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ABSTRACT Ensuring the safety of autonomous vehicles in real-world environments requires handling a
wide spectrum of diverse and rare driving scenarios. Scenario-based testing addresses this need by offering a
scalable and controlled approach to develop and validate autonomous driving systems. However, traditional
scenario generation methods relying on rule-based logic, knowledge-driven models, or data-driven synthesis
often yield limited diversity and unrealistic cases. With the emergence of foundation models, which represent
a new generation of pre-trained, general-purpose Artificial Intelligence (AI) models, developers can process
heterogeneous inputs (e.g., natural language, sensor data, maps, and control actions), enabling the synthesis,
interpretation, analysis of complex driving scenarios. In this paper, we review the use of foundation models
for scenario generation and scenario analysis in autonomous driving. Our survey presents a unified taxonomy
that includes large language models, vision language models, multimodal large language models, diffusion
models, and world models for the generation and analysis of autonomous driving scenarios, outlining
their fundamental principles, applications, and corresponding evaluation metrics. In addition, we review
the methodologies, open-source datasets, simulation platforms, and benchmark challenges. Finally, the
survey concludes by highlighting the open challenges, research questions and promising future directions
in applying foundation models to scenario generation and analysis in autonomous driving. All reviewed
papers are listed in a continuously maintained repository, which is publicly available and updated with new
research: GitHub.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.

INDEX TERMS Autonomous vehicles, foundation model, scenario generation, scenario analysis, scenario
based testing

I. Introduction

AUTONOMOUS DRIVING has seen rapid advancements
in recent years, reaching a stage where human

intervention is minimal or entirely unnecessary within specific
Operational Design Domains (ODDs) [1]. Companies such
as Waymo have successfully deployed fully autonomous

robotaxi services [2] operating at SAE Level 4 [3] since 2018,
demonstrating the feasibility of driverless mobility in specific
urban environments. As of 2025, Waymo serves 250, 000
commercial rides per week [4]. These advancements have
been driven by the development and rigorous validation of
highly reliable modular Autonomous Driving (AD) software
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FIGURE 1. This survey critically analyzes existing FMs across LLMs, VLMs,
MLLMs, DMs, and WMs for scenario generation and scenario analysis in
autonomous driving.

functions, including perception, prediction, planning, and
control [5]. In addition to the traditional modular architecture,
end-to-end learning-based approaches [6], [7] have emerged,
leveraging deep learning to process raw sensor data and
directly generate trajectories or control actions [8].

Scenario-based testing in simulations is a key element
for evaluating and validating the safety and performance of
AD systems [9]. As a cost-efficient alternative to physical
testing, it enables the simulation of realistic, reproducible,
and controllable driving environments [10], and is particularly
effective in replicating safety-critical situations, including rare
corner cases that are often absent in real-world datasets [11],
[12]. Therefore, the ability to systematically generate and
analyze driving scenarios is crucial to scenario-based testing
[13]. More specifically, generation focuses on creating
diverse, safety-critical, and controllable driving situations
for AD testing, while analysis concerns the evaluation of
these scenarios in terms of safety, risk, and behavioral
understanding to classify or select scenarios for testing, or
to enhance overall AD performance.

Recent advances in Machine Learning (ML), especially the
emergence of large-scale Foundation Models (FMs), offer new
opportunities to enhance the realism, diversity, and scalability
of scenario-based testing in autonomous driving. FMs were
introduced by the Stanford Institute for Human-Centered
Artificial Intelligence (HAI) in August 2021 [14] to describe
a class of models trained on large-scale, diverse datasets
typically using self-supervised learning. Unlike traditional
ML models, which are often trained for specific, narrowly
defined tasks, FMs can be adapted to a wide range of tasks
through techniques such as prompting or fine-tuning. These
models have demonstrated strong performance across various
domains, including Natural Language Processing (NLP) [15],
visual understanding [16], and code generation [17]. In
the context of autonomous driving, FMs have recently
garnered significant attention, as they combine general
knowledge learned through large-scale pre-training with
efficient adaptability to specific AD tasks like perception,
palnning, control [18]–[20].

A. Scope of the Considered Literature
In this survey, we focus on publications addressing scenario
generation and scenario analysis in the context of autonomous
driving with Foundation Models (see Figure 1). Our survey
is based on keyword searches in Google Scholar. The full
list of keywords, as well as an overview of all referenced
papers, is available in the GitHub repository of this paper1.

To ensure both breadth and relevance, we included
peer-reviewed conference and journal papers as well as
preprints from arXiv. Although arXiv publications are
not formally peer-reviewed, they often present timely and
impactful research, especially in rapidly developing areas
such as FM applications. Our survey covers papers published
between October 2022 and May 2025, with a primary focus
on venues in autonomous driving, computer vision, machine
learning, and robotics. Figure 2 shows monthly trends in
publication counts and their distribution by the thematic
focus of the publication venues, e.g., conferences, journals,
or preprint platforms.

B. Structure of the Survey
The structure of this survey is outlined in Figure 3. Section II
provides an introduction to Foundation Models and a
critical review of related surveys on scenario generation
and analysis, encompassing both classical approaches and
recent advances with Foundation Models. Sections III, IV,
and V systematically examine language-based Foundation
Models, beginning with fundamental concepts and followed
by an in-depth discussion of recent applications of Large
Language Models (LLMs), Vision Language Models (VLMs),
and Multimodal Large Language Models (MLLMs) in
scenario generation and analysis. Sections VI and VII address
vision-centric Foundation Models, detailing the principles of
Diffusion Models (DMs) and World Models (WMs) and
their relevance to scenario generation. Section VIII surveys
commen evaluation metrics, publicly available datasets, and
simulation benchmarks pertinent to scenario generation
and analysis in autonomous driving, and highlights major
competition challenges in the field. Finally, Section IX and
Section X identify open research questions and outline
prospective research directions, while Section XI summarizes
the key findings of this survey.

II. Related Work & Contributions
A. Development of Foundation Models
The term Foundation Models, introduced in 2021 [14], refers
to general-purpose models trained on large-scale unlabeled
data, designed to operate and generalize across a wide
range of applications. Their cross-modal adaptability has
the potential to enable tasks like Question Answering (QA),
image captioning, sentiment analysis, information extraction,
object recognition, and instruction following, combining
generative abilities with deep contextual understanding.

1https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis
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FIGURE 2. Timeline of foundation model-related publications in scenario generation and analysis, across selected journals, conferences and platforms
between May 2023 and May 2025. Each bar represents the monthly count of papers, grouped by thematic category. The black line shows the cumulative
number of papers over time (right axis). Note that the grouping refers to the general scope of the conference or journal, not to the content of the individual
papers. For example, preprints listed on arXiv are categorized under Preprints & Others, although they may address topics from other categories.

Although FMs and generative AI are related, they represent
distinct concepts: FMs are broad, adaptable systems, whereas
generative AI focuses specifically on content creation.

In 2020, OpenAI released GPT-3 [21], a major milestone
that popularized LLMs. The success of GPT-3 built upon
the Transformer Architecture [22], whose self-attention
mechanism facilitated efficient parallel training on long
sequences. Subsequent models further refined this design,
including BERT [15] (encoder-only for masked language
modeling), GPT [23] (decoder-only for autoregressive
generation), and T5 [24] (encoder-decoder for text-to-text
transfer). Each employs self-supervised pre-training and
serves as a backbone for downstream adaptation.

The principles of the transformer architecture were quickly
extended beyond NLP, and enabled visual understanding [16],
speech [25], tabular [26], and multimodal learning [27].
The extension of transformer architectures across different
domains led to the development of VLMs such as Contrastive
Language–Image Pre-training (CLIP) [28] and MLLMs such
as LLaVA [29], that combine linguistic reasoning from LLMs
with visual representations to produce cross-modal alignment
and grounded understanding. More specifically, compact
VLMs typically use an LLM as a backbone, augmented
with a text tokenizer and a dedicated vision encoder to
extract visual features. MLLMs further extend this paradigm
by incorporating additional modality-specific encoders, such
as audio, depth, or sensory inputs, and employ alignment
modules to fuse these heterogeneous representations with the
LLM backbone. The strong reasoning capability inherited
from LLMs enables these models to perform complex
multimodal inference, while the added visual and sensory
encoders allow VLMs and MLLMs to operate effectively
in real-world settings, where understanding both linguistic
instructions and perceptual inputs is essential.

At the same time, advances in generative modeling
developed DMs, and specifically Denoising Diffusion
Probabilistic Models (DDPMs) [30] that generate high-quality
samples using learned denoising processes. Subsequent
variants, including improved DDPMs [31], Latent Diffusion
Models (LDMs) [32], and Video Diffusion Models
(VDMs) [33], further enhanced generation efficiency,
controllability, and temporal coherence. Extending beyond
image synthesis, DMs naturally support multimodal
conditioning, enabling text-, audio-, and video-guided
generation. Their high generation fidelity and flexible
conditioning mechanisms make them powerful complements
to transformer-based architectures, particularly in multimodal
learning and world-modeling applications.

Finally, WMs [34] were developed to learn compact
representations of interactive environments. Classical WMs
combine vision encoders (e.g., Variational Autoencoders
(VAEs)) with recurrent memory modules (e.g., Recurrent
Neural Networks (RNNs)) and lightweight controllers (e.g.,
Evolution Strategies) to enable future prediction, such as
forecasting video frames or rolling out latent state trajectories.
Recent WMs designs integrate FMs into their components,
e.g., by replacing encoders or memory modules with
DMs [35] or LLMs [36], thus potentially unifying perception,
reasoning, and generation in the same framework. Overall,
this inter-connected evolution represents a progression from
modality-specific FMs to general multimodal systems for
holistic environmental understanding and interaction.

B. Foundation Models in Autonomous Driving
Recent studies have explored the integration of FMs
into AD systems, exploiting their adaptability and
multimodality across both modular and end-to-end
architectures. Comprehensive surveys such as [18], [19]
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FIGURE 3. Overview of FMs applied to scenario generation and analysis for autonomous driving, and the corresponding structure of this survey.

offer a broad overview of the current landscape, covering
LLMs, VLMs, MLLMs, DMs, and WMs.

LLMs in Autonomous Driving: The survey by Zhu
et al. [37] reviews the integration of LLMs into modular
autonomous driving systems, and focuses on perception,
decision-making, control, and end-to-end approaches.
Similarly, Wu et al. [38] investigate the use of LLMs for
multi-agent perception, decision-making, and simulation.
Finally, Li et al. [39] review the role of LLMs in enabling
human-like reasoning in both modular and end-to-end AD
systems and also emphasize training and integration strategies,
which is not relevant to our tasks.

VLMs in Autonomous Driving: The survey [40] explores
the use of VLMs across a range of AD tasks, where diffusion
and world models are involved in scene understanding, visual
reasoning, and dataset generation.

MLLMs in Autonomous Driving: Cui et al.’s survey [41]
focuses on MLLMs architectures, modality fusion, and their
applications across AD tasks. Fourati et al.’s [42] survey
introduces XLMs as a combination of LLMs, VLMs, and
MLLMs, providing a review of their use in AD that covers
concepts, workflows, and techniques. Finally, Li et al’s [43]
survey explores LLM and MLLM applications across different
AD modules, covering integration and training techniques.

DMs and WMs in Autonomous Driving: Guan et al. [44]
provide an overview of world models in AD, focusing on
their applications in scenario generation, motion prediction,
and control. Driving WMs are further explored by Tu et
al. [45], which categorize them into 2D scene evolution, 3D
occupancy prediction, and scene-free paradigms.

Regarding the overlap with generative AI, Wang et al. [46]
review generative models across the AD stack. While broad

in scope, their survey adopts a model-centric perspective and
lacks a focused discussion on scenario generation.

In summary, although the above works cover perception,
planning, decision-making, simulation, and testing in AD,
they do not explicitly address the roles of FMs in scenario
generation or analysis, as this was not their primary focus.
Our review aims to fill this gap.

C. Scenario Generation in Autonomous Driving
Scenario formats in AD range from annotated sensor data and
multi-camera streams to map-based layouts, simulated urban
scenes, and traffic-level environments, e.g., OpenScenario2.
Figure 4 shows examples of driving scenarios in different
formats. In the following, we review the existing surveys on
scenario generation with classical and FM-based methods.

Surveys with Classical Approaches: Most of the
existing reviews deal with classical methods (i.e., not
FM-based) for scenario generation. Nalic et al [53] introduce
knowledge-driven and data-driven generation approaches,
and discuss safety metrics for scenario assessment. They
also propose a six-layer model, which captures all essential
components of a scenario. Ding et al. [54] categorize
scenario generation methods into data-driven, adversarial,
and knowledge-based approaches, providing detailed insights
into the mechanisms underlying each. They also highlight
the role of deep generative models for synthesizing
image- and video-based scenarios with several papers
across different models. In alignment with the ISO/WD
PAS 21448 standard, Safety of the Intended Functionality
(SOTIF), Schutt et al. [55] examine scenario generation

2https://www.asam.net/standards/detail/openscenario/
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FIGURE 4. Examples of driving scenarios in autonomous driving: datasets and simulations used for scenario-based testing. Sensor data such as camera
images, videos, and LiDAR point clouds derived from these scenarios can be used to evaluate perception algorithms. Concurrently, simulator-specific
scenario formats support rigorous testing of planning and control modules.
Top row (left to right): Waymo Open motion [47] dataset; Argoverse2 [48] dash camera video; NuPlan [49] multi-camera views with map overlays.
Bottom row (left to right): CommonRoad [50] motion planning scenario; CARLA [51] simulated urban scenario; SUMO [52] large-scale traffic scenario.

across functional, logical, and concrete levels of abstraction.
Their review includes machine learning-based generation,
optimization-driven scenario exploration, scenario extraction
from driving data, and manual scenario design.

Survey with FMs: Huang et al. [18] provide an overview
of various types of foundation models and briefly discuss
scenario generation. However, their analysis is limited to
input modalities and model types, without addressing specific
techniques or evaluation strategies.

Surveys with VLMs: Yang et al. [56] examine the use
of LLMs and VLMs in tasks such as perception, question
answering, and generation. They mention scenario generation
using VLMs, DMs, and WMs but provide no clear distinction
between these model types. While several evaluation metrics
are cited, these are not organized by task or application.
Tian et al. [57] present a more structured review of VLMs in
autonomous driving across LLMs, VLMs, and WMs, focusing
particularly on traffic simulation via VLM-guided generation
and their integration with diffusion models. However, the
survey lacks information about input modalities, scenario
generation techniques, and the distinction of model types.

Surveys with DMs and WMs: Fu et al. [58] review
video generation and WMs, covering diffusion-based,
autoregressive, and reinforcement learning approaches. Feng
et al. [59] focus on WMs, categorizing outputs into images,
bird’s-eye views, and 3D point clouds, and discuss evaluation
metrics such as semantic segmentation and occupancy
prediction. However, neither survey directly connects model
outputs to scenario generation tasks. They also fail to
distinguish between standalone DMs and WMs, and lack
discussion of concrete techniques and evaluation strategies.

D. Scenario Analysis in Autonomous Driving
Scenario analysis involves the systematic evaluation of
driving scenarios (Figure 4). It encompasses tasks such as
scenario evaluation, scene understanding, risk assessment,
anomaly detection, and accident prediction. Further, it
includes identifying safety-critical situations, evaluating
system robustness, and supporting informed decision-making
in both simulation and real-world environments.

Surveys with Classical Approaches: Riedmaier et
al. [10] propose a taxonomy of scenario-based safety
assessment methods, including knowledge-based, data-driven,
and falsification-based approaches. They emphasize the use of
key performance indicators (e.g., time-to-collision, required
deceleration) as proxies for accident risk and advocate for
the integration of formal methods into safety validation.

Mahmud et al. [60] review proximal surrogate indicators
such as time-to-collision, post-encroachment time, and
deceleration rate to avoid a crash. They categorize these
metrics and identify key research challenges, including metric
standardization, real-world validation, and integration into
simulation-based scenario analysis frameworks.

Survey with FMs: Huang et al. [18] briefly mention
scenario analysis under the term “perception data annotation”,
but do not categorize tasks based on their goals. Additionally,
they neither associate datasets with individual studies nor
discuss modality transformations; as such, their review does
not focus on pre-trained FMs.

Surveys with VLMs: Yang et al. [56] address scenario
analysis in the context of question answering, focusing
mainly on dataset descriptions. Their analysis remains limited,
as it lacks discussion of input modalities, methodological
approaches, model taxonomy, and evaluation metrics.
Similarly, Tian et al. [57] consider Visual Question Answering

VOLUME , 5
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TABLE 1. Comparison of surveys on FMs for scenario generation and analysis in AD. Our survey is the first to cover all FM types, scenario categories,

input modalities, datasets, model types, techniques, and evaluation metrics.

Survey LLM VLM MLLM DM WM
Scenario Generation1 Scenario Analysis2

Scenario
Category

Input
Modality Dataset

Scenario
Controllability Model Technique Metric [n/m]

Scenaio
Category

Input
Modality Dataset Model Technique Metric [n/m]

2023 Huang. [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13/261 ✓ ✓ 5/261

2024 Yang. [56] ✓ ✓ ✓ ✓ 11/155 ✓ ✓ 13/155

2024 Fu. [58] ✓ ✓ ✓ 11/114

2024 Tian. [57] ✓ ✓ ✓ ✓ ✓ ✓ 15/124 ✓ ✓ 9/124

2025 Feng. [59] ✓ ✓ ✓ 13/166

Our Work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 93/348* ✓ ✓ ✓ ✓ ✓ ✓ 56/348*

1 Scenario Category: e.g., safety-critical scenario; Input Modality: e.g., text, image, sensor signal; Dataset: e.g., nuScenes;
Scenario Controllability: full (script), partial (trajectory); Model: e.g., GPT, latent diffusion; Technique: e.g., prompting; Metric: e.g., realism.

2 Scenario Category: e.g., evaluation, risk assessment; Input Modality: e.g., text, image, sensor signal; Dataset: e.g., nuScenes; Model: e.g., GPT;
Technique: e.g., zero-shot, adapter layer; Metric: e.g., accuracy, language generation quality.
[n/m] = number of papers using FMs (large pre-trained models) / total papers reviewed in the survey.

* The 348 papers are categorized as follows: 93 on scenario generation, 56 on scenario analysis, 58 on datasets, 21 on simulators, 25 on benchmark
challenges, and 95 on other related topics (e.g., FMs’ implementation).

(VQA) as a form of scenario analysis using VLMs, but cover
a small number of resources and provide minimal discussion.

E. Critical Summary
To the best of our knowledge, existing surveys on FM-based
scenario generation and/or anaysis in autonomous driving are
limited by the following aspects (summary in Table 1):

• Lack of focus on scenario generation: None of
the reviewed surveys explicitly focuses on scenario
generation using FMs. When addressed, scenario
generation is either mentioned briefly (e.g., [18], [43])
or discussed without in-depth analysis of generation
techniques, scenario controllability, or evaluation metrics
(e.g., [56]–[58]).

• Incomplete coverage of scenario analysis: Tasks
such as scenario understanding, evaluation, and risk
assessment are overlooked. When addressed (e.g., [56]
and [57]), the analysis is typically reduced to question
answering, with little attention paid to task-specific
models, methods, or evaluation strategies.

• Limited connections among modalities and tasks:
While several surveys consider the input modalities of
FMs, they do not establish clear links between these
modalities and the techniques, models, and datasets used
for scenario generation and analysis.

• Absence of a structured classification: No prior
work presents a structured classification of FMs that
spans both scenario generation and scenario analysis,
considering pre-trained model types, adaptation methods
(e.g., prompting, fine-tuning), input modalities, datasets,
and evaluation metrics.

F. Contributions
To address the limitations of the existing literature reviews,
this survey evaluates the landscape of FMs in the fields
of scenario generation and scenario analysis (Table 1). In
summary, this work provides the following key contributions:

1) We present the first review on the use of FMs for
scenario generation and analysis in AD.

2) Structured classification of existing methods: Our
work offers a structured classification covering all
FM types (i.e., LLMs, VLMs, MLLMs, DMs, WMs),
scenario categories, input modalities, model types,
datasets, techniques, and evaluation metrics.

3) Review of datasets, simulation platforms and
existing benchmarking competitions: We review
the openly-accessible datasets and simulators used
for scenario generation and analysis. Meanwhile, we
provide the first review on benchmarking competitions
for FMs in AD.

4) Identification of open challenges and future
directions: We identify open research challenges in
applying FMs to scenario-based testing. By leveraging
our analysis, we propose future research directions to
improve the adaptability and robustness of FM-driven
approaches in scenario generation and analysis.

III. Large Language Models (LLMs)
This section introduces the foundation and evolution of LLMs,
presents key technological advancements, and reports on
common adaptation techniques (e.g., prompt engineering and
fine-tuning strategies). We then explore how LLMs support
scenario generation, safety-critical cases, real-world scene
synthesis, driving policy evaluation, closed-loop simulation,
and Advanced Driver Assistance Systems (ADAS) testing.
The section concludes with a discussion on scenario analysis,

6 VOLUME ,



FIGURE 5. Timeline of the development of FMs. LLMs, including transformer-based architectures (e.g., BERT), are shown at the bottom. VLMs built upon
visual FMs (e.g., ViT and CLIP) are illustrated in the middle layer, together with instruction-tuned VLMs that enable interactive, chat-style vision–language
reasoning. MLLMs are shown above. In parallel, the evolution of visual FMs is highlighted through DMs (e.g., the first diffusion model [61]) and WMs (e.g.,
the world model architecture [34]). Highlighted entries indicate key conceptual milestones.

including question answering, scenario understanding, and
scenario evaluation.

A. Development of LLMs
The most prominent category of FMs are LLMs, which focus
on the text modality and are built upon the transformer
architecture [22]. A defining characteristic of these models
is their use of self-supervised learning, where they learn
language representations by predicting masked or missing
parts of text from large-scale unlabeled corpora. This
paradigm has enabled models to capture rich contextual
and semantic information without the need for manual
annotation. The foundation for this approach was laid by
static word embeddings [62], which evolved into pre-trained
language models such as GPT [23], BERT [15], and T5 [24].
These models replaced static embeddings with dynamic,
context-aware representations learned directly from text. The
release of GPT-3, with 175B parameters [21], marked a
major milestone in self-supervised language modeling by
demonstrating strong generalization and few-shot learning
capabilities, significantly reducing the need for task-specific
fine-tuning compared to earlier generations. The historical

evolution of text-only pre-trained language models and LLMs
is summarized in Figure 5.

OpenAI’s 2020 scaling laws [63] showed that LLMs
performance improves predictably with increased model
size, data, and compute, fueling the trend toward ever-larger
foundation models. However, DeepSeek [64] challenged this
assumption by demonstrating that data quality and alignment
matter as much as scale. Through supervised fine-tuning on
synthetic expert data and reinforcement learning via Group
Relative Policy Optimization (GRPO), they trained smaller
models that achieved competitive performance.

