
HyperNet-Adaptation for Diffusion-Based Test Case
Generation
OLIVER WEISSL, Technical University of Munich, Germany and fortiss, Germany
VINCENZO RICCIO, University of Udine, Italy
SEVERIN KACIANKA, fortiss, Germany
ANDREA STOCCO, Technical University of Munich, Germany and fortiss, Germany

The increasing deployment of deep learning systems requires systematic evaluation of their reliability in
real-world scenarios. Traditional gradient-based adversarial attacks introduce small perturbations that rarely
correspond to realistic failures and mainly assess robustness rather than functional behavior. Generative
test generation methods offer an alternative but are often limited to simple datasets or constrained input
domains. Although diffusion models enable high-fidelity image synthesis, their computational cost and limited
controllability restrict their applicability to large-scale testing. We present HyNeA, a generative testing
method that enables direct and efficient control over diffusion-based generation. HyNeA provides dataset-free
controllability through hypernetworks, allowing targeted manipulation of the generative process without
relying on architecture-specific conditioning mechanisms or dataset-driven adaptations such as fine-tuning.
HyNeA employs a distinct training strategy that supports instance-level tuning to identify failure-inducing
test cases without requiring datasets that explicitly contain examples of similar failures. This approach
enables the targeted generation of realistic failure cases at substantially lower computational cost than
search-based methods. Experimental results show that HyNeA improves controllability and test diversity
compared to existing generative test generators and generalizes to domains where failure-labeled training
data is unavailable.

CCS Concepts: • Computing methodologies→Machine learning; • Software and its engineering→
Software creation and management.

Additional Key Words and Phrases: DL testing, Diffusion Models, Generative AI

ACM Reference Format:

Oliver Weißl, Vincenzo Riccio, Severin Kacianka, and Andrea Stocco. 2026. HyperNet-Adaptation for Diffusion-
Based Test Case Generation. 1, 1 (January 2026), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep learning (DL) models have become central to a wide range of vision applications, from
object recognition, classification and segmentation to autonomous systems [37]. As these models
are increasingly deployed in real-world settings, evaluating their reliability to input variations
and realistic scenarios becomes critical. Traditional gradient-based adversarial attacks can reveal
vulnerabilities but generate perturbations that are imperceptible and may be unrealistic, failing to
anticipate the diverse set of failures that may occur during operation [4]. Generative test generation

Authors’ addresses: Oliver Weißl, weissl@fortiss.org, Technical University of Munich, Garching near Munich, Germany and
fortiss, Munich, Germany; Vincenzo Riccio, vincenzo.riccio@uniud.it, University of Udine, Udine, Italy; Severin Kacianka,
kacianka@fortiss.org, fortiss, Munich, Germany; Andrea Stocco, andrea.stocco@tum.de, Technical University of Munich,
Garching near Munich, Germany, stocco@fortiss.org and fortiss, Munich, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2026/1-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2026.

HTTPS://ORCID.ORG/0009-0008-7575-0187
HTTPS://ORCID.ORG/0000-0002-6229-8231
HTTPS://ORCID.ORG/0000-0002-2546-3031
HTTPS://ORCID.ORG/0000-0001-8956-3894
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0008-7575-0187
https://orcid.org/0000-0002-6229-8231
https://orcid.org/0000-0002-2546-3031
https://orcid.org/0000-0001-8956-3894
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Weißl et al.

approaches have emerged as an alternative, synthesizing diverse input variations that better mimic
realistic scenarios [17, 28, 30, 53]. However, existing generative test generationmethods are typically
limited to simple datasets [39], due to model architecture [19, 20, 41], or rely on curated training
data [28], restricting their applicability to complex, high-dimensional vision tasks.

Diffusion models (DM) have recently shown strong capabilities in high-fidelity image generation
and therefore offer potential for functional testing through systematic generation of test scenar-
ios [28, 30]. Yet, their high computational cost and challenges in controlling the generation process
restrict their effective use. Most current diffusion-based approaches rely on prompt perturbations
or simple noise manipulations [28–30], which provide limited control over the resulting test cases.
A representative approach for introducing fine-grained control into DMs is ControlNet [58],

which augments a pretrained DM with an auxiliary network that modulates its intermediate
representations. By injecting external conditioning signals, ControlNet steers the generative process
while keeping the base model parameters fixed, enabling controlled synthesis under various forms
of guidance. However, such approaches typically rely on a priori curated conditioning data that
explicitly encode the structures or attributes to be imposed during generation. As a result, developers
must provide concrete examples of the desired outputs, which is challenging for high-dimensional
inputs such as images. In existing work, this guidance is specified through model-based constraints,
handcrafted prompts, or learned seed representations [28, 30]. These mechanisms offer limited
control over the resulting outputs and provide no guarantees that the generated samples will
faithfully reflect the developer’s intended properties. This limits the suitability of such methods
for DL testing, where the goal is to generate previously unseen inputs that expose unanticipated
model behaviors beyond those represented in the available training data.

We introduce HyNeA (HyperNet Adaptation), a diffusion-based generative testing method that
enables dataset-free, controllable input generation via instance-specific adaptation. The method
builds on the architectural principles of ControlNet by using an auxiliary hyper-network (HyperNet)
to modulate a pretrained diffusion model, but fundamentally differs in how the control signal is
obtained. Instead of learning a global mapping from conditioning inputs to guided outputs, HyNeA
optimizes the HyperNet on a per-test-case basis by back-propagating from the diffusion model’s
output to produce conditioning signals that exhibit a desired failure in the system under test (SUT).
This instance-wise adaptation eliminates the need for curated source–target pairs and avoids
large-scale retraining, while still enabling fine-grained, objective-driven control over the generated
test inputs.

We evaluate HyNeA across multiple image-based learning tasks and compare it against state-of-
the-art generative testing baselines based on latent recombination and latent perturbation. While
these approaches can induce mispredictions, they often introduce visible artifacts or structural
distortions that reduce the interpretability of the resulting failures. In contrast, HyNeA generates
visually coherent and semantically plausible test inputs that induce targeted failures without com-
promising input quality. Across image classification and object detection tasks, HyNeA identifies
20–100% more relevant failure-inducing test cases at comparable runtime. Moreover, human eval-
uation rates the generated inputs as up to 90% more realistic, and image-based quality metrics
indicate 40–100% less visual degradation compared to existing methods. These results show that
instance-specific HyperNet adaptation enables effective and realistic test generation with DM.

The contributions of this paper are as follows:

• Testing Method. We propose HyNeA, a novel diffusion-based generative testing approach
that enables dataset-free, controllable input generation through instance-specific HyperNet
adaptation, avoiding the need for curated conditioning datasets or large-scale retraining [1].

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 3

Fig. 1. The diffusion and denoising process in a diffusion model.

• Empirical Evaluation. We conduct an empirical study across multiple vision tasks, demon-
strating that HyNeA generates realistic and semantically coherent test cases that reveal more
informative model failures than existing generative testing baselines.

2 BACKGROUND
2.1 Generative-based Test Generation for DL Systems
Test generation for deep learning (DL) systems has increasingly shifted toward generative ap-
proaches [28], which aim to synthesize new test inputs by learning an implicit model of the input
distribution directly from data. Rather than operating through explicit input-space perturbations
or handcrafted domain models, generative methods sample or manipulate a learned latent space,1
enabling the creation of novel, in-distribution test cases that are not constrained by the availability
or structure of seed inputs.
Typical generative models include Variational Autoencoders (VAEs), Generative Adversarial

Networks (GANs), and diffusion models [28]. By producing new, in-distribution inputs without
relying on handcrafted models or direct input perturbations, generative approaches enable broader
exploration of the input space. Advances in generative modeling, particularly in scalability and
sample quality [9, 18, 28, 30, 53], have therefore increased their relevance for testing modern DL
systems. In the remaining of the section, we describe diffusion models and how controlled test
generation can be achieved via the ControlNet architecture.

2.2 Diffusion Models
Diffusion models are a class of generative models that learn to synthesize data by reversing a
gradual noise addition process. During training, data samples 𝑥0 are progressively perturbed by
adding Gaussian noise over a sequence of 𝑇 time steps, such that

𝑥𝑛+1 = 𝑥𝑛 + 𝜖𝑛, 𝜖𝑛 ∼ N(0, 𝜎2
𝑛),

until the final sample approximates random noise, 𝑥𝑇 ≈ N(0, 𝐼) (Fig. 1). A denoising model 𝜙𝐷
is trained to predict either the added noise or the original clean data at each time step. During
inference, generation starts from random noise and iteratively applies the learned denoising steps
in reverse order, transforming noise into a data sample.

Originally introduced as a method for estimating data distributions [44], diffusion models were
later adapted to image generation tasks [46]. The introduction of a standardized training objective
and explicit noise schedules [13, 45] significantly improved training stability and sample quality.
These advances enabled diffusion models to scale from simpler benchmarks such as CIFAR-10 to
higher-resolution image datasets such as ImageNet, CelebA and beyond.

1A latent space is a learned low-dimensional representation in which complex inputs are encoded such that semantic
variations correspond to structured transformations (see [20]).

, Vol. 1, No. 1, Article . Publication date: January 2026.

4 Weißl et al.

Fig. 2. Simplified ControlNet Architecture (HyperNet + LDM), ∗ indicates Frozen Parameters, the blue arrows

indicate control modulation of blocks in the denoising network. For more details on architecture refer to

Zhang et al. [58].

Further scalability was achieved with Latent Diffusion Models (LDMs), which perform the
diffusion process in a learned latent space using an encoder–decoder architecture [40]. Operating in
latent space reduces computational cost and facilitates training on high-resolution data. More recent
approaches combine diffusion models with transformer-based architectures to further increase
model capacity and generation quality [24, 33]. Owing to their stability and expressiveness, diffusion
models have also been applied to software testing in various domains [3, 28, 30].

2.3 ControlNet
Awidely adopted approach for controllable image generation in diffusion models is ControlNet [58],
which extends LDMs by adding an auxiliary network (HyperNet) that modulates the generative
process using a control signal 𝑐 (Fig. 2). The control can be spatially aligned with the latent input or
embedded via a conditioning function 𝜙𝑐 (·), and is incorporated into the denoising process to guide
generation toward specific structural or semantic features. This mechanism has proven effective for
tasks such as pose-guided synthesis, edge-conditioned generation, and other fine-grained image
manipulations [3, 58], making it a natural foundation for methods aiming at controllable test-case
generation in vision-related problems.

