the
Adam optimizer with a learning rate of 6e−5.

Regarding the evaluation phase, we instructed
PerturbationDrive to introduce controlled perturbations
in the images of the Testing set (N). Each image was
perturbed across five different intensity levels. This approach
enables us to systematically evaluate not only how different
perturbation types affect the model’s output but also at which
intensity levels the impact becomes significant. We then
execute the trained SegFormer model on both the nominal
(unperturbed) and perturbed images of Testing set (N). For
each test image, the model generates a segmentation map,
with each pixel classified into a corresponding semantic
category. These predicted segmentation maps are then
compared with the ground truth annotations from the dataset
to assess the effect of the perturbations on the model’s
segmentation performance.

To quantify the effects of the perturbations, we calculate the
Intersection over Union (IoU), chosen for its widespread use in
evaluating segmentation model performance, particularly for
driving scenes [57], [74]. IoU measures, for each semantic
class, the overlap between the predicted and ground truth
segmentation maps, calculated as the ratio of the intersection
(where predicted and true segments match) to the union (the
total area covered by both). This makes IoU especially useful
for understanding how accurately the model identifies critical
elements in driving environments, such as vehicles.

LK/ACC. We trained the DAVE-2 model in both simulators
using data collected by a human driver on Training roads.
We then validate the model using the Testing roadsRQ1. The
behaviour of the ADAS under nominal conditions constitutes
a baseline for evaluating the effects of perturbations.

Next, we use PerturbationDrive to inject perturbations into
the images during simulation-based testing, on the same set of
Testing roadsRQ1. The DAVE-2 model’s performance on each
perturbed road is then compared against the performance under
nominal conditions. To quantify the performance degradation
caused by perturbations, we evaluate several metrics. First, we
quantified the success rate and completion rate. The first met-
ric indicates the percentage of scenarios in which the LK-ACC
system successfully reaches the end goal, while the second
measures the extent of the scenario executed before either a
failure or goal completion occurs. Next, we classify failures
into two types: Out of road (OR), when the vehicle leaves the
designated driving lane, and Out of time (OT) triggered when
misbehaviour causes a delay, leading to a 200-second timeout
before the scenario is completed. For successful scenarios,
we further analyze the execution time, which is useful for
identifying the quality of throttle predictions and the driving
jitter, which helps assess the steering quality by calculating
the first derivative of the distance from the center of the lane
(Cross-Track Error) and normalizing it by the lane width to
indicate deviations in lane centering.

2) RQ2: Semantic Segmentation Dataset Augmentation.
We introduce controlled perturbations to the images from
the dataset Augmentation set (Section III-C1), utilizing the
perturbation types identified in RQ1 at maximum intensity.

After generating the perturbed images, we use them to
perform fine-tuning of the SegFormer model, which was
trained on the original vKITTI dataset in nominal conditions,
by executing one epoch of training. To evaluate the impact of
this augmentation, we test the fine-tuned model on dataset
Testing set under both nominal conditions (Testing set (N)
and simulated weather effects (Testing set (W). The goal is
to measure whether the fine-tuned model exhibits improved
generalization and robustness compared to the original, un-
modified model. The same evaluation metric of RQ1 (i.e.,
IoU) will be used to compare the model’s performance on
both nominal and perturbed data.
LK/ACC Online Continuous-learning. We employ a hybrid
control system consisting of a pure-pursuit controller for
steering and a PID controller for throttle. The pure-pursuit
controller calculates the steering angle to keep the vehicle
aligned with the road by following predefined waypoints,
while the PID controller regulates the throttle based on an
expected speed and the car’s relative distance to the center of
the target lane. If the car deviates far from the center of the
lane, the PID controller reduces the throttle to slow the vehicle
down, allowing it to regain control and move back towards the
center. This helps to prevent failures in challenging situations.
If the car is close to the center of the lane, the throttle is
adjusted to match the expected speed parameter, to obtain a
vehicle speed consistent with the target speed. We first deploy

6



TABLE II: RQ1: Effectiveness results for different types of perturbations for robustness testing of ADAS.

Semantic Segmentation LK/ACC

vKITTI Udacity Donkey Car

Overall Non-failing Overall Non-failing

IoU Success Rate Fail Type Time Jitter Success Rate Fail Type Time Jitter

Perturbation Avg Std Max Min Avg Std Trend OR OT Avg Avg Avg Std Trend OR OT Avg Avg

nominal 0.66 - - - 100% - - 0 0 96.84 2.83% 100% - - 0 0 102.17 2.50%

Noise
A-I Gaussian noise 0.43 0.16 0.64 0.23 86% 3.00 2 5 95.6 44.8% 98% 2.00 0 1 83.3 9.4%
A-II Poisson noise 0.50 0.10 0.58 0.32 100% 0.00 0 0 50.2 9.4% 98% 2.00 1 0 52.2 9.0%
A-III Impulse noise 0.41 0.16 0.62 0.21 96% 3.00 0 2 129.9 11.0% 100% 0.00 0 0 95.5 7.6%
A-IV JPEG artifacts 0.59 0.02 0.62 0.56 66% 88.00 1 16 149.2 38.8% 98% 2.00 1 0 77.3 4.8%
A-V Speckle noise 0.58 0.09 0.66 0.41 88% 2.00 6 0 59.2 20.0% 100% 0.00 0 0 73.4 6.2%