Since LLMs are pre-trained on large-scale unlabeled data,
various adaptation techniques such as prompt engineering and
fine-tuning have been developed to tailor LLM’s behavior
to specific tasks. Sahoo et al. [65] provide an overview of
these techniques in their recent survey. Here, we focus on
the adaptation techniques that were applied in the context of
driving scenario generation and analysis.

Prompt Engineering: This refers to designing and
structuring input prompts to guide a pre-trained language
model toward producing desired outputs, without modifying
its internal parameters. The different techniques are:

VOLUME , 7
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1) Contextual Prompting (CP): Augments prompt with
task-specific context or background information, thereby
helping the model align more closely with the intended
application domain.

(2) Chain-of-Thought (CoT): Encourages the model to
generate intermediate reasoning steps before producing
a final answer. This structured reasoning enhances the
logical consistency of the model’s reasoning chain, which is
particularly beneficial for complex, multi-step tasks.

(3) In-Context Learning (ICL): Involves task
demonstrations (e.g., one-shot, or few-shot) in the
prompt to guide the model towards the correct task behavior.

(4) Self-Consistency (SC): A decoding strategy that samples
multiple outputs for a given prompt and selects the most
frequent or consistent one, improving answer robustness and
reliability.

(5) Retrieval-Augmented Generation (RAG): Enhances
the performance on specific tasks by retrieving external
knowledge from a database at inference time. A retrieval
component identifies the relevant documents to condition the
model’s response, thereby improving its accuracy.

Fine-Tuning: These techniques train the model on datasets
to improve its ability for specific tasks. The different
fine-tuning techniques are Full Fine-Tuning (FFT) and
Parameter-Efficient Fine-Tuning (PEFT). FFT updates all
model parameters using domain-specific data. While effective,
it requires significant computational resources and has limited
scalability. PEFT updates only a small portion of the model’s
parameters, while keeping most of the model frozen. A
specific PEFT method is Low-Rank Adaptation (LoRA) ,
which injects trainable low-rank matrices into the attention
modules of the model, enabling adaptation with minimal
parameter updates and reducing computational cost. For
instance, full fine-tuning of GPT-3 requires updating all
175B parameters, whereas LoRA can achieve comparable
performance by training only around 37.7M parameters [66].

Additionally, more advanced techniques to adapt LLMs
exist in the reviewed papers. These include multi-stage
prompting [67], [68] and Multi-LLM Agent Systems
(MLAs) [69], which coordinate multiple interacting LLMs
to solve complex tasks collaboratively. Tooling frameworks
such as LangChain [70] facilitate the construction of modular,
agent-based architectures that extend beyond traditional
single-prompt interactions.

B. LLM-Based Scenario Generation
Advances in LLMs have triggered the development of
LLM-driven scenario generation to test intelligent vehicle
systems. Based on their individual objectives, we classify
the existing works into six categories and list representative
works within each category in Table 2:

Safety-Critical Scenario Generation: A key application
of LLM-based scenario generation lies in the creation
of safety-critical scenarios. Often termed “corner cases”,
“long-tail”, or “Out-of-Distribution (OOD)” situations, these

scenarios involve high collision risk, abnormal agents’
behavior, or reduced safety margins [11]. Recent LLM-based
approaches can synthesize rare trajectories and scene
configurations beyond nominal driving conditions, to
stress-test the robustness of AD systems and uncover residual
safety risks. Unlike ADAS test scenarios, this category neither
targets specific assistance functions nor follows predefined
regulatory test protocols.

The work LLMScenario [71] focuses on safety-critical
scenario generation based on the HighD dataset [72] with
GPT-4. They use ICL, incorporating critical examples,
which are evaluated based on reality and rarity, to
guide the generation. Using CoT and SC prompting, the
framework generates safety-critical trajectories step-by-step
in MetaScenario [73]. ChatScene [74] uses GPT-4 with
RAG to translate textual safety-critical descriptions into
domain-specific language (DSL) scripts such as Scenic [75]
for CARLA [51]. Its retrieval database is built using
Sentence-T5 embeddings that map behaviors and geometric
patterns to code snippets. These snippets are then retrieved
through RAG and assembled into complete Scenic scripts.
Building on structured generation, Aasi et al. [69] propose
a multi-agent pipeline that constructs a branching tree of
OOD scenarios using CoT prompting. Their Augmenter-LLM,
based on GPT-4o, translates descriptions into CARLA scene
configurations, which contain maps, weather, objects, and
behaviors via API calls. A VLM then classifies the simulated
scenes by OOD type to identify the safety-critical scenarios.

The methods discussed above operate open loop. In
contrast, Mei et al. [76] focus on online interactive
scenario generation using Waymo Open Motion Dataset [47].
Their retrieval-augmented framework uses DeepSeek-V3 and
DeepSeek-R1 to infer risky behaviors of a vehicle in real
time and synthesize adversarial trajectories for it to collide
with the ego vehicle. A memory module stores and retrieves
intent–planner pairs, allowing continuous refinement and
adaptation of the generated scenarios.

Despite promising advances, current works often operate
offline or focus on limited risk types, limiting their
generalizability to complex, multi-agent contexts. Future
work could integrate interactive generation, enhance safety
verification in simulation, and develop evaluation pipelines
by leveraging VLMs to assess the plausibility and criticality
of the generated scenarios.

Real-World Scenario Replication: Creating realistic
driving scenarios is challenging due to the difficulty of
accurately reproducing real-world conditions. A common
strategy involves replaying recorded driving data in simulation
environments or leveraging real crash reports to reconstruct
the corresponding events. Realistic traffic scenes can also
be replicated by grounding them on real-world maps,
thereby preserving authentic infrastructure, road layouts, and
environmental features.

LCTGen [77] leverages GPT-4 with ICL and CoT
prompting to convert crash report into structured YAML-like
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descriptions. Then a retriever module matches these structured
descriptions with relevant maps from the Waymo Open
Dataset [78]. These “map-grounded” inputs are then processed
by a generative model using multi-layer perceptrons and
learned masks to produce realistic driving scenarios. In
Chat2Scenario [79], recorded datasets from HighD with
user-defined criticality and textual descriptions are used
as input. They use a templated contextual prompting
scheme with GPT-4 and retrieve relevant scenarios that
match the user’s input with ASAM OpenScenario [80]
format. For microscopic simulation, ChatSUMO [81] utilizes
Llama 3.1 [82] with template-based prompts to extract user
requirements for traffic volume, city, and network type. Then,
ChatSUMO translates these parameters into SUMO [52]
configurations, with osm [83] maps retrieved through RAG.
Simulation outputs, including traffic density, travel time, and
emissions, are visualized and summarized via a Streamlit3.
SeGPT [84] synthesizes diverse and challenging test data from
recorded trajectories. Their framework supports large-scale
scenario synthesis and compares zero-shot prompting with
CoT to evaluate LLM-guided generation performance on the
dataset from [85].

The reviewed papers generate scenarios from recorded
data and crash reports. One of the future directions is to
first generate scenarios from recorded datasets, and then
incorporate natural language descriptions as feedback. This
hybrid approach could significantly enhance both the realism
and diversity of the resulting scenarios by aligning data-driven
generation with human-intuitive requirements.

Driving Policy Test Scenario Generation: Driving policy
test scenario generation focuses on evaluating automated
driving policies, such as motion planners or controllers,
under systematically constructed traffic situations. Recent
LLM-based methods generate executable scenarios that are
deployed in simulations to assess planning behavior, policy
robustness during algorithm development.

In LCTGen [77], generated real-world crash scenarios are
used to assess the performance of a motion planner within the
MetaDrive [86] simulator. In TTSG [87], GPT-4o-generated
scenarios are used for multi-agent planning validation in
critical scenarios. Specifically, they constructed a road
and agent database using RAG with LLMs and proposed
ranking strategies to select the best-fitting road based on
the agent’s behavior. In contrast, AutoSceneGen [88] uses
a code-designed filter to select the valuable parts of the
scenario description based on simulation documents and ICL,
and adds scenario examples to the prompt. A code-based
validator then transfers and verifies the GPT-4 output, which
directly generates DSL-style configuration code compatible
with CARLA. The resulting scenarios are subsequently used
to evaluate the performance of a motion planner.

Closed-loop Scenario Generation: Recent works address
the limitations of static datasets by introducing closed-loop
scenario generation with LLMs. Closed-loop scenarios enable

3https://streamlit.io/

the validation of multi-agent interactions and ego-reactive
behaviors.

ProSim [89] presents a promptable closed-loop simulation
framework, where prompts such as goal points, route sketches,
action tags, and natural language instructions are used to guide
an agent’s behavior. Llama3.1-8B is fine-tuned with LoRA
to generate policy tokens, and a lightweight policy module
rolls out the agent’s trajectories in a closed loop within
the Waymo simulator. In LLM-attacker [90], an adversarial
scenario generation is proposed. It employs three coordinated
modules based on Llama3.1-8B, for initialization, reflection,
and modification, to identify and refine adversarial vehicle
behaviors using CoT. These modules iteratively generate and
adjust the attacker’s trajectories to collide with the ego vehicle.
Their framework is trained with reinforcement learning
in a closed-loop setting using the Waymo Open Dataset.
In contrast, CRITICAL [91] focuses on ego-agent policy
learning without adversarial agents. It integrates Mistral-7B
via LangChain [70] into a standard reinforcement learning
loop in the HighwayEnv environments [92]. Their LLM is
used to generate diverse scenario configurations, e.g., vehicle
density, number of cars, and to shape safety-related rewards,
enabling robust policy learning under different conditions.

Together, these works demonstrate complementary
strategies: ProSim enables fine-grained control and
interactivity, LLM-Attacker focuses on adversarial testing,
and CRITICAL supports LLM-guided training environments.
Future research could benefit from unifying these paradigms
into a single framework that supports diverse behavior
modeling, adversarial robustness, and controllable training
environments.

Image Datasets Generation: Real-world camera datasets
are widely used in autonomous driving research, but often
lack the diversity and editability required for generating
specific test cases. To address this, recent work explores
language-guided editing of recorded images.

ChatSim [93] introduces a collaborative multi-agent
framework with GPT-4, where each LLM agent handles
a specialized scene editing task, such as viewpoint
changes, vehicle manipulation, asset insertion, and motion
planning, based on natural language instructions. ChatSim
leverages neural rendering and lighting estimation to achieve
photorealistic, multi-camera scene synthesis with external
digital assets.

ADAS Test Scenario Generation: ADAS test scenario
generation focuses on translating functional descriptions
derived from regulations, standards, and test protocols into
executable and reproducible test scenarios for function-level
evaluation. Recent LLM-based approaches parse regulatory
text, specifications, or reports into structured representations,
and generate logical or concrete scenarios in domain-specific
languages for simulation-based testing of ADAS stacks, such
as Apollo [94]. This category emphasizes standardization,
reproducibility, and coverage, and is closely aligned

VOLUME , 9

https://streamlit.io/


Y. Gao et al.: Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis

TABLE 2. Summary of Scenario Generation Studies Using Large Language Models.

Category
Input

Model Technique1 Simulator Output2 Paper

Trajectory DSL Dataset Database

Safety-critical
Scenario

✓ HighD [72] GPT-4 CoT, ICL, SC Metascenario [73] LLMScenario [71]

✓

Map
Position
Behaviors

GPT-4 CoT, ICL, RAG CARLA [51] ChatScene [74]

CARLA
GPT-4o
Claude 3.5 Sonnet
Gemini 1.5 Pro

CoT, MLAs CARLA Aasi et al. [69]

✓ WOMD [47]
Trajectory
Behaviors

DeepSeek V3
DeepSeek R1

CoT, CP, ICL,
RAG

WOMD Mei et al. [76]

Real-world
Scenario Replication

Waymo Open [78]
Map
NHTSA [95]

GPT-4 CoT, ICL, RAG MetaDrive [86] LCTGen [77]

HighD GPT-4 CoT
Esmini
CarMaker

Chat2Scenario [79]

SUMO, OSM [83] Map Llama 3.1-8b CoT, RAG SUMO [52] ChatSUMO [81]

✓ Interaction [85] GPT-4 CoT Interaction SeGPT [84]

Driving policy
Testing Scenario

CARLA
Map
Position
Behaviors

GPT-4o CoT, RAG CARLA TTSG [87]

✓ CARLA GPT-4 CoT, CP CARLA AutoSceneGe [88]

Closed-loop
Scenario

Waymo Open
Map
States

Llama 3.1-8b LoRA Waymo Sim ProSim [89]

✓
Waymo Open
MetaDrive [86]

Llama 3.1-8b CoT, RL MetaDrive LLM-attacker [90]

✓ HighD Mistral-7B CoT HighwayEnv [92] CRITICAL [91]

Image Dataset Waymo Open Images GPT-4 MLAs Chatsim [93]

ADAS Testing
Scenario

✓ Regulation GPT-4 ICL SUMO Guzay et al. [96]

✓ Traffic rule GPT-4
Multi-stage,
ICL, CoT, CP

CARLA TARGET [67]

✓

Standard
Regulation
Test Specification

GPT-4
Llama 3

CP, Multi-stage CARLA Petrovic et
al. [97]

LGSVL [98] NHTSA GPT-4 CP, ICL LGSVL SoVAR [99]

✓ NHTSA GPT-4
CP, ICL,
Multi-stage

LGSVL LeGEND [68]

✓
NHTSA
OpenXOntology

GPT-4
CoT, ICL, SC,
Multi-stage

CARLA Text2Scenario [100]

✓ OpenDRIVE
UNECE R157
OpenX Ontology
maps

Llama 3.1 CP VTD Zhou et al. [101]

1 Techniques: CoT = Chain-of-Thought prompting; ICL = In-Context Learning; SC = Self-Consistency; CP = Contextual Prompting; RAG = Retrieval-Augmented Generation;
RL = Reinforcement Learning; LoRA = Low-Rank Adaptation; MLAs = Multi-LLM Agent Systems.

2 Output: Video, Trajectory, Scenario script.

with regulatory and assessment frameworks such as
OpenXOntology and UN R157.

One of the pioneering papers on ADAS test scenario
generation using LLMs is Guzay et al. [96], who
use GPT-4 with ICL to convert regulatory descriptions
into SUMO-compatible XML files. Expanding on this,
TARGET [67] introduces a multi-stage prompting by using
GPT-4 that parses traffic rules into a DSL of CARLA
using CoT and ICL to evaluate multiple ADAS software.
A rule-to-script generator then produces a scenario script.
Petrovic et al. [97] extend this direction by processing ADAS

test topologies and standardization documents from UNECE
R157 4. The test topology is converted into a metamodel
that includes elements such as the environment, sensor, and
actuator configurations. Standardization documents are parsed
into Object Constraint Language (OCL) using LLMs. Based
on the combined metamodel, OCL constraints, and a specific
test description, an LLM (e.g., GPT-4 or Llama 3) is used
to generate DSL test scenarios, which are then simulated

4https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-157-automated-lane-keeping-systems-alks
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in CARLA. In a more data-driven approach, SoVAR [99]
reconstructs crash scenarios from NHTSA [95] reports by
extracting structured attributes with GPT-4 and generating
trajectories and simulation scripts via constraint solving,
producing LGSVL [98]-compatible test scenarios via API
calls focused on realism. In contrast, LeGEND [68] follows
a top-down approach: it abstracts reports into functional
scenarios, transforms them into logical DSL representations
via a two-stage GPT-4 pipeline, and applies multi-objective
search to generate diverse and critical scenarios to evaluate
Apollo ADAS stack.

Text2Scenario [100] introduces a standardized hierarchical
scenario repository based on the SOTIFs framework and
applies multi-stage prompting (CoT, ICL, SC) with GPT-4
to generate logical scenarios from free-form descriptions.
The resulting logical scenario is then converted into the
OpenScenario format through code and simulated in CARLA
to evaluate the performance of multiple ADAS stacks. Finally,
Zhou et al. [101] focus on lane-keeping systems by using
Llama 3.1 and prompt templates to extract scene elements
from UNECE R157 aligned descriptions. These descriptions
are structured and converted into OpenScenario DSL files
using OpenXOntology5 and OpenDRIVE6, then simulated in
the VTD7 simulation environment.

While LLM-based frameworks effectively generate ADAS
test scenarios from crash reports and regulations, they often
overemphasize rare edge cases [68], [99], neglecting common
driving scenarios that are essential for broader testing.
Currently, we are missing the incorporation of routine test
cases and utilizing real-world maps from OpenStreetMap
(OSM) or SUMO to enhance the scenario diversity and
fidelity.

C. LLM-based Scenario Analysis
Recent research has explored the use of LLMs as a scenario
analysis tool and method. A key challenge is that LLMs are
primarily designed to process natural language input, whereas
driving scenarios are typically defined using structured data
formats, such as scripts in DSL or sensor outputs with
predefined syntax. This creates a mismatch between how the
scenario’s information is represented and how LLMs operate.
Bridging this gap is critical to enable effective interpretation
of driving scenarios using language models. We classify the
existing works into three key areas and list representative
works in Table 3.

Question Answering (QA): Applying LLMs to scenario
analysis for AD requires domain-specific knowledge, which
general-purpose pre-trained models may lack. To bridge this
gap, fine-tuning with tailored datasets is essential. QA datasets
describing driving scenarios help LLMs interpret structured
driving contexts, and support downstream tasks like trajectory
planning and decision-making.

5https://www.asam.net/standards/asam-openxontology/
6https://www.asam.net/standards/detail/opendrive/maps
7https://hexagon.com/de/products/virtual-test-drive

A notable example is [102], where the authors automate
the generation of QA datasets with driving scenarios using
GPT-3.5. With a structured language generator, they convert
vectorized scenario data from their in-house dataset, including
agents’ positions, speed, and distance, into natural language.
With ICL and pre-defined driving rules, their model generates
diverse, context-aware QA pairs to reflect realistic driving
situations. The QA dataset of [102] focuses primarily on
perception and prediction.

Scenario Understanding Here, the LLM processes
structured sensor or simulator data, such as agent states, road
layouts, and traffic signals, to support tasks like scenario
captioning (concise descriptions) and reasoning (coherent
narratives capturing intent and context).

The SenseRAG [104] introduces a RAG-based framework
from the DLR urban traffic dataset [103] for scenario
understanding. They use a VLM to generate traffic condition
descriptions into textual descriptions, which are then mapped
to a structured database, including additional structured
information with weather, city, and traffic participants. Using
CoT prompting and Structured Query Language (SQL) query
generation, GPT-4 retrieves and reasons over the data to refine
perception and enhance trajectory prediction.

Scenario Evaluation Recent work demonstrates how
LLMs can support the evaluation of driving scenarios, by
reasoning over structured simulation data or scenario images
converted into natural language. This includes the evaluation
of anomaly detection, scenario realism, safety-criticality, and
driving behavior. Elhafsi et al. [105] detect semantic scenario
anomalies using LLMs. Their scenarios are evaluated using
OpenAI’s text-davinci-003, which is prompted with CoT and
ICL. Reality Bites [107] is one of the first works to evaluate
the reasoning ability of LLMs in assessing scenario realism.
It transforms XML-formatted DeepScenario [106] data into
natural language and uses ICL prompting with models like
GPT-3.5, Llama2-13B, and Mistral-7B to judge the alignment
with realistic driving conditions. Gao et al. [108] propose a
framework to analyze safety-criticality in driving scenarios
from the CommonRoad [50] environment. They convert
structured scenario data into natural language and prompt
LLMs via CP, CoT, and ICL to evaluate the safety-criticality
of the scenario and infer the risk level of the agent. Also, they
generate safety-critical scenarios by modifying the trajectories
of identified adversarial vehicles. Meanwhile, You et al. [109]
focus on holistic driving assessment, converting interview and
simulation data into a structured knowledge database for RAG.
In their framework, GPT-4o classifies driving styles (cautious,
aggressive) and performance levels based on aggregated
context, including scenario-level information like weather,
ego vehicle data, and surrounding traffic participants.

Overall, LLM-based scenario evaluation still depends on
token-heavy prompting and handcrafted prompts. Emerging
reasoning models, such as OpenAI GPT-5 and Gemini 2.5
Pro, may enable more efficient, zero-shot approaches.
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TABLE 3. Summary of Scenario-Analysis Studies Using Large Language Models.

Category
Input

Model Technique1 Focus Paper

Scenario Elements
Elements
Narrator

Dataset Database

Question
Answering (QA)

Road, Ego, NPC Vehicles,
Pedestrians

Language
Generator

In-house GPT-3.5 ICL Driving QA Chen et al. [102]

Scenario
Understanding

Road, Weather, Ego,
Traffic Light,
NPC Vehicles

LLaVA,
Language Parsing

DLR UT [103]
Traffic Condition
Structured Data

GPT-4
CoT
RAG

Reasoning SenseRAG [104]

Scenario
Evaluation

Road, Weather,
Traffic Sign,
NPC Vehicles

OWL-ViT,
Language Parsing

CARLA text-davinci-003
CoT
ICL

Anomaly
Detection

Elhafsi et al. [105]

Road, Weather, Ego,
NPC Vehicles

Vector Parse DeepScenario [106]
GPT-3.5
LLaMA2-13B
Mistral-7B

CP
ICL

Realism Reality Bites [107]

Road, Ego,
NPC Vehicles

Cartesian Parser,
Ego Parser

CommonRoad [50]
GPT-4o
Gemini-1.5Pro
Deepseek-V3

CP
CoT
ICL

Safety-Criticality Gao et al. [108]

Road, Ego, Traffic Light,
NPC Vehicles

Not Specified CARLA Interview Data GPT-4o
CoT
RAG

Driving Styles You et al. [109]

1 Techniques: CoT = Chain-of-Thought prompting; ICL = In-Context Learning; CP = Contextual Prompting; RAG = Retrieval-Augmented Generation.

D. Limitations and Future Directions
Our review of LLM-based scenario generation and analysis
reveals that many existing approaches rely heavily on
prompting strategies, as summarized in Table 2 and Table 3.
The effectiveness of the corresponding frameworks often
depends on manually crafted prompts. To mitigate this
dependency, recent tools such as DSPy [110] provide
AI-driven prompt optimization frameworks that automatically
generate task-aligned prompts based on user-defined
evaluation metrics. Another promising direction involves
leveraging advanced reasoning models, such as OpenAI’s
GPT-o1 and DeepSeek-R1, which offer stronger zero-shot
reasoning capabilities and may reduce the reliance on
handcrafted prompts.

