
PerturbationDrive: A Framework for Perturbation-Based

Testing of ADAS

Hannes Leonhard

Technical University of Munich, Germany

Stefano Carlo Lambertenghi

Technical University of Munich & fortiss, Germany

Andrea Stocco

Technical University of Munich & fortiss, Germany

Abstract

Advanced driver assistance systems (ADAS) often rely on deep neural networks
to interpret driving images and support vehicle control. Although reliable
under nominal conditions, these systems remain vulnerable to input variations
and out-of-distribution data, which can lead to unsafe behavior.

We present PerturbationDrive, a testing framework to perform robustness
and generalization testing of ADAS. The framework features more than
30 image perturbations from the literature that mimic changes in weather,
lighting, or sensor quality and extends them with dynamic and attention-
based variants. PerturbationDrive supports both offline evaluation on static
datasets and online closed-loop testing in different simulators. Additionally,
the framework integrates with procedural road generation and search-based
testing, enabling systematic exploration of diverse road topologies combined
with image perturbations. Together, these features allow PerturbationDrive
to evaluate robustness and generalization capabilities of ADAS across varying
scenarios, making it a reproducible and extensible framework for systematic
system-level testing.

Keywords: ADAS testing, Autonomous Driving, Image perturbations,
Search-based Testing, DNN testing.

Preprint submitted to Science of Computer Programming September 2, 2025



Metadata

Table 1: Code metadata

Code metadata description Please fill in this column
Current code version v1.0.0
Permanent link to code/repository
used for this code version

https://github.com/

ast-fortiss-tum/

perturbation-drive.git

Legal Code License MIT
Code versioning system used git
Software code languages, tools, and
services used

Python 3.9, Unity (C#), pygame

Compilation requirements, operating
environments and dependencies

Unix (x86/arm)

Link to developer documenta-
tion/manual

https://github.com/

ast-fortiss-tum/

perturbation-drive/blob/

Replication/README.md

Support email for questions lambertenghi@fortiss.org

1. Introduction

Advanced driver assistance systems (ADAS) use perception modules to
interpret driving environments in real time for tasks such as object detection,
segmentation, and control regression [1, 2, 3, 4, 5]. Deep neural networks
(DNNs) represent the standard methodology for ADAS perception and cur-
rently deliver the best reported performance. Although accurate under
nominal conditions, DNNs often fail to generalize to unseen domains. Ex-
haustive data collection is infeasible, and small shifts in lighting, weather,
or viewpoint can cause perception errors [3, 6, 7] that can produce unsafe
driving behaviors.

Model-level testing provides insights but ignores the closed-loop nature
of driving, where perception continuously affects control [8, 9]. Large-scale
validation requires simulators, since real-world testing is unsafe and would
demand million of miles [10]. Platforms such as CARLA [11], Udacity [12],
DonkeyCar [13], and NVIDIA DriveSim [14] support reproducible evaluation,

2

https://github.com/ast-fortiss-tum/perturbation-drive.git
https://github.com/ast-fortiss-tum/perturbation-drive.git
https://github.com/ast-fortiss-tum/perturbation-drive.git
https://github.com/ast-fortiss-tum/perturbation-drive/blob/Replication/README.md
https://github.com/ast-fortiss-tum/perturbation-drive/blob/Replication/README.md
https://github.com/ast-fortiss-tum/perturbation-drive/blob/Replication/README.md
https://github.com/ast-fortiss-tum/perturbation-drive/blob/Replication/README.md
lambertenghi@fortiss.org


but realistic adverse conditions often require custom assets. Perturbation-
based methods address this gap by directly manipulating images, ensuring
portability across datasets and simulators.

