Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Simulator Ensembles for Trustworthy Autonomous
Driving Systems Testing

Lev Sorokin ! - Matteo Biagiola 2
Andrea Stocco 1:3

Received: date / Accepted: date

Abstract Scenario-based testing with driving simulators is extensively used
to identify failing conditions of automated driving assistance systems (ADAS)
and reduce the amount of in-field road testing. However, existing studies have
shown that repeated test execution in the same as well as in distinct simulators
can yield different outcomes, which can be attributed to sources of flakiness
or different implementations of the physics, among other factors.

In this paper, we present MultiSim, a novel approach to multi-simulation
ADAS testing based on a search-based testing approach that leverages an en-
semble of simulators to identify failure-inducing, simulator-agnostic test sce-
narios. During the search, each scenario is evaluated jointly on multiple simula-
tors. Scenarios that produce consistent results across simulators are prioritized
for further exploration, while those that fail on only a subset of simulators are
given less priority, as they may reflect simulator-specific issues rather than
generalizable failures.

Our empirical study, which involves testing three lane-keeping ADAS with
increasing complexity on different pairs of three widely used simulators, demon-
strates that MultiSim outperforms single-simulator testing by achieving, on
average, a higher rate of simulator-agnostic failures by 66%. Compared to a
state-of-the-art multi-simulator approach that combines the outcome of inde-
pendent test generation campaigns obtained in different simulators, MultiSim
identifies on average up to 3.4x more simulator-agnostic failing tests and
higher failure rates.

To avoid the costly execution of test inputs on which simulators disagree,
we propose an enhancement of MultiSim that leverages surrogate models to

1 Technical University of Munich, Munich, Germany. Email: lev.sorokin@tum.de, an-
drea.stocco@tum.de

2 University of St. Gallen and Universita della Svizzera italiana, St. Gallen / Lugano,
Switzerland. Email: matteo.biagiola@unisg,usi.ch

3 fortiss GmbH, Munich, Germany. Email: stocco@fortiss.org

https://orcid.org/0009-0003-1162-6252
https://orcid.org/0000-0002-7825-3409
https://orcid.org/0000-0001-8956-3894

predict simulator disagreements and bypass test executions. Our results show
that utilizing a surrogate model during the search does not only retain the
average number of valid failures but also improves its efficiency in finding
the first valid failure. These findings indicate that combining an ensemble of
simulators during the search is a promising approach for the automated cross-
replication in ADAS testing.

Keywords. Search-based software testing, scenario-based testing, autonomous
driving, testing deep learning systems, simulator-agnostic

1 Introduction

Advanced Driver Assistance Systems (ADAS) rely on perception systems like
cameras and LiDAR, powered by deep neural networks (DNNs), for real-time
tasks such as lane-keeping, object detection and image segmentation. While
effective, these systems must operate reliably across diverse environments, yet
training data cannot cover all possible scenarios [59,87]. Consequently, ADAS
may encounter unseen inputs post-deployment, making DNNs highly sensitive
to variations in road shapes, lighting, and noise. These discrepancies can lead
to ADAS prediction errors, misclassifications, and inaccurate segmentations,
which impact vehicle decision-making and compromise safety [24}/50].

Validating the safety of ADAS through virtual testing with scenario-based
simulation is the default option for companies [24}87]. Simulators enable de-
velopers to quickly prototype ADAS and evaluate them across a wide range of
challenging scenarios. In the literature, researchers have proposed automated
testing techniques to expose failing conditions and corner cases |11/33,/47,/63}/64,
70,,76,/98], using various open-source ADAS simulators, such as CARLA [30],
BeamNG [12], and Udacity [94], or commercial close-source solutions, such as
Siemens PreScan (78], ESI Pro-SiVIC [36], and PTV VISSIM [95].

However, the result of a test execution through a simulation environment
only approximates the actual test outcome in the real world. Indeed, multiple
studies have shown that simulation-based testing might produce inconsistent
results both within simulator, i.e., when the same test scenario is executed mul-
tiple times on the same simulator [5]/18], and across simulators [16}20]. This
phenomenon may be due to test flakiness, and it is characterized by multiple
runs of the same test exhibiting non-deterministic behavior (i.e., tests pass or
fail non-deterministically). Test flakiness has been studied extensively in the
software testing literature |73|, including ADAS testing. A study by Amini
et al. [5] shows that test flakiness is quite common also for simulation-based
testing of ADAS, potentially leading to a distrust in virtual testing, as also
reported in the field of robotic simulation [3]. Possible causes of flakiness stem
from uncertainties in the simulation environment to timing and synchroniza-
tion in the interaction between the ADAS and the simulator [5]. In general,
such sources of non-determinism are unknown and difficult to control, mak-
ing the results of automated testing techniques, i.e., the failure-inducing test
cases, unreliable.

Despite the significance of the problem, very few solutions have been pro-
posed to mitigate test flakiness in simulation-based testing (beyond discarding
flaky tests [18]). Amini et al. [5] used machine-learning classifiers to predict
the flakiness of an ADAS test using few test runs. Another way to mitigate
test flakiness is by combining the outcome of multiple simulators when per-
forming a testing campaign. In particular, Biagiola et al. [16], proposed a
multi-simulator approach to approximate the outcome of a test case on a digi-
tal twin. Their framework named digital siblings (DSS henceforth) executes two
independent test generation algorithms on two simulators, generating two fea-
ture maps that characterize test cases executed on such simulators. Through
the operations of migration and merge, the framework outputs a combined
feature map that prioritizes agreements across simulators, i.e., when the same
test case has the same outcome on different simulators. The intuition is that
we can expect test cases where the two simulators agree to be more reliable,
and hence less flaky, than those where the two simulators disagree. Although
their results show that the combination of the two simulators is able to predict
the failures of the digital twin better than each individual one, the drawback of
the digital siblings framework is that test case execution outcomes on the two
simulators are merged as a post-processing step. This way, the test generation
algorithm runs the risk of evolving flaky tests as each test is evaluated only
on a single simulator during the search, making the whole process inefficient.

In this paper we present a novel approach named MultiSim, which incorpo-
rates multiple simulators as an ensemble directly as part of the test generation
process. In particular, we cast the testing problem as a multi-objective opti-
mization problem, where we define, for each simulator, a fitness function that
evaluates the quality of the ADAS under test. In this way, we treat simulator
disagreement as a first-class citizen during the optimization process. By min-
imizing the fitness values obtained from executing each test case in multiple
simulators and their distance, we direct the search towards failure-inducing
tests that are simulator-agnostic, i.e, reliable, tests since the respective out-
comes on the two simulators are close to each other.

We evaluate our MultiSim approach with three lane-keeping ADAS based
on convolutional DNNs [19], transformers [11] and end-to-end trajectory/con-
trol prediction [97], on three different and widely used simulators, namely
Udacity, Donkey and BeamNG |[5113342}(76,86}(102]. In particular, we compare
MultiSim with a single simulator approach, as well as with the DSS framework
in terms of effectiveness, i.e., the number of simulator-agnostic failures each
approach triggers given a fixed search budget, and efficiency, i.e., how quickly
each approach generates the first simulator-agnostic failure.

Our results show that MultiSim identifies on average 70% valid failures
across all simulator configurations, outperforming DSS with 65% and single
simulator-based testing with 47%. Regarding the rate of simulator-agnostic
failures, BD (i.e., BeamNG combined with Donkey) outperforms both single-
simulator testing and DSS-based testing, except for DSS-BD, where it has a
similar validity rate but identifies a significantly higher number of failures.
Using an ensemble of simulators during search-based testing demonstrates

efficiency comparable to testing with only one simulator. Compared to DSS, in
the BD configuration, it achieves significantly better results, while in another
comparison, i.e., BU (BeamNG combined with Udacity) is outperformed by
DSS-BU. Finally, integrating a Random Forest classifier to predict simulator-
related disagreements into MultiSim improves the effectiveness, leading to
a higher median of simulator-agnostic failures, as well as a lower standard
deviation, compared to running the search without the classifier. Similarly,
in terms of efficiency, we can identify a smaller median and variation in the
search budget required for finding the first valid failure.
Our paper makes the following contributions:

— Approach. A novel search-based test generation approach called MultiSim
that integrates multiple simulators in an ensemble to identify simulator-
agnostic failures for ADAS.

— Evaluation. An extensive empirical study using three simulators and
three different approaches showing that MultiSim is effective at generating
simulator-agnostic failures for three state-of-the-art lane-keeping ADAS.
To encourage open research, our test generation approach and experimen-
tal data are available [91].

The outline of the paper is as follows: In Section 2, we present the pre-
liminaries. In Section 3, we introduce the problem statement and the notion
of simulator-agnostic failures. In Section 4, we present our test generation ap-
proach, followed by our validation strategy. In Section 5, we evaluate our test-
ing approach in comparison with single-simulator based testing and a default
multi-simulator based testing approach. In Section 6, we discuss the insights
and clarifications regarding our approach. In Section 7, we outline the most
important threats regarding the validity of our results. In Section 8, we present
related work. We finally conclude in Section 9, with a summary and insights
into future work.

2 Background
2.1 Simulation-based ADAS Testing

We consider Level 2 ADAS, as classified by the National Highway Traffic
Safety Administration (NHTSA) [92], which perform vision-based perception
tasks using data gathered by camera sensors of a vehicle. Despite the adop-
tion of Level 2 ADAS in many commercial vehicles, their reliability remains
a concern, as evidenced by numerous recent crash reports [93] and large scale
real-world validation experiments |71]. Although Levels 3 and 4 ADAS have
been proposed [10], their real-world deployment remains highly constrained.
Consequently, addressing the limitations of Level 2 systems is crucial for ad-
vancing to higher levels of autonomy. Particularly, in this paper we focus on
ADAS that learn the lane-keeping functionality, a critical component for the
safe operation of self-driving vehicles, from human-labeled driving data.

In the early stages of development, ADAS undergo model-level testing [75].
This involves evaluating performance metrics such as accuracy, mean squared
error (MSE), and mean absolute error (MAE) on an unseen test set, i.e., a
dataset not used during training. This form of testing is analogous to unit
testing in traditional software development, helping test engineers identify
inadequately trained models [38].

Following model-level testing, ADAS are subjected to system-level test-
ing [27,137.[84]. This phase assesses the impact on the entire decision-making
process of an ADAS, ensuring that its predictions align with expected vehicle
behavior. A typical system-level test, i.e., test scenario, involves generating a
one-lane or two-lane road, each defined by a starting and an endpoint, with
varying length, curvature, and number of turns [4]. While driving, the ADAS
processes input images and generates steering commands. System failures oc-
cur when the vehicle deviates from system requirements, such as violating
safety constraints, e.g., driving off the road or causing harm to other vehicles,
the environment, or pedestrians [86]. These failures often stem from errors in
the perception component [50,51]. The testing objective is therefore to identify
road topologies where the ADAS fails to maintain the vehicle in lane, either
by driving off-road (for one-lane scenarios) or crossing the opposite lane (for
two-lane scenarios).

System-level ADAS testing is primarily conducted in simulation environ-
ments using software-in-the-loop testing to ensure safety and minimize costs.
This approach enables safe measurement, analysis, characterization, and re-
production of driving failures. Well-established ADAS simulation platforms in-
clude industrial platforms such as Siemens PreScan [78] or ESI Pro-SiVIC [36],
whereas open-source solutions widely adopted by researchers include Udac-
ity [94], Donkey Car’s sdsandbox [29] (hereafter referred to as Donkey, for
simplicity), and BeamNG [12].

2.2 Search-based Software Testing

Our framework uses the concepts behind search-based testing (SBST), a test-
ing technique where the testing problem is modeled as an optimization problem
to be solved with metaheuristic optimization techniques [65]. SBST is defined
as follows:

Definition 1 A search-based testing problem P is defined as a tuple P =
(T,D, F,0), where

— T is the system under test.

— D C R" is the search domain, where n is the dimension of the search space.
The vector x = (21, ...,x,) € D is called test input.

— F is the vector-valued fitness function defined as F' : D — R™ F(x) =
(f1(X)y ..., fm(x)), where f; is a scalar fitness function (or fitness function,
for short) that assigns a quantitative value to each test input and R™ is
the objective space, and m corresponds to the number of fitness functions.

A fitness function evaluates how fit a test input is, assigning a fitness value
to it.

— O is the oracle function, O : R™ — {0,1}, which evaluates, given the
objective space of the fitness functions, whether a test passes or fails. A
test that fails is called failure-inducing.

For instance, a search based testing problem for the ADAS system from
is defined as follows: roads represent test inputs passed to the
ADAS and the execution of the ADAS on a road is performed in a simulator
yielding location traces. Location traces are used by the fitness function to
calculate to each executed test input the maximal distance of the vehicle to the
center line. The oracle function specifies that an execution is failing when the
vehicle drives off the lane when the fitness function value is above a predefined
threshold.

In our approach, solving such a search-based testing problem requires the
definition of multiple fitness functions. We use the concepts of multi-objective
optimization to solve the problem.

Definition 2 In search-based testing, a multi-objective optimization (MOO)
problem is defined as:

minF(X) = (fl(x)a"'7fm(x))

xeX

where f; is a scalar fitness function and X C D is called the feasible solution
set. In general, a set of equality and inequality constraints is defined, which
have to be satisfied by solutions in X. A solution x with F(x) = (v1,...,0,,) is

said to dominate another solution x’ with F(x') = (vi,...,v),) < Fu;.(v; <

rYm
v;) AVvj.(v; < 0}), i.e., x is superior to x’ in at least one fitness value and at
least as good in all other fitness values. Consequently, a solution x is called
Pareto optimal if no solution exists that dominates it. The set of all Pareto

optimal solutions is called Pareto set PS.