Blur and Focus
B-I Defocus blur 0.57 0.06 0.65 0.47 96% 3.00 1 1 103.4 12.6% 100% 0.00 0 0 84.6 8.0%
B-II Motion blur 0.63 0.03 0.66 0.58 84% 8.00 0 8 122.2 46.0% 94% 8.00 3 0 93.8 8.6%
B-IV Gaussian blur 0.58 0.08 0.66 0.46 94% 3.00 3 0 87.6 11.8% 94% 3.00 3 0 99.9 9.0%
B-V Low-pass filter 0.63 0.01 0.64 0.62 88% 2.00 6 0 88.0 28.6% 96% 3.00 2 0 92.7 8.6%

Weather
C-I Frosted glass 0.62 0.04 0.65 0.54 70% 135.00 15 0 52.1 11.6% 94% 3.00 3 0 69.3 7.8%
C-II Snow 0.64 0.04 0.67 0.56 30% 120.00 35 0 32.5 13.8% 96% 8.00 2 0 74.9 10.2%
C-III Fog 0.56 0.14 0.67 0.29 54% 228.00 23 0 52.2 10.6% 90% 5.00 5 0 81.7 11.6%
C-IV Brightess 0.66 0.00 0.66 0.65 92% 7.00 3 1 123.2 12.2% 96% 8.00 2 0 95.0 10.4%
C-V Contrast 0.66 0.00 0.66 0.65 90% 20.00 4 1 92.5 16.4% 52% 197.00 17 7 91.8 13.8%

Distortion
D-I Elastic 0.63 0.01 0.64 0.61 98% 2.00 0 1 73.3 9.6% 100% 0.00 0 0 85.1 6.6%
D-II Pixellate 0.62 0.05 0.66 0.53 96% 8.00 2 0 84.4 14.4% 98% 2.00 1 0 96.6 8.6%
D-III Sample 0.41 0.16 0.64 0.20 54% 213.00 21 2 86.6 29.6% 90% 15.00 5 0 75.8 15.2%
D-IV Sharpen 0.66 0.01 0.67 0.64 60% 255.00 20 0 64.0 18.6% 94% 8.00 3 0 87.1 9.4%

Affine Transformations
E-II Scale - - - - 70% 45.00 5 10 220.7 24.6% 46% 168.00 15 12 123.7 15.0%
E-III Translate - - - - 20% 120.00 29 11 323.8 22.2% 64% 58.00 18 0 74.4 11.4%

Graphic Patterns
F-I Splatter 0.65 0.01 0.66 0.64 58% 122.00 16 5 156.8 16.0% 66% 108.00 14 3 90.3 11.8%
F-II Dotted lines 0.66 0.01 0.66 0.65 92% 7.00 3 1 92.6 18.6% 80% 65.00 5 5 108.2 8.2%
F-III ZigZag 0.66 0.00 0.66 0.65 100% 0.00 0 0 77.2 17.4% 100% 0.00 0 0 91.7 5.6%
F-IV Canny edges 0.63 0.00 0.64 0.63 88% 2.00 6 0 90.0 19.4% 100% 0.00 0 0 85.3 7.2%
F-V Cutout 0.64 0.02 0.66 0.60 84% 43.00 8 0 123.4 12.2% 66% 33.00 15 2 99.8 14.6%

Color/Tone Adjustments
G-I False color 0.50 0.09 0.58 0.34 24% 153.00 38 0 40.8 14.4% 82% 92.00 5 4 89.5 12.4%
G-II Phase scrambling 0.50 0.16 0.66 0.23 56% 113.00 19 3 44.3 33.4% 46% 213.00 21 6 49.0 15.2%
G-III Histogram eq. 0.65 0.01 0.66 0.64 52% 32.00 6 18 197.5 49.0% 74% 28.00 13 0 75.0 9.6%
G-IV White balance 0.66 0.00 0.66 0.66 94% 8.00 0 3 91.9 29.6% 92% 2.00 4 0 92.2 8.0%
G-V Greyscale 0.66 0.02 0.67 0.62 66% 173.00 13 4 143.8 32.0% 88% 17.00 6 0 85.5 11.8%
G-VI Saturation inc. 0.65 0.01 0.66 0.64 68% 72.00 11 5 118.8 22.4% 46% 258.00 0 27 131.5 6.2%
G-VIb Saturation dec. 0.64 0.03 0.66 0.60 52% 187.00 15 9 103.6 17.6% 88% 7.00 6 0 91.7 5.8%
G-VII Posterize 0.65 0.02 0.66 0.62 82% 32.00 4 5 108.1 40.2% 86% 28.00 7 0 78.8 14.6%

the pure-pursuit/PID combo on the Training roads set under
nominal conditions. This enables us to gather accurate ground
truth data that represents good, failure-free driving behaviour.
Once the data collection is complete, we train the DAVE-2
model using this nominal dataset. Hereafter, this model will
be referred to as DAVE-2 (N).

To establish the baseline for how well the model performs
without additional training on perturbed scenarios, we evaluate
DAVE-2 (N)’s performance on a set of test roads that differ
in topology from the training set (Testing roadsRQ2), both in
nominal weather conditions and under real weather scenarios
in the Udacity simulator. To observe both generalization
and robustness improvements, the set of 15 roads (Testing
roadsRQ2) has been designed so that DAVE-2 (N) succeeds
in 10 out of 15 scenarios in nominal conditions. These tests
form the basis for assessing the model’s performance without
exposure to perturbed environments. Next, we apply the image
perturbations identified in RQ1 across randomly generated
roads, using PerturbationDrive to create two new random roads
(Fine-tuning roads) that introduce different driving challenges
from those encountered during the nominal evaluation. These

random roads are designed to test the model’s robustness under
varied and unforeseen conditions. During this phase, we apply
five intensity levels for each type of image perturbation. While
running DAVE-2 (N) to evaluate its robustness under perturbed
environments, the pure-pursuit/PID expert driver operates in
shadow mode, continuously collecting ground truth data.

