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Abstract

GIFTbench is a modular framework for testing Deep Learning image classi-
fiers that combines Generative Al with genetic algorithms. Its architecture
integrates pretrained generative models with a user-friendly Gradio interface,
enabling automated, reproducible, and interpretable robustness testing. Sup-
porting VAE, GAN, and Diffusion models, GIFTbench generates test inputs
by perturbing latent representations to expose misbehaviors of the classi-
fier under test. By automating test input generation and reducing the need
for manual coding, GIFTbench accelerates experimentation and facilitates
comparative evaluation of both classifiers and generative models. Designed
for researchers and practitioners, it enables reproducible assessment of im-
age classifiers, while supporting studies on classifier vulnerabilities, mutation
strategies, and the role of generative models in robustness testing.
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1. Motivation and Significance

Deep Neural Network (DNN) based image classifiers have become inte-
gral components of software systems, also in safety-critical domains such
as healthcare and autonomous driving. On standard benchmark datasets,
these classifiers often outperform traditional approaches and even human ex-
perts [1, 2 B]. However, these benchmarks do not fully capture the diversity
and unpredictability of real-world conditions encountered during operation.
As a result, DNNs struggle to generalize when exposed to new or slightly
perturbed inputs, raising concerns about their robustness and reliability in
practice [4 [5].

The gap between training data and real-world inputs highlights the need
for systematic testing approaches. A major challenge for software testers
is to generate test inputs that accurately reflect real-world operating condi-
tions and trigger misclassifications, i.e., unexpected behaviors in which the
predicted labels deviate from the expected ones.

To address this challenge, researchers have proposed several Test Input
Generators (TIGs), i.e., tools that automatically produce synthetic images
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for assessing the quality of DNN classifiers [0], [7, 8, @]. Recent advances in
TIGs exploit the power and creativity of distribution-aware Generative Al
(GenAT) models [10] 1T}, 12} T3], 9} [14], 15] 16} 17], which learn the input data
distribution in the form of a latent space, a lower-dimensional representation
of the input space that captures the key features of the problem domain [18].
By manipulating latent representations, GenAl models can generate novel
inputs that are both diverse and semantically meaningful, providing more
realistic test cases than traditional approaches [9].

GenAl-based TIGs adopted a variety of architectures, ranging from sim-
pler models such as Variational AutoEncoders (VAEs) to more sophisticated
Generative Adversarial Networks (GANs). More recently, diffusion models
have emerged as state-of-the-art generative approaches, achieving impressive
results but at the cost of increased complexity and computational demands
for training. However, it is challenging to assess the specific contribution
of different GenAl models, since existing TIGs are often influenced by con-
founding factors such as variations in testing algorithms, the absence of stan-
dardized training and hyperparameter tuning, and limited support for recent
innovations like diffusion models.

To this end, we propose GIFTbench (Generative Image Fuzz Testing
Benchmark), a framework that combines search-based test generation with
different state-of-the-art GenAl models to enable automated testing of DNN
classifiers through latent space manipulation. GIFTbench allows researchers
and practitioners to analyze classifier behavior with inputs crafted to induce
misclassifications. To make experimentation more accessible, GIFTbench
integrates a lightweight web-based interface built with Gradio [19], a Python
framework that allows users to interact with the tool, configure experiments,
and visualize results without requiring extensive coding effort.

GIFTbench has already enabled a fair comparison of test generation ca-
pabilities across different GenAI models, performed in our prior work [17].
In a large-scale empirical study, we evaluated three representative architec-
tures (VAEs, GANs, and diffusion models) across four datasets of increasing
complexity. This study revealed several key insights into GenAl-based test
generation. In particular, we observed that diffusion models achieve supe-
rior performance on complex tasks, but at the cost of substantially higher
inference time (up to 10x slower than alternative models). We also found
that applying larger perturbations can accelerate test generation without
compromising input validity.

By providing an intuitive and modular integration of search-based testing
techniques with GenAl models, GIFTbench supports the advancement of
research on the quality assurance of DNNs, while also helping practitioners
identify the generative approach best suited to their classification tasks.
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Figure 1: Layered architecture of GIFTbench, showing the user interface, core engine, and
the iterative search process in the latent space.

2. The GIFTbench Framework

GIFTbench is a modular and user-friendly framework for testing image
classifiers using GenAl models. Its architecture integrates (1) input genera-
tion through GenAl models, (2) search-based optimization for latent space
manipulation, and (3) evaluation and visualization.

At its core, GIFTbench automatically generates diverse and perturbed
inputs to probe and evaluate the robustness of classifiers. It currently sup-
ports three state-of-the-art GenAl architectures: VAEs [20], GANs [21] and
Diffusion Models [22]. These are combined with an evolutionary search mech-
anism based on a Genetic Algorithm, which systematically explores input
variations to produce misbehavior-inducing test cases. Our framework is
highly configurable, allowing users to control key testing parameters such as
the testing budget (i.e., the number of evolutionary iterations) and the mag-
nitude of perturbations applied to latent vectors. To improve accessibility,
GIFTbench provides an interactive interface built with Gradio [19], enabling
experimentation and visualization of results without requiring programming
expertise.