3 Problem Definition
3.1 Non-determinism in Virtual Testing

Recent studies have shown that there are several simulation platforms avail-
able for system-level testing, both commercial and open-source [49,/57], with
no consolidated omni-comprehensive solution. As multiple simulation plat-
forms exist, researchers have started performing cross-replication studies of
ADAS in different simulation platforms [5,|20], to confirm the testing results
obtained on a driving simulator on another, possibly independent, simulator.
Ideally, when we execute the test input on the same ADAS in the different
simulators, the pass/fail verdict should not change, providing trustworthiness
to simulation-based testing. However, the results of these studies highlight
the negative aspects of simulation-based testing for ADAS. In most cases, the

0 0 0
-10 -10 -10
-20 -20 -20
£ £ £
>-30 >-30 >-30
-40 -40 -40
=50 =50 =50
-40 -20 0 -40 -20 0 -40 -20 0
x [m] x [m] x [m]
(a) Udacity. (b) Donkey. (c) BeamNG.

(d) Udacity. (e) Donkey. (f) BeamNG.

Fig. 1: Difference in executing a lane-keeping ADAS on the same road in three
different simulators, along with their rendering. In Udacity the trajectory of
the vehicle (visualized in green, starting with a triangle) is within the lane’s
bounds while in Donkey and BeamNG the vehicle is departing off lane.

results obtained in one simulator (e.g., the failure conditions) cannot be re-
produced by another simulator . These discrepancies can lead to a
distrust in simulation-based testing, as reported by recent surveys .

An example is shown in [Figure 1| in which we replicated the execution of
a logical test scenario for a lane-keeping ADAS model on three simulators,
namely Udacity [94], Donkey and BeamNG [12]. The logical test scenario
includes a two-lane 70 meters long road with three curves, one on the right
with curvature 0.24, followed by one on the left with curvature 0.22, and one
on the right with curvature 0.08. The objective for the ADAS model is to
keep the car within the right lane from the start of the road until the end.
The figure depicts only the right lane and shows that the driving behavior of
the lane-keeping ADAS model (shown by the green line trajectory) is quite
different across simulators. While the car reaches its destination in all three
examples, it yields different simulation traces, specifically failing in the Donkey
and BeamNG simulators but not in Udacity.

Potential root causes are related to flakiness in the simulation environ-
ments, bugs in the simulator, or synchronization issues in the communica-
tion between the simulator and the testing framework [5}[20L[49,[57]. As the
simulation platform is used as-is, as a runtime testbed, it is usually not pos-
sible for developers to debug such issues, even less try to fix the simulator.
This motivates the development of approaches to increase the reliability of
simulation-based testing of ADAS, without requiring access to the simulation
environments or its code, which is treated it as a black-box.

3.2 Simulator-agnostic Failures

In this paper, we focus on identifying test scenarios where failures are not
caused by the limitations of the simulation environment but rather by defi-
ciencies in the system under test. To achieve this, we introduce the concept of
simulator-agnostic failures.

Let us consider an ADAS A and a failing test input x that can be executed
in a simulation environment S. We define x as simulator-agnostic failure-
inducing test input if A also fails on x when executed in a different simulator
S’ with equivalent capabilities. In other words, the execution outcome of x
should not depend on compatibility issues between A and the simulators, i.e.,
S and &’. This concept can naturally be extended to multiple simulators. In
this study, we consider three simulation environments and assume that if a
failure is consistently observed across all three, it indicates a true defect in the
ADAS, as it is independent of any single simulator. Conversely, failures that
occur only in specific simulators are regarded as simulator-dependent.

Following the established terminology from the deep learning testing do-
main [77], we refer to simulator-agnostic failures as valid failures, while we refer
to simulator-dependent failures as invalid failures throughout this paper.

4 Approach
4.1 Ensemble-based Test Case Generation

Our proposed MultiSim approach incorporates the evaluation capabilities of
multiple simulators to identify simulator-agnostic failures. The key idea is to
apply ensemble learning within search-based ADAS testing, harnessing the
strengths and compatibilities of individual simulators within a unified pro-
cessing unit. We reformulated the multi-objective optimization problem to
incorporate simulator-specific agreement and disagreement objectives, allow-
ing the search to explicitly reason about the consistency of failures across
heterogeneous simulators. Instead of evaluating a test input in one simulator,
MultiSim combines the test input evaluation results of multiple simulators in
one evaluation vector. Our approach aims to obtain more reliable, and hence
more valid, failure-inducing test inputs than a single-simulator approach that
only evaluates a test input in a single simulator.

details the steps of the MultiSim approach. The first step is to
initialize the system under test T', the set of all failure-inducing test inputs C
as well as the archive A (Line 1). Then, a random set of test inputs is sampled
within the defined search domain (Line 2, Py being the initial population).
In the next step, test inputs are evaluated based on the MultiSim specific
evaluation function (see . The main loop of the algorithm begins
by applying default genetic operators such as selection, crossover and mutation
(Lines 5-6). After the operators have been applied, a set of candidate test
inputs to form the next population is defined. In particular, when all newly

Algorithm 1: Test case generation in MultiSim.

Input : (7,D,F,O): An SBST Problem.
S ={51,...,5;}: A set of simulators, with j > 1.
Output: C: Set of all failure-inducing test inputs.

1 INIT(T); C+ 0; A<+ 0

2 Py < RANDOMSAMPLING(T, D)

s Pp < EVALUATEMSIM(Py, S, F, T, A) /* */
4 while budgetAvailable do

5 Par <~ TOURNAMENTSELECTION(F;)

6 P; < CROSSOVERMUTATE(Par)

7 P; < EVALUATEMSIM(P;, S, F, T, A) /*[Algorithm 3 */
8 for x € P; do

) | TTu{x} /* Store all evaluated tests. */
10 P; < SURVIVAL(P;, O)
11 P; + REPOPULATE(FP;, D, T)

12 for x € T do

18 allFail + N,_, O(fx(x))
14 if allFail then

15 | C+«Ccu{x}

16 return C

generated test inputs have been evaluated in the MultiSim specific evaluation
function (Line 3), the survival operator is applied to rank the test inputs based
on dominance (Line 10). Then, the re-population operator is used to replace a
portion of dominated tests of each population by randomly generated ones to
diversify the search (Line 11). When the search budget is exhausted, each test
input is marked as failing, when all simulators agree on the failure of such test
(Line 12-15). Practically, the oracle function O returns 1 for each simulator-
specific fitness function fj(x), where k : (4,...,7) < m indicates the fitness
function for each specific simulator (Line 13).

4.1.1 Multi-Simulator Evaluation

As detailed in in MultiSim the evaluation of a test input is
defined as the fitness vector:

F(x) = (f1(x), -+, £i(), fa(x), fa(x, A)) (1)
where (1) fi(x) = v1,..., f;(x) = v, represent the fitness functions for the
execution of x in simulator Sy, ..., S; (Lines 3-4), (2) fa(x) = vq is defined as
the average distance between the fitness values fi(x),..., f;(x) (Line 5), and

(3) fa(x,A) = v, is the distance of the test input x to previously found test
inputs in the archive A (Line 6).

While optimizing the functions fi(x),..., f;j(x) prioritizes failure-revealing
test inputs, minimizing f4(x) drives the search towards test inputs on which
all simulators agree. The fitness function f,(x, A) aims to diversify the search

Algorithm 2: Test input evaluation in MultiSim.

Input : T : System under test.
S ={51,...,5;}: A set of simulators, j > 1.
§: distance threshold
P: Not evaluated test inputs.
A: Archive of test inputs.
Output: Q: Evaluated test inputs.

1 Q<+ 0
2 for x € P; do
for S € S do
L V), 4 SIMULATE(x, T, Sk) /* Evaluate fitness for each simulator. */
ji—1 J
> 2 lvk—wil
5 Vg % /* Compute average distance between fitness values.
2
*/
6 Vq < GETDISTANCETOARCHIVE(x, A) /* Compute distance w.r.t. archived test
nputs. */
x.F « (v1,...,vj,v4,va) /* Assign fitness values to test input. */
8 ADDTOARCHIVE(X, A, §)
o | Q+QuU{z}

10 return Q

by calculating the distance of a test input to previously generated tests in
the archive A [76]. As distance metric we use the Euclidean distance between
normalized test inputs. In particular, we apply Min-Max normalization, scaling
values in the test input representation to a range from 0 to 1. By maximizing
fa(x, A) the goal is to identify more diverse test cases. After the evaluation
of a test input is completed, it is added to the archive in case its distance to
the closest test in the archive exceeds a predefined threshold 0 (the function
ADDTOARCHIVE in Line 8, takes care of comparing the current test input x
with those in the archive A).

4.1.2 Test Representation

We adopt a model-based representation of test inputs. In line with previ-
ous studies [4,|76], each road scenario is defined through a sequence of con-
trol points. These points are interpolated using Catmull-Rom splines to gen-
erate smooth and continuous trajectories. To be able to generate diverse
and challenging roads we parameterize the road definition using the vector
x = (a1,...,Qn,l1,...,1,), where a; € [—180;180) denotes the clockwise an-
gle between the i-th segment and the horizontal axis, while I; € RT represents
the length of the i-th segment between the control points ¢;41 and ¢;49. For
instance, the road in has 7 control points, 5 segments and is repre-
sented by the vector (—90,—110, 173, —120, —140, 10, 20, 18,17, 15). Note that
this choice of input representation is not exclusive of our approach and equiv-
alent parameterized representations can be defined, following similar princi-
ples [25].

10

* * * * BN
* o * x * *
..... * *
X . * %
i
* * * * Mutation of o
Crossover last segment
* *
* after 3.
™ segment * *
* *
* * * A
P1 P2 o1 02 R1 R2
(a) Crossover. (b) Mutation.

Fig. 2: Tlustration of crossover (a) and mutation (b) of roads in MultiSim
including control points which are placed within the road (visualized as stars).
For sake of simplicity only angles are modified. In Figure a) tails of roads after
the third segment are exchanged. In Figure b) the angle of the last segment is
increased by 10 degrees.

4.1.8 Mutation/Crossover

Our implementation of the crossover operator on roads follows that of existing
studies [40L/66]. Specifically, we use a one-point crossover operator, where for
two given roads pi, p2 (i.e., the parents), we first randomly select an index,
followed by exchanging the tail of the road ps, including segments with a
lower index, with the tail of road pi, including segments with a higher index.
illustrates the crossover of the road p; with the road ps resulting in
the roads o; and o (i.e., the offsprings), by exchanging the tails of the roads
after the third segment.

The mutation of a road x is performed by randomly selecting a segment,
followed by increasing or decreasing the angle, or the segment length, by a
given amount. A mutated road can be invalid because of intersecting segments
being placed out of the given map, or when violating a threshold which defines
the maximum angle between segments. If a road is invalid, we randomly gen-
erate a new road by applying the same operator as used to generate the initial
population for MultiSim. As an example, shows the mutation of a
road r; by increasing the angle of the last segment from 90° to 100°.

4.1.4 Fitness Function

For the evaluation of a single test input within one simulator, we define a
fitness function that captures the system-level behavior of the SUT. In the
case of lane-keeping ADAS, the chosen fitness function is the cross-track er-
ror, denoted as fx7g. This function computes the maximum lateral deviation
between the vehicle’s center and the lane center over the entire duration of
the test execution, providing a direct quantitative measure of lane-keeping

11

0.0
-0.5
-1.0

15

-2.0
-
=25
© -3.0
“
=]

2

turn_count
Fitness

ONTOVOFMANTOONNTO® N < O 0

§9222gHnddgNNNRgmMmmm

ocooo cooo ocooo ococoo
curvature

Fig. 3: Example of a feature map with two features, namely number of turns
(i.e., turn_count) and curvature. The color of a cell is defined based on the
worst XTE value of test inputs stored in a cell (colorbar on the right-hand side
of the map). A cell is green when the XTFE value is 0, red for the maximum,
in absolute value, XTE value of -3. A cell is white if there is no test input
that covers it. The fitness is negative, because the fitness function is to be
minimized. In total 412 tests are stored in the feature map, which has 13
failing-cells and 35 non-failing cells.

performance. We selected this function because it has been shown to be an
effective fitness function for triggering failure-inducing test inputs .
As oracle function we use O = fx7g > d which evaluates a scenario execution
as a failure when the maximal XTFE value exceeds d.

4.2 Test Validation

This step aims to validate that the identified failing tests are not failing due
to simulator-specific behaviors. To characterize the ADAS unique failures, we
adopt the feature maps by Zohdinasab et al. .

Feature Maps. In the first step of our validation approach, we map test inputs
generated by MultiSim into a feature space [68][102], as it allows to represent
important characteristics of test inputs in a human-interpretable way. In par-
ticular, with a feature space we can discretize the multi-dimensional search
space, which is the space of roads (see , for our lane-keeping
ADAS, and consider diverse test cases for the evaluation of our approach. Our
feature space is characterized by two static road attributes, i.e., num of turns
and curvature, i.e., the reciprocal of the minimal value of the radius over all

12

Select tests with ratio,
higher equal threshold,
here: 2 100%

Re-execution in Failure ratio per test
simulators n times

X1 X9 X3
Simulator 1 —> [100%, 40%, 100%)]

Valid Test(s)
eg. X3

Failing Tests
€.g., X1,X2,X3

X1 X2 X3
Simulator 2 —> [80%, 60%, 100%)

Fig. 4: Validation of failure-inducing test inputs, i.e., X1, X2, Xx3. Each test is
re-executed in multiple simulators, i.e., two in this case S; and S;, and the
failure rates for each test are computed. Then the failure rates on S; and Ss are
compared, and the test inputs are filtered according to a failure rate threshold.
(in this case 100%). In this example, the only simulator-agnostic/valid failure-
inducing test input is x3.

circles that can be placed through three consecutive control points of the road.
Similarly to the fitness function, such choices of features were also found to be
effective at characterizing the search space of road generators [102].

An example of a feature map is shown in A cell with the coordi-
nates (z,y) contains test inputs whose curvature is in the range [z —0.02, =+
0.02], where 0.02 is the granularity of the map, and the number of turns is y.
For instance, the road in is to be placed in the cell (0.24,3) as it
has a maximum of curvature 0.23 and three turns. A cell of a feature map is
colored based on the road with the best fitness placed in the cells, which is
ranging from green (worst, fxrg = 0) to red (best, fxrr = —3) fitness value.
We deem a cell as failing cell, when at least one test in the cell is failing w.r.t.
the given oracle O. For instance, the cell (0.32,3) is a failing cell, while the
cell at the position (0.04,2) is non-failing cell.