Training a ControlNet requires a curated dataset D = {𝑑𝑖 }𝑁𝑖=1, 𝑑𝑖 = (𝑋𝑖 , 𝑦𝑖 , 𝑐𝑖) ∈ X ×Y × C here
each image 𝑋𝑖 is explicitly paired with a condition for generation 𝑦𝑖 (i.e a prompt), and a control
signal 𝑐𝑖 encoding the structural or semantic constraints to be enforced during generation. This
pairing establishes a fixed relationship between input data and the form of control available to the
model. The training objective follows the standard diffusion formulation, but with an important
architectural constraint: the parameters of the pretrained diffusion backbone are kept frozen to
keep existing generation capabilities of the network. The actual learning is confined to an auxiliary
control branch, which adds controllability without diminishing generative expressiveness of the
backbone. The optimization objective can be written as

L = E𝑑∈D, 𝑡, 𝜖∼N(0,𝐼)
[
∥𝜖 − 𝜖𝜃 (𝑑, 𝑡)∥22

]
, (1)

where 𝜖𝜃 (·) denotes the diffusion model augmented with the control branch. At each denoising
step, generation proceeds by combining the original diffusion transformation with an additive,
control-dependent update:

𝑧 (𝑗) = F𝑗 (𝑧 (𝑗−1) ;𝑦, 𝑡) + 𝛾 G𝑗 (𝑧 (𝑗−1)
𝑐 ;𝑦, 𝑡), 𝑧

(𝑗−1)
𝑐 = 𝑧 (𝑗−1) + 𝜙𝑐 (𝑐), (2)

where F𝑗 is a frozen layer of the base model and G𝑗 is a layer of the ControlNet, which is
influenced by the control signal. The parameter 𝛾 regulates control strength: setting 𝛾 = 0 yields

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 5

LDM

HyperNet

HyNeA-Manipulator

SUT 𝜙𝑃 Objectives 𝜔•

Optimizer Ω

conditioning 𝑦

initial latent 𝑧

control signal 𝑐

𝑋 𝑦

L

𝜃

Fig. 3. HyNeA’s component interaction throughout Optimization. Each component and its respective In- and

Outputs are described in the following sections.

unconstrained generation, while larger values increasingly bias generation toward the specified
control. In practice, 𝛾 is realised using zero layers (indicated as 0 in Fig. 2). These zero layers are
initialized with weights set to zero and are adapted during training. By updating their weights,
they effectively modulate the behavior of the control network, as determined by 𝛾 in (2).
From a testing perspective, this formulation highlights a key limitation of ControlNet-style

approaches: controllability can only be learned from explicitly paired image-control examples.
Consequently, the space of generable test inputs is bounded by the coverage of the conditioning
data, limiting applicability when the testing objective is to explore previously unseen behaviors
beyond the available training distribution. This is where HyNeA excels: by adapting the loss and
network updates, it does not depend on curated datasets (i.e., it is dataset-free), as described in the
later sections.

3 METHODOLOGY
HyNeA is a dataset-free method for controllable image generation that builds on the principles
of ControlNet (Section 2.3). While ControlNet introduces an additional network to inject control
information into the diffusion process and is trained on paired data to learn mappings of the form
(𝑐 → 𝑋), HyNeA inverts this setting. Instead of generating images from control inputs, HyNeA
adjusts the generation process so that the produced image yields a desired control outcome (𝑋 → 𝑐).
This reversal removes the dependency on curated datasets and allows HyNeA to guide generation
based solely on the behavior observed in the produced outputs, making it suitable for targeted test
case generation for DL systems.

The architecture of HyNeA consists of four components (see Fig. 3):

• SUT: The system under test whose behavior is evaluated.
• Manipulator: The LDM and HyperNet used to produce and manipulate test cases.
• Optimizer: The optimizer used to adapt weights in the HyperNet used in HyNeA during
generation of test cases.
• Objectives: The loss function that define the criteria for successful test case generation.

HyNeA replaces the supervised reconstruction objective used in ControlNet-style training with
a behavior-driven feedback loop. Rather than enforcing a fixed pairing between training images and
control signals, the model is evaluated based on the properties of its final generated outputs.
Given an initial control signal 𝑐0 ∈ C, the Manipulator produces a final image 𝑋 ∼ 𝑝𝜃 (· | 𝑐0). A

corresponding control value 𝑐 ∈ C is extracted from 𝑋 using the SUT’s prediction. We define a
collection of loss terms {𝜔𝑖 }𝐾𝑖=1, each evaluating properties of the generated image that are targeted
in the optimization. The overall training objective is defined as:

, Vol. 1, No. 1, Article . Publication date: January 2026.

6 Weißl et al.

L = E𝑋̂∼𝑝𝜃 (· |𝑐0)

[
𝐾∑︁
𝑖=1

𝛼𝑖 𝜔𝑖 (·)
]
. (3)

A key distinction from standard ControlNet-based diffusion training lies in how the loss is
applied throughout the diffusion process. Conventional methods compute losses independently at
each denoising step and backpropagate gradients locally, keeping memory usage low. In contrast,
HyNeA evaluates the alignment objective with respect to the final generated image, aggregating
the influence of the control signal across all denoising steps. This yields more informative gradi-
ents for guiding generation but increases memory demand, making techniques such as gradient
checkpointing necessary to keep training feasible.
When multiple loss terms are used, the coefficients 𝛼𝑖 allow for fine-grained control over their

relative contributions. In this work, we set 𝛼𝑖 = 1 for all 𝑖 , such that no explicit reweighting is
applied and each loss term contributes equally to the overall objective.

3.1 System under Test
We consider three vision tasks: multiclass classification, binary classification, and object detection.
In all cases, the SUT 𝜙𝑃 (·) maps an input image 𝑋 to a prediction 𝑦,

𝑋
𝜙𝑃−−→ 𝑦.

Multiclass Classification. For standard classification, the output is 𝑦 ∈ R𝐶 , where𝐶 is the number
of classes. The predicted class is obtained by 𝑐 = arg max𝑦.
Binary Classification. For binary attribute prediction, the output is either a single logit 𝑦 ∈ R
(one attribute) or a vector 𝑦 ∈ R𝐶 (multiple independent attributes). Unlike multiclass classification,
attributes are evaluated independently: an attribute 𝑐 is predicted as present if 𝑦𝑐 > 0.
Object Detection.We focus on one-stage dense object detector, which predict a large number of
candidate objects per image. Accordingly, the model outputs 𝑦 ∈ R𝐷×𝐶 , where 𝐷 is the number
of detections and 𝐶 the number of classes. Each detection 𝑑 has an associated class distribution;
its predicted class is 𝑐𝑑 = arg max𝑦𝑑 . Detections can be ranked by their maximum confidence
values, producing an ordered list from the most to the least confident predictions. We follow this
ranking in our implementation and restrict evaluation to the top-5 detections. This restriction is
necessary because object detectors can produce thousands of detections per image [16], while our
optimization relies on a single scalar loss value. Aggregating a large number of detections into one
loss causes the contribution of individual detections to be heavily diluted, leading to vanishing
controllability during optimization.

3.2 Manipulator
The manipulators in HyNeA are LDMs with varying architectures. While the specific architecture is
not critical, it is important that we can copy the weights of relevant blocks to initialize the HyperNet.
The original networks are frozen and do not change, but the copied HyperNet is trainable.

To manipulate the latent states of the LDM, we add zero layers, which are inserted between a
copied block and a standard block to modulate the copied networks outputs (see Section 2.3).

Unlike standard ControlNets, which require control signals to be spatially aligned with the input
image, HyNeA directly uses the SUT’s predictions as control inputs. Since these predictions may
be non-spatial, we introduce a trainable condition embedding function 𝜙𝑐 (·) that projects arbitrary
SUT outputs into a spatial control signal compatible with the image latent space. The projection
mechanism and its dimensionality-dependent cases are formalized in Algorithm 1 and further
described in Section 3.2.1.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 7

Algorithm 1: Control Projector 𝜙𝑐
Input: 𝑦̂ ; # SUT’s prediction
Output: 𝑐 ; # Control signal projected to match spatial dimensions of 𝑋

1 if 𝑦̂. ndim = 𝑋 . ndim then

2 𝑐 ← Conv2D(𝑦̂) ; # Convolute to match spatial size

3 else if 𝑋 . ndim −𝑦̂. ndim = 1 then

4 𝑐 ← Conv1D(𝑦̂) ; # Convolute along existing dimensions
5 𝑐 ← Linear(𝑐) ; # Expand missing dimension with linear layer

6 else

7 𝑐 ← Linear(𝑦̂) ; # No matching dimensions; expand fully with linear layer

8 𝑐 ← flatten(𝑐) ; # Flatten to a single vector
9 𝑐 ← reshape(𝑐,𝑋 . shape) ; # Reshape to match 𝑋

10 return 𝑐 ; # Projected control signal aligned with 𝑋

3.2.1 Control Projector. The SUT’s output 𝑦 may vary significantly in structure depending on the
task, such as sequences of vectors (e.g., object detection scores), or flat vectors (e.g., classification
outputs). To use these signals as conditioning inputs for HyNeA, they must be transformed into a
tensor with the same spatial dimensionality as the image latent 𝑋 .
The control projector 𝜙𝑐 therefore performs a dimensionality-aware projection. If 𝑦 already

matches the spatial dimensionality of 𝑋 , a convolution is used to adapt channel dimensions while
preserving spatial structure. If 𝑦 is missing exactly one spatial dimension, convolution is applied
along the existing dimensions, followed by a linear expansion of the missing dimension. For fully
non-spatial outputs, a linear projection is used to expand the signal into a spatial representation. In
all cases, the resulting tensor is reshaped to match the spatial dimensions of 𝑋 , yielding a control
signal that can be injected into the diffusion process.

3.3 Optimizer
As HyNeA leverages the weights of a HyperNet to generate test cases, these weights are optimized
as in standard neural network training, but independently for each instance.
To optimize the weights 𝜃 in HyNeA, we use AdamW [26] as the primary optimizer. AdamW

has shown strong convergence properties across a variety of tasks, including classification and
generative model training [24, 58].

We pair AdamW with the OneCycle learning rate schedule [43], which accelerates convergence
by varying the learning rate from a minimal value 𝑙𝑟𝑚𝑖𝑛 to a maximal value 𝑙𝑟𝑚𝑎𝑥 following a
curve resembling a positively skewed Gaussian. At the start of training, the learning rate increases
rapidly to allow fast exploration, then gradually decreases to stabilize convergence. After each
backpropagation step, the scheduler updates the learning rate slightly, enabling smooth adaptation
throughout training.
The values of 𝑙𝑟𝑚𝑖𝑛 and 𝑙𝑟𝑚𝑎𝑥 depend on the capabilities of the generative network (its ability

to separate features in images) and the robustness of the SUT (how easily its predictions can be
changed). Therefore, there is no universal choice; the learning rates must be selected based on the
specific use case. Generally one should consider a tradeoff between generation quality and runtime
to select an appropriate schedule.
Similarly, the number of steps in the schedule varies by task, but for our experiments we use

2,500 steps, aiming to produce small, incremental changes that effectively influence SUT behavior
without destabilizing the generator.

, Vol. 1, No. 1, Article . Publication date: January 2026.

8 Weißl et al.

3.4 Objectives
In HyNeA, objectives are functions that determine the overall loss during a forward pass through
the network. These objectives guide the generator toward producing test cases that meaningfully
alter the SUT’s behavior.
Visual Fidelity. For all tasks, we include an image-based loss that quantifies how much the
generated image differs from the original. We use the Frobenius distance between two images 𝐴
and 𝐵, as defined in (4).

𝜔𝑑𝐹 (𝐴, 𝐵) :=
√︁

tr((𝐴 − 𝐵)⊺ (𝐴 − 𝐵)) . (4)

Behavior Steering. In addition to image similarity, HyNeA considers the outputs of the SUT
as control signals. To generate targeted failures, we enforce a loss that moves the SUT’s outputs
toward a desired target, representing a specific failure or behavior we want to explore.
For classification tasks, we use the cross-entropy loss to measure the difference between the

SUT’s output 𝑦 and the target class 𝑡 , as defined in (5).

𝜔𝐶𝐸 (𝑦, 𝑡) := −𝑦𝑡 + log
𝐶∑︁
𝑐=1

exp(𝑦𝑐). (5)

where 𝐶 is the total number of classes. This loss encourages the SUT to predict the target class
while penalizing deviations.