Furthermore, future research should explore moving
beyond single-turn prompting by adopting interactive,
dialogue-based generation. Structuring LLMs as chatbot-style
agents would allow users to iteratively define scenario
requirements, enabling the synthesis of customized,
constraint-compliant scenarios rather than relying on static
outputs.
LLM-based Scenario Generation: A significant gap persists
between simulation-based scenario generation and real-world
validation. Bridging this gap requires the development of
ADAS test scenarios aligned with practical safety standards
such as SOTIF. By leveraging the reasoning capabilities
of LLMs, future systems could generate functional and
logical scenarios directly from textual descriptions and
test specifications. This would facilitate the creation of
challenging, safety-critical corner cases and enhance the
applicability of generated scenarios to real-world testing and
system validation.

LLM-based Scenario Analysis: LLMs are also increasingly
used to understand and analyze driving scenarios. While
many innovative frameworks have emerged, a major limitation
lies in computational inefficiency. Since most LLMs operate
on textual inputs, sensor data from modalities such as
LiDAR, images, and radar must first be converted into
natural language descriptions using narrators or intermediate
modules, as shown in Table 3. This pre-processing step
adds latency and increases the input complexity. Moreover,
improving the quality of the analysis often requires complex
prompting strategies such as chain-of-thought reasoning,
further complicating real-time deployment. To address these
challenges, one promising approach is to fine-tune LLMs
for scenario understanding tasks, avoiding reliance on
elaborate prompting. However, this direction is currently
hindered by the lack of large-scale, high-quality scenario
question-answering datasets and evaluation benchmarks: most
works focus on framework validation rather than dataset
creation.

IV. Vision Language Models (VLMs)
This section introduces VLMs, summarizes their key
adaptation techniques, and reviews VLM-based scenario
generation for safety-critical, real-world, and ADAS testing
applications, and image datasets generation. Additionally, it
explores how VLMs support scenario analysis tasks such
as VQAs, scene understanding, benchmarking, and risk
assessment.

A. Development of VLMs
In 2020, the ViT [16] extended the transformer architecture
from NLP to computer vision by splitting an image into
fixed-size patches. This enabled embedding an image as
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a sequence of tokens and processing the sequence of
tokens with a standard transformer encoder. This success
inspired researchers to combine visual and textual modalities,
leading to the development of VLMs, which now can jointly
process images and text at the same time. A milestone
was the development of CLIP [28], which was trained on
hundreds of millions of image–text pairs using a contrastive
learning objective, enabling effective zero-shot performance
without task-specific supervision. ALIGN [111] scaled this
approach to billions of noisy web-crawled pairs. BLIP [112]
unified multiple tasks with captioning and retrieval into
a single training framework. Flamingo [113] introduced
few-shot vision-language prompting with frozen backbones
and cross-attention layers for rapid adaptation.

Building upon these visual foundations, a significant shift
occurred with the introduction of visual instruction tuning,
which aims to align vision–language inputs with human
intent through instruction-following behavior. Representative
models such as MiniGPT-4 [114] and LLaVA [29] align
pretrained vision encoders (e.g., CLIP) with large language
models such as LLaMA [82] via lightweight projection
modules and apply instruction tuning, enabling chat-style
vision–language reasoning. An overview of the evolution
from visual foundation models to instruction-tuned VLMs is
illustrated in Figure 5.

By leveraging the VLMs’s ability to jointly reason
over images and text, researchers have explored new
concepts for autonomous driving taks. As summarized
in recent surveys [56], [57], VLMs enable interpretable
and adaptable systems that support open-ended interaction,
improve generalization to unseen scenarios, and facilitate
multimodal reasoning. These advancements mark a shift
toward more intelligent and explainable autonomous vehicles,
laying the groundwork for safer and more human-aligned
driving agents.

FIGURE 6. Pre-trained VLMs use both text descriptions and visual inputs
for two tasks: (1) scenario generation using text prompts and scene
images, and (2) scenario analysis using image understanding and textual
reasoning for risk assessment.

VLMs provide three core capabilities: Multimodal
understanding jointly processes images and text, such
as image captioning and VQA (e.g., Flamingo, BLIP);
Image–text matching involves assessing semantic alignment
between an image and a caption (e.g., ALIGN, CLIP);

Text-to-image generation involves synthesizing novel visuals
from natural language prompts, pioneered by DALL-E [115].
Building on these foundations, VLMs can be adapted to
support individual AD modules (perception, prediction,
planning) and even end-to-end vision–language–action (VLA)
frameworks that directly map visual and linguistic inputs to
driving behaviors. In this survey, we focus specifically on
VLM-based driving scenario generation and scenario analysis,
as illustrated conceptually in Figure 6.

Adaptation Techniques for VLMs: Current compact
VLMs use LLMs as backbones, by adding text tokenizers and
vision encoders. Like LLMs, VLMs are pre-trained and then
adapted for downstream tasks. Beyond the standard prompt
engineering techniques of LLMs, the following adaptation
strategies are commonly employed in the context of scenario
generation and analysis in AD.

Modality alignment modules are additional trainable
modules that transform visual inputs into formats compatible
with language models. Common approaches include:
(I) Query Transformer (Q-Former): A transformer with
learnable queries that aligns image features with the language
model input space via cross-attention (e.g., BLIP-2 [116]).
(II) Cross-attention: Used to resample variable-length image
or video tokens into a fixed-size latent representation, enabling
consistent language interaction (e.g., Flamingo [113]).
(III) Multi-Layer Perceptron (MLP) mapping: A linear
or MLPs projects vision encoder outputs to match the
dimensionality required by the language model [117], [118].
(IV) Structure-aware encoder (Prior tokenizer): A
perception-aware module that encodes structured detection
outputs, such as semantic attributes, into token embeddings
for downstream reasoning. For example, Reason2Drive [119]
introduces a module called Prior Tokenizer to fuse region
features with object-level semantics.

Fine-tuning techniques train VLMs on datasets of
instruction–response pairs involving both visual and textual
inputs to improve their ability to follow multimodal
instructions. Two main strategies are used:
(I) FFT: All model weights are updated on the target dataset.
It typically yields the highest task performance but incurs high
computational costs and risks of overfitting. Several reviewed
works adopt full fine-tuning for smaller VLMs, striking a
practical balance between effectiveness and efficiency [117],
[120].
(II) PEFT: These methods enable adaptation by updating only
a small number of additional parameters. One of the most
common methods are LoRA matrices, which are injected into
attention or feed-forward layers, to enable efficient adaptation
with minimal parameter overhead [66]. An extension of
this idea is QLoRA, which further reduces memory usage
by applying quantization to the base model during adapter
training.
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TABLE 4. Summary of Scenario-Generation Studies Using Vision Language Models.

Category
Input

Model Technique1 Simulator Output2 Paper

Text Image View Type Dataset Database

Safety-critical Scenario ✓ ✓ BEV of Metadrive Waymo Open
GPT-4o
LLaVA

CoT Metadrive CurricuVLM [121]

Real-world Replication
✓ ✓ SUMO

Road
Network

GPT-4
GPT-4V

CoT
RAG

SUMO OmniTester [122]

✓ Real FPV CCD [123] GPT-4o ICL CARLA Miao et al. [124]

Image Dataset ✓ In-house DALL-E2 ICL WEDGE [125]

ADAS Testing Scenario ✓ ✓ BEV of Sketch nuScenes [126] NHTSA GPT-4o
CoT
ICL

Metadrive
BeamNG

TRACE [127]

1 Techniques: CoT = Chain-of-Thought prompting; ICL = In-Context Learning; RAG = Retrieval-Augmented Generation.
2 Output: Image, Trajectory, Scenario script.

B. VLM-based Scenario Generation
This subsection reviews how VLMs are used to generate
driving scenarios by leveraging their understanding of visual
and textual inputs. For consistency, the category definitions in
this subsection follow the conceptual distinctions introduced
in Section III-B. We group recent works into four categories
and display them in Table 4:

Safety-critical Scenario Generation: Safety-critical
scenario generation is a rapidly advancing application of
VLMs in autonomous driving. It enables the synthesis of rare
but relevant situations that are essential for evaluating system
robustness. By combining visual perception with semantic
reasoning, VLMs have the potential to identify abnormal
behaviors or near-failure conditions and generate targeted,
interpretable scenarios.

Recent frameworks such as CurricuVLM [121] illustrate
the potential of VLMs. CurricuVLM integrates VLMs
such as LLaVA into an online curriculum-learning loop.
The VLM analyzes bird’s-eye view (BEV) images and
task descriptions to detect safety-critical events, while
GPT-4o performs batch-level pattern analysis to reveal
behavioral weaknesses. These insights guide a pre-trained
DenseTNT model to generate tailored agent trajectories, and
reinforcement learning adaptively selects the next scenarios.

However, CurricuVLM employs pre-trained VLMs, thus
its performance in identifying safety-critical agents is limited.
Future work could explore combining these frameworks with
safety-aware, fine-tuned VLMs and incorporating temporal
and multi-sensor contexts to improve reliability.

Real-World Scenario Replication: VLMs offers new
opportunities for realistic driving scenario replication, by
combining language understanding with visual modalities
such as scenario images, enabling the creation of realistic
traffic scenes based on real-world recorded dataset or maps.

OmniTester [122] proposes a framework with LLM and
VLM to create realistic and diverse traffic scenarios in SUMO.
User inputs and context from RAG with external knowledge
and OSM map library are processed via GPT-4 [128]
to generate SUMO scenario scripts. A GPT-4V analyzes
the generated scenario using images and code, providing

feedback in natural language. Then, the GPT-4 evaluator
compares this feedback against the intended description to
enhance scenario generation. Beyond the real-world map, the
authors from [124] present a fully automated pipeline that
transforms sample frames of dashcam crash video from the
Car Crash Dataset (CCD) [123] into simulation scenarios
for ADAS testing. Using GPT-4o with ICL, the system
generates SCENIC scripts for CARLA, while a second
GPT-4o compares real and simulated video frames based
on predefined behavior features, enabling iterative refinement
through visual feedback.

Current approaches using maps and recorded videos lack
the use of real-world log replays, which is expected to
enhance realism.

Dataset Generation: A key application of VLMs is
text-to-image generation to build tailored driving datasets,
particularly to improve perception systems under diverse
conditions.

WEDGE [125] showcases the use of VLMs, specifically
DALL-E 2, to synthesize images depicting 16 diverse and
extreme weather conditions relevant to autonomous driving.
Their dataset includes manually annotated 2D bounding boxes
and is used to fine-tune object detectors. When evaluated on
the real-world dataset, object detectors trained on WEDGE
exhibit improved detection performance, highlighting the
potential of VLM-generated data for enhancing perception
robustness in adverse conditions.

Currently, hybrid training that combines real and synthetic
data is underexplored. This approach is crucial because
real-world datasets often contain very few safety-critical
corner cases, whereas synthetic data enables the controlled
generation of rare events, such as crashes, occlusions,
and anomalies—thereby improving long-tail coverage and
strengthening model robustness in high-risk scenarios.

Generation of ADAS Test Scenarios: VLMs extend
ADAS scenario generation by grounding language in visual
content, enabling semantically rich and visually faithful
reconstructions of complex driving events. This facilitates the
transformation of regulatory descriptions, test specifications,
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or crash reports into executable and reproducible scenarios
for simulation-based evaluation of ADAS performance.

TRACE [127] reconstructs ADAS test scenarios from
unstructured multimodal crash reports, including textual
summaries and visual sketches. It uses GPT-4o with ICL
and CoT to extract road types and environmental details
from sketches. An LLM, built on GPT and augmented
with trajectory data from nuScenes [126], generates realistic
vehicle paths. These components are transformed into
a DSL-based scenario compatible with simulators like
MetaDrive using a rule-based encoder these scenarios are
further utilized to test multiple ADAS algorithms.

TRACE lack online interactive scenario editing, where
users could modify scenes by sketching or annotating video
frames, and VLMs could dynamically update the simulation
code. This would enable human-in-the-loop control and more
flexible scenario refinement.

C. VLM-based Scenario Analysis
The current progress in scenario generation with VLMs is
quite at the beginning, but VLMs have already shown big
promises for scenario analysis in AD. Examples include
NuScenes-QA [134] for VQAs, where a VLM answers natural
language questions grounded in driving scenes to support
scenario analysis; NuPrompt [165] for language-guided
tracking and prediction, and Refer-KITTI [166] for
multi-object referring tracking tasks. However, these models
are not considered foundation models because they do not
utilize fully pre-trained foundation architectures. Rather, they
construct task-oriented frameworks based on LLM backbone
components.

In this section, we focus on foundation VLMs pre-trained
on large-scale, diverse image–text datasets with cross-domain
generalization. We examine their potential to improve
transferability, explainability, and efficiency in analyzing
complex AD scenarios. We structure our discussion around
four key application areas, and show their techniques and
applications in Table 5.

Visual Question Answering (VQA): VQA datasets for
autonomous driving pair visual inputs with natural language
queries, to evaluate scene understanding across tasks such
as perception, prediction, and planning. While recent works
have proposed VQA datasets, some QA remain conceptual
or require human reasoning in their creation, whereas others
make use of LLMs for automated generation. This section
focuses on VQA-based scenario analysis methods that involve
VLM execution.

Early efforts began by enriching existing scene
representations with the perception task. Talk2BEV [129]
uses a perception stack to generate BEV maps by fusing
multi-view images and LiDAR, then applies BLIP-2 to
augment these maps with object-level language descriptions.
These descriptions are passed to GPT-4 with CoT prompting
to answer spatial and semantic queries, enabling zero-shot
VQA with annotated QA pairs focusing on perception and

prediction. Similarly, NuScenes-MQA [117] uses GPT-4 to
automatically generate diverse question templates within the
Markup-QA scheme. The authors fully fine-tune a VLM
that combines a CLIP-pre-trained ViT as a visual encoder,
and OPT as a language model, using an MLP to align
multi-camera visual features with text. This setup enables
joint evaluation of caption generation and visual question
answering in driving scenarios for perception.

Later works moved toward more advanced reasoning tasks.
OmniDrive [118] introduces the first 3D VQA dataset for
counterfactual reasoning in autonomous driving, evaluating
VLMs with frozen EVA-02-L and Llama2–7B backbones,
and using either an MLP projector (Omni-L) or a Q-Former
(Omni-Q) as trainable modality bridges. Reason2Drive [119]
presents a video–text VQA dataset composed of sequential
images from nuScenes, Waymo, and ONCE [130], covering
tasks in perception, prediction, and reasoning. The authors
fine-tune a VLM consisting of FlanT5-XL and Vicuna-7B by
using LoRA, leveraging a prior tokenizer and an instructed
vision decoder. A Q-Former module is employed to jointly
predict answers and perceptual cues.

Recent works in VQA-based scenario analysis focus
on advancing multimodal reasoning and evaluation across
perception, prediction, and planning tasks in autonomous
driving. DriveLMM-o1 [131] introduces a step-by-step
reasoning dataset based on nuScenes, incorporating both
images and LiDAR points into the QA context. Their QA
pairs are initially generated using GPT-4 and subsequently
refined through human annotation. The authors fine-tune
InternVL2.5-8B using LoRA, demonstrating improved
performance on reasoning and final answer accuracy across
perception, prediction, and planning. AutoDrive-QA [135]
converts open-ended QA pairs from DriveLM [132],
LingoQA [133], and NuScenes-QA [134] into multiple-choice
questions using GPT-4o, adding distractors, which are
plausible but incorrect answer choices designed to reflect
realistic domain-specific errors, to simulate realistic errors.
This forms a standardized benchmark to evaluate pre-trained
VLMs across key scenario analysis tasks across perception,
prediction, and planning.

Despite these advances, most of the current VQAs overlook
traffic rules and real-world driving conventions. Future
work should incorporate traffic rule-aware QA, grounded
in road semantics (e.g., right-of-way rules and road signal
compliance), to enable more realistic and safety-relevant
scenario reasoning.

Scene Understanding: VLMs are heavily used to interpret
complex driving scenarios. Recent works have leveraged
VLMs for scene tagging, which represents the most basic
level of scene understanding, involving binary or categorical
assignments. Scene tagging assigns predefined labels at either
the scene level (e.g., to analyze the weather conditions),
or at pixel level (semantic segmentation) to characterize
visual content for downstream tasks. Najibi et al. [136]
leverage a pre-trained CLIP to perform zero-shot scene
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TABLE 5. Summary of Scenario-Analysis Studies Using Vision Language Models.

Category
Input Model

Technique2 Focus Paper
Context Image1 Dataset VLM LLM Role

Visual
Question
Answering
(VQA)

Multi-view nuScenes
BLIP2
InstructBLIP2
MiniGPT4

GPT-4
VLM: BEV Feature Extraction
LLM: QA Execution

Zero-shot
Perception
Prediction

Talk2BEV [129]

✓ Multi-view nuScenes ViT+OPT GPT-4
VLM: VQA Execution
LLM: QA Generation

MLP
Fft

Perception NuScenes-MQA [117]

✓ Multi-view nuScenes
EVA-02-L
+
Llama2-7B

GPT-4
VLM: VQA Execution
LLM: QA Augumentation

MLP
Q-Former
Fft

Counterfactual
Reasoning

OmniDrive [118]

✓ FPV
nuScenes
Waymo Open
Once [130]

FlanT5-XL
+
Vicuna-7B

GPT-4
VLM: VQA Execution
LLM: QA Augumentation

Q-Former
Tokenizer
LoRA

Perception
Prediction
Reasoning

Reason2Drive [119]

✓ Multi-view nuScenes InterVL2.5-8B GPT-4o
VLM: VQA Execution
LLM: QA Generation

LoRA
Perception
Prediction
Planning

DriveLMM-o1 [131]

✓ FPV
DriveLM [132]
LingoQA [133]
NuScenes-QA [134]

Qwen2-VL-7B
Qwen2-VL-72B
GPT-4o

GPT-4o
VLM: VQA Execution
LLM: Multi-Choice QA

Zero-shot
Perception
Prediction
Planning

AutoDrive-QA [135]

Scene
Understanding

✓ Multi-view Waymo Open CLIP Zero-shot Tagging Najibi et al. [136]

✓ Multi-view SemanticKITTI [137]
Grounding DINO
+ SAM

GPT-3.5
VLM: Object Grounding
LLM: Narrative Generation

Zero-shot Tagging OpenAnnotate3D [138]

✓ FPV
Cityscapes [139]
CamVid [140]
CARLA

ImageGPT Zero-shot Tagging Kou et al. [141]

✓ Multi-view DriveLM
ViT-B/32
+
T5-Base/Large

MLP
Fft/LoRA

Tagging EM-VLM4AD [120]

✓ FPV FARS
GPT-4V
LLaVA-13B

Llama2-13B
Zephyr-7b-α

VLM: Scene Captioning
LLM: Risk Assessment

Zero-shot Captioning Zarzà et al. [142]

✓ Roadcamera RDD [143] GPT4 Zero-shot Captioning ConnectGPT [144]

✓ BEV WOMD [47] GPT-4V Zero-shot Captioning Zheng et al. [145]

✓ FPV BDD100K [146] Multiple VLMs Zero-shot
Tagging
Reasoning

Rivera et al. [147]

✓ FPV
nuScenes
BDD-X [148]
CDD [123]

GPT-4V Zero-shot Reasoning Wen et al. [149]

✓ Multi-view MAPLM-QA [150] ViLA Zero-shot Reasoning Keskar et al. [151]

Benchmark
& Dataset

✓ FPV DriveLM Multiple VLMs GPT-4o
VLM: VQA Execution
LLM: Answer Evaluation

Zero-shot Robustness DriveBench [152]

✓ Multi-view nuScenes
ViT/V2-99
+ LLaVA-1.5-7B

Tokenizer
MLP
LoRA

3D Grounding NuGrounding [153]

✓ FPV
nuScenes
CARLA

BLIP2 LoRA GVQA DriveLM [132]

✓ FPV CODA [154]
LLaVA-llama-3-8B
GPT-4o

GPT-4
VLM: Scene Captioning
LLM: Caption Evaluation

LoRA Corner Cases CODA-LM [155]

✓ FPV In-house GPT-4o CP, ICL, CoT ADAS-LKA OpenLKA [156]

Risk Assessment

✓ Multi-view In-house GPT-4V
CP
CoT

Risk Scoring Hwang et.al [157]

✓ FPV DAD [158] Flamingo GPT-3.5 Zero-shot
Hazard
Explanation

Latte [159]

✓ FPV CARLA
DINOv2
OWLV2+SAM2
GPT-4o

CP
Anomaly
Detection

Ronecker et.al [160]

✓ Multi-view CARLA InternViT Interlm2-chat
VLM: Video Extraction
LLM: Narrative Generation

MLP
QLoRA
CP, CoT

Situation
Awareness
Reasoning

Think-Driver [161]

✓
Partially
occluded BEV

CARLA
Llama3.2-11B
LLaVA-1.6-7B
Qwen2-VL-7B

LoRA
CP

Uncertainty
Scoring

Lee et.al [162]

✓ FPV BDD100K Qwen2-VL7B LoRA
Hazard
Detection

INSIGHT [163]

✓ FPV OpenLKA [156]
Qwen2.5-VL-3B
Qwen2.5-VL-7B

LoRA
LKA Failures
Prediction

LKAlert [164]

1 Image: FPV = First Person View; BEV = Bird Eye View.
2 Techniques: Fft = Full fine-tuning; CP = Contextual Prompting; ICL = In-Context Learning; CoT = Chain-of-Thought prompting; Tokenizer = Prior Tokenizer;

MLP = Multi-Layer Perceptron mapping.
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tagging on camera images, assigning semantic labels that
are projected onto LiDAR points. These labels guide the
generation of 3D pseudo-labels, which are then used to
train a 3D object detector without human annotations.
OpenAnnotate3D [138] introduces an auto-labeling system
for multi-modal 3D data, using GPT-3.5 for interpreting
natural language scene descriptions and a VLM with
Grounding DINO and SAM for generating dense 2D masks,
which are fused spatio-temporally and projected into 3D
annotations. Kou et al. [141] propose a framework to enhance
VLMs for street scene semantic understanding. They use
a pre-trained ImageGPT to extract semantic features from
First Person View (FPV) images, and train a lightweight
perception head that maps the semantic features to pixel-wise
semantic segmentation masks. EM-VLM4AD [120] proposes
a lightweight VLM trained on the dataset from DriveLM [132]
with a primary focus on scenario tagging. It uses a ViT
image encoder and explores two adaptation strategies: full
fine-tuning of T5-base and LoRA-based tuning of T5-large.
The model is benchmarked against baselines in terms of
parameter count, Floating Point Operations Per Second
(FLOPs), and memory usage, showcasing strong efficiency
for deployment in resource-constrained settings.