Re-execution. In the second step, we select failing cells from the feature
map, extract a portion of failing and duplicate-free test inputs per cell, and
re-execute each of these selected failure-inducing test inputs multiple times, to
account for the flakiness of each specific simulation environment. Specifically,
we execute such test inputs on simulators that have been not used by MultiSim
during its search process, to confirm whether the failure-inducing test inputs
generated by MultiSim are simulator-agnostic or not. For the validation we
consider the notion of hard flakiness as defined by Amini et al. [5], where a
test input is considered hard flaky when re-executing the test yields differ-
ent pass or fail verdicts. illustrates the validation approach, when
employing two simulators for the validation. First, each failure-inducing test
input is executed on each simulator for n times. For each execution the test
input is evaluated based on the fitness and oracle functions (the same used
during the test case generation process of MultiSim). Afterwards, a failure rate
is computed. Finally, the failure rates are compared between the simulators

13

for each test input to decide if the test is failing according to a user-defined
threshold. For instance, in we have selected a 100% threshold, i.e., a
failure-inducing test input is considered as simulator-agnostic if for every re-
execution and for every simulator the test fails. In the example in [Figure 4 only
the test x3 is a simulator-agnostic/valid failure-inducing test input, as both
simulators, i.e., simulator S; and Ss, report a 100% failure rate. For x; a re-
execution in S7 yields a failure rate below 100%. Similarly, for x5 re-executions
in both simulators S; and Ss, achieve failure rates below the threshold.

5 Empirical Study

In this section, we present the evaluation of our approach for identifying
simulator-agnostic failures for a lane-keeping ADAS case study. We describe
the research questions, our evaluation technique, evaluation experiments, im-
plementation and results.

5.1 Research Questions

We consider the following research questions:
RQ; (effectiveness). How effective is MultiSim in generating simulator-
agnostic failure-inducing test inputs compared to single-simulator testing and
a state-of-the-art approach?
The first question evaluates the effectiveness of MultiSim in finding simulator-

agnostic failures. After the test case generation phase, we validate a portion of
failure-inducing test scenarios based on the approach described in

RQ. (efficiency). How efficient is MultiSim in generating simulator-agnostic
failures compared to single-simulator testing and a state-of-the-art approach?

The second research question evaluates whether MultiSim is efficient in
identifying failures. Test efficiency is particularly relevant when the testing
budget is limited [13].

RQs (prediction). To what extent can machine learning predictors increase
the effectiveness and the efficiency of MultiSim in finding simulator-agnostic
failures?

Since simulator-specific failures, i.e., disagreements between simulators,
might impact the identification of simulator-agnostic failures during the search,
we use machine learning (ML) classifiers to predict whether a test input is lead-
ing to a disagreement between pass/fail verdicts on different simulators. We
investigate whether this approach can be considered as a calibration technique
to fine-tune the original MultiSim approach to mitigate disagreements during
the search caused by simulator-specific failures.

14

5.2 Baselines

We compare the performance of MultiSim to a search-based testing approach
which only employs one simulator (SingleSim) during the search. We also
compare with the recently proposed DSS approach [16], which employs multiple
simulators by re-executing test inputs generated for one simulator in a different
simulator and vice-versa. DSS is, to the best of our knowledge, the only existing
approach in the literature that employs multiple simulators for automated test
case generation in the ADAS domain.

5.3 Procedure and Metrics

To answer all three research questions for our experiment, we first validate
the failures as described in Specifically, we assign all tests to
cells of the feature map, by extracting curvature and number of turns of the
corresponding roads, using the same feature space granularity as proposed by
Biagiola et al. [16]. We randomly select three failure-inducing test inputs from
each failing cell. Preliminary experiments with a higher number of selected
tests per failing cell, i.e., five, did not affect the results significantly.

To answer RQ, to validate failures found by MultiSim, we use the third
simulator that was not used during the search. We then re-execute each test five
times to account for the flakiness of the simulation environment. As failure rate
threshold we use 100%, i.e., a failure-inducing test input found by MultiSim
is only valid if it always fails in the third validation simulator.

To validate failures found by SingleSim, we use the same validation ap-
proach, but we use the two simulators that are not used during the search.
For DSS we also use only one simulator for validation, as two of the three sim-
ulators available for our study are already used in the search. Based on the
number of selected failures and the validation results, we assess the perfor-
mance of MultiSim, SingleSim and DSS using two metrics: (1) n-valid, which
is the number of valid failures, and (2) valid_rate, which is defined as:

valid failures

lid_rate =
valid-rate # failures selected for validation

To answer RQa2, after validating all the selected failures, we identify at
which time during the search each valid failure is encountered. Thus, we define
efficiency as the proportion of the search budget required to identify the first
valid failure. It measures how early in the search process the approach discovers
a fault-revealing test relative to the total number of generations or evaluations.
This metric reflects the practical usefulness of the search procedure in time-
and resource-constrained testing contexts, where faster identification of valid
failures is beneficial.

For DSS, as it consists of two independent search executions and two mi-
gration steps, we first identify in which simulation run the failure is detected.

15

Based on the order of the run executions and the evaluation number we com-
pute the total run time to find the failure. That is, when a failure is detected
in simulator DS1 with in total A test evaluations at the evaluation number a,
while simulator DS2 performed in total B test evaluations, we assign to the
test the final evaluation count as A+ B +a. In case the valid failure is detected
during the execution of B at evaluation number b, we assign to the test the
evaluation count A+ B+ A+ b, respectively. We evaluate efficiency using this
methodology because DSS consists of two independent testing experiments,
and unlike single-simulator-based testing, it is not possible to incrementally
order the test cases generated by DSS for a single run.

To answer RQ3, we select the configuration of MultiSim with the best re-
sults in terms of validity rate and number of failures, and collect test cases
from past executions where the simulators both agree or disagree. In addition,
we execute a modified version of MultiSim with five different seeds where the
fitness function prioritizes disagreements. Specifically, we reuse
but maximize f;(x), i.e., the distance between maximum XTE evaluations. We
pass the roads as inputs and the labels representing an agreement or disagree-
ment to five different and widely used ML classification models for training.
Specifically, we use Decision Trees [22|, Random Forests [21], Support Vector
Machines [28], Logistic Regression [23] and Stochastic Gradient Boosting [31].
For the training of the classification models we use default hyperparameter
configurations available in the Sklearn library.

We then evaluate the ML models based on F-1-score and AUC-score. The
best performing ML model on all metrics is then integrated into MultiSim and
executed with the same search configuration as MultiSim.

In terms of metrics, we measure the number of valid failures (n-valid) and
validity rate (valid_rate) as in RQq, and compare MultiSim with and without
the integration of a disagreement predictor. We also measure the first valid
failure as the efficiency metric for both configurations.

5.4 Experimental Setup
5.4.1 Simulation Environments

We have selected the following simulators for our study: BeamNG, Udacity
and Donkey Car. We have chosen such simulators for the following reasons:
1) they seamlessly integrate with our lane-keeping ADAS case study, as the
simulation environment, i.e., asphalt road on green grass and sunny weather,
has been aligned [16] to be able to replicate the same simulation conditions
across different simulators (see |[Figure 1)); 2) they are complementary as they
differ in terms of the physics implementation or the rendering engine; 3) they
are open-source or available under permissive academic-licenses (BeamNG). A
brief description of the simulators provided is as follows:

— BeamNG is based on Unreal engine, implements soft-body physics, serves
as the simulator in the SBFT competition [1532./58], and it has been used

16

extensively in the literature to benchmark testing approaches [12,40, 76,
102].

— The Udacity simulator is a cross-platform and rigid-body physics developed
with Unity3D [94]. While originally developed for educational purposes, it
has been widely applied for ADAS testing [111[16L35|41}[42L[82L[85].

— The Donkey Car simulator (Donkey, hereafter) is part of the Donkey Car
framework that is used to build and test small-scale self-driving physical
vehicles [29]. Similarly to Udacity, it implements rigid-body physics, and is
developed with Unity 3D. The simulator is actively used in the literature
for the validation of testing approaches [16}/52}53}/67}83),84].

Unlike previous work |16], we make no assumptions about simulator fidelity
and treat all simulators as black-box environments. In our experiments, we ex-
ecute MultiSim in three different configurations: in the configuration BD we
use BeamNG and Donkey as simulator ensemble, in the configuration BU we
use BeamNG and Udacity, and lastly in the configuration UD we use Udacity
and Donkey. We also evaluate DSS in such configurations; in the tables and
figures, we prefix such configurations with DSS- (e.g., DSS-BU indicates the
configuration BU with the DSS approach, while BU indicates the same config-
uration with the MultiSim approach). It is noteworthy that in the original DSS
paper [16] only the configuration DSS-BU was proposed and evaluated. The
extension of the approach to other simulators constitutes a novel experimental
contribution of our work.

5.4.2 Study Subjects

To assess the generality and robustness of our approach, we evaluate it on
three lane-keeping ADAS that differ in their design paradigms, from convolu-
tional models, to transformer-based architectures leveraging global attention,
and hybrid vision—trajectory policies that integrate planning information, de-
scribed next:

— CNN-based ADAS (DAVE-2): DAVE-2 is a convolutional neural net-
work developed for multi-output regression tasks based on imitation learn-
ing [19]. The model architecture includes three convolutional layers for
feature extraction, followed by five fully connected layers. The model takes
as input an image representing a road scene, and it is trained to predict
vehicle’s actuators commands. We use a pre-trained DAVE-2 model from
previous work [16] that has been trained on more than 60,000 images and
steering commands automatically by a PID-controlled autopilot driving the
car on roads with different road complexity in the three simulators used in
this work. DAVE-2 has been extensively used in a variety of ADAS testing
studies [16,/17,/42}/50,/511(83},/89,/99].

— Vision Transformer-based ADAS (ViT): ViT [48] is a DNN based on
the transformer architecture to predict steering commands. While Trans-
formers were originally developed for natural language generation and un-
derstanding, they have since been widely adopted for visual tasks [6], in-

17

cluding lane-keeping, where ViT achieves results competitive with systems
such as DAVE-2 [11]. ViT receives an image of the road scene and predicts
the steering command. Similarly to DAVE-2, we trained the ViT model
using images and steering commands collected by the PID controller driv-
ing the car on 100 tracks for each simulator. Differently from DAVE-2, we
trained ViT using approximately twice as many images (i.e., 120,000).

— Trajectory-Control Policy ADAS (TCP): TCP [97] is a hybrid deep
neural network that combines vision-based perception with trajectory-
conditioned control to predict steering and throttle commands. The model
adopts a two-branch architecture: a CNN-based vision encoder that ex-
tracts high-level spatial features from the input image, and a trajectory
encoder (an MLP) that processes the planned waypoints provided by the
controller. The two representations are fused in a joint latent space and
passed through fully connected layers to produce continuous control out-
puts. Training follows a procedure similar to DAVE-2 and ViT. We col-
lected synchronized driving data from 40 tracks per environment by run-
ning a PID controller to generate reference control signals. Each sample
includes the RGB scene image, the corresponding trajectory points, and
the ground-truth steering and throttle commands. The final dataset com-
prises over 62,000 samples, enabling TCP to learn a context-aware mapping
between the visual scene, planned path, and control actions.

5.4.8 Search Setup

Search Algorithm. For the test case generation with MultiSim we use [AT{
For SingleSim, we employ only one simulator for the evaluation of
the fitness value of a test case. We use the same hyper-parameter configuration
for all algorithms, such as mutation, crossover rate and population size. To se-
lect the archive threshold § that controls which test inputs shall be included
in the archive during search, we follow the guidelines of Riccio et al. [76] and
perform preliminary experiments with different thresholds, ranging from 4 to
6. We assess the diversity of the corresponding feature map after the search,
by identifying how many cells of the map are covered. As the archive threshold
affects the diversity of the search, we use the coverage of the feature map to
identify an appropriate threshold, which is 4.5 in our case. Further, we con-
figure a maximum search budget of six hours for all testing approaches with
DAVE-2 and ViT and 3.5 hours with TCP, which proved sufficient to explore
the search space and obtain an adequate number of failures.

In the DSS approach, we also use for test generation. Test
cases are produced through two independent search executions, each employ-
ing a different simulator, i.e., S; and S;. The test cases generated by S; are
subsequently re-executed in S, and vice-versa. A test case is classified as crit-
ical only if it has been evaluated as critical by both simulators. The results
from both simulators, including all generated and migrated test cases, are then
aggregated to represent the final output.

18

Table 1: Test generation configuration for the approaches under test MultiSim,
SingleSim and DSS. All configurations are equal across methods, beside the
number of fitness functions used for MultiSim.

Parameter SingleSim MultiSim DSS
Population size 20 20 20
Time budget 6 hours 6 hours 6 hours
Mutation rate 1/10 1/10 1/10
Crossover rate 0.6 0.6 0.6
Archive distance 4.5 4.5 4.5
Fitness functions 2 4 2

Search variables 10 10 10

For DSS, we adapted the search budget for the search in two selected sim-
ulators before the test migration: we set it to a quarter of the total search
budget, because first, two independent search runs are executed, and in the
second step results have to be migrated in the respective simulator. The re-
maining parameters are set as for SingleSim and MultiSim. An overview of
the complete configuration for all search methods can be found in
Initial Population. To generate the initial population of roads, we use the
test generator implemented in the study from Riccio et al. |76], where a road
is iteratively generated while persevering the user-defined constraints such as
segment length and maximum angle between consecutive segments. In partic-
ular the algorithm samples segments randomly based on the given maximum
angle and segment length.

Mutation/Crossover. The mutation extent is randomly selected in the range
of [—8, 8], while the segment length is randomly set in the range [10, 20].
Fitness/Oracle Function. As fitness and oracle functions we use the func-
tion fxrg as defined in the motivation example. As oracle function we use
O = fxre > 2.2 that evaluates a scenario execution as a failure when the
vehicle leaves the driving lane (similar to existing case studies [16,[39]). We
stop the simulation on a given road when the current XTE value exceeds a
threshold of 3 mt, or the car reaches the end of the last segment.