2.1. Software Architecture

GIFTbench follows a layered architecture that separates the user in-
terface from the core engine, as depicted in Figure The modular design
promotes extensibility and a clear functional separation, providing a scalable
foundation for testing DNN-based image classifiers.



The User Interface Layer serves as the system’s front end, implemented
with Gradio [19]. It abstracts backend complexity and allows users to inter-
act with the platform via a simple web interface [23]. Through this layer,
users can: (1) select datasets (e.g., MNIST [24], ImageNet [25]); (2) config-
ure pretrained GenAl models (e.g., VAEs, diffusion models) and classifiers
(default or user-supplied); (3) adjust test parameters using sliders and tog-
gles; and (4) launch and monitor test campaigns. The interface automat-
ically verifies dataset—model compatibility (ensuring, for instance, that the
chosen generative model was trained on the selected dataset), and enforces
classifier-specific constraints such as input dimensions or file formats (e.g.,
. jit TorchScript models [26]). Once a test session is executed, results are
visualized directly in the interface, including generated images, performance
metrics, and summary reports.

The Core Engine Layer is the heart of GIFTbench’s test generation
process. It integrates a genetic algorithm with the selected GenAl model
to test the target classifier. In particular, this layer generates and evolves
candidate inputs in the latent space with the goal of inducing misclassifica-
tions. Although it interacts closely with the User Interface, the Core Engine
is designed to remain independent and easily extensible to new datasets, gen-
erative models, and classifiers, thus supporting reuse and adaptation. The
lower part of [Figure 1]illustrates its iterative test generation process: starting
from a latent seed, an expected label, and a perturbation budget, the test
generator progressively modifies the latent representation until it produces
an input that causes the classifier’s prediction to differ from the expected
label, thereby exposing a robustness weakness.

2.2. Software Functionality

Figure [2] illustrates the end-to-end workflow of GIFTbench. Executing
./run.sh sets up the Docker-based Gradio app and launches the user in-
terface. From there, the user proceeds with the selection of a dataset, either
MNIST, SVHN, CIFAR-10, or two classes of ImageNet (i.e., pizza and teddy
bear). Once a dataset is selected, the user must choose one of the three gener-
ative models (VAE, GAN, or Diffusion Model). Then, GIFTbench initialize

% B R
> »

C1 Upload
\ Custom jit

o

Jrun.sh Gradio APP —'

ek RUN TIG OUTPUT

[
Dataset & Model
Selection

Classifier Under Test
Selection

Figure 2: GIFTbench workflow.



the testing process with one of the default configurations from our empirical
study [I7], but sliders allow for customization, which is particularly useful
when testing custom classifiers. Once the configuration is completed, GIFT-
bench allows users to configure the testing process. The number of test
images can be specified via the Images_to_Sample parameter. The under-
lying Genetic Algorithm is also customizable: population size (default 25),
number of iterations (default 250), and perturbation size (low/high). This
algorithm manipulates the latent vectors in two steps: first, an initial per-
turbation to generate the base population, and then iterative adjustments to
trigger misclassifications guided by the classifier’s responses. Users can tog-
gle perturbation size (low/high) to observe its effects on model robustness
and TIG efficiency. Each perturbed image is evaluated by the classifier, and
its misclassification likelihood is used as fitness score. The loop continues
until a misclassification is detected or the iteration budget is exhausted.

The Gradio interface provides real-time monitoring and results visual-
ization. Users can inspect side-by-side galleries of original and perturbed
images, compare expected and predicted labels, and track metrics through a
status bar summarizing misclassification rate and average iteration count. A
detailed tabular report logs image IDs, expected/predicted labels, and iter-
ation counts, while all generated images can be exported as a .zip archive
with metadata-enriched filenames for downstream analysis. This interactive
execution and reporting low makes GIFThench a practical and efficient tool
for evaluating classifier robustness in real time.

3. Using GIFTbench

3.1. Installation and Setup

GIFTbench is packaged as a dockerized Python application for easy de-
ployment across different environments. There are two ways to run GIFT-
bench: (1) using the pre-built Docker image from Docker Hub or (2) building
and running from source code (recommended for developers).

3.1.1. Running from Docker Hub
The pre-built container image provides the fastest way to reproduce our
results without installing any dependencies locally.

Listing 1: Running GIFTbench from Docker Hub

docker pull maryam483/giftbench:v1.2.0
docker run --name giftbench-running --gpus all -p 7860:7860 \
maryam483/giftbench:v1.2.0




These commands pull the versioned image and launch GIFTbench. On
the first run, the container automatically downloads the required pretrained
GenAl models. Internet access is therefore required only once, while subse-
quent runs reuse the cached models.

3.1.2. Building from Source

The repository can be cloned from GitHub, and the application can be
launched with a single command. To run the tool, users must have Docker
already installed.