With the additional perturbed data collected from the ran-
domly generated roads, we conduct one epoch of fine-tuning
on the DAVE-2 model using this new dataset, obtaining
DAVE-2 (FT). Finally, we re-evaluate the DAVE-2 (FT) model
on both nominal roads and real-world weather conditions in
the Udacity simulator. To measure the impact of continuous
learning, we compare DAVE-2 (N) and DAVE-2 (FT) models’
behaviour using the same metrics used to answer RQ1.

E. Results

RQ1 (effectiveness). Table II shows our effectiveness results,
for both ADAS. Concerning semantic segmentation, The left
side of Table II presents the SegFormer model’s performance
on the Testing set (N) under nominal and perturbed conditions,
reporting the average per-class IoU (i.e., the average of the

7



TABLE III: RQ2: Average metrics for original and extended models on testing datasets.

Semantic Segmentation LK/ACC

Overall Non-failing

Average IoU Success rate (%) # OR # OT Time (s) Jitter (%)

Weather Original Extended Weather N FT N FT N FT N FT N FT

nominal 0.663 0.718 nominal 64 78 5 3 0 0 28.30 34.90 2.32 5.20

fog 0.365 0.520 fog 14 57 12 6 0 0 24.50 26.60 4.18 3.93
morning 0.667 0.709 dawn 57 64 6 5 0 0 73.20 24.65 2.56 4.47
overcast 0.669 0.707 dark/overcast 5 85 7 2 0 0 37.25 24.40 2.66 3.33
rain 0.385 0.650 rain 42 78 8 3 0 0 57.05 26.60 3.08 3.35
sunset 0.685 0.748 moonshine 21 78 10 3 1 0 98.35 24.65 2.68 3.98
– – – snow 35 78 9 3 0 0 48.85 27.10 3.08 4.39
– – – starry 21 78 10 3 1 0 98.15 26.90 2.78 3.29

IoU for each class) calculated at each of the five intensity
levels. We use the average (Avg.), standard deviation (Std.),
maximum (Max.), and minimum (Min.) statistics derived from
these values to reflect overall performance and variability.

The Avg. IoU gives an overall assessment, while Std.
shows variability in performance based on intensity. Max. and
Min. IoU show the least and the most effective perturbation
intensities respectively. Perturbations A-III and D-III were
the most disruptive, with Avg. IoUs of 0.41 (-38%), closely
followed by A-I at 0.43 (-35%). In contrast, perturbations like
B-V, C-IV, C-V, and the Graphic patterns (F) category had
little to no effect, as indicated by consistently low Std. and
high Avg. values. At the highest intensities, D-III and A-III
reduced IoU to 0.20 (-70%) and 0.21 (-68%), respectively,
while A-I, G-II, and others produced minimum IoUs below
0.35 (-47%). Perturbations with high Std. values, such as G-
II, showed a wide variance in their impact, with disruption
ranging from 0% to 65%, depending on intensity.

Concerning LK/ACC, the right side of Table II shows the
DAVE-2 model effectiveness under various perturbations in
the Udacity and Donkey Car simulators. We report the average
success rate, standard deviation, completion rate trends over
the five intensities as a histogram, and failure types—either
Out of Road (OR) or Out of Time (OT)—across five intensity
levels. For non-failing scenarios, execution time and driving
jitter are provided to assess the impact on throttle and steering.
Eight perturbations had minimal impact, reducing success rates
by less than 10% in both simulators (e.g., A-II, A-III, B-I, B-
IV). Five others reduced success rates by less than 20%. Nine
perturbations affected simulators differently, reducing success
rates by less than 20% in Donkey Car but by more than 20%
in Udacity (e.g., A-IV, C-I, D-III). Perturbation E-II, G-II, and
G-VI had the largest effect in Donkey Car, lowering success
rates to 46%, while E-III, G-I, and C-II were most disruptive
in Udacity, reducing success rates to as low as 20%.

Failure types were mostly OR, but some perturbations,
like A-I and A-IV, caused more OT failures, especially in
Udacity. Perturbations causing OT failures generally increased
execution time, while those causing OR failures reduced it,

sometimes significantly, as seen with C-I, C-II, and C-III in
Udacity. Driving quality also varied, with higher driving jitter
in Udacity, indicating a less stable model. For this metric, the
most disruptive perturbations were D-III, E-II, and G-VII for
D, and A-I, A-IV, and G-VIII for Udacity.

Finally, the driving jitter is significantly higher in Udacity,
indicating less stable driving. In Donkey Car, the most disrup-
tive perturbations are D-III, E-II, F-V, G-II, and G-VII, while
in Udacity, they are A-I, A-IV, B-II, G-III, and G-VIII, with
no clear overlap between domains.

RQ1 (effectiveness): For both ADAS tasks, most
image perturbations impact the robustness, though
the effects of the same perturbation type vary across
different tasks and ADAS models. For the semantic
segmentation task, the most significant impact (-70%)
was observed with the sample (D-III) perturbation,
while in the LK/ACC task the more robust model was
most affected (-54%) by phase-scrambling (G-II).