For binary classification, we adapt the objective to binary cross-entropy (BCE) loss with logits.
Here, 𝑦 can be a single value if predicting a single binary class, or a vector of length 𝐶 for multiple
binary classes. The target vector is defined as 𝑡 = 𝐶 × {0, 1}, indicating which classes should be
positive. The BCE loss for a specific class 𝑐 is given in (6).

𝜔𝐵𝐶𝐸 (𝑦𝑐 , 𝑡𝑐) := − [𝑡𝑐 log𝜎 (𝑦𝑐) + (1 − 𝑡𝑐) log(1 − 𝜎 (𝑦𝑐))] . (6)

where 𝜎 (·) is the sigmoid function. This formulation directly measures how far the predicted
probability is from the desired binary target.

In object detection, each image can produce multiple predictions, resulting in a 𝐷 ×𝐶 tensor 𝑦,
where 𝐷 is the number of detected objects. We compute the mean-reduced cross-entropy loss over
all detections, as shown in (7).

𝜔𝐶𝐸𝑚 (𝑦, 𝑡) :=
1
𝐷

𝐷∑︁
𝑑=1

𝜔𝐶𝐸 (𝑦𝑑 , 𝑡). (7)

This ensures that the loss considers every detection in the image, averaging their contributions
to guide the generator toward producing failures across multiple objects.
In HyNeA, all loss terms are backpropagated through the network. For each task the Visual

Fidelity objective is combined with an appropriate Behavior Steering objective depending on the
type of SUT (3):
• Classification: L𝐶 = 𝜔𝑑𝐹 + 𝜔𝐶𝐸
• Binary Classification: L𝐵 = 𝜔𝑑𝐹 + 𝜔𝐵𝐶𝐸
• Object Detection: L𝑂 = 𝜔𝑑𝐹 + 𝜔𝐶𝐸𝑚

This combined objective ensures that the generated images both meaningfully alter the SUT’s
output and remain visually coherent relative to the original image.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 9

4 EMPIRICAL STUDY
4.1 ResearchQuestions
RQ1 (effectiveness): How effective is HyNeA in generating diverse, yet semantically faithful failure-

inducing test cases?

We investigate the effectiveness of HyNeA at exposing failures compared to existing baseline
approaches. Beyond raw failure discovery, effective software testing requires test cases that induce
controlled, meaningful changes while maintaining diversity to avoid redundant coverage. Accord-
ingly, we assess additional quality measures, including changes in image space and the diversity of
the generated test cases from each method in the embedding space.
RQ2 (efficiency): How efficient is HyNeA in generating failure-inducing test cases?

We assess whether HyNeA’s efficiency in terms of budget use and runtime is competitive with
respect to baseline methods.
RQ3 (validity): Are generated test cases by HyNeA semantically valid?

Generating test cases is only useful when they remain semantically valid, therefore we compare
HyNeA with our baseline propositions in terms of realism and semantic preservation.
RQ4 (sensitivity): How do HyNeA’s hyperparameter selection affect performance?

As HyNeA’s methodology is based on adapting network weights, the most important parameter
is the learning rate. In this research question, we investigate how the choice of the learning rate
affects the performance of HyNeA in terms of effectiveness, efficiency and validity.

4.2 Metrics & Measures
4.2.1 Metrics used in RQ1.

MS-SSIM (↑). To quantify structural changes between the original and generated images, we use
the multi-scale Structural Similarity Index (MS-SSIM) [52], an extension of SSIM that evaluates
image similarity across multiple spatial scales. MS-SSIM addresses a known limitation of SSIM—its
dependence on image scale and viewing distance—by repeatedly downsampling the image pair and
aggregating luminance, contrast, and structural comparisons at each scale. This yields a metric
that aligned more closely with human perception and is less sensitive to minor color or brightness
variations. Higher MS-SSIM values indicate that the generated image remains structurally close to
the original, meaning fewer structural modifications were required to produce a valid test case.

Embedding Diversity (↑). We also evaluate the diversity of generated images, as test case
generation benefits from covering a wide range of possibilities. Directly measuring diversity in
image space is challenging, so we use embeddings from a pretrained ResNet (𝜙𝐸 (·)) on ImageNet.
These embedding are produced by passing an image 𝑋 through the embedding network 𝐸 = 𝜙𝐸 (𝑋).
Embeddings for similar content are close, while embeddings for more diverse content diverge. We
quantify diversity as the mean variance across embeddings 𝐸 of multiple outputs, as shown in (8)

diversity(𝐸) :=
1
|𝐸 |

|𝐸 |∑︁
𝑖=1

Var(𝐸𝑖). (8)

Higher values indicate that the method produces more diverse test cases.

Trace Difference (↓). While diversity should be high across samples, test cases should remain
semantically close to the original inputs. To assess semantic changes, the trace difference metric
compares embeddings of the original image 𝐸0 and the generated test case 𝐸𝑡 using differences in
the covariance of their embeddings, as defined in (9). Intuitively, this metric captures changes in

, Vol. 1, No. 1, Article . Publication date: January 2026.

10 Weißl et al.

per-dimension variance while discarding cross-dimensional correlations, which is shown when
reformulating it to a ℓ1-distance based metric as shown in Section A.1.

trace∆(𝐸0, 𝐸𝑡) := tr(| cov(𝐸⊺0) − cov(𝐸⊺𝑡) |) (9)
Here, cov(·) denotes the covariance matrix. Lower values indicate that the semantic content of

the network’s input remains similar, even though a test case has been generated.

Misclassification Rate (↑). To assess task performance, we measure how many generated test
cases change the predictions of the SUT. The same overall principle applies to classification, binary
classification, and object detection, but the exact computation differs by task.

mr𝐶 (Y, Ŷ) :=
1
𝐵

𝐵∑︁
𝑖=1

[
argmax Y𝑖 ≠ argmax Ŷ𝑖

]
. (10)

For binary classification, we only evaluate whether the targeted class logit flips sign, indicating
that themodel’s decision boundary has been crossed. Let 𝑐 be the targeted class. Themisclassification
rate is given by (11).

mr𝐵 (Y𝑐 , Ŷ𝑐) :=
1
𝐵

𝐵∑︁
𝑖=1

[
(Y𝑖,𝑐 > 0) ≠ (Ŷ𝑖,𝑐 > 0)

]
. (11)

For multi-class classification, the misclassification rate is defined in (10). Let Y denote the
predictions on the initial images and Ŷ the predictions on the corresponding test cases. Both
prediction sets are tensors of shape 𝐵 ×𝐶 , with 𝐵 denoting the number of SUT outputs and 𝐶 the
number of classes. The Iverson bracket [·] evaluates to 1 if its statement is true and 0 otherwise.
For object detection, each SUT output contains multiple detections, so predictions are of shape

𝐵×𝐷 ×𝐶 , where 𝐷 is the number of detections. We compute the misclassification rate by averaging
over detections as well, as shown in (12).

mr𝑂 (Y, Ŷ) :=
1
𝐵𝐷

𝐵∑︁
𝑖=1

𝐷∑︁
𝑗=1

[
argmax Y𝑖, 𝑗 ≠ argmax Ŷ𝑖, 𝑗

]
. (12)

A higher misclassification rate indicates that more test cases induced meaningful behavioral
changes in the SUT.

Escape Ratio (↓). FollowingMimicry [53], wemeasure whether generated test cases respect their
intended target, providing a proxy for controllability of the generation process. For classification,
the escape ratio remains identical to the original formulation and is shown in (13). Let (14) return
the class ordering for the targeted class 𝑐 . The two highest-scoring classes in the original prediction
are Y𝑐,𝜋1 and Y𝑐,𝜋2.

esc𝐶 (Y, Ŷ) :=
1
𝐵

𝐵∑︁
𝑖=1

[
argmax Ŷ𝑖 ∉ {Y𝑐,𝜋1, Y𝑐,𝜋2}

]
, (13)

𝜋 = argsort Y𝑐 . (14)

For binary classification, we aim to determine whether modifying the target logit unintentionally
alters other binary attributes. We therefore adapt the escape ratio to count how many non-target
classes change sign, using the binary misclassification rate defined earlier. This is shown in (15).

esc𝐵 (Y, Ŷ) :=
1

𝐶 − 1

𝐶∑︁
𝑗=1

mr𝐵 (Y𝑗 , Ŷ𝑗) [𝑗 ≠ 𝑐] . (15)

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 11

For escape ratio, lower is better: a small value indicates precise control, meaning the targeted
failure mode is influenced without unintentionally affecting unrelated features. A high escape ratio
signals that test case generation affects additional outputs, suggesting insufficient fine-grained
control.

Confidence Reduction (↑). For object detection, each input produces multiple detections. To
evaluate whether the generated test cases consistently reduce confidence in the original class across
all detections, we measure the average decrease in the class-𝑐 logit. The confidence reduction is
defined in (16). Predictions have shape 𝐵 × 𝐷 ×𝐶 , with 𝐵 the number of inputs and 𝐷 the number
of detections per input.

cr(Y𝑐 , Ŷ𝑐) :=
1
𝐵𝐷

𝐵∑︁
𝑖=1

𝐷∑︁
𝑗=1

(
Y𝑖, 𝑗,𝑐 − Ŷ𝑖, 𝑗,𝑐

)
. (16)

Higher values indicate stronger confidence reduction in the original class across all detections,
showing that the test cases uniformly suppress the model’s confidence in the targeted class.

4.2.2 Measures used in RQ2.

Average runtime per generated test case (↓). To assess HyNeA’s efficiency relative to the
baseline methods Mimicry and GIFTbench, we compare the average runtime in seconds required
to generate a single test case.

Computational budget (↓). We define the computational budget as the number of SUT evalua-
tions, which makes results comparable across methods. In addition to the implemented baselines, we
also extrapolate the expected runtime of a hybrid approach that combines search-based strategies
like Mimicry with diffusion models.

4.2.3 Measures used in RQ3.

Label preservation (↑). Label preservation is defined as the fraction of generated test cases that
human evaluators judge to retain the original class label. A higher score indicates that a larger
proportion of the generated test cases remain semantically valid to human annotators, suggesting
that any observed change in the SUT’s behavior corresponds to a genuine failure rather than a
semantic shift in the input.

Image realism (↑). Image realism captures the overall perceived realism of generated images as
assessed by human evaluators on a normalized scale from 0 (very unrealistic) to 1 (perfect realism).
This metric quantifies the visual quality of the generated images: while object presence may still be
identifiable in stylized or cartoon-like images, such cases are arguably not valid test inputs for the
SUT.

Ambiguity score (↓). The ambiguity score is defined as the fraction of generated images for
which human evaluators could not decisively determine whether the original class label was
preserved (i.e., marked as Unsure). Lower ambiguity is preferred, as a high ambiguity score may
indicate that generated test cases fall outside the valid input domain and are nonsensical even to
human observers.

Inter-rater agreement (↑). We report Fleiss’ 𝜅 to quantify inter-rater agreement among human
evaluators in the annotation study. Higher values indicate stronger agreement between annotators,
whereas low agreement may suggest poor response quality or the presence of test inputs that are
difficult or impossible for humans to interpret reliably.

, Vol. 1, No. 1, Article . Publication date: January 2026.