Building on scene tagging, recent efforts have advanced
toward the intermediate-level task of scene captioning, which
bridges perception and language by generating open-form
descriptions. Scene captioning generates concise natural
language descriptions of visible elements. Zarzà et al. [142]
propose a framework using structured inputs with principal
component analysis, and adopt Llama2-13B with CoT and
CP to assess the risks in a scenario, suggesting driving
adaptations. They test their framework with the FARS
dataset8. Additionally, they leverage a VLM, specifically
LLaVA-13B with CP, to perform image-based scenario
captioning, enhancing scene understanding through natural
language descriptions. ConnectGPT [144] leverages VLMs
to generate standardized Cooperative Intelligent Transport
Systems (C-ITS) messages for Connected and Automated
Vehicles. GPT-4 is used to interpret infrastructure camera
images, generate C-ITS messages, with validation conducted
on a small curated set of highway images, including samples
originating from the Road Damage Dataset (RDD) [143].

Zheng et al. [145] introduce a context-aware motion
prediction framework using VLMs. They employ GPT-4V
to extract traffic context from a transportation context map.
They combine vector map data and historical trajectories,
and feed the generated scenario description into a motion
transformer to improve trajectory prediction.

Several studies address the most advanced form of scene
understanding: scene reasoning, which requires interpreting
interactions, causality, and abstract situational context. Scene
reasoning interprets relationships and interactions among
agents while producing coherent narratives that capture
intent, causality, and situational context. Rivera et al. [147]

8https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars

propose a scalable pipeline for traffic scene classification
using off-the-shelf VLMs such as GPT-4V, LLaVA, and
CogAgent-VQA [167]. These models are evaluated zero-shot
to reason about predefined scenario elements, such as lane
markings and vehicle maneuvers, using self-developed and
the BDD100K [146] datasets. Wen et al. [149] explore
GPT-4V’s zero-shot capability for road scene interpretation
from dashcam footages, evaluating the model on object
detection, scene captioning, VQA, and causal reasoning, while
highlighting its potential and limitations for autonomous
driving. Keskar et al. [151] evaluate NVIDIA’s ViLA
on the MAPLM-QA [150] benchmark for traffic scene
understanding. Using contextual prompting, they assess ViLA
on multiple-choice VQA tasks, including lane counting,
intersection detection, scene classification, and point cloud
quality assessment. ViLA shows strong performance on
high-level VQA tasks but struggles with fine-grained spatial
reasoning.

Benchmarks & Datasets: To support the development and
evaluation of VLMs in autonomous driving, recent efforts
have introduced specialized benchmarks and curated datasets
covering key tasks such as perception, prediction, planning,
and scenario reasoning under real-world and safety-critical
conditions.

Aiming for a standardized evaluation, several works
present benchmarks aligned with diverse driving scenarios.
DriveBench [152] introduces a benchmark for evaluating
scenario reasoning across multiple driving tasks. It extends
the VQA dataset from DriveLM [132] and adds diverse visual
corruption categories to assess the model’s robustness. Using
this benchmark, the authors evaluate the robustness of a
range of pre-trained and fine-tuned VLMs (e.g., GPT-4o,
Qwen2-VL [168]) under clean, corrupted, and text-only
conditions. GPT-4o is further employed as an automatic
evaluator for open-ended answers. nuGrounding [153]
proposes the first 3D visual grounding benchmark with
human-annotated object grounding based on nuScenes. The
authors fine-tune LLaVA-1.5 using LoRA, with ViT or V2-99
as the visual encoder. To incorporate 3D understanding, they
extract BEV features via a BEV-based detector, map them into
the LLM adapter, and fuse them with VLM outputs through
a query fuser for accurate object detection and localization.

Complementing these benchmarks, other works provide
high-quality datasets to train and adapt VLMs to
complex driving environments. DriveLM [132] introduces a
graph-structured visual question answering (GVQA) which
leverages graph-based scene representations to answer
structured perception, prediction, and planning questions
in autonomous driving scenarios, using human-curated QA
graphs from nuScenes and rule-based annotations from
CARLA. A BLIP-2-based VLM is fine-tuned with LoRA
and guided by graph-based question prompting to enable
zero-shot interpretable scenario reasoning across perception,
prediction, and planning. CODA-LM [155] introduces a
corner-case image-text dataset derived from the CODA
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dataset [154]. The authors use GPT-4V to generate multi-task
captions spanning perception, prediction, and planning
for each image. These captions are then evaluated and
refined using GPT-4. After constructing the dataset, they
fine-tune a LLaVA-llama-3-8B model to enhance vision
language understanding in corner-case driving scenarios.
OpenLKA [156] introduces a large-scale, real-world dataset
for Lane Keeping Assist under diverse driving conditions.
GPT-4o is used in conjunction with CP, CoT, and ICL
to generate structured scene annotations that describe lane
quality, weather, and traffic context.

However, the existing benchmarks and datasets still lack
realism and diversity. For example, DriveBench exposes
the VLM’s vulnerability to corruption, suggesting the need
for more realistic disturbances (e.g., occlusions, night-time).
CODA-LM relies on filtered GPT captions, underscoring the
gap in real-world edge-case coverage.

Risk Assessment: VLMs are increasingly applied to
autonomous driving risk assessment, addressing tasks
like hazard detection, uncertainty estimation, and failure
prediction. Recent approaches leverage both prompting and
fine-tuning and use diverse visual inputs, including BEV maps,
multi-view images, and segmentation masks. These methods
aim to improve safety through interpretable reasoning and
context-aware decision support.

Recent advances have explored prompting techniques
for risk analysis. Hwang et al. [157] utilize GPT-4V in a
zero-shot setting for risk scoring in street-crossing scenarios.
The model receives structured visual inputs, including
bounding boxes, segmentation masks, and optical flow,
alongside contextual prompts formulated using CoT. Instead
of directly processing raw images, GPT-4V reasons over
augmented visual features to assess safety levels and provide
natural language justifications. Similarly, LATTE [159]
introduces a real-time hazard detection framework that utilizes
off-the-shelf computer vision modules and three lightweight
attention modules for spatial reasoning, temporal modeling,
and risk prediction. Upon hazard detection, Flamingo and
GPT-3.5 are triggered to generate scene captions and verbal
explanations. The system operates in a zero-shot manner by
leveraging contextual prompting for situational reasoning. For
anomaly object detection, Ronecker et al. [160] proposed both
patch-based and instance-based embedding methods using
vision foundation models, evaluated on a CARLA-based
dataset. They leverage the zero-shot capabilities of DINOv2
for visual embeddings and combine OWLv2 with SAM2
for object-level instance segmentation. Their instance-based
approach achieves slightly better results than GPT-4o using
contextual prompting.

Think-Driver [161] proposes a VLM that uses multi-view
images to assess perceived traffic conditions and evaluate the
risks of current driving maneuvers. It employs multi-view
RGB inputs and ego state data, processed by InternViT
and InterLM2-chat, respectively. The model is fine-tuned
using Quantized Low-Rank Adaptation (QLoRA) and trained

on CoT-style QA data that cover scene understanding,
hazard reasoning, and action prediction. In consideration
of occlusion-aware BEV representations, Lee et al. [162]
first investigate the use of VLM for uncertainty prediction in
autonomous driving. They construct a dataset from CARLA
using BEV images that contain occlusion masks, paired with
driving actions and uncertainty scores. Three VLMs are
fine-tuned using LoRA to compare their performance under
occluded conditions. For hazard detection and explanation,
INSIGHT [163] fine-tunes Qwen2-VL-7B via LoRA. Using
annotated hazard locations in BDD100K images, the model
is trained to localize high-risk regions and generate natural
language descriptions. It outperforms several pre-trained
VLMs in both spatial localization and interpretability tasks.
Finally, LKAlert [164] develops a VLM-based framework
for predicting lane-keeping assist failures. It integrates RGB
dashcam images, CAN bus signals, and lane segmentation
masks from LaneNet. A Qwen2.5-VL model is fine-tuned
via LoRA, with lane masks serving as spatial guidance. The
model outputs binary alerts and interpretable explanations to
enhance safety transparency.

To enable real-world deployment, the inference latency and
resource demands need to be further reduced through model
compression, efficient prompting, and lightweight VLM
architectures optimized for onboard execution in autonomous
vehicles.

D. Limitations and Future Directions
VLM-based Scenario Generation: Compared to LLM-based
scenario generation (Section III B), VLMs remain
underexplored in areas such as scenario synthesis for training
driving policies and closed-loop scenario generation. With
their ability to process both visual and textual inputs,
VLMs offer a powerful extension to existing frameworks.
A promising direction is to use them as auxiliary analysis
modules to improve the interpretability and fidelity of the
generated scenarios, while also providing feedback signals
to iteratively enhance the scenario quality.

Moreover, there is strong potential to develop more
sophisticated and interdisciplinary pipelines that fully leverage
the multimodal reasoning capabilities of VLMs. For instance,
in scenario-based testing, real-world traffic videos could be
interpreted by VLMs to produce detailed scene captions.
These captions could serve as structured conditions for
DMs to regenerate photorealistic driving scenes or videos.
Such a multi-stage pipeline, linking perception, semantic
understanding, and simulation, represents a promising
direction for building holistic and scalable scenario generation
systems.

VLM-based Scenario Analysis: In the domain of scenario
analysis, VLMs show advantages over text-only LLM-based
frameworks. Current research follows two main trends.

The first trend centers on developing task-specific
frameworks, often augmented with external computer vision
modules (e.g., for 3D grounding or hazard detection).
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Meanwhile, the rapid progress of general-purpose pre-trained
VLMs raises a key research question: to what extent can these
models handle scenario analysis effectively without relying
on external tools like object detectors, depth estimators, or
3D grounders? Investigating the capabilities and limitations
of such end-to-end VLMs could enable more streamlined,
scalable solutions that reduce the system’s complexity while
preserving, or even enhancing, their analytical performance.

The other trend emphasizes VQA, designing tailored
VQA tasks that fine-tune VLMs for improved task-oriented
performance. Despite recent advances, several challenges
persist. While large-scale pre-trained VLMs exhibit strong
potential, the scenario analysis pipeline in autonomous
driving remains highly complex and poorly standardized.
Specifically, there is a lack of benchmark datasets, consistent
annotation frameworks for VQA tasks, and unified evaluation
metrics tailored to scenario analysis. Addressing these gaps is
essential for developing more robust and task-specific VLMs
capable of handling real-world autonomous driving scenarios.

V. Multimodal Large Language Models (MLLMs)
This section begins with the development of MLLMs,
highlighting their architectural evolution and adaptation
techniques, such as modality bridging and instruction tuning.
Then, it covers scenario generation from multimodal input and
scenario analysis tasks, including VQA, scene understanding,
and risk assessment in AD contexts.

A. Development of MLLMs
MLLMs extend pre-trained LLMs by integrating three or
more modalities, such as vision, audio, and video, enabling
the system to reason over richer and more diverse sensory
inputs beyond image–text pairs. Early VLMs such as BLIP-2
[116] use frozen vision backbones connected to LLMs
via adapters such as Q-Former. These models primarily
extend VLMs by connecting frozen perception encoders to
LLMs, but do not yet constitute full MLLMs. In parallel,
early multimodal extensions such as Video-LLaMA [169]
incorporated additional modalities, including video and audio,
enabling joint reasoning over text, visual frames, and acoustic
signals. Although these models marked an initial step toward
MLLMs, they typically relied on frozen backbones and lacked
unified multimodal training, resulting in limited temporal and
cross-modal reasoning capabilities.

More recent models, including GPT-4o, represent a further
step toward fully unified MLLMs by integrating vision and
audio within a single model. Similarly, Google Gemini [170]
and Qwen-Omni [171] natively support multiple modalities,
enabling open-ended reasoning over images, videos, audio,
and structured visual content, such as charts and diagrams.
While effective for general visual-language tasks, these
models fall short in autonomous driving, which requires
reasoning over structured inputs like temporal object tracks,
BEV layouts, and interaction-aware motion patterns. The
progression from LLMs to MLLMs is depicted in Figure 5.

To address the unique demands of autonomous driving,
recent MLLM architectures have begun incorporating
structured, domain-specific modalities such as multi-view
video, LiDAR point clouds, and BEV layouts. These additions
enable spatial and temporal grounding, allowing LLMs to
reason more effectively over complex driving scenes and
multi-agent dynamics [172].

FIGURE 7. Overview of adaptation techniques for MLLMs in autonomous
driving. Encoders extract features from modality-specific inputs. Projectors
are trainable modules that map features into the LLM’s embedding space to
enable cross-modal alignment. The LLM serves as the reasoning core and
can be frozen or trainable, depending on the available resources and the
task, using fine-tuning techniques.

While building on techniques from VLMs, MLLMs are
adapted to support a broader range of modalities essential
for autonomous driving, such as video, LiDAR point clouds,
BEV maps, and High-Definition (HD) semantic features.
As illustrated in Figure 7, these systems typically consist
of specialized modality encoders (e.g., BEVFormer [173],
CLIP-ViT [174], VoxelNet [175]), projection modules to align
multi-modal features (e.g., MLPs, Q-Former, cross-attention),
and task-specific training strategies. MLLMs often keep
both the perception and language backbones frozen, with
adaptation focusing on lightweight bridging and instruction
tuning for downstream driving-related tasks. The main
adaptation strategies are discussed in the following.

Modality alignment modules: These modules serve as
a bridge between non-text modalities and the LLM’s token
space. The main modality alignment modules are:

(1) Linear projector: a single linear (i.e., fully connected)
neural layer used to project modality-specific features into
the LLM’s embedding space. It offers a lightweight mapping
strategy and is often used in early-stage VLMs or in
combination with pre-trained encoders [176], [177].

(2) MLP projection: Projects high-dimensional features
from vision or spatial encoders (e.g., ViT, BEVFormer) into
the LLM’s token space. Used in models such as BLIP-2 [116]
and driving-centric adapters like P-Adapter [178], which align
BEV or LiDAR features for language-based reasoning.

(3) Spatio-Temporal (ST)-Adapter: A lightweight temporal
adapter module is used to extend image-based MLLMs
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to process sequential video inputs [173], [178]. It enables
spatiotemporal modeling without modifying the core LLM
weights.

(4) Cross-attention: Uses learnable queries to attend over
image or point cloud tokens, enabling multimodal fusion for
tasks such as spatial/temporal grounding, semantic alignment,
and instruction following [179], [180].

(5) Q-Former: Transformer-based query modules that distill
task-relevant embeddings from multi-modal inputs using
cross-attention. These modules are applied in BLIP-2 [116],
InternDrive [181], and NuInstruct [173] for structured fusion
across video, LiDAR, and BEV inputs.

(6) Fusion transformers: Specialized attention blocks
designed to integrate features across multiple streams
such as BEV maps, multi-view video, or LiDAR point
clouds. Modules like BEV-Injection [173] serve as fusion
transformers by aligning and injecting multi-modal features
(e.g., from images or LiDAR) into a unified BEV
representation. These are commonly used in driving-centric
MLLMs.

(7) Structure-aware encoder: A module that converts
structured perception inputs, such as 3D bounding
boxes [175], scene graphs, or motion trajectories, into token
embeddings suitable for language-based reasoning.

Multimodal fine-tuning: Once modality alignment is
achieved, an MLLM can be trained to follow task-specific
prompts using paired instruction data like VQA. This stage
teaches the model to reason over multimodal contexts and
produce grounded outputs. Similarly to VLMs, two main
strategies are commonly employed to achieve this adaptation:

(1) PEFT: PEFT strategies adapt MLLMs by updating only
a small subset of the model’s parameters, typically keeping
the LLM frozen. While classical PEFT methods such as
adapter layers, LoRA, and prompt tuning (discussed below)
operate inside the LLM, recent works in autonomous driving
often apply PEFT to modality alignment modules [173]. For
example, components like ST-Adapters and Q-Formers are
trained to bridge visual or spatial inputs to the LLM, enabling
task adaptation without modifying the core language model.

Adapter layers: Lightweight trainable modules inserted
between the layers of an LLM, typically using a
down-projection and up-projection structure. They are used
in LLaMA Adapter V2 [182] and InternDrive [181].

LoRA: Applies low-rank updates to attention and
feed-forward modules. Frequently used in driving models
like DriveGPT4 [176].

PEFT-Modality Alignment (MA): Fine-tuning only the MA
modules (e.g., Q-Former, ST-Adapter), while keeping the
LLM’s weights frozen.

(2) FFT: Full fine-tuning updates all model parameters,
including vision encoders, spatial encoders, and the LLM.
While this approach typically yields the highest task-specific
performance, it is computationally intensive. To reduce the
computational cost, some works apply FFT to smaller models,
for example using Qwen2-0.5B [183].

B. MLLM-based Scenario Generation
MLLMs can jointly process diverse visual inputs from
vehicle sensors or human sources, enabling a comprehensive
understanding of complex driving environments. Their ability
to integrate multiple modalities also supports the generation of
more realistic, context-aware scenarios. In the following, we
categorize the use of MLLMs into two groups, summarized
in Table 6. For consistency, the scenario categories follow
the definitions introduced in Section III B.

Safety-critical Scenario Generation: MLLM-based
safety-critical scenario generation focuses on synthesizing
rare and high-risk driving situations by leveraging
heterogeneous modalities such as videos, GPS traces, and
crash reports. By reasoning jointly over spatial, temporal, and
semantic cues, these methods reconstruct or generate corner
cases that closely reflect real-world hazardous events.

AutoScenario [184] presents a pipeline to generate realistic
corner cases using multimodal crash data from NHTSA,
including text, images, videos, and semi-structured reports.
They use GPT-4o with CoT to generate structured scenario
descriptions, which are then used to produce road networks
in SUMO and agent behaviors in CARLA. Their scenario
refinement is guided by GPS traces and frame-level similarity
between simulated and real scenes, to ensure good matching
with the original crash event. A promising future direction is
to incorporate spatial modalities, such as LiDAR point clouds
or BEV maps, to achieve more accurate scene geometries
and agents’ localization, enhancing realism beyond what 2D
video and depth sensing alone can offer.

ADAS Testing Scenario Generation: Scenario generation
for ADAS testing with MLLMs aims to derive executable
and reproducible test cases from real-world multimodal
observations, primarily targeting function-level validation of
ADAS stack under typical but diverse driving conditions.
LEADE [186] generates ADAS test scenarios from real-traffic
videos in the HDD dataset [185]. Key frames are used
in multimodal ICL and CoT prompting with GPT-4V to
create abstract scenarios, which are converted into executable
programs for the LGSVL simulator [98]. The Apollo
ADAS stack [94] runs an ego vehicle, and a dual-layer
search identifies semantic-equivalent scenarios that expose
behavioral differences between Apollo and human drivers.
Future work could align scenario generation with ADAS
test standards, enabling the synthesis of regulation-compliant
scenarios. Incorporating traffic rules and structured priors
would also improve controllability and test coverage.

C. MLLM-based Scenario Analysis
This section discusses the papers using MLLMs for scenario
analysis in AD. We categorize the existing works into three
key tasks, as reported in Table 7.

Visual Question Answering (VQA): In comparison with
VQA-based scenario analysis with VLMs, MLLMs have
extended capabilities to deal with multi-modal sensor data
such as videos, LiDAR point clouds, and HD maps [199],
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TABLE 6. Summary of Scenario-Generation Studies Using Multimodal Large Language Models.

Category
Input

Model Technique Simulator Output1 Paper

Text Image Video Dataset Database

Safety-critical Scenario ✓ ✓ Real FPV
SUMO
CARLA
OSM

NHTSA
GPS

GPT-4o CoT CARLA AutoScenario [184]

ADAS Testing Scenario ✓ Real FPV HDD [185] GPT-4V
CoT
ICL

LGSVL LEADE [186]

1 Output icons: Image, Trajectory, Scenario script.

besides images and text. Based on their task and data modality,
existing VQA datasets can be grouped into four categories:

(I) General AD Tasks – Perception, Reasoning, and
Control: Several datasets target core autonomous driving tasks,
including visual perception, reasoning, and decision-making.
DriveGPT4 [176] introduces the first driving-specific, video
QA-style instruction-following dataset, generated using
GPT-4 with structured inputs including object detection
bounding boxes, captions, and control signals formatted as
text. It fine-tunes a MLLM combining CLIP, and LLaMA2
with LoRA adapters to produce both textual explanations and
control outputs. Meanwhile, a mix-finetuning strategy merges
general visual instruction data with driving-specific samples
to improve reasoning and performance. VLAAD [177]
introduces a multi-modal assistant for autonomous driving,
trained on an instruction-following dataset derived from
BDD-X and HDD videos, with QA pairs augmented using
GPT-4. The model is built on Video-LLaMA, which combines
a BLIP-2-based visual encoder, a Video Q-Former for
temporal modeling, and a frozen LLaMA-2-7B language
model. PEFT-MA is applied only to the Q-Former and
projection layers, enabling the model to efficiently perform
tasks such as VQA, free-form QA, ego-intention prediction,
and scenario-level reasoning. LingoQA [133] presents a
VQA dataset for autonomous driving, covering perception,
reasoning and action. It includes an action set annotated
with GPT-3.5 and a scenery set generated by GPT-4 using
CoT. The baseline model processes video frames using CLIP
and a Q-Former, with a linear projector to align features to
Vicuna-1.5-7B’s token space. For the fine-tuning, PEFT-MA
is applied to the Q-Former and projector and the LLM remains
frozen. Evaluation is conducted using the novel Lingo-Judge
classifier, which is trained with LoRA.

(II) Spatio-Temporal Reasoning: Datasets in this
group emphasize reasoning over agent motion, temporal
dependencies, and event semantics in driving scenarios.
TUMTraffic-VideoQA [183] introduces a multiple-choice
video QA dataset for roadside traffic scenes, covering object
captioning and spatio-temporal grounding, and facilitating
fine-grained spatio-temporal reasoning in traffic scenarios.
Visual metadata is extracted using standard detectors
and captioned by off-the-shelf VLMs, while GPT-4o-mini
generates QA pairs via template-augmented prompting. The
baseline model (TUMTraffic-Qwen) uses SigLIP for visual

encoding, an MLP projector for modality alignment, and
Qwen2 (0.5B/7B) as the LLM, which is fully fine-tuned
for instruction-following QA. NuPlanQA [172] introduces a
video QA dataset built on nuPlan, using GPT-4o to generate
free-form QA pairs for training and multiple-choice QA
for evaluation. To leverage this data, the authors propose
BEV-LLM, an MLLM that integrates multi-view images and
BEV features through a BEV encoder, a BEV-Fusion module,
and an MLP projector. The model uses LLaMA-3.2-Vision
as a frozen backbone, while training is applied only to
the BEV-Fusion module and projection layers, following
a PEFT-MA strategy.