RQ2 (generalization). Table III shows the generalization
results. Concerning semantic segmentation, the leftmost sec-
tion of Table III details the effectiveness of the SegFormer
model, trained on the Training set, either in its original form
(original) or after fine-tuning with image perturbations from
the Augmentation set (extended). The model’s performance
is tested on images from both the Testing set (N) (nominal
conditions) and the Testing set (W) (weather domains). For
each scenario, we report the average per-class Intersection
over Union (IoU), allowing a direct comparison of the model’s
performance between the original and extended versions.

The results show that fine-tuning the SegFormer model with
augmented data improves its effectiveness across all weather
conditions, particularly in challenging environments like fog
and rain, as the IoU increases from 0.36 to 0.52 (44%) and
0.38 to 0.65 (71%), respectively. Nominal conditions also see
an improvement from 0.66 to 0.78 (18%), with moderate gains
in morning, overcast, and sunset scenarios.

8



Concerning LK/ACC, the evaluation results in the right
section of Table III show that the effectiveness of DAVE-2,
initially trained on the Training roads (DAVE-2 (N)) and then
fine-tuned on the Fine-tuning roads (DAVE-2 (FT)). Each
row provides the evaluation of the 15 Testing roadsRQ2, both
under nominal conditions (row 1) and simulator-based weather
conditions. The table compares the model effectiveness using
the success rate (with 100% representing success on all 15
roads) and reports the number of failures, categorized by type:
Out of Road and Out of Time. For non-failing scenarios, we
also provide the average execution time and driving jitter.

DAVE-2 (FT) shows a significant improvement in both suc-
cess rates and reduction in OR failures compared to DAVE-2
(N) across all weather conditions. In nominal conditions, the
success rate increases to 78% from an initial 64%, while the
number of failures decreases from 5 to 3, indicating a model
that generalizes better to new roads.

In foggy conditions, the success rate increases from 14%
to 57%, with OR failures decreasing from 12 to 6. For dawn,
the success rate improves from 57% to 64%, and OR failures
drop from 6 to 5. In dark/overcast conditions, the success rate
increases from 5% to 85%, and OR failures fall from 7 to 2. In
rainy conditions, the success rate rises from 42% to 78%, with
OR failures dropping from 8 to 3. Similarly, in moonshine, the
success rate increases from 21% to 78%, while OR failures
reduce from 10 to 3. In snow, the success rate improves from
35% to 78%, and OR failures drop from 9 to 3. Finally, in
starry conditions, the success rate climbs from 21% to 78%,
with OR failures decreasing from 10 to 3.

In terms of OT failures, only moonshine and starry weather
caused one OT failure each, which have been both mitigated
during fine-tuning. Driving jitter shows a slight increase in
most weather conditions after fine-tuning. In dawn, jitter rises
from 2.56% to 4.47%; in snow, it increases from 3.08%
to 4.39%. The increase in jitter is generally minimal, with
the exception of fog, where it shows a slight improvement,
decreasing from 4.18% to 3.93%.

RQ2 (generalization): For both ADAS tasks, fine-
tuning the DNN using image perturbations, improves
the ADAS effectiveness on unseen, simulated, weather
domains, while retaining the original capabilities on
nominal scenarios.

IV. DISCUSSION

A. Effectiveness (RQ1)

Our study shows that image perturbations significantly im-
pact the performance of both modular (semantic segmentation)
and end-to-end (LK/ACC) ADAS systems, with varying effec-
tiveness based on perturbation type and intensity. In the offline
evaluation of the SegFormer model using the vKITTI dataset,
perturbations like D-III Sample and A-III Impulse noise no-
tably degraded performance, reducing IoU from 0.66 to below
0.21 at higher intensities. This confirms the vulnerability of
vision-based models to visual distortions, even with advanced

architectures like transformers. In contrast, perturbations such
as Histogram equalization (G-III), White balance (G-IV), and
all Graphic patterns (F) had little to no impact, suggesting a
greater robustness to global adjustments or artificial patterns.

For the end-to-end LK/ACC system, the perturbations
caused more failures in the Udacity simulator compared to the
Donkey Car simulator, likely due to the distinct car dynamics
between the simulators as Udacity utilizes wheel friction to
move the car, whereas Donkey Car employs a kinematic
model that directly translates the car’s position based on
inputs and current movement. Perturbation False color (G-
I), for example, resulted in an average success rate of only
24% in the former, while 82% in the latter. This highlights
the importance of employing different testing environments
and simulation platforms for cross-validating research results
in ADAS testing, as DNN models may behave differently
between simulators [63], [75], [76]. An interesting finding of
our study is that perturbations impacted the outputs of the
ADAS differently. Most OR failures were triggered by steering
errors of the LK system resulting from visual distortions, while
perturbations like Scale (E-II) and Saturation (G-VI) affected
the ACC system and led to OT failures.

B. Generalization (RQ2)

Fine-tuning the semantic segmentation model with
perturbation-augmented data significantly improved
performance across all weather conditions, particularly
in fog and rain, where IoU increased from 0.36 to 0.52
and from 0.38 to 0.65. This shows that even common,
arguably non-realistic, perturbations enhance resilience to
more naturalistic real-world environmental changes. The
robustness in nominal conditions also improved, asserting
that our retraining pipeline increased the overall robustness
of the ADAS rather than overfitting it to the new conditions.