12 Weißl et al.

4.2.4 Metrics &Measures used in RQ4. RQ4 uses a combined set of metrics from RQ1-RQ3 (MS-SSIM,
image realism, and runtime). These metrics are evaluated jointly to identify the best trade-off across
different learning-rate configurations. In addition, we include the FID score to enable trade-off
assessment without relying on human annotators.

4.3 Baseline Methods
We compare our approach against two recent generative–based test case generation methods,
Mimicry [53] and GIFTbench [28].

Mimicry is a StyleGAN-based method that generates targeted test cases by mixing latent vectors
within the StyleGAN latent space, enabling controlled generation toward decision boundaries of the
SUT. It first samples an initial latent vector and renders the corresponding image. Based on the SUT’s
second most likely class for this image, Mimicry then samples a second latent vector associated with
the target class. These two vectors are interpolated using a population of interpolation vectors that
are optimized toward via a multi-objective optimizer. In our work, to guarantee a fair comparison,
we exchange Mimicry’s objective functions with the loss terms defined in Section 3.4.

GIFTbench, in contrast, is a diffusion-based method for generating failure cases by manipulating
the latent representation of a diffusion model within a population-based optimization framework. It
employs single-point crossover to recombine latent vectors and mutation operators that inject noise
at varying scales. The method relies on fine-tuned instances of Stable Diffusion 1.5, which are guided
by natural-language prompts to generate the corresponding outputs. While the original work did
not consider object detection as a testing domain [28], the approach can be readily extended by
adapting the fitness calculation, while all other components remain unchanged.

4.4 Objects of Study
We evaluate our approach across three popular DL vision tasks, namely classification, binary
classification, and object detection, each paired with a task-specific diffusion generator and a
corresponding SUT.

4.4.1 Multi-Class Classification. We adopte the ImageNet-1k dataset, a standard benchmark for
large-scale image classification which contains 14 million images across 1,000 classes. Its diversity
and visual complexity motivate the use of diffusion models that can capture fine-grained visual
structure. We focus on ten classes: goldfish, great white shark, tiger shark, hammerhead shark, electric

ray, stingray, cock, hen, teddy bear, pizza. These overlap with the classes used in Mimicry, whereas
GIFTbench supports two of them (teddy bear, pizza).
SUT. We use a pretrained WideResNet-50 model from the torchvision library [27] to ensure
reproducibility and a fair comparison, as the same model is used in the evaluation of Mimicry.
Diffusion Model. We employ a transformer-based LDM of the REPA-E family, which has demon-
strated state-of-the-art generative performance on ImageNet benchmarks [24]. REPA-E extends the
REPA training paradigm, by including the encoder and decoder networks in training, which makes
it well suited for high-fidelity, class-conditional generation.

4.4.2 Multi-label Binary Classification. CelebA provides facial images annotated with 40 binary
attributes, making it a standard benchmark for multi-attribute prediction. We select ten attributes
for detailed evaluation: Arched Eyebrows, Big Lips, Big Nose, Chubby, Eyeglasses, Goatee, Heavy

Makeup, Male, Smiling, Wearing Hat. This selection is intended to cover a range of attributes at
varying levels of granularity and overlaps with existing work by GIFTbench [28].
SUT. We use a ResNet50-based attribute classifier pretrained on ImageNet via torchvision [27].
The model is fine-tuned on the CelebA training split and outputs 40 logits, one per attribute,
effectively functioning as an ensemble of binary classifiers [6].

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 13

Diffusion Model. We use a pretrained UNet-based LDM [7], following the Stable Diffusion
architecture [40]. We select this network because it is pretrained and publicly available, which
ensures good reproducibility and avoids introducing training bias that could arise from tuning a
custom generative model. Although this architecture is less recent and has slightly lower capacity
than transformer-based models such as REPA-E models [24], it nevertheless demonstrates that our
method applies consistently across different families of generative models.

4.4.3 Object Detection. We consider object detection in a driving context, focusing on urban road
scenes with multiple interacting objects. The benchmark setting is based on real-world driving
imagery and semantic segmentation annotations derived from the KITTI dataset [11] and a custom
dataset located in Munich, Germany [5]. This task reflects the safety-critical nature of perception
systems used in autonomous driving and enables evaluation on complex, structured scenes.
SUT.We use YOLOv8 [16], chosen due to its strong accuracy–speed tradeoff and its widespread
use in autonomous driving research [14, 15, 22, 49, 54, 56].
Diffusion Model. For test generation, we rely on a Stable Diffusion 1.5 model fine-tuned on
real-world road scenes [5], implemented via the diffusers library [51]. Generation is guided using
a segmentation-based ControlNet [58] trained on driving-scene segmentations, with KITTI-derived
segmentation maps serving as control signals. This setup reflects a standard diffusion pipeline used
in practice and allows structured control over generated driving scenarios.

4.5 Experimental Setup
All experiments use pre-trained diffusion models across ë ImageNet [24], CelebA [40], and
�Driving [5]. We begin by generating an initial origin image: ImageNet samples are conditioned
on a class index. CelebA samples use no conditioning, since facial attributes can be evaluated on
the generated image itself and then inverted. Driving samples use a positive prompt (P.1) and a
negative prompt (P.2). For ImageNet and Driving, we verify that the initial generation is valid by
checking whether the conditioned class is still detected by the SUT; for Driving, the class must
appear as the most likely class in at least one of the top-5 detections. For the Mimicry experiments,
we use a population size of 100 individuals and optimize for 25 generations, resulting in a theoretical
maximum of 2,700 evaluations when accounting for separate evaluations of the initial and final
populations. We select this budget based on Mimicry’s convergence study, which indicates that the
most significant decrease in loss occurs within the first 20 generations (corresponding to a budget
of 2,100 evaluations), suggesting that extending optimization to 25 generations should yield stable
and high-quality results. Competing methods are constrained to the same computational budget.
For GIFTbench we extend the tasks to the driving dataset by using the same pretrained model as
in HyNeA, with the same prompts (P.1, P.2).
For RQ1 and RQ2, we collect 10 test cases per class per method. ImageNet and CelebA each

contain 10 classes, whereas Driving contains 5 classes. This results in 3 × 10 × 10 = 300 ImageNet
test cases, 2 × 10 × 10 = 200 CelebA test cases, and 2 × 5 × 10 = 100 Driving test cases, for a total
of 600 test cases. All methods incorporate early termination conditions based on misbehavior of
the SUT relative to the original output (misclassification). For each test case, we collect runtime,
original images, and their corresponding targets.

For RQ3, we assess the realism of generated test cases and whether they preserve their original
labels. We use human annotators on ImageNet classes only, as this dataset provides sufficient
volume for statistical significance while keeping the study within budget. Annotators are com-
pensated at approximately 2$ per completed survey, which supports response quality. To reduce
the risk of unrepresentative examples, we construct two separate batches of images and assign
annotators to one of the two batches at random. Each batch contains one image per class–method

, Vol. 1, No. 1, Article . Publication date: January 2026.

14 Weißl et al.

Table 1. RQ1: Effectiveness results for each approach and tasks.

Task Performance Image Metrics

Task Method Misclass Rate ↑ Escape Ratio ↓ Conf. Red. ↑ MS-SSIM ↑ LPIPS ↓ Diversity T ↑ Trace Diff ↓

ë ImageNet

HyNeA 1.00 0.00 - 0.760 ± 0.126 0.318 ± 0.233 0.179 79.60

Mimicry 0.82 0.52 - 0.213 ± 0.115 0.732 ± 0.062 0.147 197.21
GIFTbench 1.00 0.84 - 0.563 ± 0.086 0.499 ± 0.068 0.102 119.92

 CelebA

HyNeA 1.00 0.11 - 0.904 ± 0.069 0.241 ± 0.143 0.068 32.80

Mimicry 0.01 0.01 - 0.499 ± 0.122 0.590 ± 0.068 0.052 70.77
GIFTbench 0.47 0.08 - 0.758 ± 0.080 0.389 ± 0.056 0.047 36.23

�Driving

HyNeA 1.00 ± 0.00 - 0.95 ± 0.11 0.736 ± 0.177 0.310 ± 0.156 0.094 60.71

GIFTbench 0.72 ± 0.45 - 0.83 ± 0.25 0.606 ± 0.266 0.454 ± 0.153 0.102 191.50

pair, yielding 23 questions: 10 classes for HyNeA, 10 for Mimicry, and 2 for GIFTbench (pizza and
teddy), plus 1 attention-check question. For each image, annotators rate visual realism on a 1–5
scale and indicate whether an instance of class X is present (Yes/No/Unsure). We compare methods
based on perceived realism and label preservation.

For RQ4, motivated by the sensitivity of gradient-based adaptation in diffusion models discussed
in Section 2, we study the effect of learning rates on image-level, SUT-level, and human-level
metrics. Experiments are conducted on all three tasks (ImageNet, CelebA, Driving) using a sweep
over nine lrmin and lrmax configurations (described later). We collect two test cases per class and
configuration, yielding 9 × 10 × 2 = 180 test cases per task and 540 in total. For each approach,
we record images, runtime, and either human quality ratings (on ImageNet only) or FID scores
as a surrogate for realism on other datasets. Annotators evaluate realism on a 1–5 scale and are
assigned a single class, receiving 20 images and one attention-check question per batch. Our
methodology adapts the weights of a HyperNet placed on top of a selected diffusion model; because
we backpropagate through the diffusion model to generate failure-inducing perturbations for the
SUT, the associated hyperparameters must be carefully balanced. We therefore use a OneCycle
learning-rate schedule together with the AdamW optimizer (Section 3.3), which reduces manual
tuning. The schedule still requires selecting a minimal learning rate 𝑙𝑟min and a maximal rate
𝑙𝑟max = 100 · 𝑙𝑟min, and we therefore sweep a predefined range of minimal learning rates. For the
ImageNet task, this sweep consists of nine configurations defined by progressively increasing
𝑙𝑟min, with 𝑙𝑟max fixed by the 100× ratio.

LRmin = {𝑚 · 10−𝑘 | 𝑚 ∈ {1, 3}, 𝑘 ∈ {8, 7, 6, 5, 4} }.

For the CelebA task, we define the learning-rate range to alternate between 3𝑒−𝑎 → 1𝑒−𝑏 and
1𝑒−𝑎 → 4𝑒−𝑏 , where 𝑎 decreases from 8 to 4 and 𝑏 decreases from 6 to 4. For the Driving task,
the range alternates between 5𝑒−𝑎 → 8𝑒−𝑏 and 1𝑒−𝑎 → 4𝑒−𝑏 , with 𝑎 decreasing from 6 to 2 and 𝑏
decreasing from 5 to 1.

4.6 Results
4.6.1 Effectiveness (RQ1). To assess the effectiveness of HyNeA, we evaluate both image-based
and SUT-based performance metrics (Section 4.2). For the classification task, both HyNeA and
GIFTbench achieve a misclassification rate of 1, meaning all generated test cases successfully
induce failures in the SUT. Mimicry performs worse with a rate of 0.82. Regarding the escape ratio,
HyNeA achieves a perfect value of 0, indicating that all generated test cases trigger their targeted
misbehavior, which is an effect of the loss terms, steering towards specific targets. In contrast, both
baselines exhibit substantially higher escape ratios, with GIFTbench exceeding 0.8 and Mimicry
0.5.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 15

Table 2. RQ2: efficiency results of each approach.