In our previous work, we presented PerturbationDrive [15], a library that
integrates several perturbations from the literature for vision-based ADAS
testing [16, 17, 18, 19, 20, 21, 22]. In this work, we extended PerturbationDrive
in several directions. First, we implemented dynamic [23] and attention-based
variants [24, 25] of the original perturbations. Additionally, we integrate
perturbations into search-based testing for combined scenario–perturbation
exploration [26, 27, 28, 29] and we added support to the CARLA simulator.
PerturbationDrive supports both offline (component-level) [30, 31, 32] and
online (system-level) evaluation [9, 8, 33, 34, 35] to enable systematic and
reproducible evaluation of ADAS, covering both robustness and generalization
across diverse driving scenarios.

2. The PerturbationDrive Framework

2.1. Objectives

The goal of PerturbationDrive is to provide a systematic framework for
evaluating ADAS under controlled image perturbations and procedurally gen-
erated road scenarios. It consolidates perturbation techniques into a library
with standardized configuration for type, intensity, and random seed, ensur-
ing reproducibility and comparability across ADAS models and simulation
environments. Beyond offline testing, PerturbationDrive supports closed-
loop evaluation in simulators and integrates perturbations with procedural
road generation, enabling both robustness benchmarking and generalization
analysis in unseen conditions.

2.2. System Architecture

The framework comprises three components (Figure 1): the Perturbation
Controller, the Simulator Adapter, and the Benchmarking Controller.

2.2.1. Perturbation Controller

The Perturbation Controller implements a library of image perturbations
available from the literature [16, 17, 18, 19, 20, 21, 22]. Perturbations are
grouped into three categories:
i) Static perturbations: frame-level modifications such as noise, blur, defo-
cus, weather overlays, geometric distortions, affine transformations, graphic

3



Figure 1: Overview of the PerturbationDrive framework.

patterns, and color or tone adjustments.
ii) Dynamic perturbations: temporal overlays (e.g., rain, snow, smoke,
glare) that preserve consistency across frames.
iii) Attention-based perturbations: targeted distortions applied to salient
regions identified by GradCAM or similar methods [36, 37]. All perturbations
inherit from a common base class that defines the transformation interface
for consistency and extensibility.

2.2.2. Simulator Adapter

The Simulator Adapter bridges the perturbation library and simulators.
It intercepts raw camera frames, applies perturbations, and forwards mod-
ified frames to the ADAS under test. Current implementations support
Udacity [38], DonkeyCar [39], and CARLA [11]; additional platforms (e.g.,
BeamNG [40], NVIDIA DriveSim [14]) can be added by implementing the
adapter interface. The adapter also integrates with procedural road generation
to produce diverse topologies and enforces a per-frame processing budget to
maintain real-time execution at 30 FPS.

2.2.3. Benchmarking Controller

The Benchmarking Controller manages offline and online experiments [8].
In offline mode, it perturbs datasets and compares model outputs with
ground truth or reference predictions. In online mode, it supervises closed-
loop simulations, injecting perturbations in real time, logging frames, control
actions, and vehicle states, and detecting failures such as collisions or lane
departures. All parameters and execution traces are recorded to ensure
reproducibility and enable replay of failure-inducing cases.

4



2.3. APIs and Modularity

The user-facing API supports three modes:
i) Image-level: perturb a single image for visualization or debugging.
ii) Dataset-level: perturb entire datasets to benchmark classifiers, detectors,
or segmentation models.
iii) Online: perturb live simulator streams for end-to-end system evaluation.

Users specify perturbation type and intensity in all modes. The frame-
work records parameters and random seeds to ensure consistent application.
Modularity is achieved by separating concerns: the Perturbation Controller
defines transformations, the Simulator Adapter ensures simulator-agnostic
integration, and the Benchmarking Controller handles logging and execution.
This layered design facilitates extension with new perturbations or simulators
without altering existing code.

2.4. Search-Based Testing Integration

The combined space of perturbation type, intensity, and road scenario is
too large for exhaustive evaluation. To address this, PerturbationDrive incor-
porates search-based software testing (SBST). Perturbations and scenarios
are treated as search parameters, and candidate tests are generated using
fitness functions such as input coverage, distance to failure, or diversity of
cases. SBST integration prioritizes combinations most likely to expose system
failures. Treating perturbations as first-class search variables enables unified
exploration of environmental diversity and perceptual distortions, moving
robustness evaluation beyond ad hoc perturbation studies toward systematic
discovery of safety-critical failures in ADAS.