Similarly, fine-tuning LK/ACC through continuous learning
with real-time perturbations increased the success rates in all
weather scenarios, with an increase of up to 80% in the most
challenging condition (i.e., dark/overcast skybox), with fewer
OT failures. However, our findings also indicated an increase
in driving jitter, resulting in a decrease in control smoothness
for the ADAS post-retraining. These results suggest that
future work for system-level robustness testing of ADAS
should be directed toward balancing both functional and non-
functional requirements, as achieving enhanced robustness in
novel conditions should not come at the cost of reduced
steering precision and a less smooth driving experience.

C. Threats to Validity

1) Internal validity: Several factors may affect the internal
validity of our study, particularly in the design and execution
of the experiments. The use of two simulators with differing
car dynamics and distinct LK/ACC models could introduce
variations in performance unrelated to image perturbations.
To account for this, we report nominal model performance in
each evaluation step.

9



Our computational benchmarks for real-time feasibility
were conducted on an Apple M1 processor. While consumer-
grade hardware was chosen to reflect practical applications,
differences in hardware specifications could affect execution
times and perturbation feasibility in other setups.

We used IoU for semantic segmentation and success rates
for LK/ACC as primary metrics, aggregated across pertur-
bation intensity levels and scenarios. This aggregation might
overlook specific effects at different intensities, which is why
full experimental logs are provided in the replication package
for more detailed analysis.

2) External Validity: Our system-level experiments were
limited to two simulators and focused on Level 2 ADAS,
which may limit the applicability of our findings to other
simulators and higher levels of autonomy (e.g., Level 3 and
Level 4 ADAS in CARLA [77]). However, studies have shown
that there are dozens of simulation platforms available, both
commercially and open-source [78], [79], with no consolidated
omni-comprehensive solution. While our study shows that
the magnitude and occurrence of failures do change across
simulators, this choice does not undermine the core insights
of our study. We will direct further research involving mod-
ular [80] or multi-modal-language-based ADAS [81] could
offer valuable perspectives on the robustness, or potential
vulnerabilities, of future-oriented ADAS technologies.

Our evaluations were conducted in simulated environments,
which may not fully replicate the complexities of real-world
driving conditions. While our perturbations mimic plausible
visual distortions (e.g., weather conditions, noise, and lighting
changes) and the simulated weather domains do represent
realistic phenomena, real-world driving environments involve
more complex scenarios and real-world sensors are subject to
hardware-specific noise and physical degradation that cannot
be fully simulated. As a result, the robustness gains observed
in RQ2 using simulation may not directly translate to improve-
ments in real-world environments.

3) Reproducibility: The entire pipeline used to obtain the
results discussed in this work, including model training, our
library PerturbationDrive, metric calculations, and results, is
available and can be reproduced [39].

V. RELATED WORK

A. Model-level Studies

Most research effort has been directed towards robustness
testing of image classifiers, proposing benchmark datasets of
corrupted images, such as ImageNet-C [7], MNIST-C [43],
and FMNIST-C [82] or augmentation techniques to enhance
the diversity of training data, such as RandAugment [45] and
AugMix [8]. In contrast, we focus on ADAS, where a lack of
DNN robustness can lead to safety-critical failures.

In the ADAS domain, model-level testing efforts predom-
inantly target a restricted range of perturbations. Tools such
as DeepXplore [15] use neuron coverage metrics to uncover
misbehaviours in DNNs by applying only a few image per-
turbations types, such as lighting effects and occlusion by
single or multiple small rectangles. DeepTest [16] employs

perturbation types like rotation, translation, and shear, which
are unlikely to induce realistic ADAS misbehaviours since they
do not correspond to realistic driving scenarios.

Differently, in our work, we retrieved the most complete
list of image perturbations from existing literature. We filtered
out those that do not produce valid driving images, as well as
those that are too computationally expensive for system-level
testing. Furthermore, our research extends beyond robustness
evaluation by investigating the potential of common image
perturbations to enhance the generalizability of ADAS during
domain adaptation and retraining campaigns.

B. System-level Studies

Among the adversarial attack techniques, Wu et al. [35]
developed a real-time adversarial attack on an end-to-end
driving model, which can force the vehicle to deviate from
its designated lane. Similarly, Yoon et al. [36] introduced
an online image attack framework, which utilizes a binary
decision boundary to decide when to launch attacks.

Other research leveraged image perturbations to create ef-
ficient runtime performance prediction modules for ADAS,
applying these perturbations at a system level to evaluate
potential errors rather than to execute driving maneuvers. For
example, Luan et al. [38] introduce nine specific perturbations
to each input frame, and calculates an anomaly score by com-
paring the driving commands from perturbed and unperturbed
images. MarMot [14] implemented a runtime monitoring
framework using five domain-specific metamorphic relations
to influence the ADAS output, allowing for the generation of
confidence scores by comparing the predictions from original
and altered images at each frame. DeepManeuver [37] pro-
poses a state-aware robustness testing framework, using road
perturbations to expose failures in end-to-end driving models.

Our study complements these efforts by focusing on both
modular and end-to-end ADAS, applying common perturba-
tions during system-level evaluation using two simulators.
While existing works only target adversarial attacks, specific
perturbation types, and prediction reliability, our research
systematically applies a broad range of image perturbations,
road tracks, and multiple metrics, including success rates,
failure types, and driving jitter, and domain generalization.