5.5 ADAS Preliminary Evaluation

For DAVE-2, we considered an ADAS model from previous work [16], to mit-
igate the threats to validity of training our own model for testing. Vision per-
ception models like DAVE-2, are negatively affected by changes of image dis-
tributions [50H52]. Thus, we assess the driving performance of the ADAS from
previous work in our environment prior to the empirical evaluation. Specifi-
cally, we have defined 16 different types of roads with a road-wise maximum
curvature ranging from 0 to 0.19, while the number of turns was in the range
1 to 4, and the road length was 100 mt. The evaluation allows us, on the one
hand to investigate the flakiness of the simulation environments, and on the

19

other hand to verify whether the testing setup including the hardware and
software configurations is suitable for our study.

For ViT, we selected an existing model architecture [11] and trained the
model on collected images with corresponding PID-based steering commands
by letting the model drive on 100 diverse automatically generated roads.

For TCP, we reused the model architecture from the original work [97],
which includes a ResNet model for visual feature extraction trained in the
CARLA simulator. Because the pre-trained ADAS exhibited consistent fail-
ures across our simulators, we retrained it on a unified dataset collected from
all three environments through PID-controlled driving over 40 randomly gen-
erated tracks, ensuring balanced exposure to the visual and physical character-
istics of each simulator. The collected data was composed of images, steering
commands, vehicle position information, and target waypoint positions. The
TCP model defines a parameter alpha that specifies the weight of the trajectory
branch vs. the predict control branch for combined steering value prediction.
We selected the alpha score, i.e., 0.1, based on preliminary experiments using
validation roads. We executed all ADAS in every simulator on each of the
predefined roads for 10 times to account for the flakiness, and assessed the
quality of the driving using the XTE fitness function.

The results show that all ADAS exhibit low XTE variation (below 0.7m)
across all roads without failing, even on roads with a high number of turns
and high curvature. These observations suggest that while the vehicle’s tra-
jectories and driving styles are not harmonized across simulators, the ADAS’s
driving performance is not impacted by hardware limitations or latencies, as
the variation is minimal and the ADAS does not fail. Thus, we conclude that
the evaluated ADAS under test are sufficiently robust for exhaustive testing.

The results of all preliminary experiments with a detailed description of
the roads used can be found in our replication package [91].

5.6 Implementation

We have implemented MultiSim using the testing framework OpenSBT [80].
OpenSBT is a modular framework that eases the execution, as well as the ex-
tension of SBT components for conducting testing experiments. OpenSBT has
been recently applied for evaluating testing techniques and replication stud-
ies [70//79,81]. To implement our test generator in OpenSBT, we have extended
the problem definition and test execution interfaces by evaluating a test input
in multiple simulators and merging the result using a migration function. Our
implementation allows to use any simulator and evaluation migration strategy,
which is integrated into the framework. The code of MultiSim is available in
our replication package [91].

All experiments have been executed on two computing devices, one PC with
a Ryzen 5 5600X CPU, 32 GB RAM, and a 4090 Ti GPU, and on a Linux
Laptop with an i7 CPU, 32 GB RAM, and a 790 GX GPU. To accelerate
DNN computations we used CUDA 11.8 with cuDNN 8.9. Note that due to

20

simulator-specific requirements a considerable effort was required to identify
a hardware configuration which was able to support our case study. BeamNG
exhibited initially a very low FPS number when running on a device with the
GPU 4090 Ti. In addition, BeamNG does not support the Linux, but runs
on Windows. Udacity, in contrast, could not run on our Windows machine,
so that we had to employ a second computing device, i.e., a Linux laptop, to
perform the experiments for the BU/DSS-BU configuration. Finally, we made
sure that all simulators run at 20 FPS.

Overall, our experiments required approximately 1,395 hours i.e., =~ 58 days
(3 systems x 6/10 repetitions x 9 methods x 3.5/6 hours) for all compared
test generation approaches. Additional more than 25 hours were required to
validate more then 6,000 failing tests.

5.7 Results
5.7.1 Effectiveness (RQ1)

The results for RQ; are shown in The figure depicts the average
number of failures and the number of wvalid failures, identified from 10 runs
for MultiSim, SingleSim and DSS for the system DAVE-2) and from 6 runs
for the systems ViT and TCP. In addition, in each bar plot the validity rate
is annotated in the orange bar.

Across all configurations and systems under test, single-simulator (SingleSim)
approaches generally detect more total failures than multi-simulator ones, but
many of these are invalid. The highest number of valid failures is achieved by
SingleSim on Udacity (U), which is comparable to the best multi-simulator
configuration, BD for DAVE-2. While DSS yields in general fewer total failures
overall, the number of valid failures remains for DAVE-2 similar to MultiSim.
However, for ViT and TCP the number of valid failures is lower for DSS.

Simulator-wise, for DAVE-2 and ViT, BD produces fewer total failures
than its single-simulator counterparts (B and D) but maintains a comparable
number of valid ones. In contrast, BU identifies a similar total number of fail-
ures as B and U but significantly fewer valid cases, a pattern also observed
for DSS-BU and UD. For TCP, the configurations BU and UD reach a sig-
nificantly higher number of valid failures compared the single simulator-based
counterparts, as well as to DSS and the multi-simulator configuration BD.

The results in show that for DAVE-2 and ViT, BD achieves the
highest validity rate across all compared approaches and configurations, (99%
for DAVE-2, 98% for ViT). For DAVE-2, BU has a validity rate of 55%, which
is surpassed by B, being close to that of DSS-BU. For UD the validity rate
is higher compared to those of D, U, and DSS-UD. For TCP, BU has the
highest validity rate (80%), which is higher then the corresponding DSS based
counterpart. Also, we can observe that all SingleSim approaches achieve lower
validity rates than the worst MultiSim combination BD (0.25).

21

- Valid Failures
[Non-Valid Failures

g8 &5 & 8 3

Number of Failures

N
o

104

Method

(a) DAVE-2

[Valid Failures
[Non-Valid Failures

Number of Failures

Method

(b) ViT

601 - Valid Failures

[Non-Valid Failures

Number of Failures

Method

(c) TCP

Fig. 5: Validity rate (valid_rate) and number of valid failures (n_valid) identi-
fied for MultiSim, DSS, and SingleSim averaged for DAVE-2, ViT, and TCP.
The average validity rate is shown in each bar plot.

22

Table 2: Effectiveness: Statistical tests (Wilcoxon and Vargha-Delaney) for the
comparison between MultiSim and SingleSim, as well as between MultiSim
and DSS for the metrics validity rate and number of valid failures. The letter
L represents a large effect size magnitude, M represents a medium effect, and
S represents a small effect (repeated comparisons are excluded (N/A)). Effect
values are annotated with a star if the first approach of the comparison yields
lower values than the compared approach.

U B D BU UD DSS-BD DSS-BU DSS-UD

p (effect) p (effect) p (effect) p (effect) p (effect) p (effect) p (effect) p (effect)
DAVE-2
BD
validrate ~0 (L) ~ 0 (L) ~0(L) 0.01 (L) ~0(L) 0.03(L) 0.03(L) 0.14(-)
nvalid 100 () 085() 083() 0.03(L) 0.77(-) 0.03 (L) 0.03 (L) 0.06 (S)
BU
validrate 0.11 (-) 0.77(-) 043 (-) 0.77(-) 0.02(L) N/A 0.56 (L*) 0.77 (-) (-)
nvalid 0.04 (L) 0.01 (L) N/A 016() 011() 1.00(M) 031 (M) 0.08 ()
UD
valid rate 0.03 (L) 0.92 (-) 0.32 (-) N/A N/A 016 (M) 0.03 (L) 0.14 (-)
nvalid 085 () 077() 068(-) N/A N/A 016(L) 0.00 (M) 044 (9)
ViT
BD
valid_rate 0.03 (L) 0.03 (L) 0.03 (L) 0.03 (L) 0.59 (S) 0.04 (L) 0.03 (L) 0.14 (-)
nvalid 009 (M) 0.03 (L) 0.36 (S) 0.06 (L) 0.31 (M) 0.03 (L) 0.03 (L) 0.06(S)
UD
valid_rate 0.03 (L) 0.03 (L) 0.03 (L) 0.03 (L) N/A 0.16 (M) 0.03 (L) 0.14 (-)
nvalid 022 (M) 0.08 (M) 031 (M) 0.16 (M) N/A 016 (L) 0.09 (M) 0.44 (S)
BU
validrate 084 () 0.03 (S) 0.03 (LX) N/A N/A 100 (M) 031 (M) 006 (-)
nvalid 044 (S) 031 (M) 0.04 (L) N/A N/A 100(M) 030 () 008 ()
TCP
BD
valid_rate 0.04 (L) 0.69 (M) 0.04 (L) 056 (S¥) 0.06 (L*) 0.04 (L) 0.14 (L) 0.08 (L¥)
nvalid 078 (L) 0.59(S) 100 () 0.09 (L¥) 0.06 (L*) 0.07 (L*) 0.04 (L) 0.36 (M*)
UD
valid_rate 0.06 (L*) 0.16 (L¥) 0.06 (L*) 0.09 (L¥) N/A 009 (L) 0.04 (L) 056 (S)
nvalid 0.00 (L¥) 0.06 (L¥) 022 (L*) 1.00() N/A 006 (L) 0.04 (L) 0.06(L¥)
BU
valid rate 0.04 (L) 0.06 (L*) 0.04 (L) N/A N/A 0.04 (L) 0.04 (L) 029 (L¥)
nvalid 0.04 (L) 0.06 (L¥) 0.04 (L) N/A N/A 0.04 (L) 0.04 (L) 0.06(L¥)

We further evaluated the convergence behavior of MultiSim and SingleSim
using the Hypervolume (HV) quality indicator, a widely adopted metric in
search-based software engineering for assessing both the optimality and spread
of Pareto fronts [55,/56]. The HV analysis (available in our replication pack-
age |91]) shows that SingleSim configurations quickly reach stable HV val-
ues, whereas MultiSim achieves comparable values that continue to improve
slightly over time. This suggests that extending the execution time of SingleSim
would likely not yield further gains in effectiveness, while MultiSim maintains
gradual improvements as the search progresses.

23

Statistical Test. To assess whether the differences observed are statistical
significant, we use the non-parametric pairwise Wilcoxon rank sum test (sig-
nificance level 0.05) and the Vargha Delaney’s Ay effect size to compare the
valid_rate and the n_valid values shown in We adopt the following
standard classification for effect size values: an effect size e is small, when 0.56
< e < 0.64 or 0.36 < e < 0.44, it is medium when 0.64 < e < 0.71 or 0.29
< e < 0.36 and large when e > 0.71 or e < 0.29. Otherwise, the effect size is
negligible. The results are shown in

For DAVE-2, the statistical test results show that BD yields significantly
higher validity rates with large effect sizes than SingleSim, MultiSim and
DSS approaches DSS-BU and DSS-UD. As for BU, the validity rate results for
MultiSim are in general not better or worse than SingleSim or MultiSim. For
UD, the results are only significant compared to SingleSim with Udacity (i.e.,
U). Regarding the number of valid failures, we see that BD outperforms DSS-
BD with a medium effect size, while having a similar validity rate. Regarding
BU, SingleSim B and U are significantly better than BU with a large effect
size, what is consistent with the results in Concerning UD, we do
not observe a statistical significant difference w.r.t. SingleSim and DSS.

For ViT, similarly there is a statistically significant difference with large
effect sizes for the valid rate between MultiSim-based and SingleSim based
approaches as well as the corresponding DSS-BD baseline. Also for UD there
is a statistically relevant difference compared to SingleSim approaches which
is inline with the results in For the number of valid failures, we see
statistically significant higher values for BD compared to the single simulator
approach B as well to corresponding DSS counterparts.

For TCP, both BD and BU configurations exhibit significantly higher va-
lidity rates and numbers of valid failures than the single-simulator (U, D) and
corresponding DSS configurations, with large effect sizes. UD also shows statis-
tically significant improvements over most SingleSim configurations, though
with smaller effects. Overall, results consistently confirm that combining com-
plementary simulators enhances the discovery of valid failures across architec-
tures, with BD emerging as the most effective configuration.

RQ)y (effectiveness). Across all ADAS, MultiSim achieves higher va-
lidity rates and numbers of valid failures than both SingleSim and
DSS (70% vs. 66% and 47%). Among multi-simulator settings, BD
(BeamNG-Donkey) performs best for DAVE-2 and ViT (up to 99% va-
lidity), while BU (BeamNG-Udacity) excels for TCP with up to 80%.
This indicates that the most effective simulator pairing depends on the
SUT: BD benefits vision- and control-based systems, whereas BU bet-
ter captures perception-driven failures. Statistical tests confirm that
MultiSim significantly outperforms both SingleSim and DSS, except
for DSS-BD, where it achieves comparable validity but a higher num-
ber of failures.

24

Table 3: Efficiency results, i.e., time to first valid failure for DAVE-2, ViT, and
TCP. Mean and standard deviation (std) are in percent.

Method DAVE-2 ViT TCP
Mean Std Mean Std Mean Std
BD 39.7 22.9 34.2 9.4 40.6 31.2
UD 35.3 24.0 56.5 22.2 31.0 33.3
BU 55.6 29.4 60.1 29.4 30.6 31.2
U 22.8 16.1 44.5 37.3 59.0 31.1
B 25.5 11.3 51.4 31.1 79.5 26.9
D 22.4 14.1 37.0 20.9 74.4 34.4

DSS-BD 56.6 16.3 37.1 2.2 61.1 12.5
DSS-UD 39.9 13.6 43.4 6.5 45.8 63.5
DSS-BU 33.5 13.2 34.6 5.2 51.6 10.2

5.7.2 Efficiency (RQ2)

shows the efficiency results, specifically the ratio of the search budget
and its standard deviation when the first valid failure is detected.