3. Implementation

3.1. Static Perturbations

PerturbationDrive provides 38 already implemented static perturbations.
They are grouped into eight categories:
A) Noise perturbations, which mimic sensor or compression artifacts, includ-
ing Gaussian, Poisson, impulse (salt-and-pepper), JPEG, and speckle noise.
B) Blur and focus perturbations, which reduce image sharpness through
defocus, motion, zoom, Gaussian, or low-pass blur.
C) Weather perturbations, which simulate adverse conditions such as frosted
glass, snow, fog, brightness shifts, and contrast changes.

5



 

t=5st=0st=5st=0s

B-IA-III C-I

E-IVE-I E-V

BA C

(a) Valid.

 

t=5st=0st=5st=0s

B-IA-III C-I

E-IVE-I E-V

BA C(b) Invalid.

Figure 2: Examples of valid and invalid static perturbation types.

D) Distortion perturbations, which deform spatial structure via elastic defor-
mation, pixelation, region blending, or sharpening.
E) Affine transformations, which alter global geometry through shear, scaling,
translation, rotation, or reflection.
F) Graphic pattern perturbations, which overlay artificial structures such as
splatter, dotted lines, zig-zags, edge maps, or cutout masks.
G) Color and tone adjustments, which change appearance by applying false
colors, scrambling, histogram equalization, white balance, greyscale, satura-
tion, or posterization.
H) Generative perturbations, which use deep models such as CycleGAN for
domain remapping or style transfer for artistic overlays.

To ensure meaningful robustness evaluation, we manually inspected each
perturbation and selected a standard set that preserves scene semantics and
produces valid driving images (Figure 2a). Transformations that distort the
scene unrealistically (e.g., removing the road, vertical flips) were excluded
from the default configuration (Figure 2b).

3.1.1. Intensity Levels

Perturbation intensity was calibrated by visual inspection. Each per-
turbation was gradually increased until the scene was no longer reliably
interpretable by a human observer. The maximum valid intensity was set
just below this threshold, and the range was divided into five uniform levels.

6



 

t=5st=0st=5st=0s

B-IA-III C-I

E-IVE-I E-V

BA C

(a) Overlay.

 

t=5st=0st=5st=0s

B-IA-III C-I

E-IVE-I E-V

BA C

(b) Particle.

Figure 3: Examples of overlay-based and Particle-based dynamic perturbation types.

3.2. Dynamic Perturbations

Dynamic perturbations in PerturbationDrive are implemented in two
forms: video overlays and particle-based effects. These approaches maintain
temporal consistency and remain simulator-agnostic since overlays are applied
at the frame level rather than through engine-specific weather models.

3.2.1. Overlay-based effects

Each effect (e.g., rain streaks, snow, smoke, birds, glare) is represented by
a pre-recorded green-screen video clip. During evaluation, chroma-key removal
sets green pixels to transparent, blending only the perturbation elements into
the scene. Temporal consistency is ensured using a CircularBuffer, which
aligns simulator frames with the correct overlay frame, preserving natural
motion such as continuous snowfall or rain streaks. Users may also supply
custom overlays without coding: any green-screen video can be automatically
processed and injected into the simulation.
An example spanning five seconds of simulation is shown in Figure 3a.