(III) Risk-Aware Reasoning: To address safety-critical
understanding, several datasets focus on risk recognition,
intention estimation, and planning-related queries.
NuInstruct [173] introduces multi-view video QA datasets
covering perception, prediction, risk, and planning tasks.
QAs are generated via a structured SQL pipeline. The
authors propose BEV-InMLLM, which extends MLLMs
(e.g., Video-LLaMA) by utilizing ST-Adapters and a
BEV-Injection module or a Fusion transformer that integrates
spatial features from multi-view videos, resulting in
improved performance on holistic autonomous driving
tasks. HiLM-D [178] introduces DRAMA-ROLISP, a
risk-aware VQA dataset for risk assessment that is enhanced
using GPT-4. The model fine-tunes MiniGPT-4 with a
ViT and a ST-Adapter for video input, a ResNet-based
encoder, and a P-Adapter for spatial fusion. A Query-Aware
Detector integrates outputs for risk object localization and
intention reasoning. The LLM itself remains frozen, with
only the adapters, fusion, and projector layers fine-tuned.
DVBench [189] introduces a comprehensive video-based
VQA benchmark for safety-critical autonomous driving, built
on SHRP2 [188] dashcam data. Multiple-choice QA pairs
are generated and refined using GPT-4o and Qwen2.5-72B,
covering perception and reasoning tasks, and classifying into
11 subcategories. The benchmark evaluates 14 MLLMs using
the self proposed metric, which rotates answer positions to
assess robustness. The authors also compare the performance
of Qwen2-VL-2B/7B with and without full fine-tuning on
the DVBench dataset.

(IV) Multi-Modal Extensions with LiDAR (with/without HD
Maps: To extend reasoning beyond RGB data, some datasets
incorporate 3D point clouds or HD maps. LiDAR-LLM [175]
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TABLE 7. Summary of Scenario-Analysis Studies Using Multimodal Large Language Models.

Category
Input Model

Technique3 Focus4 Paper
Image Context Lidar Video1 Map Dataset MLLM LLM Role2

Visual
Question
Answering
(VQA)

✓ FPV BDD-X
CLIP
+Llama2

GPT-4
MLLM: VideoQA Exec.
LLM: QA Gen.

Projector
LoRA

Perception
Reasoning
Control

DriveGPT4 [176]

✓ ✓ FPV
BDD-X
HDD

BLIP2
+
Llama2-7B

GPT-4
MLLM: VideoQA Exec.
LLM: QA Aug.

QueryTrans
Projector
PEFT-MA

Prediction
Reasoning

VLAAD [177]

✓ ✓ FPV ✓ In-house
CLIP
+
Vicuna1.5-7B

GPT-4
MLLM: VideoQA Exec.
LLM: QA Gen.

QueryTrans
Projector

Prediction
Reasoning
Control

LingoQA [133]

✓ ✓ Roadside
TUMTraffic
VideoQA

SigLIP
+
Qwen2-0.5B/7B

GPT-4omini
MLLM: VideoQA Exec.
LLM: QA Gen.

MLP
PEFT-MA
Fft

ST Reasoning
TUMTraffic
VideoQA [183]

✓ ✓
Multi
View

✓ NuPlan
BEV Encoder
Llama3.2V-11B

GPT-4o
MLLM: VideoQA Exec.
LLM: MC-QA Gen.

MLP
FusionTrans
PEFT-MA

Perception
ST Reasoning

NuPlanQA [172]

✓
Multi
View

nuScenes Video-Llama MLLM: VideoQA Exec.

Cross-attention
ST-Adapter
QueryTrans
FusionTrans
PEFT-MA

Perception
Prediction
Reasoning
Risk

NuInstruct [173]

✓ ✓
Multi
View

DRAMA
[187]

ViT
+
MiniGPT-4

GPT-4o
MLLM: VideoQA Exec.
LLM: VQA Aug.

ST-Adapter
MLP
Cross-Attention
PEFT-MA

Perception
Prediction
Reasoning
Risk

HiLM-D [178]

✓ ✓ FPV SHRP2 [188]
LLaMA-VID-7B
14 MLLMs

GPT-o1
Qwen2.5-72B

MLLM: VideoQA Exec.
LLM: MC-QA Gen.

Fft
ICL

Perception
Reasoning
Risk

DVBench [189]

✓ ✓ nuScenes
Voxel
+
Llama2-7B

MLLM: VQA Exec.

Encoder
QueryTrans
MLP
PEFT-Adapter

Grouding
Captioning

Lidar-llm [175]

✓ ✓ ✓ ✓ In-house
CLIP
+
Llama2-7B

MLLM: VQA Exec.
Projector
LoRA

Perception MAPLM [150]

✓ ✓ ✓
Roads
FPV

V2X-Real
V2V4Real

PointPilars
+
LLaVA-v1.5-7b

MLLM: VQA Exec.
Projector
LoRA

Perception
Planning

V2V-LLM [190]

Scene/Scenario
Understanding

✓ ✓ nuScenes InternVl-1.5 GPT-4o
MLLM: Scene Under.
LLM: QA Gen.

LoRA

Scene
perception
prediction
Reasoning

InterDrive [181]

✓ ✓ ✓
KITTI [191]
nuScenes

Video-LLaVA
GPT-4o

CoT
Scene
Reasoning

Jain et al. [192]

✓ FPV BDD-X
VideoMA
+Ada-002
+OpenFlamingo

Cross-Attention
LoRA

Scenario
Reasoning

Dolphins [179]

✓ ✓ ✓
Multi
View

DriveLM
ViT-L/14
Llama-Adapter V2

QueryTrans
PEFT-Adapter
PEFT-MA

Scenario
Reasoning

Ishaq et al. [174]

✓ FPV BDD100K
ViT-L/14
+Vicuna-7B

GPT-3.5
MLLM: Video Capt.
LLM: Caption Eval.

Projector
QueryTrans
PEFT-MA

Scenario
Captioning

WTS [193]

✓ FPV LingoQA
LLaVA-VL-7B
Qwen-VL-7B

Qwen2.5-1.5B
Qwen2.5-7B

MLLM: Scene Extract.
LLM: Scene Under.

Zero-shot
Scenario
Captioning

V3LMA [194]

Risk Assessment

✓ ✓ ✓ DeepAccident
[195]

GPT-4V GPT-4
MLLM: Image Extract.
LLM: Narrative Gen.

Zero-shot
Accident
Prevention

AccidentGPT [196]

✓ ✓

DRAMA
-ROLISP,
DRAMA
-SRIS [178]

ResNet-101
+ Swin-L
+Llama2-7B

QueryTrans
Cross-Attention
MLP
PEFT-Adapter

Safety
Interaction

MLLM-SUL [180]

✓ ✓ FPV nuScenes VideoLlama2 Llama3.1-8B
MLLM: Video Extract.
LLM: Narrative Gen.

Zero-shot
Safety
Interaction

ScVLM [197]

✓ ✓ FPV DRAMA Gemini1.5V-Pro ICL
Risk event
Detection

Abu et al. [198]

1 Video: FPV = First Person View; BEV = Bird Eye View;
2 Role: Exec.= Execution; Aug. = Augmentation; Gen. = Generation; Under. = Understanding; Capt. = Captioning; Eval. = Evaluation; Extract. = Extraction;
3 Techniques: Only focus on the techniques for MLLMs. Projector = Linear projector; MLP = MLP projection; QueryTrans = Query Transformer;

FusionTrans = Fusion Transformer; PEFT-Adapter = Adapter layers; Fft = Full fine-tuning; PEFT-MA: Only trains modality alignment modules and LLMs are frozen;
Encoder = Structure-aware encoder; CP = Contextual Prompting; ICL = In-Context Learning; CoT = Chain-of-Thought prompting;

4 Focus: ST Reasoning = Spatio-temporal reasoning.
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first tackles 3D captioning, grounding, and VQA from
LiDAR point clouds. It extracts BEV features via a voxel
encoder, embeds them using a View-Aware Transformer
with learnable queries, which acts as a prior tokenizer,
and projects them into the language space through an
MLP. Adapter layers are fine-tuned within the LLM to
support 3D scene understanding. MAPLM [150] introduces
a large-scale multimodal benchmark and VQA dataset
and focuses on perception and HD map understanding in
autonomous driving. It includes panoramic 2D images, BEV
projections from LiDAR point clouds, and text descriptions
extracted from HD maps. The baseline model aligns visual
features using pre-trained CLIP encoders and lightweight
projection adapters, mapping them into the LLM’s embedding
space. Instruction tuning is performed via LoRA on Vicuna
or LLaMA-2, enabling the model to perform effective
scene-level reasoning across modalities. V2V-LLM [190]
further extends LiDAR-based multimodal reasoning to
cooperative driving by fusing point-cloud features from
multiple connected vehicles. It constructs a Vehicle-to-Vehicle
VQA dataset based on dataset V2X-Real [200], [201] for
perception and planning. The model adapts LLaVA by
replacing RGB encoders with a LiDAR detector, aligning
scene-level and object-level features through an MLP
projector and fine-tuned LoRA layers.

A key next step for VQA in autonomous driving
is to evaluate model robustness under out-of-distribution
conditions. Current datasets mostly feature common driving
scenarios and well-structured questions, leaving models
largely untested on rare events, unfamiliar objects, or
challenging conditions such as night, snow, or construction
zones. Developing benchmarks that explicitly include these
edge cases, and assessing how well models generalize to them,
is essential for deploying VQA systems in safety-critical,
real-world environments.

Scene/Scenario Understanding: This subsection
distinguishes between Scene Understanding, which
focuses on static, image-based perception, and Scenario
Understanding, which captures temporal dynamics, agent
interactions, and evolving causal events.

(I) Scene Understanding: InternDrive [181] and Jain
et al. [192] focus on static scene understanding using
image-based inputs. InternDrive proposes a framework
for driving scenario understanding, covering perception,
prediction, and reasoning, using MLLM. It generates QA pairs
from nuScenes using GPT-4o, followed by human correction,
and fine-tunes the MLLM InternVL-1.5 via LoRA on these
annotations. The resulting model analyzes driving scenes from
FPV images through visual instruction tuning. Jain et al. [192]
evaluate MLLM for safety-critical scene understanding using
QA pairs from KITTI and nuScenes across five categories.
They benchmark Video-LLaVA and GPT-4V using merged
image frames and textual LiDAR summaries, applying a CoT
prompting approach to enhance multimodal reasoning without
requiring true temporal modeling.

(II) Scenario Understanding: In contrast, DOLPHINS
[179], Ishaq et al. [174], WTS [193], and V3LMA
[194] target scenario understanding, where temporal
context, agent interaction, and causal reasoning are
central. DOLPHINS [179] presents an MLLM-based system
for human-like understanding of driving scenarios and
behaviors. The model is built on OpenFlamingo and
first instruction-tuned on image–instruction pairs using a
Grounded Chain of Thought (GCoT), where each reasoning
step is explicitly linked to visual evidence to ensure visually
grounded scenario reasoning. It is then adapted to driving
videos using in-context examples retrieved by VideoMAE and
Ada-002. During training, only the perceiver resampler, gated
cross-attention, and LoRA modules are updated, making
the framework efficient while supporting multiple driving
tasks. Ishaq et al. [174] propose a scenario-level spatial
understanding framework that integrates short video clips,
driving trajectories as text, and textual queries. They use a
trajectory encoder and a Query Former to fuse the modalities,
which are then passed into a frozen LLaMA-2 model with
adapter layers. The model is fine-tuned by training both
the Query Former and the adapters for efficient multimodal
reasoning.

Specificly, WTS [193] and V3LMA [194] focus on the
scenario captioning which emphasizes observable elements,
reasoning targets spatial-temporal relations, intent inference,
and causal analysis. WTS [193] uses GPT-3.5 externally to
generate human-guided ground truth captions and evaluate
model outputs via LLMScore, which assesses semantic
and syntactic similarity. The proposed Instance-VideoLLM
combines CLIP ViT-L/14, a Video Q-Former, and Vicuna-7B,
with fine-tuning applied to the adapter and Q-Former. The
model is trained on enhanced video inputs incorporating
bounding boxes, gaze data, and scene context, and is
compared against other off-the-shelf MLLMs. V3LMA [194]
proposes a fusion method that combines pre-trained LLMs
and VLMs to enhance zero-shot 3D scenario understanding.
They use off-the-shelf tools for grounding, object detection,
and depth estimation to generate structured scenario
descriptions, which are fed into the LLM. Visual features
from an MLLM are then fused at either the feature level or
the classification head. Despite being zero-shot, the model
achieves competitive performance, comparable to fine-tuned
MLLMs.

Current MLLMs for scene and scenario understanding
primarily focus on short-term temporal contexts and curated
question-answering tasks, which lacks validation in realistic,
real-world settings. To move toward more comprehensive
scenario understanding, future work should explore
long-range temporal modeling, causal inference across
event sequences, and robust handling of out-of-distribution
scenarios.

Risk Assessment: The goals for the MLLMs include risk
detection and violation inference for anticipating hazards,
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inference and scene-level safety scoring for analyzing
incidents, and actionable advice generation.

One approach to risk assessment emphasizes proactive
hazard mitigation through interpretable scenario
understanding. For example, AccidentGPT [196] combines
multi-modal perception, such as images, 3D detections,
BEV features, and trajectories, with GPT-4V for zero-shot
scenario captioning based on dataset DeepAccident [195]
and GPT-4 for further safety evaluation using CoT and
CP. It supports real-time accident prevention, post-accident
analysis, and interactive safety decision-making through
interpretable reasoning.

Other works focus on enabling interactive safety perception
and feedback. MLLM-SUL [180] fuses multi-scale visual
inputs using ResNet-101 and Swin-L for low- and
high-resolution features, combined via Query Formers and
Gate-Attention based on the dataset Drama-ROLISP and
Drama-SRIS from HiLM-D [178]. It fine-tunes LLaMA2-7B
with adapters and applies an MLP head for scene captioning
and risk object localization. Similarly, ScVLM [197] proposes
a multi-stage MLLM framework for risk assessment based
on the nuScenes dataset, combining event type classification,
conflict type identification, and narrative generation. It
uses VideoLLaMA2 for zero-shot visual context extraction
and LLaMA 3.1 8B to generate detailed descriptions of
safety-critical events based on FPV driving videos.

A third direction emphasizes risk reasoning through
structured question answering. Abu et al. [198] present a
MLLM-based framework for safety-critical event detection
using FPV videos from the DRAMA dataset. They compare
Gemini-Pro-V1.5, Gemini-Pro-Video, and LLaVA using
QA-based risk analysis with in-context learning, leveraging
sliding window capture and textual context prompts to
enhance risk event detection.

However, to ensure practical impact, it is critical to
establish the reliability and determinism of MLLM-based
risk assessments. This remains a key challenge, as MLLMs’
behavior is inherently stochastic and may produce inconsistent
outputs.

D. Limitations and Future Directions
MLLMs offer a unique potential to generate and analyze
scenarios by leveraging their multimodal capabilities.
However, there is currently no pretrained MLLM specifically
devised for AD with complementary sensor modalities such
as LiDAR, camera, and radar. As a future direction, this
highlights the need for large-scale multi-modal datasets and
pretrained MLLMs tailored to AD.

MLLM-based Scenario Generation: As reported in Table
6, only two studies have explored MLLM-based scenario
generation: one targeting safety-critical scenarios and the
other focused on ADAS testing. This highlights a significant
research gap and suggests that the broader potential of
MLLMs in this domain remains largely unexplored. Future
work could extend to additional applications such as driving

policy evaluation, closed-loop scenario generation, and the
reconstruction of complex real-world driving events.

An emerging research direction is retrieval-augmented
scenario generation. While existing retrieval-augmented
generation frameworks are typically based on textual
databases, MLLMs allow for the integration of multimodal
knowledge bases containing maps, annotated traffic videos,
and LiDAR point clouds. Such enriched context could
support more diverse, realistic, and situation-aware scenario
generation pipelines.

MLLM-based Scenario Analysis: As summarized in
Table 7, current pre-trained MLLMs are not yet sufficient
to address the complexity of driving scenario analysis.
Existing models often struggle with specialized tasks that
require aligning and processing diverse multimodal inputs.
While fine-tuning strategies such as instruction tuning,
adapter-based methods, and parameter-efficient techniques are
being actively explored, these adaptations are often necessary
because general-purpose pre-trained models lack sufficient
domain-specific understanding. At the same time, several
technical challenges must be tackled. Reliability remains a
major concern, as MLLMs are prone to factual hallucinations
and inconsistent output issues that are especially critical in
safety-sensitive applications. Decreasing inference times is
equally important. This may involve architectural innovations,
model compression and distillation, or adaptation strategies
that support interpretable, low-latency reasoning across
multiple modalities.

From an application standpoint, promising directions
include using MLLMs for high-fidelity sensor simulation
and modeling complex interactions among diverse
traffic participants, such as vehicles, pedestrians, and
cyclists. Additionally, deploying MLLMs at the edge to
support real-time situational awareness and collaborative
human-machine interaction represents a valuable and
unexplored opportunity for future research.

VI. Diffusion Models (DMs)
This section provides an overview of DMs, explaining their
underlying generative process and tracing their conceptual
evolution. Given their generative nature, DMs excel at
synthesizing novel scenarios rather than analyzing existing
ones. Accordingly, we survey their applications in scenario
generation for AD, encompassing traffic flow synthesis, road
layout design, image generation, and video generation.

A. Development of DMs
DMs are generative models inspired by non-equilibrium
thermodynamics [61], mirroring natural processes like ink
diffusing through water. At their core, they follow the
simple yet powerful idea of systematically and gradually
destroying structure in data through iterative noise addition
and learning to reverse this process in a step-wise fashion.
While introduced by Sohl-Dickstein et al. [61], the approach
gained widespread adoption through Ho et al.’s DDPM [30].
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The framework of DMs, as illustrated in Figure 8, involves
two key phases: the forward process and the backward
process.

Forward Process

Backward Process

FIGURE 8. An illustration of how a DM transforms a clean image into noise
through the forward process, and then reconstructs it in reverse during the
backward process.

(1) Forward Process: The forward process refers to the
act of gradually corrupting the original data x0 by adding
Gaussian noise over T steps, resulting in a sequence of noisy
samples x1, x2, . . . , xT . By the final step, xT , the sample is
indistinguishable from pure noise.
(2) Backward Process: To generate realistic samples from
pure Gaussian noise, a DM must learn to invert its forward
corrupting process. This is achieved through an iterative
denoising procedure, where the model progressively refines
the noisy input to recover the underlying data distribution.
At each step, the model estimates and removes the noise
added during the forward process, gradually reconstructing
the target sample. Denoising is typically parameterized by
a neural network, such as a U-Net [30], which is trained to
predict the noise component at each iteration.

Following the establishment of this paradigm, research
advanced primarily along two key directions:

Controllability: Unlike the original DDPM [30], which
is trained unconditionally and provides little control over
the generated samples, subsequent research has developed
methods to guide the diffusion process toward desired
outputs. Conditioning the network on auxiliary signals, such
as class labels, text embeddings, layout maps, or other
modalities, enables structural constraints that guide the
generative process. Classifier guidance [202] uses gradients
from a separate classifier to steer sampling towards desired
outputs. Classifier-free guidance [203] eliminates the need
for a separate classifier by jointly training the model with
and without conditioning signals, allowing adjustable control
at inference. ControlNet [204] further expands controllability
by incorporating spatial conditions such as edges, depth, or
poses, enabling fine-grained user control.

Efficiency: The high computational cost of DDPM stems
from many iterative steps at full resolution. LDMs [32]
address this by operating in compressed latent spaces,
reducing complexity while preserving quality. Diffusion
Transformer (DiT) [205] builds on this by replacing the
U-Net with a transformer backbone, improving scalability
and global context modeling.

These previous innovations have enabled the use of DMs
across a wide range of domains. These advances have also

been adopted in large-scale commercial systems, such as
Imagen, Stable Diffusion, and Adobe Firefly, which are
illustrated in Figure 5 as part of the DMs’ development
timeline. AD is a particularly impactful area where DMs
are used to generate realistic scenarios efficiently and
controllably.

B. Scenario Generation
This section provides an overview of DMs for scenario
generation in AD, organized by output type: dynamic traffic
flow, static traffic elements, images, and videos.

Traffic Flow Generation: Traditional simulators [51],
[52], [98], [206] typically rely on replaying driving logs
or using heuristic-based controllers, which often do not
accurately capture the complexity and adaptability of real
human behavior. Recent advancements in generative models
present an opportunity to create realistic and diverse traffic
behavior of virtual agents directly. These models can generate
the behavior (trajectories) of multiple agents over time. To
serve as reliable simulation tools, such models must achieve
both realism and controllability, reflecting human-like driving
behaviour while adhering to customizable rules. To enhance
realism, these models are typically trained on large-scale
real-world driving datasets to learn the underlying dynamics
and diversity of traffic behavior. In the following, we review
different techniques to achieve controllability.

(I) Gradient-Based Guidance in DMs works by modifying
the predicted mean at each denoising step using the gradient
of a control objective. This perturbs the generation toward
samples that better fulfill the objective while still following the
underlying diffusion process. Depending on how the objective
is defined, such guidance can either enforce safety constraints
or, conversely, induce adversarial and safety-critical scenarios.
CTG [207] incorporates Signal Temporal Logic (STL) to
encode traffic rules, using the robustness score of STL as a
measure of how well the rules are followed and leveraging
its gradient to guide trajectory sampling. CCDiff [208]
leverages the gradient of a constrained Markov Decision
Process (MDP) to guide trajectory generation for multiple
agents, with the MDP encoding specific control goals
such as causing collisions. Before applying guidance, a
causal reasoner ranks agents based on inter-agent influence
and restricts guidance to the most impactful subset to
improve efficiency and effectiveness. DiffScene [209] defines
three differentiable objectives: safety-critical (maximizing
collision risk), functional (hindering ego task completion),
and constraint-based (enforcing realism rules). Lu et al. [210]
extend DiffScene by encouraging adversarial agents to
exhibit aggressive maneuvers (via acceleration/yaw rate
variability) and manipulate traffic density around the ego
vehicle. AdvDiffuser [211] trains a model to predict how
likely a scenario causes failures for a given planner and uses
this signal to guide the sampling process. SafeSim [212]
and VBD [213] generate potential trajectories and identify
those that would lead to collisions, then use guided diffusion

VOLUME , 25



Y. Gao et al.: Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis

to denoise them. A different approach is proposed by
Zhong et al. [214] and LD-Scene [215] , both of which
leverage an LLM to translate natural language instructions
(e.g., “aggressive lane change”) into differentiable guidance
functions, bridging high-level intent with low-level control.