Runtime (sec) ↓ Budget Used ↓

ë ImageNet

HyNeA 94.41 ± 99.26 25.29 ± 26.72

Mimicry 108.53 ± 16.93 2498.16 ± 390.57
Mimicry (Diffusion) ∼ 1150 -
GIFTbench 205.74 ± 198.99 699.63 ± 748.59

 CelebA

HyNeA 220.89 ± 228.82 30.30 ± 31.43

Mimicry 51.87 ± 3.66 2673.20 ± 37.63
Mimicry (Diffusion) ∼ 1250 -
GIFTbench 1217.24 ± 735.71 1796.00 ± 1088.11

�Driving

HyNeA 113.03 ± 111.70 5.71 ± 5.69

GIFTbench 174.58 ± 152.02 232.12 ± 245.72

For the binary classification task, HyNeA again achieves a misclassification rate of 1, demon-
strating consistent effectiveness. Mimicry struggles due to the absence of clear target classes in
this task. While its escape ratio is lower than in the classification setting, this reduction stems from
the fact that Mimicry struggles to do any meaningful reduction of confidences, rather than having
fine grained control.
For the object detection task, HyNeA again achieves a misclassification rate of 1. The accom-

panying confidence reductions across the detected objects indicate that the method consistently
suppresses model confidence, even when evaluation is restricted to the top-5 detections. This
demonstrates reliable control at the detection level. In contrast, GIFTbench shows weaker ef-
fectiveness: latent-space noise perturbations reduce only ∼ 0.72 of detections on average. The
corresponding mean confidence reduction for the relevant classes is also lower, with GIFTbench
achieving 0.83 compared to 0.95 for HyNeA.

Looking at the image-based metrics, across all tasks, HyNeA surpasses the baselines in MS-SSIM,
the embedding diversity of generated test cases, and the trace difference between original–target
pairs. The only exception is Driving, where GIFTbench has a higher target embeddings diversity.

RQ1 (effectiveness): HyNeA consistently induces failures across all tasks (misclassification rate

= 1), maintains better control over targeted misbehavior (low escape ratio), and produces test cases

that remain closer to the data distribution while achieving higher structural similarity and more

stable embedding behavior than the baselines.

4.6.2 Efficiency (RQ2). As shown in Table 2, HyNeA consistently uses the lowest budget across
tasks. On ImageNet, HyNeA uses an average budget of ∼ 25, which is only about 1% of Mimicry’s
budget (∼ 2500). Compared to GIFTbench, HyNeA requires roughly 28× fewer evaluations. The
standard deviations of HyNeA and GIFTbench are relatively high compared to their means, while
Mimicry shows much lower relative variance. A similar trend holds for CelebA, where GIFTbench
is not included.
For the Driving task, HyNeA’s budget usage is even lower at ∼ 6, compared to the ∼ 25−30

evaluations seen for ImageNet and CelebA, and considerably lower than the ∼ 232 of GIFTbench
in the same task.
Budget usage alone does not show efficiency as runtime also depends on the generative model

architecture. On ImageNet, HyNeA achieves the lowest mean runtime overall. Mimicry shows
a comparable mean runtime but with substantially lower variance. GIFTbench is the slowest

, Vol. 1, No. 1, Article . Publication date: January 2026.

16 Weißl et al.

Table 3. Comparison of approaches for quality measures (bold values indicate best value).

Label Preservation ↑ Image-Realism ↑ Ambiguity Cases ↓

HyNeA 0.787 ± 0.401 0.750 ± 0.237 2.5%
Mimicry 0.287 ± 0.431 0.388 ± 0.340 7.5%
GIFTbench 0.463 ± 0.479 0.438 ± 0.361 7.5%

Table 4. Statistical Analysis of Comparing HyNeA to baseline methods. (bold values are significant)

Label Preservation Image-Realism

HyNeA >

Measure
p-value Cohens-D p-value Cohens-D

Mimicry 9.6e-6 1.185 2.7e-3 1.206
GIFTbench 8.8e-3 0.726 6.1e-3 0.997

baseline, requiring roughly 2× the runtime of HyNeA on average. For CelebA, HyNeA is slower
than Mimicry, with mean runtime of ∼ 220 seconds and ∼ 52 seconds, respectively.

Finally, extrapolating Mimicry’s budget usage using HyNeA’s diffusion-based runtime suggests
that a diffusion-augmented Mimicry would incur runtime roughly 5−10× higher than HyNeA.
This indicates that directly leveraging gradients, as HyNeA does, provides a substantial efficiency
advantage.

RQ2 (efficiency): Overall, HyNeA is substantially more evaluation-efficient than both Mimicry

and GIFTbench across tasks, requiring orders of magnitude fewer SUT evaluations. Competing

approaches incur up to two orders of magnitude higher evaluation budgets, while runtime efficiency

varies by task and model architecture. In particular, although HyNeA is not always the fastest in

wall-clock time, extrapolating diffusion-based runtimes to the evaluation budgets of Mimicry would

result in a 5−10× higher overall runtime, confirming HyNeA’s better efficiency–runtime trade-off.

4.6.3 Validity (RQ3). Across the two batches used in the human assessment, we obtained 11 and
9 valid responses, respectively. The inter-rater agreement, measured using Fleiss’ kappa, was
0.336 ± 0.053. While there is no universally agreed-upon interpretation scale, values between 0.2
and 0.4 are commonly considered to indicate a fair level of agreement [23].
Looking at Table 3, we observe that HyNeA outperforms the two baselines. In terms of label

preservation, HyNeA more than doubles the performance of Mimicry and achieves roughly 60%
higher preservation than GIFTbench. A similar trend is visible for Image Realism, where HyNeA
performs approximately 80% better than Mimicry and again around 60% better than GIFTbench.
Furthermore, HyNeA produces fewer ambiguous cases, indicating that its outputs are easier for
human raters to judge and suggesting higher semantic validity overall.
To investigate whether these improvements are statistically significant, we compute 𝑝-values

using the Wilcoxon signed-rank test [55] for which 𝑝 < 0.05 is the threshold for significance, and
effect sizes using Cohen’s 𝑑 , where values above 0.5 indicate medium effects and values above 0.8
indicate large effects. As shown in Table 4, HyNeA significantly outperforms both baselines in
both label preservation and image realism, with medium to large effect sizes. These quantitative
findings are supported by the qualitative examples.

In Fig. 4, results produced by HyNeA remain visually close to the original images, confirming that
it maintains label semantics and generates realistic, coherent perturbations. In contrast, GIFTbench

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 17

teddy bear→toyshop

pizza→cartoon

(a) HyNeA

teddy bear→toyshop

pizza→bakery

(b) Mimicry

teddy bear→butcher shop

pizza→potpie

(c) GIFTbench

Fig. 4. Example Origins and Targets for ë ImageNet. Predicted Origin and Target class are shown on top of

the images.

Teddy

Pizza

Embedding Projection (Origin vs Target)

Method

Mimicry

HyNeA

GIFTbench

Origins

Targets

Fig. 5. Embedding comparison for “pizza” and “teddy bear” across methods.

introduces coarser and more disruptive changes, reducing semantic validity and increasing the
likelihood that annotators perceive objects as missing or corrupted.
This tendency is even stronger in examples from Mimicry, which often lose structural and

semantic integrity. While some generated images resemble the general class, many examples
diverge significantly from the origin in terms of spatial layout and meaningful features. This
behavior is a known limitation of GAN-based architectures, which can struggle to preserve fine-
grained structure. The larger discrepancies between origin and result images further illustrate that
Mimicry provides limited control over the manipulation process
Fig. 5 provides a qualitative complement to the human assessment. It shows how generated

samples relate to the ImageNet validation-set embedding distribution for the ”pizza” and ”teddy
bear” classes. Although embedding distances do not directly measure semantic validity, larger
deviations tend to coincide with images that annotators judged as less realistic or semantically

, Vol. 1, No. 1, Article . Publication date: January 2026.

18 Weißl et al.

Smiling: True→False

Bangs: True→False

(a) HyNeA

Smiling: False→False

Bangs: False→False

(b) Mimicry

Smiling: True→False

Bangs: True→False

(c) GIFTbench

Fig. 6. Example Origins and Targets for CelebA. Change of predicted attribute presence on top of the

images.

car

traffic light

(a) HyNeA

car

traffic light

(b) GIFTbench

Fig. 7. Example Origins and Targets for�Driving. The targeted objects are shown above the images, with

detected bounding boxes and their corresponding confidence scores displayed.

unclear. Although embedding distances do not directly measure semantic validity, larger deviations
tend to coincide with images that annotators judged as less realistic or semantically unclear. Samples
generated by Mimicry and GIFTbench generally show larger shifts in embedding space, consistent
with the lower label preservation and realism scores observed in the human evaluation. In contrast,
HyNeA typically exhibits smaller embedding shifts, aligning with annotators’ assessments that
these images better preserve visual structure and class semantics. This observation is correlational
and intended to support, rather than replace, the qualitative and human-evaluation results. For the
CelebA task (Fig. 6), HyNeA again demonstrates amore fine-grained and controlled behavior. Unlike
Mimicry, which requires interpolation towards a fixed latent target, HyNeA directly manipulates
the image while preserving the core identity and structure. This property is essential for effective
test-case generation, as seen in the binary attribute states shown in the figures. The third column,
which visualizes the total change between origin and result, highlights that HyNeA modifies only
local or attribute-relevant regions, while Mimicry often introduces global changes that overwhelm
the original image. This makes Mimicry unsuitable for tasks where no reliable conditional target
exists.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 19

1e-
8→

1e-
6

3e-
8→

3e-
6

1e-
7→

1e-
5

3e-
7→

3e-
5

1e-
6→

1e-
4

3e-
6→

3e-
4

1e-
5→

1e-
3

3e-
5→

3e-
3

1e-
4→

1e-
2

Learning Rate Schedule

0

250

500

750

1000

1250

R
un

ti
m

e
(s

ec
)

0.0

0.2

0.4

0.6

0.8

1.0

R
ea

lis
m

0.0

0.2

0.4

0.6

0.8

1.0

M
S

-S
S

IM

Fig. 8. Runtime–quality trade-off across learning-rate

schedules (ë ImageNet).

1e
-8
→1e

-6

3e
-8
→3e

-6

1e
-7
→1e

-5

3e
-7
→3e

-5

1e
-6
→1e

-4

3e
-6
→3e

-4

1e
-5
→1e

-3

3e
-5
→3e

-3

1e
-4
→1e

-2

Learning Rate Schedule

260

280

300

320

340

360

380

F
ID

-S
co

re

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ea

lis
m

-
In

ve
rt

ed

Spearman Correlation = 0.82

Fig. 9. Correlation between FID and Human anno-

tated Image-Realism.

Finally, the Driving task in Fig. 7 illustrates how HyNeA suppresses detections of selected
classes while keeping the overall scene semantically intact. Bounding boxes for the top-5 detections
are shown only when their confidence exceeds 0.5, preventing low-certainty predictions from
appearing in the visualization. In these examples, HyNeA maintains scene structure and visual
coherence, modifying only the image regions necessary to reduce detector confidence. In contrast,
GIFTbench primarily degrades images until they fall sufficiently out of distribution for the SUT to
function reliably.

More examples of images generated for the three tasks can be found in the Appendix.

RQ3 (validity): Human evaluation on ImageNet shows that HyNeA produces higher-quality and

more semantically meaningful manipulations than both Mimicry and GIFTbench. HyNeA more

than doubles Mimicry’s label-preservation rate, achieves about 60% higher preservation than GIFT-

bench, and delivers roughly the same improvement in precieved realism. Qualitative assessments

align with these results: HyNeA better preserves object identity and structure, and restricts changes

to semantically relevant regions, while the baselines introduce broader, less controlled modifications.