For DAVE-2 we observe that all MultiSim configurations exhibit higher
percentages for the first valid failure compared to SingleSim, as expected.
Compared to DSS, we see that the configuration BD achieves a better result
than DSS-BD. However, across all configurations, the standard deviations for
MultiSim are higher than those of SingleSim or DSS. The combination UD
is surpassed by SingleSim and DSS-BU, while DSS-UD and DSS-BD yield
higher search times. For BU, we observe a similar behavior; here, DSS-UD
additionally remains more efficient.

The statistical test results are shown in [Table 4 While for DAVE-2 D
significantly outperforms BD, BD significantly performs better then DSS-BD.
Regarding BU, we can only observe that it is outperformed by DSS-BU and
D, while there is no significant difference with the other approaches. The
SingleSim configurations U and D yield significantly lower search times then
UD, with large effect sizes. However, we do not observe a statistical significant
difference of UD w.r.t. DSS-UD, which confirms our observations from [Table 4

For ViT, we can see that, similarly as for DAVE-2, MultiSim combinations
achieve on average higher values than SingleSim-based search and DSS.

For TCP, MultiSim achieves lower scores with similar variation compared
to SingleSim. However, the difference is not statistically significant except
for the comparison between BU and B for TCP, where MultiSim achieves
significantly better results.

shows the study results considering both effectiveness and ef-
ficiency (validity rate vs. search budget required for first valid failure) for
DAVE-2, ViT and TCP for MultiSim, SingleSim and DSS. Particularly, for
DAVE-2 the methods whose values are non-dominated either in effectiveness
nor efficiency are BD, B, U and D (Pareto-optimal solutions). SingleSim,
when using BeamNG and Donkey, is more efficient in finding the first valid

25

100 90
I.BD 100 .BD .UD BU
90 % DSS-BD, 80 ®
’ 70
80 / s D DSS-UD
S / S ° 560 DSS-BU
) K4 o 60 r
£ 70 B/ B %50
o 60 © oBU o' 40 oD
T i up g 40 DSS-BD 3
> I DSS-UD o > - > 30 BD
5071 /D DSS-BU .
[20 B
1 20 V] BU
401 1y L] B © 10 DSS-UDpss-BD®
¢ DSS-BU ® U e
3020 25 30 35 40 45 50 55 60 %0 35 40 45 50 55 60 65 70 O20 30 40 50 60 70 80
search_budget (%) search_budget (%) search_budget (%)
(a) DAVE-2 (b) ViT (c) TCP

Fig. 6: Visualization of the tradeoff between efficiency (first valid failure) and
effectiveness (valid_rate) for MultiSim, DSS and SingleSim for different con-
figurations across three case studies. The Pareto front is visualized in red.

failure, while based on the results of the MultiSim combination BD, MultiSim
is significantly more effective. For ViT/TCP, we see that the MultiSim com-
bination BD/BU is dominating all remaining configurations yielding both a
high validity rate with a low search effort for the first valid failure.

RQ- (efficiency). Across all configurations, MultiSim achieves efficiency
comparable to SingleSim, requiring a similar search budget to find the
first valid failure. Among multi-simulator settings, BD and UD are the
most efficient for DAVE-2 and ViT, while BU performs best for TCP.
Compared to DSS, in general MultiSim shows better efficiency, whereas
DSS-BU remains in two out of three comparisons slightly more time-
efficient than BU. Overall, MultiSim maintains competitive efficiency
while yielding substantially higher failure validity.

5.7.3 Prediction (RQ3)

To reduce unnecessary simulator evaluations, we extend MultiSim with a sur-
rogate disagreement predictor. This surrogate is a classifier, trained using la-
beled outcomes of previous runs, where each instance is annotated as an
agreement or disagreement. The surrogate outputs the probability of a dis-
agreement event between simulator pairs. Specifically, we gathered all test
cases from five completed runs using BD, along with five additional runs using
a modified version of MultiSim focused on identifying disagreements
. In total, we collected a dataset comprising 580 agreements and 572
disagreements for DAVE-2, 581 agreements and 581 disagreements for ViT,
and 383 agreements and 383 disagreements for TCP. These datasets were then
used to train five classification models aimed at predicting disagreement oc-
currences. We train and validate multiple surrogate classifiers (Decision Tree,
Random Forest, SVM, Logistic Regression, and Gradient Boosting) using 5-

26

Table 4: (DAVE-2) Efficiency. Statistical tests (Wilcoxon and Vargha-Delaney)
for identifying the first valid failure (repeated comparisons are excluded
(N/A)) for the ADAS DAVE-2, ViT and TCP. Effect size magnitudes are
annotated with a star, if the first approach (rows) of the comparison yields
lower values than the second approach (columns).

U B D UD BU DSS-BD DSS-BU DSS-UD
p (effect) p (effect) p (effect) p (effect) p (effect) p (effect) p (effect) p (effect)
DAVE-2

BD

011(-) 006(-) 0.03(L*) 0.70(-) 0.16(-) 001 (L*) 038(-) 1.00(-)
BU

016 (-) 028(-) 0.04(M*) 019() N/A 085(-) 0.03 (L) 0.16 (-)
UuD

0.03 (L*) 0.02 (L*) 0.01 (L*) N/A N/A 001 (L¥) 092(-) 049 (-)
ViT
BD

100 (L) 031(S) 084(S) 0.6 (L¥) 0.16 (L) 0.06 (L) 084(-) 0.09 (L)
BU

056 (M) 056(S) 044 (L) N/A 069(-) 009 (L) 016 (L) 031 (M)
UD

056 (M) 084(S) 031(L) N/A N/A 016(L) 016(L) 044 (S)
TCP
BD

0.22 (M*) 0.16 (L*) 0.09 (L*) 031 (L) 044 (L) 031 (L*) 0.56 (L*) 0.56 (L*)
BU

016 (L*) 0.04 (L*) 0.16 (L*) N/A N/A 009 (L*) 031 (L*) 044 (L¥)
UuD

022 (L*) 0.16 (L*) 016 (L*) N/A 100 (-) 0.06 (L¥) 044 (L*) 044 (L¥)

fold cross-validation with an 80:20 split. As reported in the Ran-
dom Forest model achieved the best performance for every system under test,
with F-1 scores close to or above 80%. We therefore integrate this model into
MultiSim as the surrogate predictor.

During the test generation phase, each newly generated candidate scenario
is first evaluated by the surrogate model. If the predicted probability of sim-
ulator disagreement exceeds a threshold (7 = 0.7), the candidate is discarded
before running the simulation. Otherwise, it is executed across both simula-
tors. This filtering mechanism allows MultiSim to focus simulation budget on
the exploration on high-value, disagreement-prone regions of the search space.

As shows, across all three case studies, integrating the surrogate
disagreement predictor into MultiSim (BD-P) improved the overall test gen-
eration effectiveness. The surrogate-guided runs produced a higher number
of valid and fault-revealing test cases compared to the baseline configuration
(BD), increasing the mean n_valid and wvalid_rate by approximately 38% on
average. This confirms that the surrogate model not only reduces redundant

27

Table 5: Classifier results after 5-fold cross-validation (in %) for predicting
disagreements in three simulator configurations. The best results are marked
in bold.

DAVE-2 ViT TCP
F-1 AUC-ROC F-1 AUC-ROC F-1 AUC-ROC
DT 79 78 58 65 60 65
RF 83 89 74 81 78 86
SVM 69 71 65 7 58 80
LREG 57 62 58 65 60 65
GBOOST 80 87 73 80 75 82

Table 6: Mean and standard deviation of effectiveness and efficiency metrics
for BD-P and BD approaches across three use cases, averaged over 10 runs for
DAVE-2, 6 runs for ViT, and 6 runs for TCP.

DAVE-2 ViT TCP
BD-P BD BD-P BD BD-P BD

n_valid 253+£73 23.0+131 158 +20 15.5+83 8.3 £ 3.6 4.1+£48
valid_rate (%) 92.9 £ 7.9 98530 979+30 981+41 443+£83 259 +£187
first_fail (%) 34.0 £ 14.1 39.7 £ 229 43. £16.7 342+94 398 +259 40.6 + 31.2

simulator queries but also helps focusing the search on higher-yield regions of
the input space, maintaining an average validity rate above 90% across runs.

The use of the surrogate model also leads to efficiency improvements in two
out of the three case studies (Table 6]). For DAVE-2 it yields an improvement
of 14% (first failure found at 34% vs. 39.7% of the search budget), and 2%
(first failure found at 39.8% vs. 40.6% of the search budget) for TCP. These
results indicate that surrogate-based filtering can accelerate simulation-based
testing while maintaining the ability to identify a broad range of failure cases.

-)

RQs (prediction). Among all trained classifiers, the Random For-
est achieved the best disagreement-prediction performance (AUC:
0.81-0.89, F-1: 0.74-0.83). Integrating this surrogate into MultiSim en-
abled the framework to bypass low-value simulations, improving both
effectiveness and efficiency by increasing the number of valid failures
and reducing variability compared to baseline approaches.

5.8 Qualitative Analysis

In the following, we describe a qualitative analysis concerning our evaluation
results. In the first part, we highlight disagreement scenarios encountered with
MultiSim. In the second part, we report on the observations we made regarding
results using the disagreement classifier from RQs.

28

80 80

60 60
E E

>40 > 40

20 20

0 0

20 0 20
x [m] x [m]

Fig. 7: Example of a disagreement scenario. Left: Vehicle simulated in BeamNG
leaves short segment heading towards following segment. Right: Vehicle simu-
lated in Donkey stays within the lane.

5.8.1 Disagreements

We manually analyzed the disagreements found by MultiSim across different
configurations. We made following observations.

In the BeamNG simulator for DAVE-2, occasionally the vehicle switches
to the left lane whenever the underlying segment is short, i.e., < 15m, and the
following segment is a left turn . The car continues driving on the
left lane towards the next segment, incurring in a failure.

A similar behavior was observed for TCP in Donkey and Udacity for sharp
and short left turns followed by a sharp right turn, where the vehicle did not
continue driving to the left, but proceeded straight to align with the subsequent
path after the right turn. This behaviour could be explained by the fact that
the vehicle observes the upcoming segment, and considers this shortcut as
the immediate straight continuation of its path. However, in the remaining
simulators and system under test configurations, the vehicle stays in the lane,
even when driving on short segments.

Specifically to TCP, we observed that the model exhibits partially in
all simulations environments a slightly higher XTE variation compared to
DAVE-2 and ViT even when the single-simulator based failure count is less
than for DAVE-2 or ViT. At the same time we could see that the model steers
in general more extreme in curves compared to DAVE-2 or ViT which could
explain its robust performance and the lower failure rate compared to the
other system under tests.

Across all system under tests, we observed also that in the BeamNG sim-
ulator, the vehicle switches often to the left lane in the last but one segment
after meeting a sharp curve. This behaviour might be related to the fact that
the road terminates after the last segment. However, we did not observe a simi-
lar behaviour for the vehicle in the Donkey or Udacity simulators, which might
be attributed to the visualization/rendering differences in the simulators.

29

0.0

turn_count
1 2 3 4
| | | U 1
N o - - o
0 ° n ° o
Fitness

° -3.0
OCNTOXFMANTOONNTOOMAN T O®
622805 dAgNNANgMMM™

oooo ococoo oooo cocoo
curvature

Fig. 8: Feature map of tests found in one run with MultiSim employing dis-
agreement classifier (BD-P) for DAVE-2. Cells containing roads for which dis-
agreements are predicted are marked in orange with a black box.

5.8.2 Feature Maps of Prediction-based Search

When evaluating the results of MultiSim augmented with the prediction clas-
sifier, we inspected the feature maps before failure validation. We could observe
that disagreements are predicted in regions which are between failing and non-
failing cells of the map. An example for DAVE-2 is shown in Cells
that contain tests that are predicted as disagreements by the classifier are
marked as orange. This observation highlights the fact that our classifier is
likely to perform accurately in predicting disagreements, as disagreement in-
clude test cases which lie on the boundary between scenarios/roads that pass
and fail. Similar situations were observed in the other simulator ensembles.

6 Discussion
6.1 Approach

While our study utilizes two simulators in the ensemble, MultiSim can be
extended to incorporate a larger number of simulators. To reach consensus on
the criticality, we suggest to use an odd number of simulators. Further, the
feasibility of the approach with multiple simulators is basically constrained by
the underlying computational resources. To mitigate this, test executions in
MultiSim with multiple simulators might be parallelized, independent of the
underlying test algorithm used.

30

6.2 Lessons Learned

Our case study shows that employing multiple simulators in the search does
improve the effectiveness of finding simulator-agnostic failures compared to
single-simulator testing. However, in the literature, test case generation ap-
proaches in general report the evaluation results which are based on single-
simulator executions. We suggest that failures found during the test generation
or at least the final identified failures, should be evaluated in a second simu-
lator to assess whether the failures are likely to be simulator-agnostic.

6.3 Root Cause Analysis

Our paper proposes a testing technique to identify failing test cases where
simulators agree on. It is out of the scope of this study to investigate the
underlying root causes of disagreements between simulator executions, as it
would likely require to inspect, debug, and profile the simulator’s code (Sec
we qualitatively analyzed two disagreement scenarios). Additionally,
as outlined in RQ3, the MultiSim approach can be configured to search for
tests on which simulators disagree to support the identification of the root
causes behind failures. As shown by Jodat et al. [44] and Ben Abdessalem et
al. [1], decision trees or decision rules can be then applied on underlying roads
and simulation traces to derive conditions on input variables and analyze the
root causes behind inconclusive and simulator-specific failures.

Among the possible explanations for the disagreements, we conjecture that
variations in vehicle dynamics may have influenced our results. Specifically,
we observed that the vehicle in Udacity exhibited reduced steering capabil-
ity compared to those in Donkey and BeamNG. This could account for the
high number of simulator-specific failures in Udacity and explain why Udacity
appeared more reliable for independent validation (in BD) than during the
multi-simulator search, where it introduced spurious failures. As actionable
feedback, we recommend incorporating or explicitly detailing vehicle charac-
teristics [72] in scenario definitions for future scenario-based ADAS testing.