3.2.2. Particle-based effects

In addition to overlays, PerturbationDrive implements perturbations in-
spired by how raindrops or snowflakes interact with a physical camera lens.
When precipitation strikes the lens, droplets or flakes attach to the glass, slowly
accumulate, and then drift across the field of view under gravity and airflow.
This creates localized occlusions that move over time, degrading visibility in
a way that global weather overlays cannot reproduce. In PerturbationDrive,
these effects are simulated by representing each droplet or flake as a particle
with position, size, and velocity updated stochastically at every frame. Initial
positions are sampled randomly (or from salient regions in the attention-
guided variant), and their trajectories evolve according to random lateral
drift, downward motion, and size adjustments. A CircularBuffer is used to
maintain temporal consistency, ensuring that droplets and flakes persist and

7



 

t=5st=0st=5st=0s

B-IA-III C-I

E-IVE-I E-V

BA C

Figure 4: Example of attention-based perturbation.

move smoothly across frames instead of flickering. For rain, particles appear
as semi-transparent streaks that may merge or slide, mimicking water on glass.
For snow, flakes fall more slowly with wider drift, producing accumulation-like
patterns. This particle-based design enables realistic simulation of precipita-
tion on camera lenses, complementing static and overlay-based perturbations.
An example spanning five seconds of simulation is shown in Figure 3b.

3.3. Attention-Based Perturbations

Attention-based perturbations in PerturbationDrive apply changes only to
the parts of the image that the system under test considers important [36, 37].

The process begins with saliency extraction. By default, PerturbationDrive
uses GradCAM to create a saliency map, which highlights the pixels the DNN
relies on most. The map is resized to the input resolution and normalized
to values between 0 and 1. Other attribution methods can be substituted as
long as they return a pixel-level saliency map.

From this saliency map, a mask is generated. Pixels can be selected in
several ways: keeping all values above a fixed threshold ϵ, selecting the top-n%
of values (high-saliency regions such as lane markings or vehicles), or selecting
the bottom-n% (low-saliency regions such as sky or trees). A random baseline
can also be used, where the same number of pixels is chosen at random.

To ensure valid masks, small scattered areas are removed, and optional
morphological closing is applied to form continuous regions. Soft masks
with alpha blending can also be used, allowing gradual rather than sharp
boundaries. In practice, for ADAS, background regions and ground outside
the drivable surface are usually not relevant, so masks are focused on road
areas and traffic participants.

Any static perturbation from the library (e.g., Gaussian noise, blur, occlu-
sion, brightness change) can then be applied to the pixels within the mask.
The final perturbed image I∗ is computed as

I∗ = M ⊙ Î + (1 −M) ⊙ I,

8



where I is the original image, Î the perturbed image, and M the mask. This
ensures that only masked areas are changed, while the rest of the image remains
untouched. Saliency maps can be cached for offline evaluation or recomputed
periodically during online testing. Masks may also be reused across short
horizons to meet real-time constraints. An example of an attention-based
perturbation is shown in Figure 4 (A: saliency map, B: original image, C:
Perturbed image).

In addition to static masking, PerturbationDrive extends attention-based
perturbations with dynamic precipitation effects guided by saliency. Prior
work, such as AdvRain [41], has shown that placing synthetic raindrops
at salient regions can create adversarial perturbations that mislead vision
systems. Our approach differs in that the precipitation is not static: droplets
are generated at salient regions on the lens and then drift until leaving the
field of view, while snowflakes are emitted from salient regions and repeatedly
cover important areas.

3.4. Perturbations in Search-Based Testing

Each test case is represented as a tuple (road scenario, perturbation type,
intensity). Road scenarios are generated procedurally, while perturbations
are applied to the camera stream.

A key requirement is an ordering of perturbations by effect strength;
otherwise, type would be categorical, complicating evolutionary search. To
address this, we established a ranking based on an empirical study across
2,450 scenarios (49 perturbations × 5 intensity levels × 10 roads) using the
Udacity and DonkeyCar simulators, measuring degradation of an E2E lane-
keeping and Advanced Cruise Control model, DAVE-2 [42]. Perturbations
were sorted by the average failure rate (lane departures and speed changes)
induced on the DAVE-2 model. This ranking allows perturbation type to be
treated as an ordinal parameter in the SBST search space. The Benchmarking
Controller integrates this ordering with the search-based testing framework
OpenSBT [29]. During each iteration, candidate test cases are generated by
combining road scenarios with perturbation parameters. Each case is executed
in simulation, with outcomes (trajectories, collisions, lane departures) logged
and converted into a fitness value. These fitness values guide the evolutionary
search toward diverse and failure-inducing cases.