4.6.4 Sensitivity (RQ4). Fig. 8 shows runtime in seconds (blue) and perceived output quality (green),
where 1 denotes the highest quality and 0 the lowest. The shaded region marks the learning-rate
range used in RQ1–RQ3. The error bars indicate the 25th and 75th quartile. Perceived output quality
is measured through a human evaluation study, yielding 6.3 ± 1.8 valid responses on average, with
a validity rate of 71.6% across classes.
Very small learning rates lead to substantially longer runtime, in some cases up to 20 minutes

per test case. Increasing the learning rate reduces runtime rapidly, stabilizing below roughly 200
seconds. Output quality shows the opposite trend: larger learning rates yield more aggressive
perturbations and noticeably degrade visual fidelity. Learning rates below 10−6 do not substantially

1e-8 → 1e-6 3e-8 → 3e-6 1e-7 → 1e-5 3e-7 → 3e-5 1e-6 → 1e-4 3e-6 → 3e-4 1e-5 → 1e-3 3e-5 → 3e-3 1e-4 → 1e-2

Fig. 10. Examples of HyNeA outputs for fooling the SUT with initial class "pizza" across lr-schedules.

, Vol. 1, No. 1, Article . Publication date: January 2026.

20 Weißl et al.

3e-
8→

1e-
6

1e-
7→

4e-
6

3e-
7→

1e-
5

1e-
6→

4e-
5

3e-
6→

1e-
4

1e-
5→

4e-
4

3e-
5→

1e-
3

1e-
4→

4e-
3

3e-
4→

1e-
2

Learning Rate Schedule

0

1000

2000

3000

4000

5000

R
un

ti
m

e
(s

ec
)

160

180

200

220

240

260

F
ID

0.0

0.2

0.4

0.6

0.8

1.0

M
S

-S
S

IM

(a) Tradeoff for CelebA.

5e-
6→

8e-
5

1e-
5→

4e-
4

5e-
5→

8e-
4

1e-
4→

4e-
3

5e-
4→

8e-
3

1e-
3→

4e-
2

5e-
3→

8e-
2

1e-
2→

4e-
1

5e-
2→

8e-
1

Learning Rate Schedule

0

150

300

450

600

750

R
un

ti
m

e
(s

ec
)

250

300

350

400

450

500

F
ID

0.0

0.2

0.4

0.6

0.8

1.0

M
S

-S
S

IM

(b) Tradeoff for�Driving Dataset.

Fig. 11. Runtime–quality trade-off across learning-rate schedules.

improve quality, indicating diminishing returns at the lower end. A value of 10−6 offers a practical
balance for this task (see examples in Fig. 10).

To assess structural change in the manipulated images, Fig. 8 reports MS-SSIM values in orange.
Learning rates below 10−6 produce similar MS-SSIM values, whereas higher learning rates reduce
MS-SSIM more quickly, indicating more pronounced structural changes.
As we aim to automate evaluation to the extent possible, we investigate whether human-

annotated realism correlates with the widely-used FID score, which compares distributions of
images. We compare the distribution of generated images produced by HyNeA to the distribution
in the test or validation splits of the respective datasets. Because a lower FID score is generally
better, we invert the human realism measure for comparison in Fig. 9. As the figure shows, the
general trend is highly correlated, which is confirmed by the Spearman correlation coefficient of
0.82. This indicates that FID can serve as a reliable surrogate metric for the trade-off analyses used
in the remaining datasets.
As shown in Fig. 11, the red highlighted regions correspond to the schedules used in the final

experiments for the remaining RQs. Generally, we aim for minimal degradation of realism (FID) and
structural content (MS-SSIM), while keeping runtime low to facilitate efficient experimentation. For
CelebA, the schedule ranging from 1e−5→ 4e−4 provides the most appropriate trade-off across
these aspects. For the Driving dataset, the learning rates are higher due to the type of data and the
characteristics of the SUT, for which the most suitable schedule was found to be 1e−4→ 4e−3.

RQ4 (sensitivity): Small learning rates substantially increase runtime without providing mean-

ingful improvements in output quality or structural similarity. Larger learning rates significantly

reduce runtime but introduce stronger, less controlled perturbations. The strong correlation between

human-rated realism and FID enables automated evaluation. Across ImageNet, CelebA, and the

Driving dataset, we show that it is possible to identify learning-rate schedules that strike the best

balance between realism, structural preservation, and runtime efficiency, ensuring that HyNeA

remains both effective and practical for large-scale experimentation.

4.7 Threats to Validity
4.7.1 Internal validity. All methods were executed constrained by same computational budget,
defined by the total number of SUT evaluations. Early termination conditions were applied consis-
tently across methods to ensure comparable efficiency measurements. The generative models used
in our experiments were taken from prior work and selected for their demonstrated generation

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 21

quality [24, 40]. All SUTs are publicly available through torchvision [27], ultralytics [16], or
replication packages [6], supporting reproducibility.
For human evaluations, the survey structure was validated via a pilot run and attention-check

questions ensured response quality [47]. While identical starting conditions cannot be enforced
due to sampling, multiple repetitions per test case mitigate variability. Human annotation is further
constrained by budget (∼ 250$), creating a trade-off between the number of responses and fair
compensation; we prioritized fewer high-quality responses to maximize annotation reliability.

4.7.2 External validity. Our evaluation considers three different testing tasks and a diverse set of
SUTs, but these do not represent the full space of possible systems. Accordingly, generalization
to other architectures or domains remains an open question. The choice of generative model
also affects external validity: more capable models tend to enable more effective test generation.
Although we selected the strongest open-source models available for each task, results may differ
when applied to weaker generative backbones.

5 DISCUSSION
Diffusion models substantially improve the quality of generated test cases when applied

appropriately. HyNeA improves the limitations of previous black-box generative-based test
generators [28, 53] by employing a white-box approach that leverages facilitate controllability
without retraining. Particularly, HyNeA avoids direct noise-space perturbations and instead operates
through semantically grounded transformations that remain within the model’s operating regime.
On the other hand, HyNeA adapts the ControlNet architecture and inverts its control mechanism:
rather than supplying a fixed control signal, HyNeA iteratively modifies the generated image until
the observed control signal enters a targeted failure region. This design enables HyNeA to generate
realistic, high-quality test cases without the overhead of constructing datasets of failures. As a
result, HyNeA achieves runtime efficiency comparable to prior approaches, even when contrasted
with the smaller models used in Mimicry (Table 2), while improving test-case realism (Table 3) and
overall effectiveness in generating failures for specified inputs (Table 1).
HyNeA is useful for various testing domains with varying complexity of SUT behavior.

As AI becomes more important in diverse systems, its functionality can vary drastically depending
on the task; while previous work has mostly focused on classification, other tasks such as object
detection or binary classification are equally relevant. In our work, we show that HyNeA excels
in testing different SUTs with fewer restrictions than our baselines. In comparison to Mimicry,
HyNeA does not rely on the presence of a conditional generative network, as it is gradient based
and can therefore change attributes in images that are not explicitly “targetable” by the generative
network itself. This allows general-purpose networks such as pretrained Stable Diffusion models
to be used even when they do not allow specific targeting toward semantic conditions. As shown
in the CelebA task, this reliance on explicit targeting makes Mimicry fail, as without a target
of the required semantic class the optimization has no hope of succeeding (Table 1). Similarly,
in GIFTbench, the conditioning is enforced through specific prompts, which limits testing to
domains with available datasets; for example, in CelebA one would need a dataset describing facial
attributes in each image with great detail to generate an image containing the desired attribute. In
contrast, HyNeA can generate any image using the same unconditioned generator and manipulate
it such that the attribute appears or disappears based on its oracle, the SUT. Conversely, we also
explore testing of object detectors such as Driving in complex domains like self-driving, where
semantically rich scenarios are difficult to specify and produce datasets for; here HyNeA excels in
its ability to perform targeted manipulations, whereas baselines fail and resort to global corruption
(Fig. 14).

, Vol. 1, No. 1, Article . Publication date: January 2026.

22 Weißl et al.

6 RELATEDWORK
Deep learning test generation techniques fall broadly into three families: model-based input manip-
ulation, raw input manipulation, and latent-space manipulation. We briefly outline each to position
HyNeA within the state of the art. Our emphasis is on approaches that can generate high-fidelity,
in-distribution test cases for complex systems—an area where existing methods remain limited.
Model-based input manipulation (MIM) constrains test generation to a manually crafted repre-

sentation of the input domain [10, 32, 36, 38, 59]. These techniques can produce valid inputs when
such domain models are available but are inherently restricted to simple or well-structured domains
where clear input models exist. As demonstrated in Mimicry [53], MIM approaches struggle to
scale to more complex, high-dimensional data, and typically fail to generate realistic test cases.
Their reliance on hand-engineered input abstractions limits applicability in realistic settings where
the data distribution cannot be explicitly modeled.
Raw input manipulation (RIM) operates directly in pixel space by perturbing existing images,

either by exploiting knowledge of internal parameters of the SUT in a white-box setting [8, 14, 21],
or by applying optimization-based techniques in a black-box manner [25, 57]. While effective
for evaluating adversarial robustness, RIM methods typically do not generate functionally novel
test cases. Instead, they rely on small, often imperceptible perturbations to induce model failures,
producing samples that may lie outside the true data distribution or exhibit adversarial artifacts [12,
34, 48]. As a result, RIM is well suited for robustness assessment but less appropriate for functional
test generation, where the objective is to synthesize realistic, in-distribution inputs that reflect
semantically meaningful variations and expose model-level functional failures [4].

Latent–space manipulation methods have gained traction as alternatives to MIM and RIM, whose
effectiveness diminishes in complex, information-rich domains. These approaches exploit the
latent spaces of generative models, which implicitly capture the structure of the underlying data
distribution with far greater expressiveness than manually engineered models.

Several methods perturb latent representations using noise. Sinvad applies noise-based perturba-
tions in the latent space of VAEs [17], though VAEs generally lack the expressiveness needed for
complex data domains [53]. Buzhinsky et al. [4] extend this idea to GANs, benefiting from higher-
quality generation but still offering limited control. More recent work such as GIFTbench [28]
generalizes noise-based manipulation across VAEs, GANs, and diffusion models by injecting noise
into intermediate latent representations. While GIFTbench can operate on all three model classes,
we employ only its diffusion-based variant because diffusion latents provide substantially higher
fidelity and stability than the VAE and GAN counterparts. Even in diffusion space, however, GIFT-
bench remains an untargeted perturbation method that offers limited fine-grained control over
generated test cases.
Mimicry [53], one of our baselines, pursues a different latent-space strategy. It samples origin

and target seeds in StyleGANs latent 𝑤-space, interpolates between them, and optimizes the
interpolation weights to steer generation toward targeted test cases such as boundary or adversarial
samples. This yields more directed behavior than noise-based methods while remaining fully
dataset-free. Similarly, Detect [6] works with StyleGANs, but in the feature space, instead of the
whole input space, which allows more fine-grained feature-based perturbations.