VI. CONCLUSIONS AND FUTURE WORK

Our study systematically evaluates the robustness of vision-
based ADAS for perception tasks using 32 image pertur-
bations from existing literature and assessing their impact
at both the model level (semantic segmentation) and sys-
tem level (LK/ACC). We found that perturbations such as
Phase scrambling were particularly disruptive, significantly
reducing performance across domains, while others such as
ZigZag patterns had minimal effects. This evaluation high-
lights that perturbations can affect ADAS differently depend-
ing on whether they target offline perception tasks or real-
time driving scenarios. Our findings further demonstrate that
applying perturbation-based data augmentation and continuous
learning improves ADAS robustness, particularly in adverse

10



weather conditions, such as fog and rain. This approach not
only increased robustness to real-world environmental changes
but also improved generalization on new scenarios under
nominal conditions, emphasizing the value of perturbations in
enhancing perception models’ robustness.

In our future work we will investigate white-box adaptive
perturbations that are informed by the confidence of the
ADAS, or its attention patterns. We will also consider extend-
ing the study to additional ADAS and autonomous driving
stacks, such as Autoware [83] or Apollo [84]. Moreover, we
will evaluate PerturbationDrive for inducing perturbations be-
yond simulation environments, considering physical vehicles.

ACKNOWLEDGEMENTS

This research was funded by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy.

REFERENCES

[1] S. Tang, Z. Zhang, Y. Zhang, J. Zhou, Y. Guo, S. Liu, S. Guo, Y. Li,
L. Ma, Y. Xue, and Y. Liu, “A survey on automated driving system
testing: Landscapes and trends,” CoRR, vol. abs/2206.05961, 2022.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[3] Y. Li and L. Xu, “Panoptic perception for autonomous driving: A
survey,” 2024.

[4] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[5] S. Dodge and L. Karam, “Understanding how image quality affects deep
neural networks,” 2016.

[6] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and
F. A. Wichmann, “Generalisation in humans and deep neural networks,”
2020.

[7] D. Hendrycks and T. Dietterich, “Benchmarking neural network robust-
ness to common corruptions and perturbations,” 2019.

[8] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” 2020.

[9] E. Rusak, L. Schott, R. S. Zimmermann, J. Bitterwolf, O. Bringmann,
M. Bethge, and W. Brendel, “A simple way to make neural networks
robust against diverse image corruptions,” 2020.

[10] J. Laermann, W. Samek, and N. Strodthoff, Achieving Generalizable
Robustness of Deep Neural Networks by Stability Training. Springer
International Publishing, 2019, p. 360–373.

[11] E. Rusak, L. Schott, R. Zimmermann, J. Bitterwolf, O. Bringmann,
M. Bethge, and W. Brendel, “Increasing the robustness of dnns against
image corruptions by playing the game of noise,” 01 2020.

[12] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 IIPhDW, 2018,
pp. 117–122.

[13] A. Stocco, B. Pulfer, and P. Tonella, “Mind the Gap! A Study on the
Transferability of Virtual Versus Physical-World Testing of Autonomous
Driving Systems,” IEEE Transactions on Software Engineering, vol. 49,
no. 04, pp. 1928–1940, apr 2023.

[14] J. Ayerdi, A. Iriarte, P. Valle, I. Roman, M. Illarramendi, and A. Arrieta,
“Metamorphic runtime monitoring of autonomous driving systems,”
2023.

[15] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1–18.

[16] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
303–314.

[17] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu,
“Deepbillboard: Systematic physical-world testing of autonomous driv-
ing systems,” 2018.

[18] F. U. Haq, D. Shin, S. Nejati, and L. Briand, “Comparing offline and
online testing of deep neural networks: An autonomous car case study,”
in Proceedings of 13th IEEE International Conference on Software
Testing, Verification and Validation, ser. ICST ’20. IEEE, 2020.

[19] F. Ul Haq, D. Shin, S. Nejati, and L. Briand, Empirical Software
Engineering, 2021.

[20] A. Stocco, B. Pulfer, and P. Tonella, “Model vs system level testing
of autonomous driving systems: a replication and extension study,”
Empirical Software Engineering, vol. 28, no. 3, p. 73, May 2023.

[21] N. Neelofar and A. Aleti, “Identifying and explaining safety-critical
scenarios for autonomous vehicles via key features,” ACM Trans. Softw.
Eng. Methodol., vol. 33, no. 4, Apr. 2024.

[22] ——, “Towards reliable ai: Adequacy metrics for ensuring the quality
of system-level testing of autonomous vehicles,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024.

[23] V. Crespo-Rodriguez, Neelofar, and A. Aleti, “Pafot: A position-based
approach for finding optimal tests of autonomous vehicles,” in Pro-
ceedings of the 5th ACM/IEEE International Conference on Automation
of Software Test (AST 2024), ser. AST ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 159–170.

[24] C. Lu, S. Ali, and T. Yue, “Epitester: Testing autonomous vehicles with
epigenetic algorithm and attention mechanism,” IEEE Transactions on
Software Engineering, pp. 1–19, 2024.

[25] C. Lu, T. Yue, M. Zhang, and S. Ali, “Deepqtest: Testing autonomous
driving systems with reinforcement learning and real-world weather
data,” 2023.

[26] Q. Pan, T. Wang, P. Arcaini, T. Yue, and S. Ali, “Safety assessment
of vehicle characteristics variations in autonomous driving systems,”
2023. [Online]. Available: https://arxiv.org/abs/2311.14461

[27] F. Klück, Y. Li, J. Tao, and F. Wotawa, “An empirical comparison
of combinatorial testing and search-based testing in the context of
automated and autonomous driving systems,” Information and Software
Technology, vol. 160, p. 107225, 2023.