9



4. Usage

4.1. Installation

PerturbationDrive is available as a Python package. After cloning the
repository and installing dependencies:

git clone https://github.com/ast-fortiss-tum/perturbation-drive.git

cd perturbation-drive

pip install -r requirements.txt

The library can be used by importing perturbation functions through the
ImagePerturbation manager, or via the included simulator test scripts.

4.2. Offline Evaluation

Direct function calls. All perturbations are available as Python functions that
take an image and an intensity parameter. For example:

from perturbationdrive import gaussian_noise, fog_filter

import cv2

image = cv2.imread("image.png", cv2.IMREAD_UNCHANGED)

perturbed = gaussian_noise(3, image.copy()) # intensity = 3

cv2.imwrite("gaussian.png", perturbed)

This approach is suitable for visualizing or debugging single perturbations.
A minimal example script is provided: test standalone perturbations.py.

Manager-based interface. Multiple perturbations can also be applied using
the ImagePerturbation class, which dispatches calls by perturbation name:

from perturbationdrive import ImagePerturbation

import cv2

image = cv2.imread("0001.png", cv2.IMREAD_UNCHANGED)

perturbation_names = ["gaussian_noise", "fog_filter", "snow_filter"]

controller = ImagePerturbation(funcs=perturbation_names)

for p in perturbation_names:

out = controller.perturbation(image.copy(), p, intensity=2)

cv2.imwrite(f"0001_{p}.png", out)

A minimal example script is provided: test perturbation manager.py.

10



4.3. Online Evaluation

Closed-loop perturbations in simulators are demonstrated by two minimal
scripts:

• test sim udacity.py for the Udacity simulator,

• test sim donkey.py for DonkeyCar.

Both scripts connect to the simulator, intercept camera frames, apply
perturbations, and feed them to the model under test. The perturbation type
and intensity are defined inside each script and can be modified by editing the
corresponding calls to ImagePerturbation. A CARLA simulator adapter is
provided in examples/carla/.

4.4. Extending the Library

Adding a perturbation. New perturbations can be added by defining a
function in perturbationdrive/ that follows the interface func(intensity,

image). They can also be registered for use with ImagePerturbation.
Adding a simulator. Additional simulators can be integrated by follow-

ing the structure of test sim udacity.py and test sim donkey.py, where
perturbations are injected into the frame-processing loop.

5. Expected Impact and Significance

PerturbationDrive provides a complete experimental environment for as-
sessing the reliability of ADAS and the interplay between robustness and
generalizability under controlled conditions. It supports systematic compar-
isons of image perturbations and road topology across diverse ADAS and
simulation environments.

Compared to prior testing frameworks, PerturbationDrive offers the most
comprehensive integration of evolutionary test generation with image per-
turbation. Its automated workflows minimize manual coding effort while
ensuring reproducibility and extensibility. We hope that the tool will serve
as an accelerator for researchers, students, and practitioners, enabling them
to conduct reproducible robustness evaluations through intuitive interfaces
that lowers entry barriers and facilitates both experimentation and analysis.

11



6. Conclusions and Future Work

We presented PerturbationDrive, a framework that combines image per-
turbations with evolutionary algorithms to systematically assess the quality
of DNN-based ADAS. By integrating existing perturbations within a reusable
framework, the tool enables automated and reproducible testing across mul-
tiple simulators. Future work will focus on enhancing the flexibility and
extensibility of the framework, enabling seamless integration of custom ADAS,
datasets, and generative perturbations, thus broadening its applicability for
both research and practice.

7. Acknowledgments

This work was supported by the Bavarian Ministry of Economic Affairs,
Regional Development, and Energy.