We observed that BD performs best for DAVE-2 and ViT, whereas BU
excels for TCP. This can be explained by the differing sensitivities of the
ADAS architectures to physical versus perceptual variability. BD combines
simulators with heterogeneous vehicle dynamics (soft- vs. rigid-body physics),
which better exposes control-related faults, while BU combines simulators with
distinct rendering and camera models, thus better revealing perception-related
inconsistencies. Consequently, it appears that the optimal simulator ensemble
depends on the dominant failure modes of the SUT.

6.4 Validation

In our study, the validation was dependent on three hyperparameters: the
number of re-executions, the failure rate threshold, and the number of failures

31

selected per cell. We set the failure rate threshold to 100%. However, in prac-
tice, the threshold for the validation can be configured based on the number
of simulators used. We expect that the more diverse simulation environments
are employed, the more difficult would be to achieve failure rates of 100%.
Regarding the number of re-executions we suggest to perform preliminary ex-
periments with a different number of re-executions and compare the results,
as conducted in our study. To select the number of selected failing tests per
cell, we carried out preliminary experiments with a higher number of failures,
i.e., 5. However, we did not observe significantly different evaluation results.
Moreover, we did not select more tests per cell because the feature map al-
ready discretizes the search domain, making the diversity of roads within a
single cell being likely low.

6.5 Generalization of Our Approach

While our empirical evaluation focuses on lane-keeping assistance systems, the
MultiSim framework is not limited to this specific ADAS function. The pro-
posed architecture and workflow, based on simulator coupling, multi-objective
search, and cross-simulator agreement analysis, can be generalized to other
ADAS and ADS functionalities.

First, the representation of tests is model-based and modular: road geome-
try is encoded through control points and spline interpolation, but this abstrac-
tion can be extended to other types of driving scenarios. For instance, inter-
sections, pedestrian crossings, or obstacle avoidance can be represented using
higher-level scene graphs or semantic maps instead of simple lane curves. Sim-
ilarly, perception-heavy ADAS such as automatic emergency braking (AEB),
adaptive cruise control (ACC), or lane-change assist could be evaluated by
defining task-specific fitness functions (e.g., time-to-collision, minimum dis-
tance to obstacles, or stability of steering trajectories).

Second, the optimization procedure is independent of the specific fitness
formulation. Our search and repopulation strategies can operate over any do-
main where simulation feedback is measurable, making it possible to reuse
the same search backbone for tasks with different control policies or sensing
modalities (e.g., radar-, LIDAR-, or camera-based). This in particular is en-
abled by the modular architecture of the extended framework OpenSBT as
shown in various case studies [80].

Finally, the MultiSim framework could be extended to support system-
level ADS validation by incorporating full autonomy stacks like Autoware [3]
or Apollo [9]. In this context, cross-simulator disagreement analysis could
help identify environment- or simulator-induced discrepancies in perception,
planning, and control, offering a systematic means of analyzing simulation fi-
delity and testing robustness of the end-to-end driving system. However, since
no existing autonomous driving stack is truly simulator-agnostic, extending
MultiSim to full ADS validation remains an open engineering challenge that

32

requires standardized interfaces and consistent scene representations across
simulators.

7 Threats to Validity

Ezxternal validity concerns the extent to which our results can be generalized
beyond the studied settings. We evaluated MultiSim on a well-established
case study involving three lane-keeping models of increasing complexity, each
tested across different simulator pairs drawn from a diverse set of environ-
ments, BeamNG, DonkeyCar, and Udacity. It would be interesting to inves-
tigate whether the results generalize to other ADAS functions, such as auto-
mated emergency braking, or to higher levels of autonomy using full driving
stacks like Autoware 8] or Apollo [9]. This would require testing in more com-
plex urban simulation environments, such as AWSIM [90] or CARLA [30]. The
main difficulty lies in the technical integration of modern autonomous driv-
ing stacks with multiple simulators, as these frameworks are typically coupled
with a single specific simulator. Achieving cross-simulator consistency in terms
of scenarios, visual appearance, simulation conditions, and interactions with
other actors poses significantly greater challenges than in our current study.

Internal validity risks refer to confounding factors that could affect the
interpretation of results. To mitigate these, we adopted several strategies.
First, to avoid biased evaluations due to unaligned deployment conditions (e.g.,
communication delays between the SUT and the simulator), we conducted a
preliminary validation of XTE variation across manually defined driving sce-
narios. Second, we aligned the simulated roads across all simulators, building
upon existing research [16]. Third, we defined validity constraints for gener-
ated roads and regenerated invalid samples after mutation. For the BU setup,
simulators were executed on different hardware configurations due to compat-
ibility constraints (BeamNG requires running on a Windows operating sys-
tem). This may have influenced BU results, although BU did not outperform
other configurations in our experiments. To ensure that detected failures were
simulator-agnostic, we validated all failures identified by MultiSim, DSS, and
SingleSim on one or two simulators left out during the search. We also re-ran
failing tests multiple times to filter out failures caused by transient or flaky
simulation conditions.

Construct validity threats relate to the adequacy of the chosen metrics. To
evaluate performance, we used two primary metrics: the number of simulator-
agnostic failures and the validity rate, i.e., the ratio between simulator-agnostic
failures and validated failures. The first metric is a standard measure in test
case generation studies [47], while the second captures the proportion of fail-
ures that remain consistent across simulators, reflecting robustness and trans-
ferability. Additionally, we analyzed the convergence of the Hypervolume (HV)
indicator for MultiSim and SingleSim, showing that SingleSim converges ear-
lier, while MultiSim continues improving slightly over time. We excluded DSS
from HV analysis as it is not Pareto-based.

33

To foster replicability, we publicly release the implementation of MultiSim,
along with all experimental data for MultiSim, SingleSim, and DSS. The
search algorithms and result analyses are implemented using the modular
and open-source framework OpenSBT [80], which supports easy integration
of additional case studies for future research.

8 Related Work

In this section, we outline two categories of related work. The first category
targets ADAS testing approaches that use one simulator for test generation.
The second category reports studies using multiple simulators for testing.

8.1 Single-Simulator Approaches for ADAS Testing

Most current test generation methods use search-based approaches to auto-
matically create test cases for DNN-driven ADAS systems [1}[2}(14}45]/66],74.
76,189,[100]. In this domain, test cases consist of individual driving images or
road topologies, which are rendered through a driving simulator. Abdessalem
et al. [1,/2}/14] integrate genetic algorithms with machine learning techniques to
test a pedestrian detection system. Mullins et al. [69] apply Gaussian processes
to guide search-based test generation toward unexplored regions within the in-
put space. Gambi et al. [33] leverage procedural content generation to propose
a search-based test generation approach for ADAS. Riccio and Tonella [76]
introduce, a model-based test generator that leverages Catmull-Rom splines,
the test representation as used in our approach, to define road shapes, produc-
ing test cases at the behavioral frontier of self-driving car models. Arrieta et
al. |7] apply a genetic algorithm to generate tests for cyber-physical systems,
optimizing them across three dimensions: requirement coverage, test case sim-
ilarity, and execution time. Lastly, Lu et al. [61] employ reinforcement learning
to discover environmental configurations that induce crashes. DeepQTest [62]
is a testing approach that uses reinforcement learning to learn environment
configurations with a high chance of revealing ADAS misbehaviors. In an-
other work [60], epigenetics algorithms are used to test ADAS in dynamically
changing environments.

Among the fuzzing domain, DriveFuzz [46] leverages the physical state of
the vehicle, along with oracles grounded in real-world traffic rules, to guide
the fuzzer toward uncovering potential misbehaviors. AutoFuzz [101], on the
other hand, focuses on fuzzing the test scenario specifications. Before initi-
ating the fuzzing process, it employs a seed selection mechanism using a bi-
nary classifier that identifies seeds with a higher likelihood of violating traffic
rules. AV-Fuzzer [54] applies a genetic algorithm, informed by the positioning
of globally monitored non-player characters (NPCs) within each driving sce-
nario. NPCs deemed to have a higher likelihood of safety violations [43] are
prioritized for evolution. Cheng et al. |26] introduce BehaviorMiner, an unsu-
pervised model that extracts temporal features from predefined scenarios and

34

employs clustering-based abstraction to group behaviors with similar features
into abstract states.

All these approaches use a single-simulator approach, with some works
validating their propositions on multiple simulators [26], for example, because
different ADS are compatible/integrated only with specific simulation plat-
forms [72]. Our approach differs from these solutions because it uses an en-
semble of simulations during search-based testing to retrieve more accurate
fitness signals, based on the consensus among the simulators.

8.2 Multi-Simulator Approaches for ADAS Testing

A study by Borg et al. [20] investigates the comparability of multiple simulators
for testing a pedestrian vision detection system. The study evaluates a large
set of test scenarios on both PreScan (78] and Pro-SiVIC [36]. The study
reports inconsistent results in terms of safety violations and behaviors across
these simulators. Consequently, the authors suggest that a single-simulator
approach for ADAS testing might be unreliable, especially when failures are
highly dependent on the chosen simulator. Moreover, a recent study by Amini
et al. [5] has analyzed the degree of flakiness affecting ADAS testing. The study
evaluates several simulators and ADAS showing that test flakiness is common
and can significantly impact the test results. The authors propose the usage
of machine learning classifiers to identify flaky ADAS tests. Another study by
Wagner et al. [96] evaluates the translation of real-world driving scenarios to
executed scenarios in a simulator. Their results show that a reprocessing error
exists, which can be basically attributed to sensor model offsets and can be
tackled by employing scenario-based sensor models.

To address simulator disagreements, Biagiola et al. [16] involve search-
based testing across multiple simulators, provided that the same test scenario
and ADAS under test can be consistently represented. Their method combines
the predicted failure probabilities from each simulator, reporting a failure only
when there is consensus among the simulators. In this method, the search pro-
cess is conducted separately for each simulator, which can lead to numerous
simulator-specific failures. Since discrepancies between simulators are only ad-
dressed after the searches terminate, this can lead to unnecessary consumption
of the testing budget when such failures occur.

Following the approach of Biagiola et al. [16], we also base our methodol-
ogy on multi-simulator, search-based testing, leveraging simulators capable of
accommodating analogous configurations in terms of test scenarios and ADAS.
However, our approach differs by performing a joint test evaluation during the
search, ensuring that scenarios leading to simulator-dependent failures (i.e.,
simulator disagreements) are filtered out before progressing further.

35

9 Conclusion and Future Work

In this paper, we presented the approach MultiSim, to mitigate simulator-
specific failures when testing ADAS using an ensemble of simulators. Our
approach leverages search-based testing and executes test inputs in multiple
simulators during the search to identify generalizable failures.

In our empirical study, we evaluated our approach on testing three DNN-
enabled ADAS trained for lane-keeping. We compared our approach in terms
of effectiveness and efficiency in identifying simulator-agnostic/valid failures,
to single-simulator based testing as well as state-of-the-art testing approach
which employs multiple simulators. The results of the study show that com-
bining evaluation results from multiple simulators during testing outperforms
single-simulator testing, identifying nearly 100% valid failures. Compared to
existing multi-simulator approaches, MultiSim identifies, on average, more
valid failures. In terms of efficiency, MultiSim performs similarly to other ap-
proaches. Additionally, the study demonstrates that machine learning can be
used within MultiSim to predict disagreements between test outcomes across
different simulators, increasing efficiency and reducing the variation in the
number of valid failures.

Our future work is to extend our study to other use cases including more
complex systems under tests such as full-stack ADAS and to investigate the
root causes behind the disagreements of evaluation outcomes. Another future
direction could consist in the integration of the proposed multi-simulator con-
cept within other existing test generators, which can act as a complementary
layer that analyzes simulator-induced flakiness and verifies the transferability
of detected faults across environments.

10 Declarations

10.1 Funding

This research was funded by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy. Matteo Biagiola is partially supported by
Fondo Istituzionale per la Ricerca granted by Universita della Svizzera ital-
iana (USI).

10.2 Ethical Approval

Not applicable.

10.3 Informed Consent

Not applicable.

36

10.4 Author Contributions

Lev Sorokin: conceptualization, methodology, implementation, evaluation,
writing, review, editing. Matteo Biagiola: conceptualization, methodology,
review, editing. Andrea Stocco: conceptualization, methodology, review, edit-
ing.

10.5 Data Availability Statement

All our results, the source code, and the simulator are accessible and can be
reproduced [91].

10.6 Conflict of Interest

The authors declare no conflict of interest.

10.7 Clinical Trial Registration

Clinical trial number: Not applicable.

10.8 Acknowledgements

We acknowledge the support of Adnan Fidan in integrating the TCP system for
the evaluation of our approach. We also thank the reviewers for their valuable
feedback.