(II) Architecture Conditioning embeds the control signal
directly within the network’s structure so that constraints
are enforced throughout each iteration, rather than being
injected afterwards as an external correction. DM achieve
this by accepting extra conditioning inputs, such as tokens that
carry agent attributes, scene statistics, language descriptions,
or spatial masks. These additional inputs are processed
by dedicated layers, for example, cross-attention blocks or
inpainting modules, and are fused with the latent scene
representation at each denoising iteration. Pronovost et
al. [217] encode agent attributes (speed, heading) and global
scene properties (agent density) as tokens processed by
cross-attention layers. SceneDiffuser [218] frames trajectory
generation as an inpainting task on a 3D tensor of shape
A×T ×D, each representing agents, timesteps, and features.
Scene editing and agent injection are made possible by
adjusting the scene tensor and the associated inpainting
mask. DriveGen [216] uses a natural language description
to generate road layouts and place vehicles via an LLM.
A VLM is applied afterwards to analyze the BEV to
identify potential future goals. Finally, a DM generates
realistic trajectories from each vehicle’s initial state to its
predicted goal. DriveSceneGen [219] addresses two key
problems: scene initialization and rollout. It first synthesizes
a BEV image of road layouts and agent positions using
a DM, then vectorizes the output for trajectory prediction
with a Motion Transformer (MTR). SLEDGE [220] and
ScenarioDreamer [221] address the same task but optimize
the generation pipeline. Specifically, SLEDGE introduces a
raster-to-vector autoencoder to compress scenes into latent
maps for further diffusion, whereas ScenarioDreamer further
advances this by operating the DM directly in vector space.
Together, these methods reflect a progression from pixel-level
(DriveSceneGen) to compressed-raster (SLEDGE) to fully
vectorized (ScenarioDreamer) generation.

(III) Preference Optimization (PO) moves away from
gradient-guidance and architecture-conditioning. Instead of
explicit control signals or hand-crafted loss functions, Yu et
al. [222] fine-tune the DM directly using PO. The model
generates two candidate trajectories per scene, scores them
via rule-based heuristics, and updates itself to favor the better
one, thereby learning control preferences implicitly.

Despite recent advances, diffusion-based traffic flow
generators still rely on manually crafted control inputs.
Gradient-guided models require carefully tuned objective
weights, while architecture-conditioned models depend on
predefined token or mask schemas to encode rules. Adapting
these approaches to new constraints often requires costly
retraining or extensive fine-tuning.

Static Traffic Element: DMs have also been developed to
generate various AD components beyond agents’ trajectories.

DiffRoad [223] synthesizes 3D road layouts from structured
text inputs (e.g., “two three-way intersections”) and evaluates
the outputs based on criteria such as smoothness and the
presence of overlapping segments.

Pronovost et al. [224] and SceneControl [225] focus on
generating initial agent placements for downstream traffic
simulation. Pronovost et al. introduce a scene autoencoder that
compresses rasterized agent layouts into latent embeddings.
A DM, conditioned on a road map, is then trained over these
embeddings, and a decoder reconstructs oriented bounding
boxes for the agents. SceneControl offers additional flexibility
through guided sampling, allowing fine-grained user control
(e.g., enforcing speed constraints) and realism guarantees (e.g.,
collision avoidance and lane adherence) during the generation
process. To assess how well the generated scenes match
real-world data, both methods compare statistical distributions
between real and synthetic datasets.

These static-scene generators still have notable gaps. When
a DM is used to synthesize road layouts, fine-grained
elements such as traffic signs, signals and lane markings
are often omitted. As a result, the resulting maps lack the
fidelity needed for high-realism driving simulation. Moreover,
initial-scene generators are also highly map-specific: they
absorb the spatial priors of the training corpus and can place
agents unrealistically when applied to unseen road geometries
or regions with different driving conventions.

Image Generation: Reliable AD perception depends on
large annotated datasets. DMs offer an efficient alternative
by generating realistic street-view images.

Text2Street [226] decomposes structured prompts, such
as “a street view image with a crossing, 4 lanes, 3 cars,
2 persons, and 2 trucks on a sunny day”, into three
distinct components: road topology, object layout, and
weather condition. Each of these components is handled
by a dedicated DM. The first model processes the road
topology to generate a BEV road layout. The second model
takes this BEV layout and incorporates the object layout,
producing a map that includes vehicles, pedestrians, and
other foreground elements. The third model transforms
this BEV representation into a realistic camera-view street
scene. To handle geometric conditions more effectively,
GeoDiffusion [227] converts bounding boxes into textual
prompts that guide a pre-trained text-to-image DM. This
involves translating continuous bounding box locations into
discrete tokens and balancing the visual prominence of
foreground objects with the often-dominant background
regions during image generation. Baresi et al. [242] generate
rare OOD driving scenarios (e.g., snow, desert) using three
diffusion-based strategies: instruction editing, inpainting, and
inpainting with refinement. Meanwhile, other works have
focused on generating multi-view images. BEVControl [228]
addresses the complexity of editing dense segmentation maps
by using editable BEV sketches as input. It introduces
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TABLE 8. Summary of Scenario Generation Studies Using DMs.

Category
(Output)

Safety
critical
scenario?

Input Controll
-ability1

Controllable
Factor2 Technique

Base
Model

Dataset Paper
Road
Topology

Initial
State

Text
Prompt

Bounding
Boxes

Traffic Flow

No

✓ ✓
Speed
Goal Waypoint

STL as Guidance DDPM nuScenes CTG [207]

✓ LLM-Driven Scene Initialization DiT Argoverse 2 DriveGen [216]

✓

Traffic Density

Agents’ Position
Agents’ Speed
Agents’ Size

Architecture Conditioning LDM Argoverse 2 Pronovost et al. [217]

✓ Traffic Density Architecture Conditioning DiT WOMD SceneDiffuser [218]
Map-Free Scene Generation LDM WOMD DriveSceneGen [219]
Raster-to-Vector Representation DiT nuPlan Sledge [220]

✓
Traffic Density
Road Layout

Vectorized Latent Diffusion LDM
WOMD
nuPlan

Rowe et al. [221]

✓ ✓
Speed
Goal Waypoint

Preference Optimization DiT nuScenes Yu et al. [222]

Yes

✓ ✓ Collision Type MDP as Guidance DDPM nuScenes CCDiff [208]

✓ ✓ Speed Gradient-Based Guidance DDPM CARLA DiffScene [209]

✓ ✓
Traffic Density
Speed

Gradient-Based Guidance DDPM nuScenes Lu et al. [210]

✓ ✓ Gradient-Based Guidance LDM nuScenes AdvDiffuser [211]

✓ ✓
Dirving Style
Collision Type

Partial Diffusion DDPM
nuPlan
nuScenes

SafeSim [212]

✓ ✓ Driving Style Gradient-Based Guidance DiT WOMD VBD [213]
✓ ✓ ✓ LLM-Generated Loss Function DiT nuScenes Zhong et al. [214]

✓ LLM-Driven Scene Initialization LDM nuScenes LD-Scene [215]

Static Traffic
Element

No

✓
Number of Lanes
Type of Road

Road-UNet architecture DDPM OSM DiffRoad [223]

✓ End-to-End Differentiable LDM In-house Pronovost et al. [224]

✓

Agents’ Position
Agents’ Density
Agent’ Speed
Agents’ Size

Guided Agent Placement DDPM Argoverse 2 SceneControl [225]

Driving Image No

✓

Road Topology
Traffic Density
Weather

Structured Prompt
LDM
DDPM

nuScenes Text2Street [226]

✓ Camera Pose Bounding Box Translation LDM nuSences GeoDiffusion [227]

BEV Sketch
Weather
Lighting Condition

Controller & Coordinator LDM nuScenes BEVControl [228]

✓ ✓

Camera Pose
Weather
Lighting Condition

Cross-View Attention LDM nuScenes MagicDrive [229]

✓ ✓ ✓

Weather
Lighting Condition
Camera Pose

Dual-Branch Diffusion LDM nuScenes DualDiff [230]

Driving Video
No

BEV Sequence
Weather
Lighting Condition
Landscape

4D Attention LDM nuScenes Panacea [231]

3D Layout Sequence
Weather
Lighting Condition

Cascaded Video Synthesis LDM nuScenes DrivingDiffusion [232]

✓ ✓ ✓ Multi-Control Distillation DiT nuScenes DiVE [233]
Canny Edge Map

Depth Map
Text Prompt

Weather
Lighting Condition

Dual-Branch Diffusion LDM
DriveScene
-DDM [234]

DcTDM [234]

Initial Frames Frame Sampling Scheme DDPM WOMD DriveGenVLM [235]

✓ ✓ ✓
Weather
Lighting Condition

Dual-Branch Diffusion LDM
nuScenes
Waymo Open

DualDiff+ [236]

✓

Weather
Traffic Density
Landscape

Adapting Existing Methods LDM KITTI GenDDS [237]

Yes
✓ Temporal Shift Adapter LDM DoTA [238] DrivingGen [239]
✓ Adapting Existing Methods DiT MM-AU [240] AVD2 [241]

1 Controllability: Full control (users can fully customize scenes); Partial control (supports specific parameter adjustments); No control.
2 Only models with partial controllability are discussed here in this column. Fully controllable models can follow any input (typically via LLMs), and models without control

fall outside the scope of this discussion.
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a “controller and coordinator” mechanism to ensure that
generated objects match the sketch accurately and maintain
consistency across multiple viewpoints. MagicDrive [229]
considers road layouts, bounding boxes, camera poses,
and textual descriptions such as weather and time of
day as input. It introduces a cross-view attention module
that allows each camera view to access information from
its immediate neighbors, ensuring visual consistency and
coherence across all generated views. DualDiff [230] adopts a
dual-branch architecture that separately generates foreground
and background. It projects 3D occupancy data onto camera
planes to form dense feature maps, fuses them with 3D
bounding boxes and road maps, and then combines the branch
outputs to synthesize the final image.

In spite of recent progress, fine details such as traffic
signs, pole-mounted signals and lane markings are frequently
simplified or omitted, resulting in generated images that fail
to cover many visual corner cases that real perception stacks
must handle. Photometric realism is also limited: simplified
lighting models and the absence of camera artifacts such as
rolling-shutter distortion, lens flare, and sensor noise create a
noticeable domain gap when these synthetic frames are used
to train or evaluate real-world detectors.

Video Generation: Recent work has also advanced
DM-based driving video generation, improving temporal
consistency, controllability, and diversity.

Several studies have introduced innovative architectures
to ensure multi-view and temporal consistency in generated
videos. Panacea [231] generates multi-view video sequences
by first synthesizing images from BEV inputs and then
expanding them along the temporal dimension. The
method introduces a 4D attention mechanism that takes
into account intra-view (within each camera), cross-view
(between adjacent cameras) and cross-frame (between
temporal patches). DrivingDiffusion [232] also employs
a multi-stage approach: it first generates a consistent
initial frame across all camera views from a layout, then
uses a temporal model to produce short view-specific
sequences, and finally refines long-term consistency via a
sliding-window post-processing module. DiVE [233] focuses
specifically on efficient multi-view driving scene generation.
It introduces Multi-Control Auxiliary Branch Distillation
(MAD) to streamline multi-condition classifier-free guidance,
significantly reducing inference time. DiVE also proposes
view-inflated attention, a lightweight mechanism enforcing
cross-view consistency without adding parameters.

Another strategy for video generation is adapting image
DMs with temporal expansion. DrivingGen [239] extends
a text-to-image DM by incorporating a temporal shift
adapter that efficiently propagates information across frames
using modified 2D convolutions instead of costly 3D
operations. Similarly, DcTDM [234] extends image-based
diffusion into the temporal domain but introduces dual
conditioning with dense depth maps and Canny edge maps
to preserve geometric and structural consistency across

frames. DriveGenVLM [235] enhances long-term video
generation through conditioning and sampling strategies, such
as frame-by-frame generation and keyframe interpolation,
offering trade-offs between quality and speed.

In contrast, DualDiff+ [236] generates videos through
a dual-branch architecture that decouples foreground and
background modeling. The model first projects a 3D
occupancy grid into 2D space and then fuses these
features with semantic inputs, including 3D bounding boxes
(foreground) and maps (background).

Another line of research advances video generation by
combining and adapting existing models. GenDDS [237]
fine-tunes Stable Diffusion XL [243] using LoRA [66]
to produce driving images, which are then extended into
videos through a temporal transformer in Hotshot-XL [244].
AVD2 [241] fine-tunes the Open-Sora 1.2 model [245] on
the MM-AU [240] dataset to generate videos annotated with
accident causes and avoidance strategies.

Despite recent advances, diffusion-based generators for
driving videos still face significant challenges. They often
struggle to maintain consistent temporal and multi-view
coherence, particularly over extended clips. Additionally,
their understanding of the physical world’s dynamics remains
limited: for example, vehicles may behave in ways that defy
inertia or violate occlusion logic.

C. Limitations and Future Directions
Although recent DMs support conditioning through layout
masks, language tokens, or attention-based inputs, these
mechanisms often remain rigid and narrowly specialized.
They typically depend on manual tuning, predefined
conditioning schemas, or task-specific re-training, which
limits their flexibility and scalability. To address this,
future research should aim to develop more generalizable
conditioning frameworks that can seamlessly integrate diverse
or novel inputs without requiring substantial architectural
modifications or re-training.

In parallel, while DMs often achieve strong performance
on statistical realism metrics, the generated trajectories and
scenes frequently lack fine-grained physical plausibility.
Artifacts such as implausible inertial dynamics, unnatural
agent reactions, and inadequate modeling of occlusions or
causal dependencies are common. One promising direction
for future research is the integration of physics-informed
models, which could improve the adherence to real-world
physical laws and enhance the overall realism of the generated
outputs.

Moreover, although LLMs are increasingly used to convert
natural language inputs into guidance signals for DMs,
their potential remains underutilized. Rather than serving
solely as input translators, LLMs could act as embedded
knowledge sources that encode rich priors about physical
dynamics, semantic scene structure, and normative driving
behavior. Leveraging these capabilities may substantially
improve the controllability, realism, and interpretability of
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diffusion-generated scenarios, particularly in complex or
ambiguous environments.

VII. World Models (WMs)
WMs are generative neural network models that learn
compressed spatial and temporal representations of an
environment [34]. They enable agents to develop an internal
model of the world to make predictions about future states of
the surrounding world environment, concerning both dynamic
agents and static objects. In this section, we focus on their
ability to generate driving scenarios, and we categorize recent
works into visual, 3D occupancy, and multi-modal generation.
Moreover, we discuss related architectural innovations and
benchmarks.

A. Development of World Models
Relations with Cognitive Science: The development of
WMs focuses on learning compact, predictive representations
of the physical world’s dynamics. This concept draws
inspiration from the human brain’s ability to model and
predict the physics of the real world [246]. Cognitive
science has proposed predictive brain models to anticipate the
evolution of real-world scenarios, such as the procedural and
declarative models of Downing (2009) [247] . Svensson et
al. (2013) [248] apply brain-like “dreaming” to simulate
perception-action sequences offline, for simple robotic
systems. They define mental imagery as the brain’s ability to
generate and manipulate internal representations of the world,
in a dreaming-like process without direct interaction with
the environment. Similarly, as explained in the next section,
WMs can dream by generating imagined scenarios (Figure 9),
without interacting with the physical world and using their
learned representations to predict the future evolution of the
environment.

In a related context, Plebe et al. [249], [250] propose vision
autoencoders that emulate neural convergence-divergence
patterns of the brain [251], to output long-term predictions
of driving scenarios in the form of videos. They suggest
minimizing the free energy as a training loss function, which
is inspired by the Friston’s theories [252] about the brain’s
operation. Similar minimum-free-energy principles are also
proposed for the training of WMs by LeCun [246]. For a
broader review of bio-inspired cognitive agents in AD, the
reader can refer to [253].

We argue that such cognitive theories will inspire the next
generation of WMs, which will need to learn generalizable
models of the real-world dynamics from limited data. The
timeline of WMs’ development is shown in Figure 5.

Architecture and Evolution of World Models: The
architecture of WMs is typically based on an encoder-decoder
paradigm [34], [245], [246], [288]. As illustrated in Figure 9,
the encoder (also called vision model [34]) is used to encode
multimodal inputs (images, point clouds, 3D occupancy
voxels, etc.) into a latent vector zt. Then, the future predictor
(decoder or memory model [34]) predicts the future latent
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FIGURE 9. Overview of world model’s training, testing and dreaming
phases. In the training/testing phase (top), zt is a latent representation of
the input (e.g., image), z̃t+1 is the prediction of the latent representation at
the next time step, and h is a hidden state encoding past information. In the
dreaming phase (bottom), the model generates future latent variables z̃t in
an auto-regressive way: z̃t is initialized with a z̃0, and then recursively fed
back as input of the future predictor, which computes the next value.

representation z̃t+1 based on zt and an action provided by a
given control policy. When the WM’s pre-training is finished,
the future predictor can be used for both motion prediction
and for “dreaming” (i.e., generation) of new scenarios, never
seen during training. In this regard, WMs can generate data
outside the training data distribution: this is particularly
valuable for AD, where rare but critical scenarios may be
underrepresented in existing datasets, yet are crucial in the
validation phase.

In addition to being designed individually, WMs are now
increasingly integrating inspirations from LLMs, VLMs, and
MLLMs, which have demonstrated a promising understanding
of semantic context. More specifically, WMs are placing
emphasis on using this semantic understanding for content
generation [289]. Moreover, DMs play an important role
as generative backbones of most modern WMs, providing
stable and high-fidelity generation in both images and videos.
GAIA-2 [256], DriveDreamer [288], and MagicDrive3D [264]
are examples of this trend, which employ either latent or
video diffusion to increase the temporal coherence and
realism of the generated scenarios. Together, these examples
show that WMs are developing into hybrid architectures
that combine VLMs’ multimodal reasoning capabilities with
DMs’ generative accuracy to create coherent, controllable,
and semantically grounded driving simulations.

As shown in Figure 9, in the early examples [34], the
vision model (encoder) was implemented as a Variational
Autoencoder (VAE), and compresses high-dimensional
observations into a compact latent representation. This
dimensionality reduction creates a manageable state space
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TABLE 9. Comparison of key research about World Models for Scenario Generation in Autonomous Driving.

Category

Input

C
on

tr
ol

la
bi

lit
y

2

Multi-view
Generation

World Model
Architecture

Model Types Dataset Code3 Paper

Im
ag

e
Tex

t
Acti

on
Tra

jec
tor

y

Geo
metr

y

1 M
ap

Visual
Generation

✓ ✓ ✓ Autoregression Transformer [22] In-house GAIA-1 [254]

✓ ✓ ✓ ✓ ✓ ✓ Diffusion LDM [32] nuScenes [126] ✓ DriveDreamer [35]

✓ ✓ Diffusion LDM nuScenes, In-house ADriver-I [255]

✓ ✓ ✓ ✓ ✓ ✓ Diffusion LDM In-house GAIA-2 [256]

✓ ✓ ✓ ✓ ✓ ✓ ✓ Diffusion SVD [257] nuScenes ✓ DriveDreamer-2 [36]

✓ ✓ ✓ ✓ Diffusion LDM Waymo Open dataset [78] ✓ DriveDreamer4D [258]

✓ ✓ ✓ ✓ Diffusion SVD nuScenes, etc [78], [154], [259]. ✓ Vista [260]

✓ ✓ Autoregression Transformer nuPlan [49], In-house ✓ DrivingWorld [261]

✓ ✓ ✓ ✓ ✓ ✓ Diffusion VideoLDM [262] nuScenes Drive-WM [263]

✓ ✓ ✓ ✓ ✓ Diffusion LDM nuScenes ✓ MagicDrive [229]

✓ ✓ ✓ ✓ ✓ Diffusion LDM nuScenes MagicDrive3D [264]

✓ ✓ ✓ ✓ ✓ ✓ Diffusion DiT [205] nuScenes MagicDrive-V2 [265]

✓ ✓ ✓ ✓ Diffusion LDM nuScenes, Occ3d [266] ✓ WoVoGen [267]

✓ ✓ ✓ ✓ Diffusion SVD Waymo Open dataset ✓ ReconDreamer [268]

✓ ✓ ✓ Diffusion DiT [205] Cosmos [269] Cosmos-Transfer1 [270]

✓ ✓ ✓ Diffusion VideoLDM [262] nuScenes GeoDrive [271]

3D
Occupancy
Generation

✓ Diffusion DiT [205] nuScenes ✓ OccSora [272]

✓ ✓ ✓ ✓ Autoregression Transformer nuScenes, Lyft-Level5 [273] ✓ Drive-OccWorld [274]

✓ ✓ Diffusion Latent DiT [275] nuScenes ✓ DOME [276]

✓ Autoregression Transformer nuScenes RenderWorld [277]

✓ ✓ ✓ Autoregression Transformer nuScenes, etc [134], [266]. OccLLama [278]

✓ ✓ ✓ Autoregression Transformer nuScenes, Openscene [279] DriveWorld [280]

Multi-modal
Generation

✓ ✓ ✓ ✓ ✓ Autoregression Transformer nuScenes HoloDrive [281]

✓ ✓ ✓ ✓ Diffusion DDIM [31] nuScenes, Carla BEVWorld [282]

✓ ✓ ✓ Diffusion SVD [257] BDD [283], etc [259], [284]. ✓ GEM [285]

Benchmark
✓ ✓ ✓ ✓ Autoregression Transformer nuScenes, In-house ✓ ACT-Bench [286]

✓ ✓ ✓ ✓ ✓ Diffusion SVD nuScenes ✓ DriveArena [287]

1 Geometry means 3D geometric representation and includes: 3D voxel occupancy, 3D bounding box, 3D depth, 3D segmentation and 3D point cloud.
2 Controllability: Full control (models offer fine-grained scene customization with flexible control over scene elements); Partial control (models support limited or

parameterized control (e.g., adjusting map); No control.
3 Code availability: ”✓” means code is released open-source.

for prediction and generation. The future predictor
(memory model) was implemented as a recurrent network
(e.g., Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU)). The memory model captures
temporal dependencies and dynamics across sequential
observations, enabling the prediction of future states. Modern
WMs for AD have improved this basic architecture to
incorporate advanced techniques into the future predictor.
For example, GAIA-1 [254] uses a transformer, and the
newer GAIA-2 [256] employs a Latent Diffusion Model
(LDM) [32] for future prediction and generation. Very
recently, Diffusion Transformers (DiTs) [205], Stable Video
Diffusion (SVD) [257] models and videoLDM [262] have
gained popularity as core architectures for WMs.

As illustrated in Figure 10, WMs can generally be used
for two purposes in AD: future motion prediction [290] and
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FIGURE 10. An illustration of how research on WMs for AD can be broadly
categorized into two main functions: future prediction of agents’ motion,
and future scenario generation.

scenario generation [254], [256]. In this section we focus
primarily on the application of WMs for scenario generation.
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The reviewed papers, their corresponding datasets and their
code availability are summarized in Table 9.

B. Scenario Generation with World Model Dreaming
WM dreaming [34] is the use of a trained WM to generate new
scenarios by sampling from its learned latent space without
additional real-world inputs. Once a WM has captured the
underlying dynamics of an environment, it can “dream” new
scenarios that follow similar physical and logical patterns
as those in the training data, but with new combinations of
elements and conditions that may not have been seen during
training. As shown in Table 9, recent research on WMs for
AD can be categorized into the following four groups.