References

[1] S. Tang, Z. Zhang, Y. Zhang, J. Zhou, Y. Guo, S. Liu, S. Guo, Y.-F. Li,
L. Ma, Y. Xue, Y. Liu, A Survey on Automated Driving System Testing:
Landscapes and Trends, ACM Trans. Softw. Eng. Methodol. 32 (5) (Jul.
2023). doi:10.1145/3579642.

[2] E. Yurtsever, J. Lambert, A. Carballo, K. Takeda, A survey of au-
tonomous driving: Common practices and emerging technologies, IEEE
access 8 (2020) 58443–58469.

[3] Y. Li, L. Xu, Panoptic perception for autonomous driving: A survey
(2024). arXiv:2408.15388.
URL https://arxiv.org/abs/2408.15388

[4] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, A survey of deep
learning techniques for autonomous driving, Journal of Field Robotics
37 (3) (2020) 362–386.

[5] Y. Gao, M. Piccinini, Y. Zhang, D. Wang, K. Moller, R. Brusnicki,
B. Zarrouki, A. Gambi, J. F. Totz, K. Storms, S. Peters, A. Stocco,
B. Alrifaee, M. Pavone, J. Betz, Foundation models in autonomous
driving: A survey on scenario generation and scenario analysis (2025).
arXiv:2506.11526.
URL https://arxiv.org/abs/2506.11526

12

https://doi.org/10.1145/3579642
https://arxiv.org/abs/2408.15388
http://arxiv.org/abs/2408.15388
https://arxiv.org/abs/2408.15388
https://arxiv.org/abs/2506.11526
https://arxiv.org/abs/2506.11526
http://arxiv.org/abs/2506.11526
https://arxiv.org/abs/2506.11526


[6] S. Dodge, L. Karam, Understanding how image quality affects deep
neural networks, in: 2016 Eighth International Conference on Quality of
Multimedia Experience (QoMEX), 2016, pp. 1–6. doi:10.1109/QoMEX.
2016.7498955.

[7] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge,
F. A. Wichmann, Generalisation in humans and deep neural networks,
in: Advances in Neural Information Processing Systems, Vol. 31, Curran
Associates, Inc., 2018.

[8] A. Stocco, B. Pulfer, P. Tonella, Model vs system level testing
of autonomous driving systems: a replication and extension study,
Empirical Software Engineering 28 (3) (2023) 73. doi:10.1007/

s10664-023-10306-x.

[9] F. U. Haq, D. Shin, S. Nejati, L. Briand, Comparing offline and online
testing of deep neural networks: An autonomous car case study, in:
Proceedings of 13th IEEE International Conference on Software Testing,
Verification and Validation, ICST ’20, IEEE, 2020.

[10] BGR Media, LLC, Waymo’s self-driving cars hit 10
million miles, https://techcrunch.com/2018/10/10/

waymos-self-driving-cars-hit-10-million-miles, online; ac-
cessed 18 August 2019 (2018).

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, V. Koltun, CARLA: an
open urban driving simulator, CoRR abs/1711.03938 (2017).

[12] U. Team, Udacity’s self-driving car simulator, https://github.com/
tsigalko18/self-driving-car-sim (2019).

[13] Donkey Car, https://www.donkeycar.com/ (2021).

[14] NVIDIA Corporation, Nvidia drive sim - built on omniverse, https:
//developer.nvidia.com/drive/simulation, accessed: 2023-11-23
(2023).

[15] S. C. Lambertenghi, H. Leonhard, A. Stocco, Benchmarking image
perturbations for testing automated driving assistance systems, in: Pro-
ceedings of the 18th IEEE International Conference on Software Testing,
Verification and Validation, ICST ’25, IEEE, 2025, p. 12 pages.

13

https://doi.org/10.1109/QoMEX.2016.7498955
https://doi.org/10.1109/QoMEX.2016.7498955
https://doi.org/10.1007/s10664-023-10306-x
https://doi.org/10.1007/s10664-023-10306-x
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://github.com/tsigalko18/self-driving-car-sim
https://github.com/tsigalko18/self-driving-car-sim
https://www.donkeycar.com/
https://developer.nvidia.com/drive/simulation
https://developer.nvidia.com/drive/simulation


[16] D. Hendrycks, T. Dietterich, Benchmarking neural network robustness
to common corruptions and perturbations, in: International Conference
on Learning Representations (ICLR), 2019.