Listing 2: Cloning and running the GIFTbench tool from the tool branch

git clone https://github.com/deeptestai/genai_tigs.git
cd genai_tigs

git checkout tool

./run.sh

3.1.3. Accessing the Interface
When launched, Gradio provides two possible endpoints:

e Local URL: http://localhost:7860, accessible directly from
the user’s browser on the same machine.

e Public URL: a temporary link of the form https://abcdef12345.
gradio.live, automatically generated by Gradio to share sessions.
This link expires after 72 hours or when the container is stopped.

3.2. Test Generation

The test generation process can be configured and executed through the
user interface shown in Figure [3] After selecting the dataset, GenAl model,
classifier, and configuring the genetic algorithm parameters, the user can
start the test generation by clicking the Run TIG button.

TEST INPUT GENERATORS - (VAE / GAN / Diffusion)

MNIST SVHN CIFAR-10 geNet S-pizz: ImageNet (class-teddy)

Model Type

VAE (pizza) GAN (pizza) © DM (pizza)

Population Size Best Left (Selection Perturbation Size nitial Perturbation Size  Images to Sample Classifier Under Test

5 s 5 s o s
=0 = 1 Low - Low - 3 VGG19bn -

Prompt {only for DM Run ImageNet (class-Pizza) TIG Stop

Figure 3: Configuration of GIFTbench parameters.
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Table 2: Misclassified images generated by different models for the ImageNet Pizza class

Model Gradio Results
status
Finished! Total saved images: 3| Misclassified seeds 3| % Misclassification: 100.0 |Avg Iterations: 16.00
# Image Expected Label Predicted Label # 1 [ |masehetimages -
1 963 930 1
2 963 964 12
3 963 964 35
VAE Expected label: 963 Predicted label: 930;i...
Status
Finished! Total saved images: 10 | Misclassified seeds 9] % Misclassification: 90.0 |Avg Iterations: 147.90
# Image Expected Label Predicted Lahel i ] ° !mseshetimaces
i1 963 957 192
2 963 963 25€
3 963 892 %0
G AN 4 963 567 17¢
Status
Finished! Total saved images: 4 | Misclassified seeds 4] % Misclassification: 100.0 |Avg Iterations: 132.50
# Image Expected Label Predicted Label # 1 .
6 963 964 223
7 963 962 1
8 963 567 14
DM 9 963 962 161

3.8. Illustrative Example: Testing an ImageNet Classifier

A complete evaluation of the GenAl models integrated in GIFTbench is
presented in our earlier work [I7], where VAE, GAN, and Diffusion Models
were benchmarked for their effectiveness in generating valid, misclassification-
inducing test inputs across four datasets.

In this paper, we provide a demonstration revisiting a small subset of
that setup to illustrate how GIFTbench facilitates test generation and model
evaluation. We configured GIFTbench to test a default VGG19bn ImageNet
classifier, focusing on the Pizza class. As shown in Figure |3, the Gradio in-
terface is set up for generating 10 seeds, perform 250 iterations of the genetic
algorithm with a population of size 25, and adopting a small perturbation
extent in the latent space. By applying the same configuration to all three
GenAl model types, we ensure a fair comparison of their effectiveness.

Table [2| demonstrates how GIFTbench operationalizes hypotheses about
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model robustness, misclassification sensitivity, and the impact of input per-
turbation extent. After each run, the status bar reports the number and
percentage of misclassified seeds, together with the average number of per-
turbation iterations required. In our illustrative runs (not statistically signifi-
cant due to the small number of seeds), the GAN model achieved the highest
misclassification rate, with 9 out of 10 seeds triggering a misclassification
within the test budget.

4. Expected Impact and Significance

GIFTbench provides a novel experimental environment for studying the
interplay between generative AI models, latent space perturbations, and clas-
sifier vulnerabilities under controlled conditions. It supports systematic com-
parisons of classifier robustness and generative model effectiveness across di-
verse architectures and mutation settings.

Compared to prior robustness testing frameworks, GIFTbench offers the
most comprehensive integration of evolutionary test generation with GenAl-
based input synthesis. Its automated workflows minimize manual coding
effort while ensuring reproducibility and extensibility. We anticipate that
the tool will serve as an accelerator for researchers, students, and practition-
ers, enabling them to conduct reproducible robustness evaluations through
an intuitive interface that lowers entry barriers and facilitates both experi-
mentation and analysis.

5. Conclusions and Future Work

We presented GIFTbench, a framework that combines generative AI mod-
els with evolutionary algorithms to systematically assess the quality of DNN-
based image classifiers. By integrating pretrained GenAl models with an
intuitive interface, the tool enables automated, reproducible, and visually
interpretable robustness testing across multiple datasets.

Future work will focus on enhancing the flexibility and extensibility of the
framework, enabling seamless integration of custom classifiers, datasets, and
generative models, thus broadening its applicability for both research and
practice. Moreover, extending GIFThbench with additional fitness functions
and exploration strategies will open avenues for mutation analysis [27, 28],
targeted test generation [5l [15], deeper input space and behavioral boundary
exploration [29, 30], and increased input diversity [31].
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