[28] F. Klück, D. Sumann, and F. Wotawa, “Utilizing genetic algorithms for
generating critical scenarios for testing autonomous driving functions,”
in 2024 IEEE International Conference on Artificial Intelligence Testing
(AITest), 2024, pp. 73–80.

[29] D. Humeniuk, F. Khomh, and G. Antoniol, “Ambiegen: A search-
based framework for autonomous systems testingimage 1,” Science of
Computer Programming, vol. 230, p. 102990, 2023.

[30] J. Wu, C. Lu, A. Arrieta, T. Yue, and S. Ali, “Reality bites: Assessing the
realism of driving scenarios with large language models,” in Proceedings
of the 2024 IEEE/ACM First International Conference on AI Foundation
Models and Software Engineering, ser. FORGE ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 40–51.

[31] P. Arcaini and A. Cetinkaya, “Crag – a combinatorial testing-based
generator of road geometries for ads testing,” Science of Computer
Programming, vol. 238, p. 103171, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642324000947

[32] T. Laurent, S. Klikovits, P. Arcaini, F. Ishikawa, and A. Ventresque,
“Parameter coverage for testing of autonomous driving systems under
uncertainty,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 3, Apr.
2023. [Online]. Available: https://doi.org/10.1145/3550270

[33] F. Khan, H. Anwar, and D. Pfahl, “Simulation-based safety testing
of automated driving systems,” in Product-Focused Software Process
Improvement, R. Kadgien, A. Jedlitschka, A. Janes, V. Lenarduzzi, and
X. Li, Eds. Cham: Springer Nature Switzerland, 2024, pp. 133–138.

[34] ——, “A process for scenario prioritization and selection in simulation-
based safety testing of automated driving systems,” in Product-Focused
Software Process Improvement, R. Kadgien, A. Jedlitschka, A. Janes,
V. Lenarduzzi, and X. Li, Eds. Cham: Springer Nature Switzerland,
2024, pp. 89–99.

[35] D. Liu, J. Zhao, A. Xi, X. H. Chao Wang, K. Lai, and C. Liu, “Data
augmentation technology driven by image style transfer in self-driving
car based on end-to-end learning,” Computer Modeling in Engineering
& Sciences, vol. 122, no. 2, pp. 593–617, 2020.

[36] H.-J. Yoon, H. Jafarnejadsani, and P. Voulgaris, “Learning when to use
adaptive adversarial image perturbations against autonomous vehicles,”

11

https://arxiv.org/abs/2311.14461
https://www.sciencedirect.com/science/article/pii/S0167642324000947
https://doi.org/10.1145/3550270


IEEE Robotics and Automation Letters, vol. 8, no. 7, pp. 4179–4186,
2023.

[37] M. von Stein, D. Shriver, and S. Elbaum, “Deepmaneuver: Adversarial
test generation for trajectory manipulation of autonomous vehicles,”
IEEE Transactions on Software Engineering, vol. 49, no. 10, pp. 4496–
4509, 2023.

[38] S. Luan, Z. Gu, and S. Wan, “Efficient performance prediction of end-
to-end autonomous driving under continuous distribution shifts based
on anomaly detection,” Journal of Signal Processing Systems, vol. 95,
no. 12, pp. 1455–1468, 12 2023.

[39] “Replication package,” https://anonymous.4open.science/r/
PerturbationDrive-BE31/README.md, 2024.

[40] “Scopus: Abstract and Citation Database,” https://www.scopus.com,
accessed: 2024-02-08.

[41] “arXiv: e-Print Archive,” https://arxiv.org, accessed: 2024-02-08.
[42] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S.

Ecker, M. Bethge, and W. Brendel, “Benchmarking robustness in object
detection: Autonomous driving when winter is coming,” 2020.

[43] N. Mu and J. Gilmer, “Mnist-c: A robustness benchmark for computer
vision,” 2019.

[44] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in 2019 IEEE/CVF
CVPR, 2019, pp. 113–123.

[45] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical
automated data augmentation with a reduced search space,” 2019.

[46] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,
and W. Brendel, “Imagenet-trained cnns are biased towards texture;
increasing shape bias improves accuracy and robustness,” CoRR, vol.
abs/1811.12231, 2018.

[47] D. Bashkirova, B. Usman, and K. Saenko, “Adversarial self-defense for
cycle-consistent gans,” in Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc., 2019.

[48] W. Zhang, “Generating adversarial examples in one shot with image-
to-image translation gan,” IEEE Access, vol. 7, pp. 151 103–151 119,
2019.

[49] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
ASE, ser. ASE ’18. Association for Computing Machinery, 2018, p.
132–142.

[50] Udacity, “Udacity self-driving car simulator,” https://github.com/udacity/
self-driving-car-sim, 2021, accessed: [2024-01-15].

[51] T. Kramer, “Sdsandbox,” https://github.com/tawnkramer/sdsandbox,
2022.

[52] U. D. of Transportation, “A framework for automated driving system
testable cases and scenarios,” https://rosap.ntl.bts.gov/view/dot/38824/
dot 38824 DS1.pdf, 2018.

[53] ——, “Standing general order on crash reporting for level 2 advanced
driver assistance systems,” https://www.nhtsa.gov/sites/nhtsa.gov/files/
2022-06/ADAS-L2-SGO-Report-June-2022.pdf, 2022.