Visual Generation: This approach focuses on creating
realistic driving scenarios through the generation of images
and videos. They represent the most mature category of
WM applications in AD. GAIA-1 [254] pioneered the
use of generative WMs for AD, by demonstrating the
ability to generate diverse traffic scenarios with multiple
interacting agents. GAIA-1 considers world modeling as
an unsupervised sequence modeling problem, mapping
multimodal inputs (video, text, and action) to discrete tokens
and predicting subsequent tokens. This approach enables
fine-grained control over ego-vehicle behavior and scene
features, showing emerging properties such as contextual
awareness and 3D geometry understanding. GAIA-2 [256]
significantly advances the GAIA-1 paradigm through a latent
diffusion WM that supports controllable video generation
conditioned on structured inputs (e.g., ego-vehicle dynamics
and agent configurations). GAIA-2 generates high-resolution,
spatio-temporally consistent multi-camera videos across
diverse driving environments and countries (UK, US,
Germany), making it a useful tool for complex scenario
simulation with good multi-view consistency.

To address the limitations of prior WMs,
DriveDreamer [35] introduces a model entirely derived
from real-world driving scenarios. Using its AD Diffusion
Model (Auto-DMs) and a two-stage training pipeline,
DriveDreamer first learns traffic structural constraints and
then anticipates future states through video prediction. This
approach excels in generating controllable driving videos
and predicting driving policies, thereby enhancing perception
tasks such as 3D detection. DriveDreamer-2 [36] extends
the DriveDreamer framework [35] by incorporating an LLM
to generate user-defined driving videos. DriveDreamer-2
converts user queries into agent trajectories and employs a
unified multi-view model to ensure temporal and spatial
coherence. It can also produce uncommon scenarios, such
as abrupt vehicle cut-ins. DriveDreamer4D [258] extends
the DriveDreamer framework to 4D (spatio-temporal) scene
representation. By incorporating map, layout, and text
conditioning, it enhances the realism of the generated data.

Unlike traditional modular designs, ADriver-I [255]
introduces a unified WM using interleaved vision-action
pairs to standardize visual features and control signals. Using

MLLMs and diffusion, it autoregressively predicts control
signals and forecasts future frames, creating a continuous
simulation loop. Also following the autoregressive style,
DrivingWorld [261] introduces a GPT-style WM for AD,
featuring spatial-temporal fusion mechanisms. It employs
next-state and next-token prediction strategies to model
temporal coherence and spatial information, implementing
masking and reweighting strategies to mitigate long-term
drifting and improve 3D detection and motion forecasting.

As a framework for street view generation with diverse
3D geometry controls, MagicDrive [229] includes camera
poses, road maps, and 3D bounding boxes, along with
textual descriptions. It addresses the challenge of 3D control
in traditional DMs, offering high-fidelity video generation
with nuanced 3D geometry and multi-camera consistency.
MagicDrive3D [264] presents a pipeline for controllable 3D
street scene generation that supports multi-condition control,
including BEV maps, 3D objects, and text descriptions.
Unlike methods that reconstruct scenes before training, it
first trains a video generation model and then reconstructs
3D scenes from generated data, enabling high-quality scene
reconstruction for any-view rendering.

A world volume-aware DM is introduced by
WoVoGen [267] for generating controllable multi-camera
driving scenes. It operates by predicting explicit 3D
world volumes to guide video generation, ensuring that
multi-camera perspectives align accurately with the
underlying scene geometry, and maintaining high spatial and
inter-sensor consistency. While ReconDreamer [268] focuses
on not only crafting WMs for driving scene reconstruction
but also online restoration. It emphasizes online learning
for real-time applications, allowing continuous updates
to the WM as new data is acquired, which is critical for
adaptability to changing conditions in AD.

With a dual-branch DM for high-fidelity video generation,
GeoDrive [271] integrates 3D geometry conditions into
driving WMs. It enhances spatial understanding and action
controllability through 3D video rendering with dynamic
editing and control for spatio-temporal consistency, improving
video quality with minimal training data.

3D Occupancy Generation: 3D occupancy generation
predicts and generates volumetric representations of driving
environments, capturing both the spatial structure and the
temporal dynamics of scenes. By treating 4D occupancy scene
evolution as a video prediction task, OccSora [272] presents a
novel a 4D scene tokenizer to obtain compact spatio-temporal
representations. Then, it trains a diffusion transformer to
generate 4D occupancy conditioned on trajectory prompts,
enabling trajectory-aware simulation of various driving
scenarios. To consider both static and dynamic elements
in complex urban environments, Drive-OccWorld [274]
combines a planner with a dynamic WM to predict
3D occupancy and flow from multi-view images. More
specifically, it uses motion-aware BEV sequences as an
intermediate representation, integrating multi-view video data
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with motion cues to achieve robust predictions. Also aiming
at improving prediction accuracy for static and dynamic
objects, RenderWorld [277] further tries balancing granularity
and computational efficiency. It focuses on fine-grained
occupancy prediction through a novel tokenization strategy
which captures spatial relationships.

Using a continuous variational autoencoder-like tokenizer,
DOME [276] performs 3D occupancy prediction to
preserve intricate spatial information. Unlike discrete
tokenization methods, DOME’s continuous approach captures
subtle geometric details while maintaining computational
efficiency, using probabilistic modeling to enhance robustness
concerning sensor noise and occlusions. OccLLama [278]
tries to integrate a multi-modal LLM as a core component
for occupancy prediction. Unlike traditional models that
rely solely on geometric or visual data, OccLLama uses
the reasoning capabilities of LLMs to process multi-modal
inputs, understanding complex scene semantics and object
interactions for enhanced prediction accuracy. While
DriveWorld [280] focuses on 4D scene understanding from
multi-view videos. This approach is separating static spatial
context from dynamic temporal changes to enable precise
occupancy prediction. The model relies on self-supervised
learning to reduce dependence on annotated data, thereby
enhancing scalability.

Multi-modal Generation: Multi-modal generation
approaches integrate multiple sensor modalities and data
types as input, and output multi-modal data that can include
camera images, LiDAR point clouds and depth estimation.

Aiming to address limitations of single-modality
approaches, HoloDrive [281] introduces a unified framework
for joint 2D-3D scene generation. It employs BEV-to-Camera
and Camera-to-BEV transformation modules to bridge
heterogeneous generative models. Therefore, it ensures
consistency between 2D and 3D representations while using
both camera images and LiDAR point clouds for the
generation of consistent street scenes. Further, GEM [285]
proposes a framework for generating realistic environments
by integrating multi-modal sensor data, including camera
images, and depth estimation. It employs a generative
model based on a spatial-temporal transformer capable
of predicting dynamic scene evolution regarding visual
generation and depth estimation. BEVWorld [282] performed
world modeling through a unified BEV latent space that also
integrates multi-modal sensor inputs. The framework includes
a multi-modal tokenizer and a latent BEV sequence DM that
encodes multi-modal data into a unified BEV latent space.
This method aims at aligning visual semantics with geometric
information in a self-supervised manner.

Benchmarks: Current benchmarking frameworks provide
standardized methods to assess the quality, controllability, and
utility of generated scenarios, ensuring that the WMs meet
the requirements for AD applications. Current evaluation
frameworks mainly focus on visual realism and on the
performance of downstream tasks (perception, planning,

etc.). ACT-Bench [286] introduces a standardized framework
to quantify action controllability, measuring how well the
generated scenarios adhere to specified driving instructions.
This benchmarking framework assesses the fidelity of action
execution in WM-generated scenarios. DriveArena [287] is
a closed-loop generative simulation platform that enables
the evaluation of AD systems in dynamic and realistic
environments. By simulating continuous interactions between
the ego-vehicle and the environment, it bridges the gap
between synthetic training and real-world deployment,
supporting the iterative refinement of driving policies.

C. Limitations and Future Directions
Recent research on 3D occupancy generation with WMs
has shown promising capabilities in predicting the evolution
of driving environments in volumetric form. However,
most models remain computationally intensive: future
work should aim to develop lightweight architectures
and explore finer-grained occupancy voxel representations.
Recent commercial systems, such as Tesla’s Foundational
Model for FSD9, highlight both the potential and the
remaining challenges of large-scale WMs. Meanwhile,
general-purpose generative WMs, such as Google DeepMind’s
Genie 3 [291], can output interactive 3D environments from
prompts, showing the potentital for diverse synthetic scenario
generation.

Moreover, current implementations struggle with physical
realism when modeling complex multi-agent interactions
and real-world physics, including vehicle dynamics and
kinematics laws, tire–road friction, collision forces, and
weather effects. This limitation also applies to general-purpose
WMs such as Genie 3, which are not tailored to AD and
cannot guarantee physics-consistent modeling of vehicle
dynamics and traffic rules. The generated scenarios sometimes
contain physically implausible elements, such as objects that
appear or disappear abruptly. Hence, the surveyed WMs
can generate diverse driving scenarios but cannot accurately
satisfy the laws of physics, which can lead to misleading
testing results and infeasible scenarios.

VIII. Metrics Datasets, Simulators and Benchmark
Challenges
In this section, we review the main evaluation metrics,
datasets, simulation platforms, and benchmark challenges
that serve as the foundation for scenario generation and
analysis with FMs. We intentionally limit our scope to the
most recent and impactful resources that are relevant for FM
applications, and omit entries covered in previous work.

A. Metrics
Table 10 summarizes the main evaluation metrics from the
cited papers for scenario generation and analysis with FMs.

9https://www.tesla.com/AI
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These metrics are categorized into three main types: (1)
Framework Performance Metrics, which assess the overall
performance of frameworks; (2) Content Quality Metrics,
which evalutate the quality and semantic accuracy of the
generated or analyzed content; and (3) Application-Specific
Metrics, which address domain-relevant aspects.

(1) Framework Performance Metrics: They evaluate
the computational efficiency and operational reliability of
FM-based frameworks for scenario generation and analysis.

(I) Efficiency: Measures the computational cost and time
required for scenario generation or analysis. Response time
refers to time from input submission to output generation,
while token usage quantifies the total number of input and
output tokens consumed during Application Programming
Interface (API) key calls. These metrics are often compared
against baseline approaches such as manual scripting to assess
the practical benefits of FM-based frameworks [97], [100].

(II) Effectiveness: Refers to the operational robustness
and reliability of the framework in producing valid outputs.
This is commonly evaluated through compile error rate,
the proportion of generated code or scenarios that fail to
compile or parse correctly, and execution success rate, the
percentage of scenarios that can be successfully instantiated
and executed in a target environment [97], [100].

(2) Content Quality Metrics: These metrics assess the
quality and semantic accuracy of the generated or analyzed
content, including trajectories, semantic understanding, and
language generation outputs.

(I) Trajectory Accuracy: Crucial for trajectory-centric
generation and prediction tasks. Common metrics include
mean Average Displacement Error (mADE), the average
Euclidean distance between predicted and ground truth
trajectories across all time steps; mean Final Displacement
Error (mFDE), the distance at the final prediction time step
from the predicted trajectory to the ground truth trajectory;
and Maximum Mean Discrepancy (MMD), which measures
the distributional similarity between generated and real
trajectory sets. Additionally, Predictive Driver Model Score
evaluates the likelihood of predicted trajectories under
human driving patterns learned from real-world data, and
Arena Driving Score assesses overall driving competence in
multi-agent scenarios by evaluating collision avoidance, goal
achievement, traffic rule compliance, and interaction quality
with other agents [77], [84], [88]–[90], [287], [292].

(II) Semantic Correctness: Assesses how well the
generated scenarios or analysis outputs reflect the intended
semantics of inputs like crash reports or textual prompts.
Common metrics include accuracy or F1 score for
evaluating scenario categorization, semantic classification, and
question-answering correctness. Additionally, completeness
and coherence are evaluated through human assessment,
where annotators assign scores based on how thoroughly
the response covers all relevant aspects and how logically
consistent and well-structured the output is [79], [93],
[99], [100], [102], [117], [127], [129], [131], [145], [147],

[149]–[151], [172]–[174], [177], [181], [183], [184], [189],
[192]

(III) Language Quality: Evaluates how similar generated
text is to human-written reference sentences, measuring
fluency, relevance, and coherence based on word overlap,
structure, and meaning. Traditional metrics include Bilingual
Evaluation Understudy (BLEU), which measures word
and phrase (n-gram) overlap focusing on precision;
Consensus-based Image Description Evaluation (CIDEr),
which uses weighted n-grams giving more importance to
informative words; Metric for Evaluation of Translation
with Explicit ORdering (METEOR), which considers exact
matches, stem matches, and synonyms for both precision
and recall; and Recall-Oriented Understudy for Gisting
Evaluation - Longest common subsequence (ROUGE-L),
which measures content similarity using the longest common
subsequence focusing on recall. However, these word-level
metrics may not capture semantic nuances. To address this,
GPT Score leverages ChatGPT’s reasoning capabilities to
evaluate prediction quality and semantic meaning, assigning
scores. Additionally, human evaluation scores provide direct
assessment of output quality by human annotators who rate
the generated content based on observed details [117], [119],
[120], [132], [152], [155], [179], [189], [192], [193].

(3) Application-Specific Metrics: They address
domain-specific aspects of AD scenarios, focusing on
safety-critical properties and user-specified constraints.

(I) Safety-Criticality: Evaluate the risk levels and
safety-critical properties of generated scenarios. Key metrics
include collision rate, the frequency of collisions occurring
in the scenario; Time-to-Collision (TTC), the time remaining
before a potential collision; Risk score, a comprehensive
assessment of scenario danger level; Accuracy for evaluating
safety criticality of scenarios; and violation discovery, the
ability to identify and detect safety-critical events or rule
violations in the generated scenarios [74], [76], [121], [159],
[160], [163], [164], [186], [207]–[213], [215], [217], [221].

(II) Controllability: Measures the framework’s ability to
follow user-specified constraints and control signals. Key
metrics include CLIP Alignment Score, which measures
alignment between visual content and textual prompts
via cosine similarity in CLIP’s shared embedding space;
Accuracy, which evaluate the correctness of generated
content against specified control signals, such as verifying the
presence, location, and class of elements via object detection;
and traffic flow compliance, which assesses adherence
to constraints such as speed, waypoints, lane assignments,
vehicle counts, and scene type specifications [125], [207],
[209], [210], [212], [214], [222], [226]–[234], [236].

(III) Realism: Measures the realism of generated
scenarios across multiple modalities. For traffic flow, metrics
include Wasserstein Distance (WD) and Kullback–Leibler
divergence (KLD) for statistical realism of motion dynamics
(e.g., acceleration, jerk), Frechet Distance and Symmetric
Segment-Path Distance (SSPD) for spatial differences
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TABLE 10. Overview of evaluation metrics for foundation model-based scenario generation and analysis.

Category Sub-Category Metric Task Model Output Citations

Gen Ana LLM VLM MLLM DM WM

Framework
Performance

Efficiency
Response Time ✓ ✓ ✓ S [97], [100]

Token Usage ✓ ✓ ✓ S [97], [100]

Effectiveness
Compile Error Rate ✓ ✓ ✓ S [97], [100], [184]

Execution Success Rate ✓ ✓ S [97], [100]

Content
Quality

Trajectory
Accuracy

mADE, mFDE ✓ ✓ ✓ Tr [77], [84], [88]–[90], [286]

MMD ✓ ✓ Tr [77], [84], [88]–[90]

Predictive Driver Model Score ✓ ✓ Tr [287]

Arena Driving Score ✓ ✓ Tr [287]

Semantic
Correctness

Accuracy / F1 Score ✓ ✓ ✓ ✓ ✓ T/S e.g. [93], [99], [100], [127], [147]

Completeness, Coherence ✓ ✓ T [102]

Language
Quality

BLEU, CIDEr, METEOR, ROUGE-L ✓ ✓ ✓ T e.g. [117], [119], [138], [141], [276]

GPT Score ✓ ✓ T [132], [152]

Human Evaluation ✓ ✓ T [179], [192], [193]

Application-
Specific

Safety-
Criticality

Collision Rate ✓ ✓ ✓ ✓ ✓ S/Tr e.g. [74], [76], [121], [210], [211]

TTC ✓ ✓ ✓ ✓ T/S/Tr [76], [108], [121], [159]

Risk Score ✓ ✓ ✓ T/Tr [108]

Accuracy ✓ ✓ ✓ T e.g. [162]–[164], [180]

Violation Discovery ✓ ✓ ✓ S [186]

Controllability

CLIP Alignment Score ✓ ✓ I/V [226], [228]

Accuracy ✓ ✓ ✓ S/I/V e.g. [125], [227]–[234], [236]

Traffic Flow Compliance ✓ ✓ Tr e.g. [207], [209], [210], [212], [214]

Realism

WD, KLD ✓ ✓ Tr e.g. [124], [127], [276], [293], [294]

SSPD, Frechet Distance ✓ ✓ Tr [209], [221]

Off-Road Rate ✓ ✓ Tr e.g. [207], [212], [213], [217], [222]

Lane Heading Distance ✓ ✓ Tr [217]

FID, RMSE ✓ ✓ V [125], [226]–[230], [295]

FVD, KVD ✓ ✓ ✓ I/V [231]–[236], [239], [241], [296]

Video Panoptic Quality ✓ ✓ V [274], [294]

mIoU ✓ ✓ O [276]

Chamfer Distance ✓ ✓ O [212], [217]

Human Evaluation ✓ ✓ S [124], [127]

Scenario Consistency ✓ ✓ ✓ S [124], [127], [184]

Diversity Statistical Distribution ✓ ✓ ✓ ✓ ✓ T/S/I [69], [71], [125], [156], [184]

Grounding

IoU / mIoU ✓ ✓ ✓ T [138], [141], [178], [183], [276]

3D mAP ✓ ✓ T [136], [153]

L1/L2 Localization Error ✓ ✓ T [178], [183]

Classification Accuracy, Precision, Recall, Confusion Matrix ✓ ✓ ✓ T [138], [141], [178], [183], [276]

Task: Gen = Generation, Ana = Analysis. Checkmarks indicate applicable tasks.
Output: T = Text (question answering), S = Script (executable code), Tr = Trajectory (single or multi-agent paths), I = Image (2D scenes), V = Video (temporal sequences),
O = Others (point cloud, 3D occupancy, depth map).

between simulated and ground truth trajectories, Off-Road
Rate for unrealistic trajectory generation, and Lane Heading
Distance for alignment between vehicle orientation and lane
direction. For image generation, Frechet Inception Distance
(FID) measures distributional discrepancies, and Root Mean
Squared Error (RMSE) evaluates pixel-level accuracy. For
video generation, Frechet Video Distance (FVD), Kernel
Video Distance (KVD), and Video Panoptic Quality assess
temporal coherence and statistical similarity. For 3D scenarios,
mean Intersection-over-Union (mIoU) evaluates occupancy
prediction, and chamfer distance measures point cloud
similarity. Additionally, scenario consistency, and human
evaluation assess overall scenario quality and realism [105],

[107], [124], [125], [127], [184], [207]–[209], [212], [213],
[215], [217], [221], [222], [226]–[236], [239], [241], [276],
[293]–[296].

(IV) Diversity: Captures the variability of generated
scenarios by analyzing statistical distributions of features
such as lane counts, edge counts, route lengths, and vehicle
densities [69], [71], [156].

(VI) Grounding: Evaluates how accurately models can
ground textual descriptions to visual elements and understand
spatial relationships in the driving scene. Key metrics include
Intersection-over-Union (IoU) and mIoU for 2D and 3D
object localization accuracy, 3D mean Average Precision
(mAP) for detecting and localizing objects in 3D space, and
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TABLE 11. Overview of impactful and recent datasets for foundation model-based scenario generation and analysis.

Dataset Year Real View
Sensor Data Annotation Traffic Condition

Image LiDAR RADAR Traj. 3D 2D Lane Weather Time Region Jam

Im
pa

ct
fu

l HighD [72] 2018 ✓ BEV RGB ✓ ✓ D H ✓

nuScenes [126] 2020 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D/N U
Waymo Open [78] 2020 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S
DRAMA [187] 2022 ✓ FPV RGB ✓ ✓ - U ✓

M
os

t
R

ec
en

t

Comma2k19 [297] 2019 ✓ FPV RGB ✓ ✓ D/N U/S/R/H ✓

Toronto3D [298] 2020 ✓ BEV RGB ✓ ✓ ✓ ✓ D/N U ✓

A2D2 [299] 2020 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D U/S/R/H ✓

WADS [300] 2020 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ D/N U/S/R ✓

SeethroughFog [301] 2020 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/R/H ✓

Leddar PixSet [302] 2021 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ D/N U/S/R ✓

ZOD [303] 2022 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/R/H ✓

IDD-3D [304] 2022 ✓ FPV RGB ✓ ✓ ✓ - R ✓

CODA [154] 2022 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/R
SHIFT [305] 2022 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/R/H ✓

DeepAccident [195] 2023 FPV/BEV RGB/S ✓ ✓ ✓ ✓ ✓ D/N U/S/R/H ✓

Dual Radar [306] 2023 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D/N U
V2V4Real [307] 2023 ✓ FPV RGB ✓ ✓ ✓ ✓ - U/S/H
SCaRL [308] 2024 FPV/BEV RGB/S ✓ ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/R/H ✓

MARS [309] 2024 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ D/N U/S/H
Scenes101 [310] 2024 ✓ FPV RGB ✓ ✓ ✓ D/N U/S/R/H
TruckScenes [311] 2025 ✓ FPV RGB ✓ ✓ ✓ ✓ ✓ ✓ D/N H/U

Impactful: We define a dataset’s impact by the number of times it was used—not simply cited—by the papers included in our survey. Using this criterion, the four most
impactful papers are associated with the following datasets: nuScenes (52 uses), Waymo Open (19), DRAMA (4), and HighD (3).
View indicates: FPV = First-person View, BEV = Bird’s-eye View; Image indicates: RGB = Red, Green, Blue; S = Stereo; Traffic Condition includes: D/N = Day/Night;
U/S/R/H = Urban/Suburban/Rural/Highway;Jam = presence of traffic congestion.

L1/L2 localization error for measuring spatial deviation
between predicted and ground truth object positions [136],
[138], [141], [153], [178], [183], [276].

(VII) Classification: Assesses the accuracy of categorizing
scenarios, behaviors, or driving conditions. Common
metrics include accuracy for scenario type identification,
confusion matrix for understanding misclassification patterns,
and precision/recall for specific safety-critical event
detection [108], [109], [197].