[17] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, B. Laksh-
minarayanan, AugMix: A simple data processing method to improve
robustness and uncertainty, Proceedings of the International Conference
on Learning Representations (ICLR) (2020).

[18] E. Rusak, L. Schott, R. S. Zimmermann, J. Bitterwolf, O. Bringmann,
M. Bethge, W. Brendel, A simple way to make neural networks robust
against diverse image corruptions, in: Computer Vision – ECCV 2020,
Springer, 2020, pp. 53–69.

[19] J. Laermann, W. Samek, N. Strodthoff, Achieving generalizable robust-
ness of deep neural networks by stability training, in: Pattern Recognition,
Springer, 2019, pp. 360–373.

[20] A. Miko lajczyk, M. Grochowski, Data augmentation for improving
deep learning in image classification problem, in: 2018 International
Interdisciplinary PhD Workshop (IIPhDW), 2018, pp. 117–122. doi:

10.1109/IIPHDW.2018.8388338.

[21] A. Stocco, B. Pulfer, P. Tonella, Mind the Gap! A Study on the Transfer-
ability of Virtual Versus Physical-World Testing of Autonomous Driving
Systems, IEEE Transactions on Software Engineering 49 (04) (2023)
1928–1940. doi:10.1109/TSE.2022.3202311.

[22] J. Ayerdi, A. Iriarte, P. Valle, I. Roman, M. Illarramendi, A. Arri-
eta, Marmot: Metamorphic runtime monitoring of autonomous driv-
ing systems, ACM Trans. Softw. Eng. Methodol. 34 (1) (Dec. 2024).
doi:10.1145/3678171.

[23] M. Daniali, E. Kim, Perception over time: Temporal dynamics for robust
image understanding, in: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2023, pp. 5656–
5665. doi:10.1109/CVPRW59228.2023.00599.

[24] S. Munakata, C. Urban, H. Yokoyama, K. Yamamoto, K. Munakata, Ver-
ifying attention robustness of deep neural networks against semantic per-

14

https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/TSE.2022.3202311
https://doi.org/10.1145/3678171
https://doi.org/10.1109/CVPRW59228.2023.00599


turbations, in: 2022 29th Asia-Pacific Software Engineering Conference
(APSEC), 2022, pp. 560–561. doi:10.1109/APSEC57359.2022.00080.

[25] S. Kitada, H. Iyatomi, Attention meets perturbations: Robust and
interpretable attention with adversarial training, IEEE Access 9 (2020)
92974–92985.
URL https://api.semanticscholar.org/CorpusID:221949068

[26] M. H. Moghadam, M. Borg, S. J. Mousavirad, Deeper at the sbst 2021
tool competition: Adas testing using multi-objective search, in: 2021
IEEE/ACM 14th International Workshop on Search-Based Software Test-
ing (SBST), 2021, pp. 40–41. doi:10.1109/SBST52555.2021.00018.

[27] D. Humeniuk, F. Khomh, G. Antoniol, Ambiegen: A search-based
framework for autonomous systems testingimage 1, Science of Computer
Programming 230 (2023) 102990. doi:https://doi.org/10.1016/j.

scico.2023.102990.

[28] L. Sorokin, M. Biagiola, A. Stocco, Simulator ensembles for trustworthy
autonomous driving testing (2025). arXiv:2503.08936.
URL https://arxiv.org/abs/2503.08936

[29] L. Sorokin, T. Munaro, D. Safin, B. H.-C. Liao, A. Molin, Opensbt:
A modular framework for search-based testing of automated driving
systems (2023). arXiv:2306.10296.

[30] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox
testing of deep learning systems, in: Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, ACM, 2017, p. 1–18. doi:
10.1145/3132747.3132785.