[54] Baidu Inc., “Baidu apolloscapes dataset,” https://apolloscape.auto/index.
html, 2018, accessed: [2024-01-15].

[55] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Álvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation with
transformers,” CoRR, vol. abs/2105.15203, 2021.

[56] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on CVPR, 2016.

[57] “Papers with code, cityscapes segmentation bench-
marks.” [Online]. Available: https://paperswithcode.com/sota/
semantic-segmentation-on-cityscapes

[58] S. C. Lambertenghi and A. Stocco, “Assessing quality metrics for
neural reality gap input mitigation in autonomous driving testing,” in
Proceedings of 17th IEEE International Conference on Software Testing,
Verification and Validation, ser. ICST ’24. IEEE, 2024, p. 12 pages.

[59] J. Xiao, Z. Xu, S. Lan, Z. Yu, A. Yuille, and A. Anandkumar, “1st
place solution of the robust vision challenge 2022 semantic segmentation
track,” 2022.

[60] G. Rizzoli, F. Barbato, and P. Zanuttigh, “Multimodal semantic segmen-
tation in autonomous driving: A review of current approaches and future
perspectives,” Technologies, vol. 10, no. 4, 2022.

[61] A. Liu and Z. Wang, “Cv 3315 is all you need : Semantic segmentation
competition,” 2022.

[62] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars.” CoRR,
vol. abs/1604.07316, 2016.

[63] M. Biagiola, A. Stocco, V. Riccio, and P. Tonella, “Two is better than
one: Digital siblings to improve autonomous driving testing,” 2023.

[64] G. Jahangirova, A. Stocco, and P. Tonella, “Quality metrics and oracles
for autonomous vehicles testing,” in Proceedings of 14th IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ser.
ICST ’21. IEEE, 2021.

[65] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of ASE ’18, ser. ASE 2018.
New York, NY, USA: ACM, 2018, pp. 132–142.

[66] M. Biagiola and P. Tonella, “Boundary state generation for testing and
improvement of autonomous driving systems,” 2023.

[67] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy
for multi-object tracking analysis,” in CVPR, 2016.

[68] “Unity,” https://unity.com/, 2024, accessed: 11-01-2024.
[69] “Nvidia PhysX,” https://developer.nvidia.com/physx-sdk, 2022.
[70] H. Zhou, X. Chen, G. Zhang, and W. Zhou, “Deep Reinforcement

Learning for Autonomous Driving by Transferring Visual Features,”
in 2020 25th International Conference on Pattern Recognition (ICPR),
2021.

[71] A. Viitala, R. Boney, and J. Kannala, “Learning to Drive Small Scale
Cars from Scratch,” CoRR, vol. abs/2008.00715, 2020.

[72] Python Software Foundation, “pyperf,” https://github.com/psf/pyperf,
2024, accessed: 2024-01-22.

[73] “nvidia/segformer-b0-finetuned-cityscapes-640-1280 · hugging face,”
Huggingface.co, 2017. [Online]. Available: https://huggingface.co/
nvidia/segformer-b0-finetuned-cityscapes-640-1280

[74] Alhaija, Hassan, Mustikovela, Siva, Mescheder, Lars, Geiger, Andreas,
Rother, and Carsten, “Augmented reality meets computer vision: Effi-
cient data generation for urban driving scenes,” IJCV, 2018.

[75] M. H. Amini, S. Naseri, and S. Nejati, “Evaluating the impact of flaky
simulators on testing autonomous driving systems,” Empirical Softw.
Engg., vol. 29, no. 2, feb 2024.

[76] M. Borg, R. B. Abdessalem, S. Nejati, F.-X. Jegeden, and D. Shin,
“Digital twins are not monozygotic–cross-replicating adas testing in two
industry-grade automotive simulators,” in ICST ’21. IEEE, 2021.

[77] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun,
“CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938,
2017.

[78] Y. Li, W. Yuan, S. Zhang, W. Yan, Q. Shen, C. Wang, and M. Yang,
“Choose your simulator wisely: A review on open-source simulators for
autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 9,
no. 5, p. 4861–4876, May 2024.

[79] Y. Koroglu and F. Wotawa, “Towards a review on simulated adas/ad
testing,” in 2023 IEEE/ACM International Conference on Automation of
Software Test (AST), 2023, pp. 112–122.

[80] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Trans-
fuser: Imitation with transformer-based sensor fusion for autonomous
driving,” Pattern Analysis and Machine Intelligence (PAMI), 2022.

[81] Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and
H. Zhao, “Drivegpt4: Interpretable end-to-end autonomous driving via
large language model,” 2024.

[82] M. Weiss and P. Tonella, “Simple techniques work surprisingly well for
neural network test prioritization and active learning,” in Proceedings of
the 31th ACM SIGSOFT, 2022.

[83] “Autoware,” https://autoware.org, 2024.
[84] “Baidu Apollo,” https://github.com/ApolloAuto/apollo/, 2024.

12

https://anonymous.4open.science/r/PerturbationDrive-BE31/README.md
https://anonymous.4open.science/r/PerturbationDrive-BE31/README.md
https://www.scopus.com
https://arxiv.org
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/tawnkramer/sdsandbox
https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf
https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://apolloscape.auto/index.html
https://apolloscape.auto/index.html
https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes
https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes
https://unity.com/
https://developer.nvidia.com/physx-sdk
https://github.com/psf/pyperf
https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-640-1280
https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-640-1280
https://autoware.org
https://github.com/ApolloAuto/apollo/