References

1. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based con-
trol systems using learnable evolutionary algorithms. In: M. Chaudron, I. Crnkovic,
M. Chechik, M. Harman (eds.) Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp.
1016-1026. ACM (2018). DOI 10.1145/3180155.3180160. URL https://doi.org/10.
1145/3180155.3180160

2. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing au-
tonomous cars for feature interaction failures using many-objective search. In: Proceed-
ings of ASE ’18, ASE 2018, pp. 143-154. ACM (2018). DOI 10.1145/3238147.3238192.
URL http://doi.acm.org/10.1145/3238147.3238192

3. Afzal, A., Katz, D.S., Le Goues, C., Timperley, C.S.: Simulation for robotics test
automation: Developer perspectives. In: 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST), pp. 263-274. IEEE (2021). DOI
10.1109/1CST49551.2021.00036

4. Ali, Q., Stocco, A., Mariani, L., Riganelli, O.: OpenCat: Improving Interoperability of
ADS Testing. In: Proceedings of 47th International Conference on Software Engineer-
ing Workshops, ICSEW ’24, p. 10 pages. IEEE (2025)

37

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
http://doi.acm.org/10.1145/3238147.3238192

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Amini, M.H., Naseri, S., Nejati, S.: Evaluating the impact of flaky simulators on testing

autonomous driving systems. Empirical Softw. Engg. 29(2) (2024). DOI 10.1007/
s10664-023-10433-5. URL https://doi.org/10.1007/s10664-023-10433-5

. Ando, A., Gidaris, S., Bursuc, A., Puy, G., Boulch, A., Marlet, R.: Rangevit: Towards

vision transformers for 3d semantic segmentation in autonomous driving. In: CVPR
(2023)

. Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxeberria, L.: Search-based test

case generation for cyber-physical systems. In: 2017 IEEE Congress on Evolutionary
Computation (CEC), pp. 688-697 (2017). DOI 10.1109/CEC.2017.7969377

. Autoware. https://autoware.org (2024)
. Baidu: Baidu Apollo. https://github.com/ApolloAuto/apollo/|(2024). URL https:

//github.com/ApolloAuto/apollo

Baidu Inc.: Baidu Apolloscapes Dataset. https://apolloscape.auto/index.html
(2018). Accessed: [2024-01-15]

Baresi, L., Hu, D.Y.X., Stocco, A., Tonella, P.: Efficient domain augmentation for au-
tonomous driving testing using diffusion models. In: Proceedings of 47th International
Conference on Software Engineering, ICSE ’25. IEEE (2025)

BeamNG.research: BeamNG GmbH. https://www.beamng. gmbh/research (2022). On-
line; accessed 18/08/2019

Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver assis-
tance systems using multi-objective search and neural networks. ASE, p. 63-74 (2016).
DOI 10.1145/2970276.2970311. URL https://doi.org/10.1145/2970276.2970311
Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
63-74 (2016)

Biagiola, M., Klikovits, S.: Sbft tool competition 2024 - cyber-physical systems track.
In: Proceedings of the 17th ACM/IEEE International Workshop on Search-Based and
Fuzz Testing, SBFT ’24, p. 33-36. Association for Computing Machinery, New York,
NY, USA (2024). DOI 10.1145/3643659.3643932. URL https://doi.org/10.1145/
3643659.3643932

Biagiola, M., Stocco, A., Riccio, V., Tonella, P.: Two is better than one: digital siblings
to improve autonomous driving testing. Empirical Softw. Engg. 29(4) (2024). DOI
10.1007/s10664-024-10458-4. URL https://doi.org/10.1007/s10664-024-10458-4
Biagiola, M., Tonella, P.: Boundary state generation for testing and improvement of
autonomous driving systems (2023). DOI 10.1109/TSE.2024.3420816. URL https:
//doi.org/10.1109/TSE.2024.3420816

Birchler, C., Khatiri, S., Bosshard, B., Gambi, A., Panichella, S.: Machine learning-
based test selection for simulation-based testing of self-driving cars software. Empir.
Softw. Eng. 28(3), 71 (2023). DOI 10.1007/S10664-023-10286-Y. URL https://doi.
org/10.1007/510664-023-10286-y

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end
learning for self-driving cars. CoRR abs/1604.07316 (2016). URL http://arxiv.
org/abs/1604.07316

Borg, M., Abdessalem, R., Nejati, S., Jegeden, F., Shin, D.: Digital twins are not
monozygotic — cross-replicating adas testing in two industry-grade automotive sim-
ulators pp. 383-393 (2021). DOI 10.1109/ICST49551.2021.00050. URL https:
//doi.ieeecomputersociety.org/10.1109/ICST49551.2021.00050

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001). DOI 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees.
Taylor & Francis (1984). URL https://books.google.de/books?id=JuQx-WOmSyQC
Cabrera, A.: Logistic regression analysis in higher education: An applied perspective.
Higher education: Handbook of theory and research X/Agathon Press (1994)

Cerf, V.G.: A comprehensive self-driving car test. Commun. ACM 61(2), 7-7 (2018).
DOI 10.1145/3177753. URL http://doi.acm.org/10.1145/3177753

Chen, X., Biagiola, M., Riccio, V., d’Amorim, M., Stocco, A.: XMutant: XAI-based
Fuzzing for Deep Learning Systems (2025). URL https://arxiv.org/abs/2503.07222

38

https://doi.org/10.1007/s10664-023-10433-5
https://autoware.org
https://github.com/ApolloAuto/apollo/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://apolloscape.auto/index.html
 https://www.beamng.gmbh/research
https://doi.org/10.1145/2970276.2970311
https://doi.org/10.1145/3643659.3643932
https://doi.org/10.1145/3643659.3643932
https://doi.org/10.1007/s10664-024-10458-4
https://doi.org/10.1109/TSE.2024.3420816
https://doi.org/10.1109/TSE.2024.3420816
https://doi.org/10.1007/s10664-023-10286-y
https://doi.org/10.1007/s10664-023-10286-y
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.ieeecomputersociety.org/10.1109/ICST49551.2021.00050
https://doi.ieeecomputersociety.org/10.1109/ICST49551.2021.00050
https://doi.org/10.1023/A:1010933404324
https://books.google.de/books?id=JwQx-WOmSyQC
http://doi.acm.org/10.1145/3177753
https://arxiv.org/abs/2503.07222

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Cheng, M., Zhou, Y., Xie, X.: Behavexplor: Behavior diversity guided testing for au-
tonomous driving systems. In: Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2023, p. 488-500. Association for
Computing Machinery, New York, NY, USA (2023). DOI 10.1145/3597926.3598072.
URL https://doi.org/10.1145/3597926.3598072

Codevilla, F., Lépez, A.M., Koltun, V., Dosovitskiy, A.: On offline evaluation of vision-
based driving models. CoRR abs/1809.04843 (2018). URL http://arxiv.org/abs/
1809.04843

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995).
DOI 10.1023/A:1022627411411. URL https://doi.org/10.1023/A:1022627411411
Donkey Car. https://www.donkeycar.com/ (2021)

Dosovitskiy, A., Ros, G., Codevilla, F., Lépez, A., Koltun, V.: CARLA: an open urban
driving simulator. CoRR abs/1711.03938 (2017). URL http://arxiv.org/abs/
1711.03938

Friedman, J.H.: Stochastic gradient boosting. Computational Statistics & Data Analy-
sis 38(4), 367-378 (2002). DOI https://doi.org/10.1016/S0167-9473(01)00065-2. URL
https://www.sciencedirect.com/science/article/pii/S0167947301000652. Nonlin-
ear Methods and Data Mining

Gambi, A., Jahangirova, G., Riccio, V., Zampetti, F.: Sbst tool competition 2022.
In: Proceedings of the 15th Workshop on Search-Based Software Testing, SBST ’22,
p. 25-32. Association for Computing Machinery, New York, NY, USA (2023). DOI
10.1145/3526072.3527538. URL https://doi.org/10.1145/3526072.3527538

Gambi, A., Mueller, M., Fraser, G.: Automatically testing self-driving cars with search-
based procedural content generation. In: Proceedings of ISSTA ’19 (2019)

Garcia, S., Striiber, D., Brugali, D., Berger, T., Pelliccione, P.: Robotics software engi-
neering: A perspective from the service robotics domain. In: Proceedings of ESEC/FSE
’20, ESEC/FSE 2020, pp. 593-604. ACM, USA (2020). DOI 10.1145/3368089.3409743
Grewal, R., Tonella, P., Stocco, A.: Predicting Safety Misbehaviours in Autonomous
Driving Systems using Uncertainty Quantification. In: Proceedings of 17th IEEE In-
ternational Conference on Software Testing, Verification and Validation, ICST 24, p.
12 pages. IEEE (2024)

Group, E.: Esi prosivic. https://myesi.esi-group.com/downloads/
software-downloads/pro-sivic-2021.0 (2021)

Haq, F.U., Shin, D., Nejati, S., Briand, L.: Can offline testing of deep neural networks
replace their online testing? a case study of automated driving systems. Empirical
Softw. Engg. 26(5) (2021). DOI 10.1007/s10664-021-09982-4. URL https://doi.
org/10.1007/s10664-021-09982-4

Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella, P.: Tax-
onomy of Real Faults in Deep Learning Systems. In: Proceedings of 42nd International
Conference on Software Engineering, ICSE’20, p. 12 pages. ACM, New York, NY, USA
(2020). DOI 10.1145/3377811.3380395

Humeniuk, D., Khomh, F., Antoniol, G.: A search-based framework for automatic
generation of testing environments for cyber—physical systems. Inf. Softw. Technol.
149, 106936 (2022). DOI https://doi.org/10.1016/j.infsof.2022.106936. URL https:
//www.sciencedirect.com/science/article/pii/S0950584922000866

Humeniuk, D., Khomh, F., Antoniol, G.: Reinforcement learning informed evolutionary
search for autonomous systems testing. ACM Trans. Softw. Eng. Methodol. (2024).
DOI 10.1145/3680468. URL https://doi.org/10.1145/3680468. Just Accepted
Hussain, M., Ali, N.; Hong, J.E.: Deepguard: A framework for safeguarding au-
tonomous driving systems from inconsistent behaviour. Automated Software Engg.
29(1) (2022). DOI 10.1007/s10515-021-00310-0. URL https://doi.org/10.1007/
s10515-021-00310-0

Jahangirova, G., Stocco, A., Tonella, P.: Quality metrics and oracles for autonomous
vehicles testing. In: Proceedings of 14th IEEE International Conference on Software
Testing, Verification and Validation, ICST ’21. IEEE (2021)

Jha, S., Banerjee, S.S., Tsai, T., Hari, S.K.S., Sullivan, M.B., Kalbarczyk, Z.T.,
Keckler, S.W., Iyer, R.K.: Ml-based fault injection for autonomous vehicles: A case

39

https://doi.org/10.1145/3597926.3598072
http://arxiv.org/abs/1809.04843
http://arxiv.org/abs/1809.04843
https://doi.org/10.1023/A:1022627411411
https://www.donkeycar.com/
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1145/3526072.3527538
https://myesi.esi-group.com/downloads/software-downloads/pro-sivic-2021.0
https://myesi.esi-group.com/downloads/software-downloads/pro-sivic-2021.0
https://doi.org/10.1007/s10664-021-09982-4
https://doi.org/10.1007/s10664-021-09982-4
https://www.sciencedirect.com/science/article/pii/S0950584922000866
https://www.sciencedirect.com/science/article/pii/S0950584922000866
https://doi.org/10.1145/3680468
https://doi.org/10.1007/s10515-021-00310-0
https://doi.org/10.1007/s10515-021-00310-0

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

for bayesian fault injection. 2019 49th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN) pp. 112-124 (2019). URL https:
//api.semanticscholar.org/CorpusID: 195776612

Jodat, B.A., Chandar, A., Nejati, S., Sabetzadeh, M.: Test generation strategies for
building failure models and explaining spurious failures. ACM Trans. Softw. Eng.
Methodol. 33(4) (2024). DOI 10.1145/3638246. URL https://doi.org/10.1145/
3638246

Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: Proceedings of the 41st International Conference on Software Engi-
neering, ICSE ’19, pp. 1039-1049. IEEE Press, Piscataway, NJ, USA (2019). DOI
10.1109/ICSE.2019.00108. URL https://doi.org/10.1109/ICSE.2019.00108

Kim, S., Liu, M., Rhee, J.J., Jeon, Y., Kwon, Y., Kim, C.H.: DriveFuzz. In: Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. ACM (2022). DOI 10.1145/3548606.3560558. URL https://doi.org/10.
1145%,2F3548606 . 3560558

Klick, F., Zimmermann, M., Wotawa, F., Nica, M.: Genetic algorithm-based test pa-
rameter optimization for adas system testing. In: QRS, pp. 418-425 (2019). DOI
10.1109/QRS.2019.00058

Kolesnikov, A., Dosovitskiy, A., Weissenborn, D., Heigold, G., Uszkoreit, J., Beyer,
L., Minderer, M., Dehghani, M., Houlsby, N., Gelly, S., Unterthiner, T., Zhai, X.: An
image is worth 16x16 words: Transformers for image recognition at scale (2021)
Koroglu, Y., Wotawa, F.: Towards a review on simulated adas/ad testing. In: 2023
IEEE/ACM International Conference on Automation of Software Test (AST), pp.
112-122 (2023). DOI 10.1109/AST58925.2023.00015

Lambertenghi, S.C., Leonhard, H., Stocco, A.: Benchmarking image perturbations for
testing automated driving assistance systems. In: Proceedings of the IEEE 18th IEEE
International Conference on Software Testing, Verification and Validation, ICST ’25,
p. 12 pages. IEEE (2025)

Lambertenghi, S.C., Stocco, A.: Assessing quality metrics for neural reality gap input
mitigation in autonomous driving testing. In: Proceedings of 17th IEEE International
Conference on Software Testing, Verification and Validation, ICST ’24, p. 12 pages.
IEEE (2024)

Lambertenghi, S.C., Valdez, M.F., Stocco, A.: A multi-modality evaluation of the re-
ality gap in autonomous driving systems. In: Proceedings of the 40th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’25, p. 12 pages.
IEEE (2025)

Li, D., Auerbach, P., Okhrin, O.: Autonomous driving small-scale cars: A survey of
recent development (2024). URL https://arxiv.org/abs/2404.06229

Li, G., Li, Y., Jha, S., Tsai, T., Sullivan, M., Hari, S.K.S., Kalbarczyk, Z., Iyer, R.:
Av-fuzzer: Finding safety violations in autonomous driving systems. In: 2020 IEEE
31st International Symposium on Software Reliability Engineering (ISSRE), pp. 25-36
(2020). DOI 10.1109/ISSRE5003.2020.00012

Li, M., Chen, T., Yao, X.: How to evaluate solutions in pareto-based search-based soft-
ware engineering: A critical review and methodological guidance. IEEE Transactions
on Software Engineering 48(5), 1771-1799 (2022). DOI 10.1109/TSE.2020.3036108
Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
A survey. ACM Comput. Surv. 52(2), 1-38 (2019). DOI 10.1145/3300148. URL
https://doi.org/10.1145/3300148

Li, Y., Yuan, W., Zhang, S., Yan, W., Shen, Q., Wang, C., Yang, M.: Choose your
simulator wisely: A review on open-source simulators for autonomous driving. IEEE
Transactions on Intelligent Vehicles 9(5), 4861-4876 (2024). DOI 10.1109/tiv.2024.
3374044