[31] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: automated testing of deep-
neural-network-driven autonomous cars, in: Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, ACM, 2018,
p. 303–314. doi:10.1145/3180155.3180220.

[32] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, C. Liu, Deepbillboard:
Systematic physical-world testing of autonomous driving systems (2018).
doi:10.48550/ARXIV.1812.10812.

15

https://doi.org/10.1109/APSEC57359.2022.00080
https://api.semanticscholar.org/CorpusID:221949068
https://api.semanticscholar.org/CorpusID:221949068
https://api.semanticscholar.org/CorpusID:221949068
https://doi.org/10.1109/SBST52555.2021.00018
https://doi.org/https://doi.org/10.1016/j.scico.2023.102990
https://doi.org/https://doi.org/10.1016/j.scico.2023.102990
https://arxiv.org/abs/2503.08936
https://arxiv.org/abs/2503.08936
http://arxiv.org/abs/2503.08936
https://arxiv.org/abs/2503.08936
http://arxiv.org/abs/2306.10296
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.48550/ARXIV.1812.10812


[33] D. Liu, J. Zhao, A. Xi, X. H. Chao Wang, K. Lai, C. Liu, Data augmen-
tation technology driven by image style transfer in self-driving car based
on end-to-end learning, Computer Modeling in Engineering & Sciences
122 (2) (2020) 593–617.

[34] H.-J. Yoon, H. Jafarnejadsani, P. Voulgaris, Learning when to use
adaptive adversarial image perturbations against autonomous vehi-
cles, IEEE Robotics and Automation Letters 8 (7) (2023) 4179–4186.
doi:10.1109/LRA.2023.3280813.

[35] R. Grewal, P. Tonella, A. Stocco, Predicting Safety Misbehaviours in
Autonomous Driving Systems using Uncertainty Quantification, in: Pro-
ceedings of 17th IEEE International Conference on Software Testing,
Verification and Validation, ICST ’24, IEEE, 2024, p. 12 pages.

[36] X. Chen, M. Biagiola, V. Riccio, M. d’Amorim, A. Stocco, XMutant: XAI-
based Fuzzing for Deep Learning Systems (2025). arXiv:2503.07222.
URL https://arxiv.org/abs/2503.07222

[37] A. Stocco, P. J. Nunes, M. d’Amorim, P. Tonella, ThirdEye: Attention
Maps for Safe Autonomous Driving Systems, in: Proceedings of 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’22, IEEE/ACM, 2022. doi:10.1145/3551349.3556968.

[38] Udacity, Udacity self-driving car simulator, https://github.com/

udacity/self-driving-car-sim, accessed: [2024-01-15] (2021).

[39] M. E. Tawn Kramer, contributors, Donkeycar, https://www.donkeycar.
com/ (2022).

[40] A. Gambi, P. Maul, M. Mueller, L. Stamatogiannakis, T. Fischer,
S. Panichella, Soft-body simulation and procedural generation for the
development and testing of cyber-physical systems, Tech. rep., BeamNG
(2019).

[41] A. Guesmi, M. A. Hanif, M. Shafique, Advrain: Adversarial raindrops to
attack camera-based smart vision systems, Information 14 (12) (2023).
doi:10.3390/info14120634.
URL https://www.mdpi.com/2078-2489/14/12/634

16

https://doi.org/10.1109/LRA.2023.3280813
https://arxiv.org/abs/2503.07222
https://arxiv.org/abs/2503.07222
http://arxiv.org/abs/2503.07222
https://arxiv.org/abs/2503.07222
https://doi.org/10.1145/3551349.3556968
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://www.donkeycar.com/
https://www.donkeycar.com/
https://www.mdpi.com/2078-2489/14/12/634
https://www.mdpi.com/2078-2489/14/12/634
https://doi.org/10.3390/info14120634
https://www.mdpi.com/2078-2489/14/12/634


[42] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
K. Zieba, End to end learning for self-driving cars., CoRR abs/1604.07316
(2016).

17