Bao et al. [2] take a broader approach by incorporating generative models directly into the SUT’s
training loop. Using VAEs, GANs, and diffusion models, they generate previously unseen samples
that are then treated as test cases without specific conditioning.
Diffusion-based methods have become particularly prominent due to their strong generative

performance [2, 28, 29]. Missaoui et al. [29] use diffusion models for semantic control via targeted

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 23

inpainting to synthesize failure-inducing inputs. Yet explicit conditioning and fine-grained behav-
ioral control remain limited: existing techniques rely on untargeted perturbations or surrogate
models that constrain manipulations to semantically valid regions.

To address these limitations, we propose HyNeA, a dataset-free diffusion-based method enabling
direct, behavior-level control over generated test cases without requiring a surrogate model for
inpainting.

7 CONCLUSION
In this work we present HyNeA, a diffusion-based test-case generator that uses HyperNetwork
adaptation. HyNeA enables dataset-free and controllable test-case generation for a variety of deep
learning systems, by adapting the ControlNet architecture and a customized tuning regime. It
achieves higher performance in both test discovery and test-case realism compared to relevant
baselines. We compare HyNeA to Mimicry, a state-of-the-art test-case generation method based on
StyleGANs, and to GIFTbench, a complementary diffusion-based approach. While these baselines
struggle with generation realism and fine-grained control, HyNeA performs reliably across all tasks
by respecting the model’s internal structure and operational constraints.
Our empirical study shows that HyNeA has similar runtime on our hardware but significantly

outperforms the baselines in terms of both the quantity of discovered test cases and their quality.
Human evaluators rate HyNeA’s test cases as more realistic and more semantically and structurally
meaningful.

We argue that test-case generation for deep learning models is only useful when the generated
cases cover a broad range of increasingly complex scenarios. Simple examples (e.g., digit classifica-
tion) are insufficient for evaluating modern systems. Future work should therefore target visually
complex domains such as automated driving, or evaluate systems under test that are inherently
more robust to small perturbations, such as object detectors or segmentation models. Another
promising direction is refining the balancing of HyperNet’s, which becomes increasingly important
as data complexity grows and strongly influences output quality.

8 DATA AVAILABILITY
The codebase, analysis scripts, and all artifacts generated for HyNeA and Mimicry experiments are
available in the replication package [1]. For replication of GIFTbench experiments, please refer to
the original publication [28].

REFERENCES
[1] 2026. Replication Package. https://github.com/oliverweissl/SMOO/tree/archive/hynea.
[2] Shenglin Bao, Nan Jiang, Weijie Zhu, and Pei Zhang. 2024. Generative Model-Based Test Case Generation and

Operational Testing for Deep Learning. In 2024 5th International Conference on Big Data & Artificial Intelligence &

Software Engineering (ICBASE). IEEE, 565–570.
[3] Luciano Baresi, Davide Yi Xian Hu, Andrea Stocco, and Paolo Tonella. 2025. Efficient Domain Augmentation for

Autonomous Driving Testing Using Diffusion Models. In 2025 IEEE/ACM 47th International Conference on Software

Engineering (ICSE). IEEE Computer Society, 743–743.
[4] Igor Buzhinsky, Arseny Nerinovsky, and Stavros Tripakis. 2023. Metrics and methods for robustness evaluation of

neural networks with generative models. Machine Learning 112, 10 (2023), 3977–4012.
[5] cccccsys. 2024. Guericke Dataset 2. https://huggingface.co/datasets/cccccsys/guericke_dataset_2.
[6] Xingcheng Chen, Oliver Weissl, and Andrea Stocco. 2026. Feature-Aware Test Generation for Deep Learning Models.

arXiv:2601.14081 [cs.SE] https://arxiv.org/abs/2601.14081
[7] CompVis Team. 2022. CompVis: ldm-celebahq-256. https://huggingface.co/CompVis/ldm-celebahq-256. Accessed:

2025-11-20.
[8] Francesco Croce and Matthias Hein. 2020. Minimally distorted adversarial examples with a fast adaptive boundary

attack. In International conference on machine learning. PMLR, 2196–2205.

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/oliverweissl/SMOO/tree/archive/hynea
https://huggingface.co/datasets/cccccsys/guericke_dataset_2
https://arxiv.org/abs/2601.14081
https://arxiv.org/abs/2601.14081
https://huggingface.co/CompVis/ldm-celebahq-256

24 Weißl et al.

[9] Swaroopa Dola, Rory McDaniel, Matthew B Dwyer, and Mary Lou Soffa. 2024. CIT4DNN: Generating Diverse and
Rare Inputs for Neural Networks Using Latent Space Combinatorial Testing. In Proceedings of the IEEE/ACM 46th

International Conference on Software Engineering. 1–13.
[10] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically Testing Self-driving Cars with Search-based

Procedural Content Generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing

and Analysis (Beijing, China) (ISSTA 2019). ACM, New York, NY, USA, 318–328. https://doi.org/10.1145/3293882.3330566
[11] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision meets Robotics: The KITTI Dataset.

International Journal of Robotics Research (IJRR) (2013).
[12] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Differential fuzzing testing of deep

learning systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 739–743.
[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in neural

information processing systems 33 (2020), 6840–6851.
[14] Jung Im Choi and Qing Tian. 2022. Adversarial attack and defense of yolo detectors in autonomous driving scenarios.

In 2022 IEEE intelligent vehicles symposium (IV). IEEE, 1011–1017.
[15] Linfeng Jiang and Peidong Zhan. 2025. FM-YOLOv11: A Lightweight Traffic Sign Detection Network Based on Mixed

Attention. In Proceedings of the 2025 International Conference on Artificial Intelligence and Computational Intelligence.
433–439.

[16] Glenn Jocher, Jing Qiu, and Ayush Chaurasia. 2023. Ultralytics YOLO. https://github.com/ultralytics/ultralytics
[17] Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. Sinvad: Search-based image space navigation for dnn image classifier

test input generation. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops.
521–528.

[18] Sungmin Kang, Robert Feldt, and Shin Yoo. 2024. Deceiving Humans and Machines Alike: Search-Based Test Input
Generation for DNNs Using Variational Autoencoders. ACM Transactions on Software Engineering Methodologies 33
(dec 2024), 103:1–24. Issue 4. https://doi.org/10.1145/3635706

[19] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 4401–4410.

[20] Diederik P Kingma. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[21] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples in the physical world. In Artificial

intelligence safety and security. Chapman and Hall/CRC, 99–112.
[22] Stefano Carlo Lambertenghi and Andrea Stocco. 2024. Assessing Quality Metrics for Neural Reality Gap Input

Mitigation in Autonomous Driving Testing. In 2024 IEEE Conference on Software Testing, Verification and Validation

(ICST ’24). IEEE, 173–184. https://doi.org/10.1109/ICST60714.2024.00024
[23] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data. Biometrics

(1977), 159–174.
[24] Xingjian Leng, Jaskirat Singh, Yunzhong Hou, Zhenchang Xing, Saining Xie, and Liang Zheng. 2025. Repa-e: Unlocking

vae for end-to-end tuning with latent diffusion transformers. arXiv preprint arXiv:2504.10483 (2025).
[25] Yue Liu, Lichao Feng, Xingya Wang, and Shiyu Zhang. 2022. DeepBoundary: A Coverage Testing Method of Deep

Learning Software based on Decision Boundary Representation. In 2022 IEEE 22nd International Conference on Software

Quality, Reliability, and Security Companion (QRS-C). IEEE, 166–172.
[26] Ilya Loshchilov, Frank Hutter, et al. 2017. Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101

5, 5 (2017), 5.
[27] TorchVision maintainers and contributors. 2016. TorchVision: PyTorch’s Computer Vision library.
[28] Maryam Maryam, Matteo Biagiola, Andrea Stocco, and Vincenzo Riccio. 2025. Benchmarking Generative AI Models

for Deep Learning Test Input Generation. In 2025 IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, 174–185.

[29] Sondess Missaoui, Simos Gerasimou, and Nicholas Matragkas. 2023. Semantic data augmentation for deep learning
testing using generative AI. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1694–1698.

[30] Nusrat Jahan Mozumder, Felipe Toledo, Swaroopa Dola, and Matthew B Dwyer. 2025. RBT4DNN: Requirements-based
Testing of Neural Networks. arXiv preprint arXiv:2504.02737 (2025).

[31] Eliya Nachmani, Robin San Roman, and Lior Wolf. 2021. Non gaussian denoising diffusion models. arXiv preprint
arXiv:2106.07582 (2021).

[32] Neelofar Neelofar and Aldeida Aleti. 2024. Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features. ACM Transactions on Software Engineering and Methodology 33, 4 (2024), 1–32.

[33] William Peebles and Saining Xie. 2023. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF

international conference on computer vision. 4195–4205.

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1145/3293882.3330566
https://github.com/ultralytics/ultralytics
https://doi.org/10.1145/3635706
https://doi.org/10.1109/ICST60714.2024.00024

HyperNet-Adaptation for Diffusion-Based Test Case Generation 25

[34] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning
systems, In proceedings of the 26th Symposium on Operating Systems Principles (Shanghai, China). Commun. ACM

62, 11, 1–18. https://doi.org/10.1145/3132747.3132785
[35] Zipeng Qi, Lichen Bai, Haoyi Xiong, and Zeke Xie. 2024. Not all noises are created equally: Diffusion noise selection

and optimization. arXiv preprint arXiv:2407.14041 (2024).
[36] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepMetis: Augmenting a Deep

Learning Test Set to Increase its Mutation Score. In Proceedings of the 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’21). IEEE/ACM.
[37] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and Paolo Tonella. 2020.

Testing machine learning based systems: a systematic mapping. Empirical Software Engineering 25 (2020), 5193–5254.
[38] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning system

testing. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 876–888.
[39] Vincenzo Riccio and Paolo Tonella. 2023. When and Why Test Generators for Deep Learning Produce Invalid Inputs:

an Empirical Study. In Proceedings of 45th International Conference on Software Engineering (ICSE ’23). ACM, 12 pages.
[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 10684–10695.
[41] Axel Sauer, Katja Schwarz, and Andreas Geiger. 2022. Stylegan-xl: Scaling stylegan to large diverse datasets. In ACM

SIGGRAPH 2022 conference proceedings. 1–10.
[42] Dario Shariatian, Umut Simsekli, and Alain Oliviero Durmus. [n. d.]. Heavy-Tailed Diffusion with Denoising Levy

Probabilistic Models. In The Thirteenth International Conference on Learning Representations.
[43] Leslie N Smith and Nicholay Topin. 2019. Super-convergence: Very fast training of neural networks using large

learning rates. In Artificial intelligence and machine learning for multi-domain operations applications, Vol. 11006. SPIE,
369–386.

[44] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning. pmlr, 2256–2265.

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502 (2020).
[46] Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradients of the data distribution. Advances

in neural information processing systems 32 (2019).
[47] Alexander Sorokin and David Forsyth. 2008. Utility data annotation with amazon mechanical turk. In 2008 IEEE

computer society conference on computer vision and pattern recognition workshops. IEEE, 1–8.
[48] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated Testing of Deep-neural-network-

driven Autonomous Cars. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). ACM, New York, NY, USA, 303–314. https://doi.org/10.1145/3180155.3180220

[49] Zhiyong Tian and Yunfei Li. 2024. Pedestrian Detection Using Event Cameras and YOLOv8: An Optimized Event
Stream to Event Frame Conversion Algorithm. In Proceedings of the 2024 9th International Conference on Intelligent

Information Processing. 134–140.
[50] Jente Vandersanden, Sascha Holl, Xingchang Huang, and Gurprit Singh. 2024. Edge-preserving noise for diffusion

models. (2024).
[51] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv

Nair, Sayak Paul, Steven Liu, William Berman, Yiyi Xu, and Thomas Wolf. [n. d.]. Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/diffusers

[52] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale structural similarity for image quality assessment.
In The thrity-seventh asilomar conference on signals, systems & computers, 2003, Vol. 2. Ieee, 1398–1402.