B. Datasets
A typical use of FMs for scenario-based testing is to
reproduce real-world scenarios in a simulation environment
and reconstruct the corresponding events. LLMs typically
use agents’ trajectory data from given datasets, while VLMs
or MLLMs can leverage additional input modalities such
as LiDAR point clouds, RGB images or video streams, and
rich annotations. Specifically, DMs use inputs such as RGB
images, trajectories, and potentially LiDAR data to generate
realistic future scenes or motion patterns through iterative
refinement. In contrast, WMs aim to learn the underlying
dynamics of driving environments by encoding multimodal
sensor data (e.g., images, LiDAR, trajectories) and predicting
future states or scene evolutions. Meanwhile, for scenario
analysis, a common approach is to leverage VLMs or MLLMs
to analyze driving scenes, using image or video data, with

or without LiDAR or HD maps, across different tasks such
as perception, prediction, and reasoning.

To assess the relevance and applicability of datasets, we
adopt the categorization scheme introduced by Ding et al. [54].
This scheme enables a structured comparison across datasets,
considering their sensor coverage, annotation depth, scene
diversity, and potential for controllable generative tasks. In the
context of FMs, which require large, diverse, and annotated
data, the choice of dataset properties is fundamental to
enhance the model’s generalization potential. We apply this
categorization to a selection of impactful and most recent
datasets in Table 11, using [54] to categorize the dataset’s
properties given below.

(1) Sensor Data: High-quality datasets like Waymo [78]
and nuScenes [126] offer diverse sensor modalities including
RGB cameras, LiDAR, and RADAR. Such multimodal input
is especially important for pre-training and aligning LLMs,
VLMs, DMs, and WMs across visual and spatial reasoning
tasks.

(2) Annotation: These datasets also include detailed
2D and 3D object annotations, lane information, and
agent trajectories. This level of semantic and geometric
detail supports tasks such as perception, prediction,
map-conditioned scenario generation, and safety analysis.

(3) Traffic Condition: Traffic condition describes when
and where the data was collected, including time of
day (day/night), environment type (urban, suburban, rural,
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TABLE 12. Overview of impactful and recent simulators for foundation model-based scenario generation and analysis.

Simulator Year Backend
Open

Source
Realistic

Perception
Custom
Scenario

Map Source API Supports DSL
Support

Real World Human Design Python C++ ROS 2

Im
pa

ct
fu

l CARLA [51] 2017 UE4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SUMO [52] 2018 None ✓ ✓ ✓ ✓ ✓ ✓ ✓

LGSVL [98] 2020 Unity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MetaDrive [86] 2021 Panda3D ✓ ✓ ✓ ✓ ✓ ✓ ✓

M
os

t
R

ec
en

t

MATLAB AD Toolbox [312] 2018 MATLAB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nvidia Drive Sim [313] 2019 Nvidia Omniverse ✓ ✓ ✓ ✓ ✓ ✓

Vista [314] 2020 None ✓ ✓ ✓ ✓ ✓

Nuplan [49] 2021 None ✓ ✓ ✓ ✓ ✓ ✓

AWSIM [315] 2021 Unity ✓ ✓ ✓ ✓ ✓ ✓ ✓

InterSim [316] 2022 None ✓ ✓ ✓ ✓ ✓

Nocturne [317] 2022 None ✓ ✓ ✓ ✓ ✓ ✓ ✓

BeamNG.tech [206] 2022 Soft-body physics ✓ ✓ ✓ ✓ ✓ ✓

Waymax [318] 2023 JAX ✓ ✓ ✓ ✓ ✓

TBSim [319] 2023 None ✓ ✓ ✓ ✓ ✓ ✓

Impactful: We identify the impact of a simulator following the same criterion of Table 11, based on the number of times the simulator was used—not simply cited—by
the papers included in our survey. The most impactful simulators are CARLA (8 uses), MetaDrive (4), LGSVL (3), and SUMO (3).

highway), and presence of traffic congestion. These factors
affect visibility, traffic flow, road layout, and driving behavior,
providing diverse scenarios for evaluating autonomous driving
performance.

Datasets such as Waymo Open [78] and nuScenes [126]
are particularly widespread in the literature. This is largely
due to their real-world fidelity, rich multisensor coverage,
and comprehensive annotations, which make them ideal for
training and evaluation of FMs. Additionally, it is worth
noting that emerging (Visual) QA datasets relevant to scenario
analysis with language FMs are discussed in Section IV-C
and Section V-C.

C. Simulators
Simulation platforms are essential in the development and
evaluation pipeline of AD systems. They enable safe and
reproducible testing, large-scale scenario generation, and
structured benchmarking. For FM-based scenario generation,
simulators are particularly valuable for generating training
data, enabling self-supervised pre-training, and facilitating
the sim-to-real validation. FM-based scenario generation can
be performed by LLMs/VLMs/MLLMs through either API
functions or DSLs, allowing automatic script generation and
scenario execution. Table 12 summarizes the impactful and
recent simulation platforms that are relevant to scenario
generation and analysis. For the classification and evaluation
of the existing simulators, we extend the categorization
scheme introduced by Ding et al. [54], focusing on features
especially relevant to the development and application of
FMs.

(1) Backend: The simulation backend defines the
physical and rendering engine used to generate sensor
data and simulate interactions. Platforms such as Unreal

Engine 4 (UE4) or Unity enable high-fidelity rendering
and realistic vehicle dynamics, which are valuable for
training perception-driven foundation models. Lightweight
or symbolic backends, like SUMO or Nocturne, are useful
in large-scale planning and decision-making datasets where
rendering realism is less critical.

(2) Realistic Perception: Simulators with realistic
perception capabilities provide physics-based sensor outputs,
including camera, LiDAR, or radar emulation. Such platforms
are crucial for training vision-language FMs, sensor-fusion
backbones, or multimodal WMs.

(3) Custom Scenario: The ability to define and
customize traffic scenarios is a central requirement for
both evaluation and data generation workflows. Particularly
for FMs, automated and diverse scenario creation supports
the pre-training of models on rare, safety-critical, or
systematically varied interactions. Customization typically
includes the placement and behavior of traffic participants,
route definitions, or modifications of environmental conditions
such as weather and lighting. Simulators like CARLA [51]
offer rich APIs for manual customization, enabling users to
script complex multi-agent interactions and adjust parameters
such as vehicle behavior, density, and even scene appearance.
More recently, platforms like BeamNG.tech [206] go a step
further by supporting automated scenario generation at scale.
This enables the procedural creation and batch testing of
varied situations, making it well-suited for training and
validating FMs in closed-loop settings.

(4) Map Source: We differentiate between scenarios based
on real-world maps (e.g., OpenStreetMap) and those built
from human design. Real-world maps ensure geographic
realism and coverage, while human-designed maps enable
controlled environments.
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TABLE 13. Overview of foundation model Benchmark Challenges from 2022–2025, categorized by core capabilities.

Name Host

Tasks

Perception
& Interpretation

Prediction
& Planning

Reasoning
& Decision

Language
Understanding

Creative
Generation

A
ut

on
om

ou
s

D
ri

vi
ng

CARLA AD Challenge [320] CARLA ✓

DRL4Real [321] ICCV ✓

Waymo Open Dataset Challenge [322] Waymo / CVPR WAD ✓ ✓ ✓

Argoverse 2: Scenario Mining Competition [323] ArgoAI ✓ ✓

Roboflow-20VL [324] Roboflow-VL / CVPR ✓ ✓

AVA Challenge [325] AVA Challenge Team ✓ ✓ ✓ ✓

O
th

er
Fi

el
ds

R
el

at
ed

to
G

en
er

at
io

n
an

d
A

na
ly

si
s

IGLU Challenge [326] NeurIPS / IGLU Team ✓ ✓ ✓

LLM Efficiency Challenge [327] NeurIPS ✓

MMWorld [328] CVPR ✓

3D Scene Understanding [329] CVPR ✓ ✓

Trojan Detection [330] NeurIPS / CAIS ✓

SMART-101 [331] CVPR ✓ ✓ ✓

NICE Challenge [332] CVPR / LG Research ✓ ✓ ✓

SyntaGen [333] CVPR ✓ ✓

Habitat Challenge [334] CVPR / FAIR ✓ ✓ ✓

BIG-bench [335] Google Research ✓ ✓

BIG-bench Hard (BBH) [336] Google Research ✓ ✓

HELM [337] Stanford CRFM ✓ ✓

MMBench [338] OpenCompass ✓ ✓ ✓

MMMU [339] CVPR / U-Waterloo / OSU ✓ ✓ ✓

Open LLM Leaderboard [340] VILA-Lab ✓

Text-to-Image Leaderboard [341] Artificial Analysis ✓ ✓

Ego4D [342] FAIR ✓ ✓ ✓ ✓

VizWiz Grand Challenge [343] CVPR VizWiz Workshop ✓ ✓

MedFM [344] NeurIPS / Shanghai AI Laboratory ✓

(5) API-Supports: API support determines how flexibly
simulators can be integrated into training pipelines. Python
interfaces are especially useful for data generation and model
interaction. Robot Operating System (ROS 2) compatibility
allows for testing learned policies in robotics stacks, while
C++ APIs provide performance for real-time validation and
closed-loop deployment.

(6) Domain-Specific Language (DSL) Support:
Some simulators provide DSL that enable structured,
human-readable scenario specification through high-level
functions or syntax. These interfaces are especially useful
for integrating LLMs/VLMs/MLLMs in automated scenario
generation pipelines.

Based on these criteria, two simulators stand out in
Table 12 as particularly impactful in FM research: CARLA
[51] and SUMO [52]. Their complementary capabilities
make them well-suited to different aspects of scenario
generation and evaluation. SUMO, a microscopic traffic
simulator, is designed for large-scale traffic modeling and
interaction-heavy scenario simulation at the population
level. It supports integration with real-world maps via
OpenStreetMap, allowing for geographically accurate traffic
flow simulations. These features make it a practical
backend for LLMs tasked with generating or editing
traffic configurations using natural language prompts or

structured templates. CARLA, in contrast, is a macroscopic
simulator with high-fidelity physics, sensor simulation, and
photorealistic rendering. It is widely used for ego-agent
policy testing in closed-loop environments. Its integration
with platforms like Scenic [75] enables programmatic
scenario definition through interpretable formal languages,
while its Python API offers fine-grained control over agent
behavior, environmental settings, and sensor configurations.
These characteristics make CARLA particularly suitable for
LLMs, VLMs, and MLLMs in vision-language understanding,
closed-loop control, and multimodal reasoning.

D. Challenges and Benchmarks
In addition to static datasets and simulation environments,
open challenges and benchmarks have become useful tools
to evaluate the performance of FMs. While datasets provide
the raw material for training and offline testing, challenges
enable comparative analysis across models in a controlled
and competitive setting. To our knowledge, this is the first
survey to systematically categorize and compare challenges
and benchmarks relevant to scenario generation and analysis.
Although many of these challenges originate in other
application domains, such as medical imaging, robotics, or
general-purpose language understanding, their underlying task
structures often align with those found in AD. For example,
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interpreting sensor input, forecasting agent behavior, making
multi-step decisions, or generating new representations (e.g.,
scenes, trajectories, or instructions) are all core operations
in scenario understanding. Table 13 presents a selection of
challenges and benchmarks published between 2022 and 2025
while our work features a selective overview. The challenges
highlight both direct contributions from autonomous driving,
such as the Waymo Open Dataset Challenge [322], the
Argoverse 2 Scenario Mining Competition [323], and the
Accessibility Vision and Autonomy (AVA) Challenge [325],
as well as structurally similar benchmarks from other fields.
For example, while the Argoverse 2 challenge already
touches on scenario analysis, it has not involved scenario
generation yet. In contrast, tasks such as VQA, egocentric
video understanding, or synthetic image generation often
require models to interpret complex scenes and produce new,
coherent outputs, an ability that is equally fundamental for
scenario generation. Challenges like SyntaGen [333] and
the Text-to-Image Leaderboard [341] illustrate this parallel
particularly well: models are asked to generate synthetic
examples that exhibit structural realism and diversity. Each
challenge is categorized along five core capabilities:

(1) Perception & Interpretation: This category refers
to the model’s ability to process sensor inputs and extract
meaningful semantic representations. Benchmarks such as
MMBench [338] and MMMU [339] require fine-grained
visual understanding across diagrams, images, and structured
visual data. The MedFM [344] challenge focuses on extracting
clinically relevant patterns from medical images such as
X-rays and histology slides. Ego4D [342] evaluates perception
in the context of egocentric video, where models must
interpret long, unstructured streams of first-person footage.

(2) Prediction & Planning: Challenges in this category
require models to forecast future events or plan a sequence
of actions based on partial observations. The Waymo Open
Dataset Challenge [322] is a prominent example, assessing
motion forecasting from multi-agent sensor streams in
real-world traffic scenarios. In the Habitat challenge [334],
embodied agents must navigate photo-realistic indoor
environments toward semantic or visual goals.

(3) Reasoning & Decision Making: This capability
includes commonsense reasoning, causal inference, and
multi-hop planning. The BIG-bench [335] and BIG-bench
Hard (BBH) [336] benchmarks target difficult problems in
logic, mathematics, and abstract reasoning, many of which
remain unsolved even by large models. SMART-101 [331]
evaluates reasoning in dialogue, specifically whether models
can generate helpful, honest, and harmless responses.

(4) Language Understanding & Generation: This
encompasses tasks such as instruction following, QA,
summarization, and dialogue generation. The LLM Efficiency
Challenge [327] evaluates how well FMs can be fine-tuned
under strict computational budgets. HELM [337] offers
a multi-dimensional evaluation across more than a dozen
application domains, measuring not only task performance

but also fairness, bias, and calibration. The Open LLM
Leaderboard [340] provides a public ranking of open-source
language models based on standardized evaluations across
tasks such as QA or summarization.

(5) Creative Generation: Finally, this category captures
the ability of a model to generate complex artifacts
such as images, captions, or synthetic data samples. The
Text-to-Image Leaderboard [341] evaluates diffusion-based
generative models using human preference judgments over
image outputs. SyntaGen [333] tests whether DMs can
generate synthetic images that preserve sufficient structure
and diversity to train robust perception models.

Overall, these benchmarks provide a structured landscape
for measuring and comparing the capabilities of FMs beyond
narrow task-specific metrics. They reflect the growing demand
for models that are not only accurate but also general,
adaptable, and robust across domains. For instance, the
Ego4D [342] benchmark requires models to understand
egocentric video data across diverse daily contexts such as
households, workplaces, and outdoor activities. In contrast,
MedFM [344] evaluates the ability to analyze complex
medical images, requiring high precision and domain-specific
knowledge. Despite their differing domains, both tasks rely
on similar underlying capabilities, illustrating the versatility
required from FMs.

IX. Open Research Questions and Challenges
In this paper, we illustrate how the state of the art in the
emerging field of scenario generation and analysis with FMs
is quite extensive. Nevertheless, there are still some open
research questions and challenges. Here, we present a list of
open challenges based on additional discussions with leading
researchers and experts in the field. These challenges open
new research questions to use FMs for scenario generation
and analysis in AD.

Challenge 1 – Balancing Plausibility and Edge
Case Generation: Effective scenario generation requires
balancing realism with the ability to capture rare edge
cases. Realistic scenarios demand that FMs abstractly
understand the real-world dynamics [345]. On the other
hand, edge cases essential for safety assurance [346] often
approach the boundary of perceived plausibility, making them
challenging for FMs to generate without producing unrealistic
outcomes. When the plausibility of the generated scenarios is
compromised, the resulting scenarios cannot support safety
assurance arguments [53]. Thus, the key challenge is ensuring
the realism of the generated scenarios, while enabling FMs
to generalize and capture critical edge-case situations.

Challenge 2 – Large-Scale Multimodal Data Availability:
Many FMs are trained on existing datasets that struggle to
capture the full diversity of real-world driving scenarios.
Moreover, the integration of multimodal data such as LiDAR,
camera, RADAR, and text remains limited compared to
single-modality FMs. This is due to the lack of open-source
LiDAR and RADAR data at publicly accessible, internet-scale
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volumes (comparable to those used to pretrain FMs on
web data such as news, books, and large-scale image and
video collections), and to the limited size of domain-specific
multimodal datasets [41]. In addition, open datasets that
include rare, diverse, and safety-critical events are still
scarce. Thus, a major challenge is the limited availability of
diverse, unbiased multimodal data needed to enable scenario
generation with high realism and fidelity.

Challenge 3 – Standardized Evaluation Metrics and
Benchmarks for Scenario Generation: Currently, there is
no established standard for the automated evaluation and
generation of driving scenarios. Widely accepted metrics to
assess realism, plausibility, dynamic feasibility, controllability,
and safety-criticality are still missing, hindering fair and
meaningful comparisons among different methods. To fill
this gap, open-source evaluation frameworks and community
challenges or leaderboards are needed, requiring participants
to generate and assess autonomous driving scenarios. Such
initiatives would enable consistent benchmarking, foster the
development of multi-dimensional evaluation metrics, and
promote reproducible research practices. This will ultimately
accelerate the integration of scenario-generation methods into
safety assessment pipelines.

Challenge 4 – Safety, Robustness & Verification:
Most existing methods lack formal guarantees for safety,
correctness, or scenario coverage. The stochastic nature of
FMs increases the risk of hallucinated outputs, limiting
their reliability for AD safety assurance. A key challenge
is ensuring that the generated scenarios are logically
grounded and validated through formal verification, constraint
satisfaction, or logic-based safety rules rather than merely
correlated with the intended context.

Challenge 5 – Computational Cost and Scalability:
Current FM-based generation methods demand substantial
computational resources, with training requiring massive
datasets, long runtimes, and high-performance hardware. Even
inference and model fine-tuning are costly without advanced
infrastructure. This raises unsolved challenges in scalability,
accessibility, and cost-effectiveness, particularly for smaller
organizations or resource-constrained applications.

Challenge 6 – Industrial Transferability and Validation:
While academia offers many methods for virtual testing
and evaluation, the industry must ultimately adapt them
for real-world AD applications. Bridging this gap requires
method validation, standardization [347], and seamless
integration into existing workflows. Thus, a key research
question lies in developing approaches that are not only
theoretically sound but also practical, efficient, and accessible
to diverse stakeholders, backed by robust industrial validation
demonstrating clear benefits and adaptability.

X. Future Directions
Addressing the above-mentioned challenges in scenario
generation and analysis using FMs yields several directions
for future improvement and new research agendas.

Research Direction 1 – Improve Realism: Improving the
realism and plausibility of the generated scenarios will require
integrating domain-specific knowledge into FMs, enhancing
their understanding of real-world dynamics and interactions.
Hybrid approaches that combine physics-based models with
data-driven FMs offer promise in generating physically
coherent scenarios. Also, the exploration of dreaming with
WMs [34], [291] can address gaps in sensor simulation:
the data-driven nature of dreaming can capture fine-grained
sensor characteristics with high fidelity.

Research Direction 2 – Create Rare Events: Capturing
rare, high-risk events requires dedicated methods to
systematically identify and generate such scenarios. We
recommend creating targeted datasets that focus on infrequent
but critical situations to improve the accuracy of models in
such cases. Additionally, incorporating reasoning techniques
such as causal or counterfactual reasoning [348], which may
help FMs deduce plausible yet uncommon scenarios.

Research Direction 3 – Create Multimodal Datasets:
Multimodal data integration remains a major challenge,
requiring large-scale datasets specifically designed for
scenario generation. These should combine vehicle sensor
data, such as LiDAR, RADAR, and cameras, with map data,
traffic rules, control actions, human feedback, and textual
annotations. We also recommend developing new model
architectures and training methods specifically tailored to
multimodal fusion, in order to address the current limitations
in scalability and integration.

Research Direction 4 – Develop Metrics and KPIs for
Comparison: We heavily recommend the development of
standardized evaluation methods for an objective comparison
of scenarios and scenario generation approaches. This requires
new benchmarks and metrics for realism, controllability,
diversity, and safety-criticality, along with broad adoption
by the community. Promoting these new benchmarks in
competitions at the major conferences will drive progress,
standardization, and community-driven innovation.

Research Direction 5 – Reduce Computational
Demands: Computational efficiency and scalability present
major practical constraints. Addressing them requires further
investigation of techniques such as model distillation, pruning,
and quantization, specifically tailored to scenario generation
and analysis tasks, to minimize computational demands
without sacrificing performance.

Research Direction 6 – FMs as Safe Data Flywheels:
A key research direction concerns the integration of FMs
into AV safety validation workflows. This includes using
FMs as safe data flywheels, where the generated scenarios
continuously support testing, AV models retraining, safety
assessment, and performance monitoring. Future work should
ensure scenario representativeness, balance real and synthetic
data, and develop robust metrics to quantify the safety impact
of the generated edge cases across the AV lifecycle.

Research Direction 7 – Regulatory Compliance: Ethical
considerations and regulatory compliance must be integral to
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future developments. Transparent methodologies are needed
to identify, mitigate, and validate biases in the generation
and analysis of AD scenarios. Equally important are robust
approaches to data privacy management, to ensure compliance
with legal and ethical standards while safeguarding sensitive
training data. Advancing these aspects will also support
the use of generated scenarios in safety validation and
certification, contributing to structured safety arguments.

XI. Conclusion
This survey examines the state-of-the-art in FMs for
autonomous driving applications, emphasizing their
significant contributions to both scenario generation and
scenario analysis. FMs, including LLMs, VLMs, MLLMs,
DMs, and WMs, have emerged as promising tools to enhance
the realism, diversity, and scalability of scenario-based
testing in AD.

The versatility of FMs lies in their ability to learn from
large-scale, heterogeneous datasets through self-supervised
training. Their capability to generalize knowledge across
various tasks has advanced the scenario-based testing
paradigm, overcoming many limitations of traditional
rule-based and data-driven methods. Particularly, the dual
capability of scenario generation and scenario analysis
presented by FMs positions them as crucial enablers for
robust and efficient validation frameworks in AD systems.

Despite these advances, notable challenges persist.
Achieving fine-grained controllability in safety-critical
scenarios and ensuring robust realism in generated scenes are
ongoing research hurdles. Computational efficiency remains
a significant challenge, as many foundation models demand
high memory bandwidth, high inference times, and costly
GPU resources, limiting their practicality for large-scale
scenario generation and real-time testing. Additionally,
while the surveyed models demonstrate promising results,
further research is needed to enhance the interpretability
of their outputs, improve alignment with real-world traffic
conditions, and systematically address out-of-distribution
scenarios. Future work should also investigate if and how
improvements in FM model designs and size may result in
better generalization for scenario generation and analysis.

Ultimately, as autonomous vehicles approach broader
operational domains and higher levels of automation, the
role of advanced scenario generation and analysis methods
will be paramount. FMs present a powerful framework for
this evolution, promising to revolutionize both the safety
and efficiency of AD development. The future trajectory
of this research is expected to bring further transformative
advancements, fostering safer, more reliable, and broadly
accessible autonomous mobility.
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