Liu, D., Metzman, J., Bohme, M., Chang, O., Arya, A.: SBFT Tool Competition 2023 -
Fuzzing Track. In: 2023 IEEE/ACM International Workshop on Search-Based and Fuzz
Testing (SBFT), pp. 51-54. IEEE Computer Society, Los Alamitos, CA, USA (2023).
DOI 10.1109/SBFT59156.2023.00016. URL jhttps://doi.ieeecomputersociety.org/
10.1109/SBFT59156.2023.00016

40

https://api.semanticscholar.org/CorpusID:195776612
https://api.semanticscholar.org/CorpusID:195776612
https://doi.org/10.1145/3638246
https://doi.org/10.1145/3638246
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1145%2F3548606.3560558
https://doi.org/10.1145%2F3548606.3560558
https://arxiv.org/abs/2404.06229
https://doi.org/10.1145/3300148
https://doi.ieeecomputersociety.org/10.1109/SBFT59156.2023.00016
https://doi.ieeecomputersociety.org/10.1109/SBFT59156.2023.00016

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Lou, G., Deng, Y., Zheng, X., Zhang, M., Zhang, T.: Testing of autonomous driv-
ing systems: where are we and where should we go? In: Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022, p. 31-43. Association for Comput-
ing Machinery, New York, NY, USA (2022). DOI 10.1145/3540250.3549111. URL
https://doi.org/10.1145/3540250.3549111

Lu, C., Ali, S., Yue, T.: Epitester: Testing autonomous vehicles with epigenetic algo-
rithm and attention mechanism. IEEE Transactions on Software Engineering pp. 1-19
(2024). DOI 10.1109/TSE.2024.3449429

Lu, C., Shi, Y., Zhang, H., Zhang, M., Wang, T., Yue, T., Ali, S.: Learning con-
figurations of operating environment of autonomous vehicles to maximize their col-
lisions. IEEE Transactions on Software Engineering 49(1), 384-402 (2023). DOI

10.1109/TSE.2022.3150788

Lu, C., Yue, T., Zhang, M., Ali, S.: Deepqtest: Testing autonomous driving systems
with reinforcement learning and real-world weather data (2023). URL https://arxiv.
org/abs/2310.05170

Marko., N., Ruebsam., J., Biehn., A., Schneider., H.: Scenario-based testing of adas
- integration of the open simulation interface into co-simulation for function valida-
tion. In: Proceedings of the 9th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications - SIMULTECH,, pp. 255-262. IN-
STICC, SciTePress (2019). DOI 10.5220/0007838302550262

Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Search-based auto-
mated testing of continuous controllers: Framework, tool support, and case studies.
Information and Software Technology 57, 705-722 (2015). DOI https://doi.org/10.
1016/j.infsof.2014.05.007. URL https://www.sciencedirect.com/science/article/
pii/S0950584914001244

McMinn, P.: Search-based software testing: Past, present and future. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops, pp. 1563-163 (2011). DOI 10.1109/ICSTW.2011.100

Moghadam, M.H., Borg, M., Saadatmand, M., Mousavirad, S.J., Bohlin, M., Lisper, B.:
Machine learning testing in an adas case study using simulation-integrated bio-inspired
sbt. J. Softw.: Evol. Process p. 2591

Mokhtarian, A., Scheffe, P., Kloock, M., Schifer, S., Heeseung Bang, Viet-Anh Le,
Sangeet Ulhas, Betz, J., Wilson, S., Berman, S., Prorok, A., Alrifaee, B.: A sur-
vey on small-scale testbeds for connected and automated vehicles and robot swarms
(2024). DOI 10.13140/RG.2.2.16176.74248/1. URLhttps://rgdoi.net/10.13140/RG.
2.2.16176.74248/1

Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909 (2015)

Mullins, G.E., Stankiewicz, P.G., Hawthorne, R.C., Gupta, S.K.: Adaptive generation
of challenging scenarios for testing and evaluation of autonomous vehicles. Journal of
Systems and Software 137, 197-215 (2018). DOI https://doi.org/10.1016/j.jss.2017.10.
031. URLhttp://www.sciencedirect.com/science/article/pii/S0164121217302546
Nejati, S., Sorokin, L., Safin, D., Formica, F., Mahboob, M.M., Menghi, C.: Reflections
on surrogate-assisted search-based testing: A taxonomy and two replication studies
based on industrial adas and simulink models. Information and Software Technology
163, 107286 (2023)

Opletal, J.: China’s massive adas test: 36 «cars, 15 hazard scenar-
ios, 216 crashes (2025). URL https://carnewschina.com/2025/07/24/
chinas-massive-adas-test-36-cars-15-hazard-scenarios-216-crashes/

Pan, Q., Wang, T., Ma, J., Arcaini, P., Yue, T.: Simulation-based safety assessment
of vehicle characteristics variations in autonomous driving systems. ACM Trans.
Softw. Eng. Methodol. (2025). DOI 10.1145/3743673. URL https://doi.org/10.
1145/3743673

Parry, O., Kapfthammer, G.M., Hilton, M., McMinn, P.: A survey of flaky tests. ACM
Trans. Softw. Eng. Methodol. 31(1), 17:1-17:74 (2022). DOI 10.1145/3476105. URL
https://doi.org/10.1145/3476105

41

https://doi.org/10.1145/3540250.3549111
https://arxiv.org/abs/2310.05170
https://arxiv.org/abs/2310.05170
https://www.sciencedirect.com/science/article/pii/S0950584914001244
https://www.sciencedirect.com/science/article/pii/S0950584914001244
https://rgdoi.net/10.13140/RG.2.2.16176.74248/1
https://rgdoi.net/10.13140/RG.2.2.16176.74248/1
http://www.sciencedirect.com/science/article/pii/S0164121217302546
https://carnewschina.com/2025/07/24/chinas-massive-adas-test-36-cars-15-hazard-scenarios-216-crashes/
https://carnewschina.com/2025/07/24/chinas-massive-adas-test-36-cars-15-hazard-scenarios-216-crashes/
https://doi.org/10.1145/3743673
https://doi.org/10.1145/3743673
https://doi.org/10.1145/3476105

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.

Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of
deep learning systems. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pp. 1-18. ACM, New York, NY, USA (2017). DOI
10.1145/3132747.3132785. URL http://doi.acm.org/10.1145/3132747.3132785
Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.: Test-
ing Machine Learning based Systems: A Systematic Mapping. Empirical Software
Engineering (2020)

Riccio, V., Tonella, P.: Model-Based Exploration of the Frontier of Behaviours for
Deep Learning System Testing. In: Proceedings of ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE ’20 (2020)

Riccio, V., Tonella, P.:. When and why test generators for deep learning produce invalid
inputs: an empirical study. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), ICSE 23, pp. 1161-1173. IEEE Press (2023). DOI 10.
1109/ICSE48619.2023.00104. URL https://doi.org/10.1109/ICSE48619.2023.00104
Software, S.D.I.: Simcenter prescan. https://www.plm.automation.siemens.com/
global/en/products/simcenter/prescan.html (2022). URL https://plm.sw.
siemens.com/de-DE/simcenter/autonomous-vehicle-solutions/prescan/

Sorokin, L., Kerscher, N.: Guiding the search towards failure-inducing test inputs us-
ing support vector machines. In: Proceedings of the 5th IEEE/ACM International
Workshop on Deep Learning for Testing and Testing for Deep Learning, DeepTest '24,
p. 9-12. Association for Computing Machinery, New York, NY, USA (2024). DOI
10.1145/3643786.3648023. URL https://doi.org/10.1145/3643786.3648023
Sorokin, L., Munaro, T., Safin, D., Liao, B.H.C., Molin, A.: OpenSBT: A modular
framework for search-based testing of automated driving systems (2023). DOI 10.
1145/3639478.3640027. URL https://github.com/opensbt/opensbt-core

Sorokin, L., Safin, D., Nejati, S.: Can search-based testing with pareto optimiza-
tion effectively cover failure-revealing test inputs? Empirical Software Engineering
30(1), 26 (2024). DOI 10.1007/510664-024-10564-3. URL https://doi.org/10.1007/
s10664-024-10564-3

Stocco, A., Nunes, P.J., d’Amorim, M., Tonella, P.: ThirdEye: Attention Maps for
Safe Autonomous Driving Systems. In: Proceedings of 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’22. IEEE/ACM (2022). DOI
10.1145/3551349.3556968

Stocco, A., Pulfer, B., Tonella, P.: Mind the Gap! A Study on the Transferability
of Virtual Versus Physical-World Testing of Autonomous Driving Systems. IEEE
Transactions on Software Engineering 49(04), 1928-1940 (2023). DOI 10.1109/TSE.
2022.3202311

Stocco, A., Pulfer, B., Tonella, P.: Model vs system level testing of autonomous
driving systems: A replication and extension study. Empirical Softw. Engg. 28(3),
73 (2023). DOI 10.1007/s10664-023-10306-x. URL https://doi.org/10.1007/
s10664-023-10306-x

Stocco, A., Tonella, P.: Confidence-driven weighted retraining for predicting safety-
critical failures in autonomous driving systems. Journal of Software: Evolution and
Process (2021). DOI 10.1002/smr.2386. URL https://doi.org/10.1002/smr.2386
Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehaviour prediction for au-
tonomous driving systems. In: Proceedings of 42nd International Conference on Soft-
ware Engineering, ICSE ’20, p. 12 pages. ACM (2020)

Tang, S., Zhang, Z., Zhang, Y., Zhou, J., Guo, Y., Liu, S., Guo, S., Li, Y., Ma, L., Xue,
Y., Liu, Y.: A survey on automated driving system testing: Landscapes and trends.
ACM Trans. Softw. Eng. Methodol. 32(5), 124:1-124:62 (2023). DOI 10.1145/3579642.
URL https://doi.org/10.1145/3579642

Tawn Kramer, M.E., contributors: Donkeycar. https://www.donkeycar.com/ (2022)
Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of ICSE ’18, ICSE ’18, pp. 303—
314. ACM, New York, NY, USA (2018). DOI 10.1145/3180155.3180220. URL http:
//doi.acm.org/10.1145/3180155.3180220

Tier IV, Inc.: Awsim: Autonomous driving simulator by tier iv. https://github.com/
tierd/AWSIM (2023). Accessed: 2025-11-03

42

http://doi.acm.org/10.1145/3132747.3132785
https://doi.org/10.1109/ICSE48619.2023.00104
https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://plm.sw.siemens.com/de-DE/simcenter/autonomous-vehicle-solutions/prescan/
https://plm.sw.siemens.com/de-DE/simcenter/autonomous-vehicle-solutions/prescan/
https://doi.org/10.1145/3643786.3648023
https://github.com/opensbt/opensbt-core
https://doi.org/10.1007/s10664-024-10564-3
https://doi.org/10.1007/s10664-024-10564-3
https://doi.org/10.1007/s10664-023-10306-x
https://doi.org/10.1007/s10664-023-10306-x
https://doi.org/10.1002/smr.2386
https://doi.org/10.1145/3579642
https://www.donkeycar.com/
http://doi.acm.org/10.1145/3180155.3180220
http://doi.acm.org/10.1145/3180155.3180220
https://github.com/tier4/AWSIM
https://github.com/tier4/AWSIM

91.
92.
93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Replication package. (2025). URL https://github.com/ast-fortiss-tum/MultiSim
of Transportation, U.D.: A framework for automated driving system testable cases and
scenarios. https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf (2018)
of Transportation, U.D.: Standing general order on crash reporting for level 2 advanced
driver assistance systems. https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/
ADAS-L2-SG0-Report-June-2022.pdf| (2022)

Udacity: A self-driving car simulator built with Unity. https://github.com/udacity/
self-driving-car-sim (2017). Online; accessed 18 August 2019

VISSIM: VISSIM website. https://www.ptvgroup.com/en-us/products/ptv-vissim
(2023)

Wagner, S., Groh, K., Kiihbeck, T., Knoll, A.: Towards cross-verification and use of
simulation in the assessment of automated driving. In: 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 1589-1596 (2019). DOI 10.1109/1VS.2019.8814268

Wu, P., Jia, X., Chen, L., Yan, J., Li, H., Qiao, Y.: Trajectory-guided control prediction
for end-to-end autonomous driving: a simple yet strong baseline. In: Proceedings of
the 36th International Conference on Neural Information Processing Systems, NIPS
’22. Curran Associates Inc., Red Hook, NY, USA (2022)

Zeller, A.: Search-based testing and system testing: A marriage in heaven. SBST, pp.
49-50 (2017). DOI 10.1109/SBST.2017.3

Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based meta-
morphic testing and input validation framework for autonomous driving systems. In:
Proceedings of the 33rd ACM/IEEE ASE, ASE ’18, p. 132-142. ACM (2018). DOI
10.1145/3238147.3238187

Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: Deeproad: Gan-based meta-
morphic testing and input validation framework for autonomous driving systems. In:
Proceedings of ASE 18, ASE 2018, pp. 132-142. ACM, New York, NY, USA (2018).
DOI 10.1145/3238147.3238187. URL http://doi.acm.org/10.1145/3238147.3238187
Zhong, Z., Kaiser, G., Ray, B.: Neural network guided evolutionary fuzzing for finding
traffic violations of autonomous vehicles. IEEE Trans. Softw. Eng. 49(4), 1860-1875
(2023). DOI 10.1109/TSE.2022.3195640. URL fhttps://doi.org/10.1109/TSE.2022.
3195640

Zohdinasab, T., Riccio, V., Gambi, A., Tonella, P.: Deephyperion: exploring the fea-
ture space of deep learning-based systems through illumination search. In: Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2021, p. 79-90. Association for Computing Machinery, New York,
NY, USA (2021). DOI 10.1145/3460319.3464811. URL https://doi.org/10.1145/
3460319.3464811

43

https://github.com/ast-fortiss-tum/MultiSim
https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://www.ptvgroup.com/en-us/products/ptv-vissim
http://doi.acm.org/10.1145/3238147.3238187
https://doi.org/10.1109/TSE.2022.3195640
https://doi.org/10.1109/TSE.2022.3195640
https://doi.org/10.1145/3460319.3464811
https://doi.org/10.1145/3460319.3464811

	Introduction
	Background
	Problem Definition
	Approach
	Empirical Study
	Discussion
	Threats to Validity
	Related Work
	Conclusion and Future Work
	Declarations