[53] Oliver Weißl, Amr Abdellatif, Xingcheng Chen, Giorgi Merabishvili, Vincenzo Riccio, Severin Kacianka, and Andrea
Stocco. 2025. Targeted Deep Learning System Boundary Testing. ACM Transactions on Software Engineering and

Methodology (2025).
[54] Ari Wibowo, Bambang Riyanto Trilaksono, Egi Muhammad Idris Hidayat, and Rinaldi Munir. 2023. Object detection

in dense and mixed traffic for autonomous vehicles with modified yolo. IEEE Access 11 (2023), 134866–134877.
[55] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 6 (dec 1945), 80. https:

//doi.org/10.2307/3001968
[56] Jing Yu, Xiaojun Ye, and Qiang Tu. 2022. Traffic sign detection and recognition in multiimages using a fusion model

with YOLO and VGG network. IEEE Transactions on Intelligent Transportation Systems 23, 9 (2022), 16632–16642.
[57] Fuyuan Zhang, Sankalan Pal Chowdhury, and Maria Christakis. 2020. Deepsearch: A simple and effective blackbox

attack for deep neural networks. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3180155.3180220
https://github.com/huggingface/diffusers
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968

26 Weißl et al.

Conference and Symposium on the Foundations of Software Engineering. 800–812.
[58] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional control to text-to-image diffusion models.

In Proceedings of the IEEE/CVF international conference on computer vision. 3836–3847.
[59] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. Deephyperion: exploring the feature

space of deep learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’21). Association for Computing Machinery, 79–90.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 27

A METHODOLOGY
A.1 Derivation of the ℓ1 Formulation of Trace Difference
We show that the trace-based definition of trace∆ in (9) is equivalent to an ℓ1-distance computed
on the diagonal of the covariance difference. Let

Σ0 = cov(𝐸⊺0), Σ𝑡 = cov(𝐸⊺𝑡),
with Σ0, Σ𝑡 ∈ R𝑑×𝑑 . By definition, the trace of a matrix is the sum of its diagonal entries:

tr(𝐴) =
𝑑∑︁
𝑖=1

𝐴𝑖𝑖 .

Applying the trace to the elementwise absolute difference of the covariance matrices ΣΔ = Σ0 − Σ𝑡
gives

tr(|ΣΔ |) =
𝑑∑︁
𝑖=1
| (ΣΔ)𝑖𝑖 | .

Equivalently, isolating the diagonal via a Hadamard product with the identity matrix 𝐼 yields the
diagonal matrix

𝐷 := ΣΔ ⊙ 𝐼 , so that 𝐷𝑖 𝑗 = (ΣΔ)𝑖 𝑗 𝐼𝑖 𝑗 =
{
(ΣΔ)𝑖𝑖 𝑖 = 𝑗,

0 𝑖 ≠ 𝑗 .

Using the entry-wise ℓ1-norm ∥𝐴∥1 :=
∑
𝑖, 𝑗 |𝐴𝑖 𝑗 |, we obtain

∥ΣΔ ⊙ 𝐼 ∥1 =
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
|𝐷𝑖 𝑗 | =

𝑑∑︁
𝑖=1
|𝐷𝑖𝑖 | =

𝑑∑︁
𝑖=1
| (ΣΔ)𝑖𝑖 | = tr(|ΣΔ |) .

Thus, trace∆ equals the ℓ1-distance between the diagonals of the covariance matrices, capturing
per-dimension changes while discarding cross-dimensional correlations.

, Vol. 1, No. 1, Article . Publication date: January 2026.

28 Weißl et al.

B STUDY

goldfish

Class Origin Result

anemone fish

Predicted Class

white shark tiger shark

tiger shark hammerhead

hammerhead tiger shark

electric ray horned viper

stingray sandbar

cock hen

hen cock

teddy bear bow tie

pizza dough

(a) HyNeA

goldfish

Class Origin Result

dough

Predicted Class

white shark tiger shark

tiger shark white shark

hammerhead white shark

electric ray hammerhead

stingray stingray

cock hen

hen cock

teddy bear totem pole

pizza frying pan

(b) Mimicry

teddy bear

Class Origin Result

irish terrier

Predicted Class

pizza french loaf

(c) GIFTbench

Fig. 12. Example Origins and Targets forë ImageNet. Predicted Origin and Target class are shown to the

left and right of the images.

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 29

Arched Eyebrows

Class

False

Origin
True

Result Change

Chubby

False True

Eyeglasses

False True

Goatee

False True

Heavy Makeup

False True

Male

True False

Smiling

True False

Wearing Hat

False True

Bangs

True False

Big Nose

False True

(a) HyNeA

Arched Eyebrows

Class

False

Origin
False

Result Change

Chubby

False False

Eyeglasses

False False

Goatee

False False

Heavy Makeup

False False

Male

True True

Smiling

False False

Wearing Hat

False False

Bangs

False False

Big Nose

False False

(b) Mimicry

Eyeglasses

Class

True

Origin
True

Result Change

Smiling

True False

Bangs

True False

(c) GIFTbench

Fig. 13. Example Origins and Targets for CelebA. Predicted attribute presence is shown in the top left

corner of the examples, the difference between Origin and Target is shown in the last column.

, Vol. 1, No. 1, Article . Publication date: January 2026.

30 Weißl et al.

stop sign

Class Origin Result

car

bus

truck

traffic light

(a) HyNeA

stop sign

Class Origin Result

car

bus

truck

traffic light

(b) GIFTbench

Fig. 14. Example Origins and Targets for the�Driving Dataset. Predicted Objects are shown with bounding

boxes and their confidence. NMS was used to reduce duplicate bounding boxes and a confidence threshold of

0.5 is used to filter further.

Prompt P.1

"A photorealistic urban traffic scene with cars, traffic lights, and stop signs, clear skies, daytime,

featuring a {class}"

Prompt P.2

"blurry, distorted, ugly, low quality, cartoon, sketch"

, Vol. 1, No. 1, Article . Publication date: January 2026.

HyperNet-Adaptation for Diffusion-Based Test Case Generation 31

C POTENTIAL PITFALLS OF NOISE-BASED LATENT MANIPULATION IN LDMS
In LDMs, the latent code to denoise 𝑧 ∈ R𝑑 is assumed to follow a standard Gaussian prior,

𝑧 ∼ N(0, 𝐼𝑑),
so that the decoder (usually a VAE) reliably reconstructs codes consistent with that prior.

In the perturbation scheme used in GIFTbench, latents are iteratively mutated via
𝑧𝑘+1 = 𝑧𝑘 + 𝜖𝑘 , 𝜖𝑘 ∼ N(0, 𝛿𝑘 𝐼𝑑),

where initially

𝛿𝑘 = 𝛼𝑅, 𝛼 =

{
10−3 if config: low
10−4 if config: high

,

with 𝑅 derived from the observed range of initial latents. 𝛿𝑘+1 may double if fitness does not improve
in a generation, or reset to 𝛿0 if it does.

Over multiple iterations, the latent distribution spreads due to additive noise:

𝑧𝑘 ∼ N
(
0, 𝐼𝑑 +

𝑘∑︁
𝑖=1

𝛿𝑖 𝐼𝑑

)
.

But since GIFTbench uses clipping to keep perturbed latents in the initial range 𝑧min ≤ 𝑧𝑘 ≤ 𝑧max,
the resulting distribution is no longer Gaussian, and higher-order moments (kurtosis) deviate from
the original prior. Consequently, many latents still fall outside the region where the decoder was
trained to operate reliably, making them effectively out-of-distribution (OOD).

0 20 40 60 80 100 120 140 160 180 200
Iteration k

0.0

0.5

1.0

P
(O

O
D

)

α = 1e− 4

0 2 4 6 8 10 12 14 16 18 20
Iteration k

0.0

0.5

1.0

P
(O

O
D

)

α = 1e− 3 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
(s

)
va

lu
e

Fig. 15. Probability of OOD latents over iterations in GIFTbench for both low (top) and high (bottom)

configurations. Latents are considered OOD if their squared norm exceeds the 99th percentile of the 𝜒2 (𝑑)
distribution. 𝑃 (𝑠) is the probability of scaling 𝛼 , where higher values mimic a weaker SUT.

As shown in Fig. 15, even when scaling 𝛼 is unnecessary, latents eventually exhibit a high
probability of being OOD, making the generator unreliable. Unlike classical genetic algorithms,
where fitness penalizes undesirable behavior, here decoder failure is not penalized. Consequently,
the optimization process can exploit these "bad" latents, producing examples that appear successful
according to the optimization objective but are semantically invalid.

, Vol. 1, No. 1, Article . Publication date: January 2026.

32 Weißl et al.

For our experiments, the number of iterations 𝑘 averaged 28 for ImageNet and 9 for Driving
(Table 2, 25-budget per iteration), both resulting in a high probability (> 0.5) of OOD when using
the perturbation sizes provided in GIFTbench’s GitHub with config: high[28].

0 20 40 60 80 100 120 140 160 180 200
Iteration k

10−1

100

101

102

A
–D

st
at

is
ti

c

α = 1e− 4

0 2 4 6 8 10 12 14 16 18 20
Iteration k

10−1

100

101

102

A
–D

st
at

is
ti

c

α = 1e− 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
(s

)
va

lu
e

Fig. 16. The Anderson–Darling test statistic with a a criticality threshold of 1.092 (𝑝 < 0.01) indicated by the

dotted black line. Experiments across multiple scaling probabilities 𝑃 (𝑠) are shown.

Looking at Fig. 16, we can see that clipping highly variable Gaussian noise disrupts the normality
of the data, as confirmed by the Anderson–Darling test, which properly emphasizes the tails.
A higher test statistic indicates a lower probability of the data being normally distributed; in
our case, the significance threshold is exceeded for most configurations within the first 5% of
iterations. Previous works have shown that the type of noise has a substantial impact on generation
quality [31, 42, 50], with both the symmetry of the noise and its inversion being directly correlated
with generation quality [35]. Clipping partially breaks this symmetry for inversion, providing a
likely explanation for the observed degradation in output quality (Fig. 12c & Fig. 14b & Fig. 13c).

Received 08 May 2025; revised 19 September 2025; accepted 28 September 2025

, Vol. 1, No. 1, Article . Publication date: January 2026.

	Abstract
	1 Introduction
	2 Background
	2.1 Generative-based Test Generation for DL Systems
	2.2 Diffusion Models
	2.3 ControlNet

	3 Methodology
	3.1 System under Test
	3.2 Manipulator
	3.3 Optimizer
	3.4 Objectives

	4 Empirical Study
	4.1 Research Questions
	4.2 Metrics & Measures
	4.3 Baseline Methods
	4.4 Objects of Study
	4.5 Experimental Setup
	4.6 Results
	4.7 Threats to Validity

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Data Availability
	References
	A Methodology
	A.1 Derivation of the 1 Formulation of Trace Difference

	B Study
	C Potential Pitfalls of Noise-Based Latent Manipulation in LDMs

